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Abstract

Tropical cyclone (TC) is an important research area since it has a significant impact on
human life, properties and environment. The researchers all over the world have been
studying fundamental and advanced processes to better understand and thereby predict
the genesis and evolution of TCs. This review chapter provides a brief overview on TC
climatology,  their  basic  characteristics,  movement  and  intensification,  research  on
structure analysis and prediction of these fascinating storms, with primary emphasis to
North Indian Ocean (NIO). The role of ocean and atmosphere in determining the genesis
and intensification of  TCs is  discussed.  This  chapter  reviews the past  and current
research activities including inter-annual and intra-seasonal changes in TCs, current
status of TC research using numerical weather prediction, gaps identified and relevant
measures taken by the meteorological and government agencies in this direction, along
with future directions in order to improve the understanding and predictability over
the NIO region.

Keywords: tropical cyclone, cyclogenesis, predictability, North Indian Ocean, WRF

1. Introduction

A tropical cyclone (TC) is a cyclonic disturbance that originates over warm tropical oceans
with anticlockwise (clockwise) winds around a centre of  low barometric pressure in the
Northern  Hemisphere  (Southern  Hemisphere)  [1].  It  creates  strong  winds  and  intense
precipitation in the regions around the system. There are seven global basins that conceive
TCs, viz. North Atlantic Ocean, eastern and western parts of North Pacific Ocean, south-
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western pacific, south-western and south-eastern Indian Ocean and North Indian Ocean (NIO)
region. The cyclonic storms are often known as hurricanes and typhoons in the Atlantic and
northwest Pacific, whereas TCs in other Ocean basins. The average frequency of occurrence,
season and intensity of TCs vary from basin to basin. NIO basin shows bi-modal TC season
with  maximum  frequency  during  post-monsoon  period  (October–December)  and  are
comparatively stronger than pre-monsoon ones.  Though the size of the TCs is relatively
smaller and their intensity is comparatively less over NIO basin as compared to the other
global basins, this region is quite important in view of the densely populated rim countries
with poor socioeconomic conditions. Hence, loss of life and property is quite significant in
this region. Based on the intensity,  TCs formed over NIO basin can be classified into (i)
depression if the associated 10-m maximum sustained wind (MSW) is in between 17 and 33
kt; (ii) cyclonic storm (CS) if MSW is in between 34 and 47 kt; (iii) severe cyclonic storm (SCS)
if it has MSW of 48–63 kt; (iv) very severe cyclonic storm (VSCS) if the MSW is within the
range 64–90 kt, and extremely severe cyclonic storm (ESCS) if the MSW is in range of 91–119
kt; and (v) super cyclonic storm (SuCS) if it has MSW of 120 kt or more (http://www.rsmcnew-
delhi.imd.gov.in). This classification may differ from those over other global basins including
that  of  the  widely  used  Saffir-Simpson  hurricane  wind  scale  or  SSHWS  (http://
www.nhc.noaa.gov/aboutsshws.php). Both types of classifications, that is, the earlier one from
India Meteorological Department (IMD) and the SSHWS consider the tropical low-pressure
system as a depression if MSW is <34 kt. The consideration of CS and SCS lies in the tropical
storm category (MSW lies in the range 34–63 kt) of SSHWS. The VSCS category over NIO basin
is similar to that of the category 1 hurricane (MSW lies in the range 64–82 kt) type. The category
3 (MSW lies in between 96 and 112 kt) and category 4 (MSW is within the range 113-136 kt)
major hurricanes are comparable to ESCS over NIO basin. The IMD classification categorizes
MSW above 120 kt as super cyclonic storm (SuCS), whereas SSHWS considers the desired
wind speed above 137 kt for category 5 hurricane. However, the basic structure of NIO TCs
is similar to hurricanes and typhoons.

Having a prolonged coast line, about 96 districts (lying within 100 km from the coast) of India
are vulnerable to the occurrence of TCs with varying intensity [2]. Out of these 96 districts,
∼59% are at least highly vulnerable. The number of CS and SCS with a core of MSW (between
34 and 63 kt) crossing different countries of the NIO region is found to be 504 during 1891–
2015 (derived from the available IMD data at http://www.rmcchennaieatlas.tn.nic.in). Out of
these, about 328 (>65%) crossed the Indian coasts, whereas 127 (>25%) have crossed the east
coast of India between Gopalpur and Kolkata. In general, the proneness to TCs is quite high
for the coastal districts of West Bengal, Odisha, Andhra Pradesh, and Tamil Nadu [2, 3]. In
view of these, TCs over NIO basin can be considered as quite lethal and expensive natural
disaster as they bring widespread destruction in these regions. The consequent loss of human
life and properties impacts the economy of a country. Therefore, it is important to forecast the
evolution of TCs by using numerical models as the frequency of such storms is increasing in
several basins of the world in the present warming period [4]. Therefore, it is attempted to put
forward the recent developments in understanding the related meteorological characteristics,
their predictability, climatological aspects and the gaps identified in the area of TC research.
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2. Life cycle of tropical cyclones

This section describes the general understanding about life cycle of TCs. The description
includes a brief overview about their genesis, structural evolution, propagation and dissipa-
tion.

2.1. Cyclogenesis

The TC research has evolved over several decades and researchers use observations as well as
numerical models for this purpose. For example, some observational studies [5–7] discuss
about TC formation and evolution. The pioneering works by Gray [8, 9] have shown that the
formation of TC at any location depends on six factors: (i) appropriate Coriolis parameter ‘f’
that is practically effective 5° away from the equator in both the hemispheres, (ii) low-level
positive relative vorticity (ζr), that is, existence of initial disturbance, (iii) low tropospheric
vertical wind shear (Sz), (iv) ocean thermal energy (E) signified by sea surface temperature
(SST), that is, SST should be ≥26.5°C within vertical extent of 60 m, (v) atmospheric instability
measured in terms of difference in equivalent potential temperature (θe) between the surface
and 500 mb or Δθe and (vi) mid-tropospheric relative humidity ‘RH’. Some of these aspects
are discussed explicitly over the years using observations and numerical models [7, 10]. The
first three parameters produce a dynamic potential (fζr/Sz), while the remaining three param-
eters yield a thermal potential (E Δθe RH). And, the product of dynamic and thermal potentials
provides the seasonal genesis frequency.

Cyclogenesis do not occur spontaneously even if all the environmental conditions are met.
Further, only about 10% of all cyclonic disturbances intensify into TCs. These low-pressure
systems gradually form from a pre-existing (or initial) disturbance that consists of wind vortex
and organized clouds. Thus, the necessary conditions for tropical cyclogenesis must be
supported by the deep convection in the presence of a low-level absolute vorticity maximum
and the initial convection must survive for sufficient time. The survival ability of the initial
convection depends on ‘ζr’, ‘f ’ atmospheric stability (defined by Brunt Vaisala frequency ‘N’)
and depth of the system (H). This ability is defined by the Rossby radius of deformation ‘LR’
typically for a large tropical cyclonic system (www.meted.ucar.edu):

R
r

NHL
fz

=
+ (1)

The average life expectancy of a TC is about 1 week, whereas it is found that few cyclones
remain active for more than 4 weeks (exact time frame may change from basin to basin) as seen
in case of a hurricane, provided the system must be able to stay over the warm tropical waters.
In most of the TCs, the Coriolis and centripetal forces oppose the pressure gradient force [11].
In the lowest kilometres near the surface, the frictional force destroys the gradient balance and
consequently, air spirals inward towards the storm centres. The primary circulation (horizontal
axisymmetric) during tropical cyclogenesis gains latent heat through the process of evapora-
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tion and exchange of sensible heat with the underlying ocean as it spirals towards the storm
centre [12]. Consequently, it gains large angular momentum and kinetic energy because of the
acceleration towards the low-pressure centre. The evaporation of sea spray provides the
necessary moisture supply. Because of the high velocity demanded by the quasi-conservation
of angular momentum, the air may not penetrate beyond some small radius. To conserve the
angular momentum, the air spirals upward in the eyewall forming intense ring of cumulus
cloud and a calm eye at the centre and brings in the latent heat it acquired during the upward
motion in the boundary layer to the free atmosphere. Due to the cooling of this rising air, latent
heat releases into the atmosphere to add more energy to the storm. Across the top of the
boundary layer, the turbulent eddies generated by the mechanical mixing due to the prevailing
strong winds cause a significant downward flux of sensible heat from the free atmosphere
through subsidence (Figure 1).

Figure 1. Vertical cross section of a mature cyclonic storm and associated basic characteristics (adopted from http://
www.hko.gov.hk/informtc/nature.htm).

As the convective updrafts in the eyewall ascends to the tropopause, the latent heat is converted
to sensible heat through condensation in order to provide the much-needed buoyancy for
lifting air from the surface to tropopause level. After reaching at the upper level, the air turns
outwards and eventually spread out at high altitudes, where it forms anticyclonic circulation
and eventually the cool air above the eye begins to sink into the central core (Figure 1). Thus,
the storm can be termed as a quasi-steady thermodynamic heat engine that is primarily driven
by latent heat release. This heat engine runs between a warm heat reservoir as sea that is at
∼300°K and a cold reservoir located at 15–18 km up in the troposphere having a temperature
∼200°K. A baroclinic structure is maintained by the latent heat release in the warm core, which
is continuously converted to kinetic energy that is responsible to drive the TC.

Apart from the basic factors discussed so far, there is a significant role of Madden-Julian
oscillation (MJO) and El Niño in the frequency of occurrence of TCs (see [13]). In certain
scenarios, equatorial Rossby waves (ER), mixed Rossby-gravity waves (MRG), Kelvin waves
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and easterly waves also influence the tropical cyclogenesis [14]. However, equatorial Kelvin
waves do not appear to play a major role in tropical cyclogenesis. Several hurricanes in the
North Atlantic form from African waves, MJO has a significant role in tropical cyclogenesis in
North Pacific and the formation of cyclonic storms in the northwest Pacific is associated with
MRG waves [13, 15]. These waves enhance the local conditions for the genesis of TCs by
increasing upward motion, convection and the low-level vorticity by altering the local vertical
shear pattern. The larger-scale waves, such as the MJO and ER, can also alter the mean zonal
wind in large spatial and temporal scales in order to influence the mean flow.

The active phase of MJO is generally found over Indian Ocean, the maritime continent, and
western pacific [13], which seem to play a major role in regulating the frequency of occurrence
(usually increases) and formation of TCs in these regions. MJO increases the westerly wind
which blows from west to east and its active phase through the region increases convective
activity. During El Niño events, the atmospheric response to SST anomalies (SSTA) in the
equatorial Pacific perturbs the Walker circulation [16]. The most common form of genesis
occurs when they interact with the Asian monsoon. However, such type of interaction is still
not studied well though few studies emphasized the role of El Niño or El Niño Southern
Oscillation (ENSO) in TC formation over the Bay of Bengal (BOB) region indicating a decrease
in the number of TCs [17].

2.2. Structural evolution

The general structure of the TC can be understood through the visualization of vertical cross-
section of a mature TC as depicted in Figure 1, which consists of eye, eyewall and rainbands.
The centre of the structure signifies the low-pressure cyclone eye, where a strong downward
flow occurs indifferent to the immediate neighbouring updrafts. However, subsidence is also
visible alongside the updrafts in the neighbourhood eyewall region away from the eye. The
appearance of eye, its growth, intensification of eyewall and disappearance of eye are described
in this section.

The life cycle of the TC is shown in Figure 2(a), where the inner and outer cores of a TC are
considered besides its intensification in order to depict the strengthening and weakening.
Figure 2(b) depicts the different stages of TC life period including genesis, development,
mature stage and dissipation by considering the evolution of TC Phailin (2013) in BOB region
as an example to the illustration shown in Figure 2(a).

In the intensification period (or phase 1), the momentum from outer core towards the inner
one helps in strengthening the 700 hPa wind field and subsequently it helps in the eye wall
cloud formation [18]. Prior to the appearance of eye, the intensification process is quite slow
(at a rate ∼8 hPa/day). The increase in maximum wind field is ∼5 ms−1day−1 and the outer core
strengthens at a rate of ∼2 ms−1day−1. Gradually, when the eye appears, the central pressure is
about 987 hPa and the rate of intensification increases by ∼250 times, at a rate of about 20 hPa/
day. The rapidly deepening cyclone (at a rate ∼42 hPa/day) supports an earlier eye formation.
During the filling phase, the central pressure starts rising by drawing momentum through the
outer core and strengthening the outer core’s wing.
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Figure 2. (a) Conceptual rendering from the main events in the life cycle of a tropical cyclone [18] and (b) different
stages of tropical cyclone Phailin formed over Bay of Bengal [80].
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The phase 2 is usually marked by the strengthening of outer core wind (similar to the stage (c)
of TC Phailin shown in Figure 2(b)), whereas the inner core wind diminishes. During this
phase, the eye expands and the filling of the inner core continues through the inflowing air
towards the cyclone centre. During the filling phase, the inertial stability of the outer core is
twice as large as that of the deepening stage making the outer core rigid for the inflowing air.
Gradually the expansion of the eye ceases and the central core fills. It is important to note that
the longer a cyclone spends in phase 2, stronger the outer radius will be and the radius of the
damaging winds expand as long as the eye exists.

During phase 3, the outer wind starts weakening (e.g. stage (d) of TC Phailin shown in
Figure 2(b)) with the disappearance of eye. Once the eye is vanished, the inflow of angular
momentum ceases that was responsible for the strengthening of the outer core and from where
the decay of outer radius low level wind field begins. These characteristics are valid for the
cyclones which do not suffer landfall because the landfall would erode the wind field irre-
spective of the appearance of eye.

Though the basic principles of structural evolution may hold good for the TCs occurring in
NIO basin (refer to Figure 2(b) for different stages of the TC Phailin), the formation of a
distinguished eye structure may always not be feasible. A distinguished eye may be seen in
case of a very severe cyclonic storm in this basin during phase 2. However, an explicit analysis
in this direction is not available in literature for the NIO basin even though few studies like [19]
computed the radius of maximum wind seen in case of TC intensification.

2.3. Propagation

TCs generally originate in tropics and thereafter, travel westward [20, 21] or turn poleward
and recurve towards eastward direction [21, 22] or suffers extratropical transition over land or
water [23] before dissipation. If a time scale of 1–3 weeks is considered, then the evolution of
Rossby wave train significantly influences the track of a TC. Across the subtropical regions,
under the influence of synoptic scale ridging, the TCs tend to move more westerly, and under
the influence of synoptic scale trough, TCs tend to recurve into the mid-latitude [24]. On a
seasonal scale, it is seen that over the Indian Ocean, the advancement of monsoon has a
considerable impact on TCs’ growth and their track [25].

In principle, TCs move under the influence of its surrounding environment. When the
easterlies are added with the wind at certain level from the storm, the resulting effect forces
the system to move in a westward direction [26]. Since the winds are not constant with height,
it complicates the movement. The ‘β effect’ or ‘β drift’ pushes the cyclone towards the north-
west direction in the northern hemisphere. It superimposes a weak northwest ward (southwest
ward) steering current upon the TC in the northern (southern) hemisphere.

Apart from the factors mentioned earlier, the wind shear around anti-cyclonic flow at the top
of the TCs also impacts their movement and can influence the track as much as the ‘β drift’.
There is a more complex phenomenon which influences the motion of a cyclone, known as
‘Fujiwhara effect’ [27]. Fujiwhara interaction describes the mutual rotation of two vortices
about a common centre [28]. This centre typically refers to the mass weighted centroid of the
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two vortices, if they are of equal strength. In the presence of the β effect, the two vortices rotate
around each other relative to the centre of rotation. This centre of rotation is not fixed and,
instead, moves northwest ward in response to the ‘β effect’. ‘Fujiwhara effect’ is noticed over
other basins of the world including Atlantic, but is not applicable for TCs formed over NIO.

2.4. Dissipation

The most common way of dissipation of a TC is its landfall. When the storm moves over land,
it deprives itself from warm water and the available moisture over ocean. Consequently, it is
deprived from the energy source and the warm core with thunderstorms near the centre turns
into a remnant low-pressure area due to quick loss of energy. Weakening can also occur if it
encounters a vertical wind shear that causes the heat engine and convection shift away from
the centre. The rate of power dissipation of TCs can be computed [29] as

3
D DE C vr=

where ED is the rate of energy dissipation per unit time per unit horizontal surface area, v
defines the wind speed, ρ is for air mass density, and ‘CD’ is the drag coefficient that depends
upon the surface irregularities. Since the power dissipation in TCs is proportional to the cube
of its wind velocity, the severity can be computed as the cumulative sum of the cube of the
wind velocity over time according to the above equation.

3. Role of ocean in genesis and intensification

There are two sources which are capable of changing the TC intensity, one is internal variability
and other one is environmental interaction. One important aspect of later source is the
interaction between the ocean and the storm system. Usually TC is regarded as the most
forceful case in air-sea interaction studies where energy from the warm ocean waters is
delivered via surface heat flux [30]. The ocean response is quite sensitive to the surface drag
coefficient. Emanuel [31] used a simple numerical model to establish the progress of hurricane
intensity. Their findings advocate that in most cases, the intensity depends on three factors,
viz. initial intensity of cyclone, thermodynamic state of atmosphere through which the cyclone
propagates and finally the heat exchange with the upper layer of the ocean underlying the core
of the cyclone. Rapid intensification of TC is noticed when it passes over the deep upper ocean
mixed layer and that upper ocean thermal structure plays a significant role in the intensification
process [32–34]. Sutyrin [35] performed simulations with a coupled model of the oceanic and
atmospheric boundary layers and concluded that the interaction is strong enough to change
the supply of heat and moisture fluxes from the ocean into the atmosphere significantly within
few hours of the formation of the storm and consequently, influence the TC intensity.

The intensity of TC increases with increase in SST and upper ocean heat content [36]. The
positive feedback occurs when genesis and intensification happens. During this phase, the
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evaporation from the ocean surface stimulates surface wind that subsequently increases the
moisture supply and consequently increasing the latent heat that is further utilized to drive
the circulation. As a negative feedback, the decrease in SST results in the decrease in total heat
flux (sum of latent heat and sensible heat), resulting in decrease in intensity of the storm.
Besides these interactions, some of the mechanical energy supplied by the TC is dispersed
laterally and vertically by the internal inertia-gravity waves with time [37].

On the other hand, the intensification of TC depends not only on SST but also on subsurface
ocean thermal structure also considered as an important predictor for the TC intensification
(e.g. see [38–40]). In the changing climate scenario, SST plays a bigger role during pre-monsoon
season as compared to the post-monsoon period for governing TC activity over NIO region
[41]. In contrast, the same may not be valid for other basins including North Atlantic Ocean,
where an increasing trend in correlation between SST and TC power dissipative index is
observed [42]. The influence of the changing climate on the TC genesis and intensification in
the NIO region may therefore not be limited to the analysis relating SST only.

4. Numerical modelling of tropical cyclones

A significant number of studies regarding TC propagation, track prediction, time and place of
landfall and intensity of the storm are carried out for several ocean basins including NIO.
Considerable improvements in predicting the TCs are also achieved till date. In view of these,
this section highlights the recent developments regarding TC predictability over NIO region
and the current scenario.

4.1. Model predictability

Various regional models such as GFDL (USA), ALADIN (France), Quasi-Lagrangian Limited
Area Model or QLM (India), MM5 (USA), etc. are used for TC research and operational
forecasting purpose. Apart from these, the Eulerian-mass-based dynamical core of Weather
Research and Forecasting (WRF) model, designed as the successor to MM5 is also used to
predict TCs. The variants of WRF regional model are Advanced Research WRF or ARW and
non-hydrostatic mesoscale model or WRF-NMM. Though these numerical models are quite
capable for real-time predictions in regional scale, they need appropriate initial and boundary
conditions from global models. For example, a recent study carried out by Kumar [43] discusses
about the impact of European Centre for Medium-Range Weather Forecasts (ECMWF),
National Centers for Environmental Prediction (NCEP) and National Centre for Medium
Range Weather Forecasting (NCMRWF) global model analysis on the WRF model forecast for
TC prediction over Indian region. This study indicates some of the inherent limitations of such
global analyses data sets including the consideration of few fundamental aspects like that of
the middle tropospheric humidity profiles those are important for TC genesis. Another
limitation of such data sets is their horizontal resolution though recent advancements have
made availability of some of the usable global analyses for the desired purpose with higher
spatial resolutions up to 0.25°.
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Since NWP models are equipped with real-time prediction capability, they are being used
increasingly for the TC prediction over NIO region as well. Some of the numerical models and
their skills are discussed here. For instance, QLM regional model was adopted by Prasad [44]
for cyclone track prediction over NIO region and found the performance to be reasonable. The
recurvature of the cyclones were also well predicted. However, the model performance for TC
intensity prediction was not satisfactory. Another notable study by Mohanty et al. [45] used
MM5 to simulate Orissa (Odisha) super cyclone (1999) for predicting track, intensity, mean sea
level pressure and associated precipitation. Though such types of studies were able to improve
the prediction of several relevant parameters including TC tracks, they were not so successful
in predicting the intensity accurately like the studies performed using QLM. Similarly, some
recent studies used three variants of the next-generation mesoscale WRF model (i.e. ARW,
WRF-NMM, and Hurricane Weather Research and Forecasting Model or HWRF) for TC
research and operational purpose as well [51, 53, 56, 57, 66]. It may be noted that ARW uses
Arakawa C-grid staggering while WRF-NMM and HWRF use Arakawa E-grid. All of the WRF
model variants use terrain following co-ordinate system and specific physical parameteriza-
tions. Since several modelling features in WRF are quite advanced (e.g. moving nest feature
in HWRF) as compared to MM5, it is expected that at least one or more variants of it would
show better performance for TC prediction over NIO region. Extensive research in this
direction using ARW suggests some significant improvements in predicting the tropical
cyclogenesis and cyclone tracks [10, 46–54]. However, it is noticed that improvement in
prediction of TC intensity is found to be slower than that of track [51, 55].

A comparison study among MM5, WRF-ARW and WRF-NMM for very severe cyclone Mala
(2006) developed over BOB found that ARW could simulate the TC intensity in terms of
minimum central pressure and maximum sustainable wind with better accuracy [56]. How-
ever, MM5 simulated a more rapidly intensified storm and delayed landfall and WRF-NMM
failed to simulate the intensity of the storm properly. On the other hand, WRF-NMM predicted
TC track more accurately as compared to ARW and MM5. The TC Mala when simulated using
HWRF with different initial conditions, the track error was found to be ∼200 km and the
intensity prediction was reasonably good for some considered initial conditions though the
amount and spatial distribution of rainfall was well simulated by the model [57]. In order to
improve the predictability, appropriate nesting technique, horizontal and vertical resolutions
as well as physical parameterizations are considered [59, 68] besides data assimilation [60]. In
view of these aspects, the HWRF system is now implemented at IMD along with the already
operational ARW model for forecasting of TCs over NIO basin. As part of the Forecast
Demonstration Project (FDP) conducted by IMD, it is analysed that the performance of ARW
without data assimilation is reasonable over BOB [61]. Its performance improves when
available observations are assimilated. Similar is the case with WRF-NMM. On the other hand,
HWRF is capable of simulating rapid intensification of TCs over NIO region due to its
improved vortex relocation and initialization procedures [49].

The high-resolution mesoscale modelling systems provide better guidance for TC forecast up
to 72 h over NIO region [61]. They require high-resolution global analyses data sets for
appropriate initial and boundary conditions in order to bring in large-scale boundary forcing
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[62]. In order to reduce model errors, the initial and boundary conditions can be improved by
adopting appropriate data assimilation techniques by incorporating the conventional, radar
and satellite observations before running the model [61]. Thus, these aspects need special
attention as far as predictability of TCs over NIO region is concerned.

4.2. Role of physical parameterizations

The physical parameterizations which include cumulus convection, surface fluxes of heat,
moisture, momentum and vertical mixing in the planetary boundary layer play an important
role in determining structural development, intensification and movement of TCs [10, 46, 48,
50, 53, 58, 63–65]. A number of studies emphasized upon these aspects during the past three
decades. For the simulation purpose, they use the previously mentioned models (see Section
5.1). Most of these studies conduct simulations over a particular ocean basin. For instance,
Osuri et al. [50] conducted a systematic study on customization of ARW model considering
several physical parameterization schemes for the simulation of five TCs over NIO region. The
study found that the combination of Yonsei University (YSU) planetary boundary layer (PBL)
parameterization with KF convection scheme provided a better prediction for structural
characteristics, intensity, track and rainfall. Similar results were also achieved by several
studies including that of [10, 46, 48]. Thus, most of the studies (including [65]) found the
performance of KF scheme to be better for the prediction of TCs over NIO region. However,
recent studies by Kanase and Salvekar [53] obtained that the Betts-Miller-Janjic (BMJ) convec-
tion scheme performs better as compared to other parameterizations in the group although
the study also favoured using YSU PBL physics. On the other hand, it found that WRF single-
moment (WSM)-6 microphysics better represents mid-tropospheric heating as compared to
WSM-3 favouring better intensity simulation.

Though HWRF has not been extensively used for sensitivity studies with respect to physical
parameterizations for simulation of TCs over NIO region, its primitive variant WRF-NMM
was used in recent past by some of the researchers. For example, studies by Pattanayak et al.
[66] found that the combination of Simplified Arakawa-Schubert (SAS) convection, YSU PBL,
Ferrier microphysics and NMM land-surface parameterization schemes in WRF-NMM
performs better in predicting track and intensity of TC Nargis (2008) over BOB. Therefore, an
extensive evaluation of HWRF is needed in order to determine the combination of physical
parameterizations that performs better for TC prediction over NIO region before it is adopted
for the operational forecasting purpose.

4.3. Significance of grid resolution

The grid resolution of a model also impacts the TC prediction [51, 58, 59, 67]. However, there
are very few studies available relating to the impact of grid resolution on TC prediction over
NIO region. One of the notable studies by Rao [68] evaluated the impact of horizontal resolu-
tion and the advantages of the nested domain approach in the prediction of Orissa (Odisha)
super cyclone intensification and movement by using MM5 model. Results from this study
indicate that the enhancement of resolution produces higher intensity but does not influence
the track of the storm. The nested experiments produced cyclone track closely agreeing with
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the observations, while the single domain based simulations show the deviation of the track
towards north. A more recent study by Osuri et al. [51] found that the use of high resolutions
in operational ARW model improves the prediction of recurving TC tracks and their intensity.
In a climatological framework, Community Atmospheric Model or CAM showed sensitiveness
to the prediction of more number of intensified tropical cyclones over most of the global basins
including NIO. Further, it also found that the duration of tropical storms would be much larger
in high resolutions simulations. Thus, it is realized that the model horizontal grid resolution
impacts significantly the TC track, intensity and duration besides other relevant meteorolog-
ical parameters.

4.4. Significance of data assimilation

Most of the times, the use of data assimilation techniques in TC simulations helps in improving
the model predictability. For this purpose, satellite-based observations, aircraft measurements
and radar data are used besides the conventional data sets. The widely used data assimilation
techniques are primarily based on either ensemble Kalman filter (EnKF) or variational
techniques (3DVAR or 4DVAR). Most of the studies related to TC simulation were done using
variational data assimilation techniques for improving the TC prediction over NIO region. For
example, the studies such as [52, 69–71] used 3DVAR techniques for assimilating satellite, radar
and conventional measurements for improving the initial and boundary conditions of MM5
and ARW mesoscale models in order to better predict TC structure, track, intensity and
associated relevant meteorological variables including rainfall. In some situations, the
improvement was not significantly noticed. For instance, the studies by Singh et al. [70] found
that assimilation of SSM/I wind speed data resulted in simulating weak intensity and failed to
make an impact on track prediction.

Although there are no significant studies related to the use of 4DVAR and EnKF techniques
for simulating NIO TCs, there are literatures, which demonstrate the usage of four dimensional
data assimilation (FDDA) nudging technique in order to improve the ARW model predicta-
bility. For example, [71–73] used FDDA nudging technique in order to improve ARW initial
and boundary conditions for the simulation of several TCs over NIO region those occurred
during 2007–2010. These studies primarily emphasized upon TC track and intensity forecasts.
While some of them reported remarkable improvements in track prediction and landfall
position with either 12- or 18-h of nudging yielding maximum impact [72, 74], some others
noticed relatively less impact of FDDA observational nudging on intensity prediction [73].

5. Tropical cyclone climatology over NIO region

Since hundreds of years, the Indian Ocean is a breeding basin for disastrous TCs associated
with heavy rainfall, torrential wind and storm surges. The cyclones in 1970 and 1991 caused a
loss of more than 400,000 lives. During the Odisha super cyclone (1999), more than 10,000 lives
were lost and a destruction of 1.9 million houses occurred in 14 districts. Recently, Nargis (2008)
caused ∼1 40,000 deaths in Myanmar. In 2015, cyclonic storm Komen caused a heavy loss
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throughout Bangladesh, Myanmar, northeast India and eastern parts of India although the loss
of lives was very few as compared to previous cases because of the improvement in TC
predictability. This was also realized in case of Phailin (2013) and Hudhud (2014).

TCs usually form over NIO basin in two seasons, that is, pre‐monsoon (March‐April‐May) and
post‐monsoon (October–November–December) period. In total, about 1108 numbers of
cyclonic systems are formed over NIO region (includes both BOB and Arabian Sea, AS) during
1891–2015. It includes depressions (or D), cyclonic storms (or CS) and severe cyclonic storms
(or SCS). However, the cyclonic systems do not form each month of every year. If the average
monthly distribution of these three types of cyclonic systems (Figure 3) is analysed, it is evident
that maximum number of cyclones occur between the months of May to December. Maximum
numbers of depressions are formed in August. Maximum numbers of CS are formed in the
month of October, while November is the most favourable month for the formation of SCS.
Though the number of total cyclonic systems in May is relatively less, ∼48.7% of cyclonic
disturbances are transformed to very severe cyclonic storms. However, this transformation is
found to be 43.9 and 41.7%, respectively, in the months of April and November. Annually the
probability of intensification of depression to CS is ∼44.8%, depression to SCS is ∼21.3% and
the probability of intensification of CS to SCS is ∼47.5%.

Figure 3. Monthly frequency of cyclonic disturbances in North Indian Ocean region during 1891–2015. Here depres‐
sion signifies the low‐pressure systems which do not transform to cyclonic storms; CS is for the cyclonic storms and
SCS represents the severe cyclonic storms.

BOB contributes about 75% of TCs during cyclone seasons (pre‐ and post‐monsoon periods)
and the AS contributes ∼25% [75]. The possible reason could be that BOB is generally more
stratified than AS because its upper‐ocean part is relatively warmer resulting in higher SST. In
addition, low flat coastal terrain and funnel shape, shallow water of BOB [76], monsoonal wind
(trough), more middle tropospheric moisture availability and lower tropospheric westward
travelling disturbances such as easterly waves (often serve as the ‘seedling’ circulations) play
roles in generating more number of cyclonic systems over BOB. Most of the monsoon troughs
generated because of re‐intensification of westerly propagating disturbances or from in situ
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depressions help in the formation of cyclonic systems over this region as well. Boreal summer
intraseasonal oscillation (BSISO) also modulates the topical cyclogenesis over BOB [77], and it
may be noted that the genesis potential index is high during the active phase of the BSISO.

The studies like that of [4] indicate that under the global warming scenario, the number and
proportion of cyclones reaching SCS are increasing in almost all basins of the world especially
indicating the impact of climate change. Figure 4 shows the decadal variation of cyclonic
disturbances and CSs over NIO, that is, over BOB and AS. It is clear from the curve that there
is a significant decreasing trend in the number of cyclonic disturbances and CS. When the
number of SCS are analysed, it shows a slight increase or may be considered as a constant trend
in decadal scale (Figure 4). During 1961–1970 and 1971–1980, there was most number of SCS.
Besides El-Nino Southern Oscillation (ENSO), MJO (Madden-Julian Oscillation) and IOD
(Indian Ocean Dipole) may also play appreciable role in modulating the TC activity over NIO
region [13, 16, 17, 77].

Figure 4. Variation of decadal frequency of cyclonic disturbances or depressions (D), cyclonic storms (CS) and severe
cyclonic storms (SCS) over NIO region (smooth curved line). The bar diagrams represent SCS during 1891–2015. The
dotted line indicates the moving trend and line shows the linear trend.

For the past three decades, the number of SCS has somehow decreased to a considerable value
(Figure 4). However, Mohanty et al. [75] demonstrated that there is a considerable increase of
SCS by about 65% during the warming period 1951–2007 by analysing the genesis and intensity
of TCs over NIO basin in yearly scale. In the southern sector of BOB, a considerable increase
of ∼71% in SCS is found in post-monsoon season. Rate of dissipation of SCS over BOB is also
significantly reduced besides increase in mean SST in the warming scenario and these features
contribute to increase in the number of SCS over NIO. In the western sector of AS, a significant
increase in SCS is also observed in the warming conditions. Therefore, the intensity of the SCS
is increasingly becoming significant in the changing climate scenario. When the ‘T Numbers’
of the cyclones are analysed in satellite era, it is found that the Odisha super cyclone (1999)
was the strongest recorded CS in the NIO basin during 1990–2015.
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Analysing the track of cyclones over BOB and AS from e-atlas available at IMD, New Delhi, it
is observed that most of the cyclonic systems developing over the NIO basin move in a
northwesterly direction. However, there are cases of recurvature towards the northeast or east
to southwest. The frequency of recurvature is higher towards the northeast compared to
southwest or east. The probability of recurvature is higher over the AS when the system moves
to the north of 15°N increasing the possibility of landfall over Gujarat coast. Over BOB, there
is no such preferred latitude/longitude for the recurvature prospects. On the other hand, the
probability of recurvature towards northeast region is higher during the pre-monsoon season.

Out of 1108 cyclones formed during last 124 years, 751 (68%) have crossed east coast of India,
214 (19.31%) Bangladesh, 57 (5.18%) Myanmar, 63 (5.68%) west coast of India and 26 (2.3%)
numbers of cyclones crossed the coastal regions between India and Pakistan affecting the
economy of both the countries. According to studies by Tyagi et al. [78], over 60% of TCs formed
over BOB suffer landfall in different parts of east coast of India, 30% strike coasts of Bangladesh
and Myanmar and about 10% dissipate over the sea itself. The differences in observed
percentages are because of the obvious reason, that is, consideration of different time periods.
However, it is evident that NIO basin is quite significant in view of the TC occurrence and
highly populated and economically growing south Asian region.

6. Ongoing activities and possible recommendations for future

In order to improve the prediction of TC predictability over BOB region, the modernization of
the observational system is being carried out by IMD, which includes setting up of two clusters
of surface meso-meteorological networks: one along the coasts of Odisha-West Bengal and the
other around Andhra Pradesh coasts [2]. About 443 numbers of existing automatic weather
station (AWS) are there set up in different states of India. For NIO basin, it is considered very
important to acquire weather reconnaissance aircraft facility to provide information on
environmental winds and thermodynamical structures in the inner core region of TCs. The
FDP (2008) is an attempt in this direction to determine the possible improvements in track and
landfall predictions by using aircraft data.

The programmes named as STORM and PRWONAM are carried out with the support of
Ministry of Earth Sciences (MOES) and Department of Science and Technology. MOES is also
involved in strengthening of the deep ocean and met-ocean buoys network. In addition, IMD
has established high wind speed recorder systems, S-band Doppler radars and Global
Positioning System (GPS) equipment along the coastal areas of India [79]. Under the Indo-
French collaboration, Oceansat-II (was functional till 2014) and MEGHA-TROPIQUES satellite
with capability of repeated scanning over BOB region are/were functional to provide data
related to sea surface winds, clouds, humidity, temperature, rainfall and radiation. The earth
receiving stations for METOP and MODIS satellite data have been installed at IMD. Products
like cloud motion vector (CMV), water vapour wind (WVW), out-going longwave radiation
(OLR), quantitative precipitation estimate (QPE), Sea Surface Temperature (SST), upper
tropospheric humidity (UTH) and cloud top temperature (CTT) are derived from other
satellites including KALPANA-1 and INSAT-3D.

Progress in Tropical Cyclone Predictability and Present Status in the North Indian Ocean Region
http://dx.doi.org/10.5772/64333

207



Several research institutes such as National Centre for Medium Range Weather Forecasting,
Noida; Indian National Centre for Ocean Information Services, Hyderabad; Indian Space
Research Organization (ISRO), Air Force and academic institutes including IITs (Indian
Institute of Technology), NITs (National Institute of Technology), universities contribute
towards providing their valuable input through academic research regarding various aspects
of TC activity over NIO region. With these inputs and in-house research and development,
IMD has been able to strengthen its capability in recent past, both from numerical modelling
as well as observational point of view by taking into account both in situ and satellite meas-
urements.

Despite increased capability for TC prediction over NIO region, few aspects still need to be
addressed. Those key areas include accuracy in track prediction, time and place of landfall,
accurate storm surge prediction and improving the intensity predictability. In addition, the
changes in tropical cyclogenesis need to be understood in the changing climate scenario. It is
because the severity of TCs is found to be increasing in the warming environment [75]. The
improvement in numerical model predictions can be done by improving physical parameter-
ization schemes, incorporating observations from different sources including those from
satellites and radars in the model initial and boundary conditions through appropriate data
assimilation techniques and considering improved SSTs. In addition, better disaster manage-
ment need to be done alongside in order to reduce the loss of lives and properties.
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