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Abstract

Vitamin D is metabolized in the liver and kidneys and then converted to the active form,
1.25-dihydroxyvitamin D [1.25(OH)2D]. Chronic kidney disease patients usually lack
both 25-hydroxyvitamin D [25(OH)D] and 1.25(OH)2D due to impaired renal function
and 1α-hydroxylase deficiency. Chronic kidney disease patients have a high incidence
of cardiovascular and infectious morbidities. Increasing evidence indicates a relation-
ship between vitamin D deficiency and cardiovascular and infectious mortality risks.
Vitamin D may have significant biological effects beyond its traditional roles on mineral
and bone metabolism. Many extrarenal cells have the capability to produce local active
1.25(OH)2D in an intracrine or paracrine fashion. Vitamin D has a significant association
with nonskeletal  diseases,  such as  immunodeficiency,  metabolic  syndrome,  insulin
resistance,  diabetes,  hyperlipidemia,  cardiovascular  disease,  proteinuria,  and acute
kidney injury. This article aims to review and summarize the pleiotropic effects of
vitamin D in patients with kidney disease, particularly the immunological, metabolic,
cardiovascular, and renal effects.

Keywords: vitamin D, pleiotropic effects, immunity, metabolic, cardiovascular, acute
kidney injury, chronic kidney disease

1. Introduction

Most animals cannot synthesize all vitamins. Vitamin D is a lipid-soluble vitamin and the
only  vitamin  that  can  be  synthesized  by  humans.  Evolutionally,  vitamin  D  has  been
synthesized by a photochemical process in land vertebrates to satisfy the requirement for a
calcified skeleton for more than 350 million years [1, 2]. Vitamin D is metabolized by 25-
hydroxylase and 1α-hydroxylase in the liver and kidneys, respectively, and converted to the
active form, 1.25-dihydroxyvitamin D [1.25(OH)2D] [3]. Recently, the extrarenal conversion
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of 25-hydroxyvitamin D (25(OH)D or calcidiol) to 1.25(OH)2D (calcitriol) may play impor-
tant biological roles beyond its traditional roles [4]. Chronic kidney disease (CKD) patients
usually  lack  both  25(OH)D  and  1.25(OH)2D  due  to  impaired  renal  function  and  1α-
hydroxylase deficiency. CKD patients have a high incidence of cardiovascular and infectious
morbidities. Increasing evidence indicates a relationship between vitamin D deficiency and
cardiovascular and infectious mortality risks [5].

Vitamin D plays new roles through activation of the vitamin D receptor (VDR), which involves
several pleiotropic effects. Immune systems are clearly impaired in CKD patients [6, 7]. In
innate immunity, the conversion of 25(OH)D to 1.25(OH)2D within monocytes and macro-
phages may produce cathelicidin and β-defensin to enhance the disinfectant effects [8, 9].
Vitamin D also has an inhibitory effect on the adaptive immune system by regulating the
function of antigen-presenting cells (APCs), T lymphocyte activation and proliferation, and
cytokine secretion [10, 11]. Therefore, vitamin D plays an essential role in immunomodulation.

The metabolic syndromes and insulin resistance are increased in CKD patients [12]. Recently,
an association between insulin resistance, diabetes mellitus (DM), and vitamin D deficiency
has been proposed [13]. Low vitamin D levels are associated with hypertension (HTN) and
endothelial dysfunction [14]. Vitamin D also has protective effects on improving proteinuria
and progression of renal function in CKD patients [15, 16]. Vitamin D deficiency is a biomarker
to predict acute kidney injury (AKI) and is independently associated with increased morbidity
and mortality in critical illness [17]. This review focuses on the influence of vitamin D on
immunological, metabolic, cardiovascular, and renal effects in patients with kidney disease.

2. Vitamin D and immune regulation

Vitamin D has been used to treat infections such as tuberculosis for more than 100 years [6,
18]. Epidemiological experiments have shown that vitamin D deficiency is closely related to
autoimmune and infectious diseases [2, 19–21]. Immune cells carry VDR and 1α-hydroxylase,
which produces the active metabolite 1.25(OH)2D through local synthesis and heightens
immunomodulatory properties [8]. Increasing evidence indicates that vitamin D deficiency
may cause dysregulation of the innate and adaptive immune systems and promote microin-
flammation [22].

2.1. Vitamin D and innate immunity

Vitamin D can stimulate the differentiation of monocytes into mature phagocytic macro-
phages to enhance the effects against pathogens [23]. During infection, macrophages and
monocytes are exposed to pathogen-associated molecular patterns (PAMPs), which may ac-
tivate Toll-like receptor (TLR) 1/2 heterodimer and sequentially upregulate 1α-hydroxylase
activity and VDR expression to produce 1.25(OH)2D [24]. 1.25(OH)2D inhibits the release of
the proinflammatory cytokine tumor necrosis factor α (TNF-α), regulates the activity of nu-
clear factor κB (NF-κB), and suppresses the expressions of TLR2 and TLR4 in human mono-
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cytes, which reduces cytokines release [25]. Lipopolysaccharide (LPS) can induce TLR4,
interferon-γ (IFN-γ), and CD14 activity to increase 1α-hydroxylase expression. When serum
25(OH)D levels are above 30 ng/mL (75 nmol/L), 25(OH)D can convert to its active form,
1.25(OH)2D, via 1α-hydroxylase in macrophages in an intracrine or autocrine manner [23].
Consequently, 1.25(OH)2D enters the nucleus by binding VDR complexes with retinoid X
receptor (RXR), which causes direct signaling on the transcription of cathelicidin and β-de-
fensin 2 [24]. Both the above peptides can cleave microbial membranes and promote innate
immunity in response to infectious agents. Hence, the macrophage’s functions deteriorate,
which decreases its antibacterial effect in vitamin D-deficient patients compared with peo-
ple with adequate vitamin D [24, 26].

25(OH)D supplements increase induction of cathelicidin, which is associated with the capacity
for killing Mycobacterium tuberculosis and promoting antibacterial activity [18, 24, 26]. Vitamin
D binding to VDR can also upregulate the expression of β-defensin 4A (DEFB4A) through
nucleotide-binding oligomerization domain 2 (NOD2) activation and NF-κB stimulation [23].
Autophagy is an important macrophages defense mechanism against intracellular pathogens
by the elimination of materials, which acts as a dynamic recycling system that yields new
components and energy for cellular renovation and homeostasis [18]. Antibacterial cathelici-
din, β-defensin 4A, and maturation of autophagosomes cooperate to enhance bacterial killing,
which is highly dependent on vitamin D status [27]. Therefore, in innate immunity, vitamin D
promotes macrophages to produce cathelicidin and β-defensin 2 and enhances the capacity
for autophagy via TLR activation.

2.2. Vitamin D and adaptive immunity

VDR are presented in activated T cells and B cells; therefore, vitamin D plays a functional role
in modulating adaptive immunity [27]. 25(OH)D or 1.25(OH)2D suppresses the maturation of
professional APCs and dendritic cells (DCs) by decreasing costimulatory marker expression
and affecting the binding ability and expression of VDR, thereby reducing antigen presentation
and regulating adaptive immune responses [28–31]. Furthermore, vitamin D can influence T
cell function through endocrine, paracrine, and intracrine mechanisms. Vitamin D directly
influences T-cell proliferation and cytokine production [27]. Vitamin D increases anti-inflam-
matory T-helper 2 (Th2) cytokine production and suppresses Th1 cytokines, which shifts from
Th1 to Th2 axes [30, 32].

The suppression of DC maturation by 1.25(OH)2D has the potential to induce Treg cells, which
exhibit anti-inflammatory effects [29–31, 33]. Vitamin D can significantly increase the percent-
age of Tregs through direct endocrine systemic calcitriol effects or intracrine conversion of
25(OH)D to 1.25(OH)2D by Tregs themselves, or indirectly through the APCs remaining in an
immature status. Vitamin D also inhibits the development of Th17, which is associated with
tissue damage, inflammation, and host-graft rejection in autoimmune diseases [34]. In humoral
immunity, 1.25(OH)2D results in reduced proliferation and differentiation of B lymphocytes,
and immunoglobulin production [35].
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2.3. Vitamin D and immune dysfunction in CKD

CKD patients usually have obvious immune dysregulation, which may play a role in infection
and contributes to an important cause of morbidity and mortality [36]. Vitamin D deficiency
causes dysregulation of the innate and adaptive immune systems and promotes microinflam-
mation. Low 1.25(OH)2D levels have been related to elevated mortality rates in CKD patients
[36]. Consequently, CKD leads to a diminished response to infection and misapplied inflam-
matory response as in a state of immune dysregulation and sustained inflammation [6]. On
the one hand, strong associations have been shown between the prevalence of vitamin D
deficiency and susceptibility to infection [37], and on the other hand, vitamin D also has an
antioxidative effect. Both immunomodulatory and antioxidative activities may contribute to
immune dysfunction in CKD. It is difficult to clarify whether the immunomodulatory or
antioxidative effect of vitamin D is more predominant during the process. However, the results
of vitamin D supplementation trials did not always demonstrate consistent protective effects
[38]. Prevention through vaccination remains the best strategy to minimize the adverse
consequences associated with infections. Patients with CKD demonstrate inadequacies of
immunity for generating a protective vaccine response. Vitamin D might influence immune
responsiveness and its potential modulating role in vaccine immunogenicity [39]. Can we
translate vitamin D immunomodulating effect on innate and adaptive immunity to vaccine
response? According to current evidence, it is still premature to recommend vitamin D for
practical therapeutic or preventive use to enhance vaccine response. More research and large
trials are needed for further confirmation.

3. Roles of vitamin D in metabolic disturbance

3.1. Vitamin D and metabolic syndrome

Metabolic syndrome is a condition characterized by the presence of at least three of the
following: abdominal obesity, increased blood pressure (BP), impaired glucose tolerance or
diabetes, dyslipidemia (elevated levels of triglycerides), and low concentration of high-density
proteins [40]. Metabolic syndrome is associated with an increased risk of renal injury,
cardiovascular disease, type 2 diabetes, and all-cause mortality [41]. The relationship between
metabolic syndrome and CKD is complex and bidirectional. Low 25(OH)D3 levels are
associated with metabolic syndromes. A meta-analysis of observational studies showed a
significantly inverse association between blood 25(OH)D levels and the risk of metabolic
syndrome [42]. There is a 51% reduction in the prevalence of metabolic syndrome with a high
level of vitamin D. Furthermore, another meta-analysis provided a dose-response relationship
between the blood vitamin D concentration and metabolic syndrome risk. A 25 nmol/L
increase in 25(OH) D levels was associated with a 13% decrease in the risk of metabolic
syndrome. However, there was some heterogeneity among the studies. The association was
somewhat stronger in the elderly populations with metabolic syndrome [43]. Although the
observational (epidemiological) studies demonstrated significant associations between
vitamin D and metabolic syndrome, their causal relationship is still undetermined. Further
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studies, particularly longitudinal randomized clinical trials, are needed to determine whether
vitamin D supplementation plays a role in the prevention of metabolic syndrome.

3.2. Vitamin D, insulin resistance, and DM

3.2.1. Vitamin D and insulin resistance

CKD patients experience impaired insulin secretion and enhanced insulin resistance [12, 44].
Vitamin D deficiency, secondary hyperparathyroidism, inflammation, and oxidative stress all
can alter glucose metabolism and contribute to insulin resistance. Active vitamin D
(1.25(OH)2D) may stimulate pancreatic insulin secretion directly through the interaction of
the 1.25(OH)2D3-RXR-VDR complex, thus increasing insulin synthesis [45, 46]. Insulin
secretion is a calcium-dependent process and vitamin D may indirectly increase the calcium
concentration by alternating calcium flux within the β islet cells; therefore, it has adverse effects
on β islet cells’ secretary function. In addition, vitamin D and calcium regulated insulin
sensitivity by stimulating the insulin receptor and activating peroxisome proliferative-
activated receptor γ (PPAR-γ) [47]. Extrarenal 1α-hydroxylase leads to the local production of
1.25(OH)2D, which has a role in ensuring calcium influx into cells, and may be essential to the
actions of insulin in skeletal muscle and adipocytes [48, 49].

Chronic inflammation is involved in the development of insulin resistance. Vitamin D has
immunoregulatory effects by decreasing inflammatory responses to reduce insulin resistance
and the risk of diabetes [13]. Therefore, parathyroid hormone (PTH) may negatively affect
insulin sensitivity through altering body composition and inhibiting insulin signaling by
reducing the number of glucose transporters to promote glucose uptake, suppress insulin
release, and promote insulin resistance in adipocytes [50, 51].

However, there appears to be a need for randomized trials to evaluate the definite effects of
vitamin D supplementations in insulin resistance and whether supplementations of vitamin
D may be a suitable management strategy to ameliorate insulin resistance.

3.2.2. Vitamin D and type 2 DM

The association between vitamin D and type 2 DM has been explored recently [52]. There is
an inverse association between vitamin D status and glycemic outcomes [13]. Insulin resistance
increases the risk of type 2 DM. Lower vitamin D status is associated with higher risk of incident
type 2 diabetes in observational studies; however, the effect of vitamin D supplementation on
glycemic outcomes was not evident in some studies [48]. In a large cohort of middle-aged
women, both vitamin D and calcium intakes were additive and inversely associated with risk
of type 2 DM development. For both vitamin D and calcium, intakes from supplements rather
than from diet were significantly associated with a lower risk of type 2 diabetes [53, 54]. Hence,
a high intake of vitamin D and calcium was associated with a lower risk of type 2 diabetes. An
inverse association was shown between serum 25(OH)D levels and prevalence of diabetes and
its complications, and the improvement of symptoms after vitamin D supplementation.
Underlying mechanisms may be associated with the role of vitamin D in immunity, β-cell
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function, and insulin sensitivity [13]. Overall, the available data are currently insufficient to
support the contention that type 2 diabetes can be improved by raising 25(OH)D concentra-
tions. The confirmation of a potential beneficial effect of vitamin D on type 2 diabetes is needed
in large trials.

3.3. Vitamin D and lipid metabolism

Lipid metabolism abnormalities with alterations in lipid profiles are commonly seen in
CKD patients; therefore, the prevalence of dyslipidemia in CKD is much higher than that
in the general population [55, 56]. Markedly reduced high-density lipoprotein quantity
and function is the key dyslipidemia leading to persistent chronic inflammation, increased
oxidative stress, and subsequent progression of cardiovascular disease in CKD. CKD also
induces downregulation of lipoprotein lipase and very low-density lipoprotein (VLDL) re-
ceptor contributing to further hypertriglycemia and elevated VLDL levels. The vitamin D
binding to VDR may affect bile acid synthesis and reduce cholesterol levels in hepatocytes
and serum. Activation of the VDR by 1.25(OH)2D may suppress the expression of small
heterodimer partner (SHP) and the activation of cholesterol 7-α-hydroxylase (CYP7A1)
which is the rate-limiting enzyme in bile acid synthesis, and its expression controls serum
cholesterol levels [57–59]. In addition, VDR activation downregulated farnesoid X receptor
(FXR) and SHP expression to inhibit CYP7A1, which is responsible for lowering cholester-
ol [60, 61]. The vast majority of intervention studies did not show a significant effect of
vitamin D on blood levels of serum cholesterol levels in CKD patients. However, there is
evidence for a triglyceride-lowering effect of vitamin D in CKD patients, a group with
elevated triglyceride levels. Thus, adequately designed primary prevention trials are need-
ed to provide more evidence for the clinical application of vitamin D.

4. Roles of vitamin D in cardiovascular disease

4.1. Vitamin D and endothelial dysfunction

The vascular endothelial function of CKD patients is dysregulated. Calcium deposition in
atherosclerotic plaques or vessel walls participates in the vascular calcification process, which
causes major cardiovascular morbidity and mortality. Vitamin D has been associated with
increased vascular calcification and evidence conversely supports a protective effect. Recent
studies have demonstrated the relationship between vitamin D status and endothelial function.
Vitamin D therapy can improve endothelial function. Oral vitamin D (cholecalciferol) im-
proves endothelial vasomotor and secretory functions in CKD patients [62, 63]. In a clinical
trial of patients with type 2 DM, who were vitamin D deficient, a one-time large dose of vitamin
D improved flow-mediated brachial artery vasodilation and significantly decreased systolic
BP compared with placebo [64]. In 42 subjects with vitamin D insufficiency, normalization of
25(OH)D at 6 months was associated with increases in reactive hyperemia index and suben-
docardial viability ratio, and a decrease in mean arterial pressure [14]. However, the available
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data are currently insufficient to support the reverse endothelial dysfunction by administrating
vitamin D in the general population.

An in vitro study indicated that vitamin D may attenuate the adverse effects (including
increased NF-κB expression) of advanced glycation end products on endothelial cells [65].
Inflammatory processes can also increase ischemic mediators like intercellular adhesion
molecule-1, which increases neutrophil-endothelial interactions [66]. Endothelial injury
directly affects afferent arterioles and results in endothelin release and further vasoconstric-
tion, which together cause microcirculatory dysfunction. In addition, vitamin D3 administra-
tion enhanced vascular regeneration by inducing stromal cell-derived factor 1 expression in
the healthy population. Active vitamin D may increase Klotho secretion and upregulate the
expression of osteopontin, a calcification inhibitor, to inhibit vascular calcification and improve
vascular endothelial function [67]. Therefore, vitamin D3 may be viewed as a new approach
for promoting vascular endothelial repair in the future.

4.2. Vitamin D and the renin-angiotensin-aldosterone system (RAAS)

There is an inverse correlation between changes in vitamin D and changes in plasma renin
activity [68]. Individual with 25(OH)D deficiency had higher circulating angiotensin II (Ang
II) levels and significantly blunted renal plasma flow responses to infused Ang II when
compared with individuals with sufficient 25(OH)D levels. Low plasma 25(OH)D levels may
result in the upregulation of the renin-angiotensin-aldosterone system (RAAS) in otherwise
healthy humans [69]. Animal and clinical studies have provided important mechanistic clues
regarding the crosstalk between RAAS and vitamin D, which affects BP and volume regula-
tion [70]. VDR-knockout mice demonstrated increased renin gene expression in the kidneys
and had enhanced RAAS signaling in the blood, which led to significant sodium retention,
vascular resistance, and HTN [69]. Conversely, treatment with calcitriol reduced renal renin
production independent of calcium and PTH. Calcitriol binds to the VDR and blocks the
formation of CRE-CREB-CBP complexes in the promoter region of the renin gene, thus
reducing its level of expression [71].

4.3. Vitamin D and hypertension

The observation that people living at higher altitudes have a higher incidence of essential HTN
during the winter raised the hypothesis that vitamin D deficiency may contribute to essen-
tial HTN [72, 73]. There is an inverse relationship between serum 25(OH)D concentration and
HTN incidence, with an odds ratio of 0.73 for the highest versus the lowest category of blood
25(OH)D. In patients with HTN exposed to sufficient sunlight, the 25(OH)D levels were
upregulated and subsequently BP was normal [73]. Another study showed that native vitamin
D supplementation may improve HTN in type 2 diabetic patients [74]. Pooled data from
previous clinical trials have produced mixed results [53, 75]. Data from normotensive indi-
viduals showed a small, but statistically significant, effect on reduction in BP with vitamin D
intervention. In contrast, a meta-analysis to evaluate the effect of vitamin D supplementation
on BP showed no significant BP-lowering effect of vitamin D supplements [75]. Hence, an
appropriately high dose of vitamin D can normalize or nearly normalize blood 25(OH)D levels
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and significantly reduce BP in hypertensive cohorts with vitamin D deficiency. Treatment of
vitamin D-deficient or vitamin D-insufficient normotensive individuals with vitamin D for
short period results in minimal effects on BP. Subgroup analysis displayed a significant
reduction in diastolic BP in participants who had preexisting cardiometabolic disease.

The mechanisms underlying vitamin D’s effect on HTN have not been elucidated yet. Several
biological mechanisms relating vitamin D deficiency and HTN have been proposed. First, low
vitamin D levels have been associated with increased vascular stiffness, endothelial dysfunc-
tion, inflammatory cytokines, and higher coronary artery calcium scores [72]. Other possible
mechanisms concerning vitamin D deficiency leading to HTN include vitamin D deficiency
leading to increased renin expression, high PTH and low calcium levels, and increased
sympathetic nervous activity. Vitamin D deficiency is also an epigenetic risk factor that favors
increased vascular tone, which may not play an important role in the regulation of normal BP
homeostasis, but serves as a trigger to contribute to the development of HTN in vulnerable
middle-aged people.

4.4. Vitamin D and anemia

Anemia due to erythropoietin deficiency or resistance is the major cause of renal anemia in
CKD. Chronic inflammation, iron imbalance, and increased hepcidin production also contrib-
ute to anemia in CKD patients [76]. Several factors, such as the use of phosphate binders and
antacids, loss of blood during hemodialysis, and intake of erythropoiesis-stimulating agents
(ESA) cause iron deficiency. Vitamin D deficiency may increase inflammatory cytokines
production (interleukin-6, IFN-γ, TNF-α), which stimulate hepcidin production, thus inhibit-
ing ferroportin activity and limiting iron usability [77, 78]. In addition, secondary hyperpara-
thyroidism will directly inhibit erythroid progenitors, endogenous erythropoietin synthesis,
and red blood cell survival as well as indirectly promote bone marrow fibrosis and hyper-
phosphatemia [76, 79]. All of these factors will lead to ESA hyporesponsiveness. Providing
vitamin D or active vitamin D may promote anti-inflammation and erythroid proliferation to
correct ESA resistance, improving anemia, and reduce ESA requirements [80, 81]. Therefore,
vitamin D levels and ESA requirements exhibit an inverse relationship in CKD patients.

5. Roles of vitamin D in renal disease

5.1. Vitamin D and chronic kidney disease (CKD)

Vitamin D deficiency is a prominent feature of CKD. Vitamin D deficiency is related to
albuminuria, CKD progression, and subsequent cardiovascular diseases [15, 16]. VDR is highly
expressed in the kidney; therefore, the kidney can be considered a classic vitamin D target
organ [82, 83]. Vitamin D has been prescribed for renal patients to prevent osteodystrophy and
increased attention has focused on its renoprotective activity in recent decades. Molina et al.
reported that vitamin D supplements may effectively reduce albuminuria at CKD stages 3–4
[84]. In the VITAL study, the administration of paricalcitol in addition to RAAS blockade
further reduced albuminuria compared with RAAS blockade alone in patients with diabetic
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nephropathy [85]. A meta-analysis study showed a higher risk for nephropathy in vitamin D–
deficient patients with diabetes, but these association studies did not show causality. However,
pooling the results of available clinical trials showed no significant change in proteinuria after
vitamin D supplementation. More vitamin D research is needed for a more comprehensive
and precise conclusion.

Activation of the VDR is essential in reducing proteinuria [85]. Traditionally, using RAAS
blockers can reduce albuminuria [86]. 1.25(OH)2D3 is known as a RAS inhibitor by its negative
regulatory effect on renin production to provide additional renoprotection [69]. The renopro-
tective effects of vitamin D can improve proteinuria, glomerulosclerosis, and interstitial
infiltration and reduce renal oxidative stress [87]. Combined treatment with paricalcitol and
losartan suppressed the induction of fibronectin, transforming growth factor β (TGF-β) and
monocyte chemoattractant protein-1 (MCP-1), and reversed the decline of the slit diaphragm
proteins nephrin, Neph-1, ZO-1, and alpha-actinin-4 [88]. VDR knockout in diabetic mice was
associated with severe albuminuria and glomerulosclerosis [69]. Alternatively, vitamin D
might slow the progression of diabetic nephropathy by improving insulin secretion, delaying
destruction of β islet cells, affecting osteocalcin, and consequently assisting in glucose metab-
olism. TGF-β, MCP-1, hepatocyte growth factor, thrombospondin-1, and plasminogen
activator inhibitor are other possible molecular targets of vitamin D action [87, 89, 90].

5.2. Vitamin D and acute kidney injury (AKI)

A significantly lower plasma 25(OH)D concentration was associated with low plasma cathe-
licidin level in patients with sepsis compared with healthy controls. A low 25(OH)D level was
a biomarker to predict AKI and has a significant impact on length of stay, organ dysfunction,
infection rates, and survival in critically ill patients [17, 91, 92]. Vitamin D deficiency was
independently associated with increased morbidity and mortality as well as significantly
associated with AKI with RIFLE-Injury and -Failure stages in intensive care units (ICU) [93].
The levels of bioavailable 25(OH)D were strongly and inversely associated with the severity
of sepsis and inversely associated with hospital mortality. Because the levels of the major
metabolite of vitamin D, 24R.25(OH)2D3, were not elevated in AKI, the reduced levels of
25(OH)D resulted from decreased production and not enhanced catabolism related to FGF23.
The strong association between bioavailable 25(OH)D versus total 25(OH)D levels and severity
of sepsis may be related to the selective uptake of bioavailable 25(OH)D by macrophages and
nontraditional target organs [94].

The exact mechanism is unknown. 1.25(OH)D can modulate the levels of inflammatory
cytokines and may play a role in LPS-induced immune activation of endothelial cells during
Gram-negative bacterial infections. Renoprotective effects of vitamin D has been identified in
several AKI animal models, including contrast-induced AKI, gentamicin-induced AKI,
cisplatin-induced AKI, cyclosporine-induced AKI, ischemia-/reperfusion-induced AKI, and
the obstructive nephropathy model [95–99]. The data from experimental AKI studies suggest
that vitamin D analogs protect the kidney by targeting three major pathways: the local RAS,
antioxidation, NF-κB and PPAR-γ pathways to suppress inflammatory, fibrotic, apoptotic, and
proliferative factors [95, 100–102]. In contrast to the role of vitamin D in CKD patients, the role
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of vitamin D in AKI is not as well defined. It is reasonable to hypothesize that the predisposition
of vitamin D-deficient critically ill patients to AKI is related to the innate and adaptive immune
response.

6. Conclusion

Vitamin D is a critical substance for bone and mineral regulation and is also a hormone with
pleiotropic functions. Vitamin D exerts beneficial effects on immunomodulatory effects,
alleviates metabolic syndrome, improves insulin resistance, maintains regular blood pressure,
increases vascular endothelial cell function, and manages renal anemia (Figure 1). Vitamin D
has protective effects on improving proteinuria and progression of renal function in CKD
patients. Vitamin D deficiency is independently associated with increased morbidity and
mortality in critical illness and a biomarker to predict AKI. Thus, more trials are needed to
provide more evidence for clinical application of the pleiotropic influence of vitamin D on the
immunological, metabolic, cardiovascular, and renal effects in patients with kidney disease.

Figure 1. Pleiotropic effects of vitamin D in kidney disease. Vitamin D exerts beneficial effects on immunological,
metabolic, cardiovascular, and renal effects in patients with kidney disease.
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