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Abstract

Spectral statistics of weakly disordered triangular graphene flakes with zigzag edges

are revisited. Earlier, we have found numerically that such systems may show spectral

fluctuations of Gaussian unitary ensemble (GUE), signaling the time‐reversal symme‐
try (TRS) breaking at zero magnetic field, accompanied by approximate twofold valley

degeneracy of each energy level. Atomic‐scale disorder induces the scattering of charge

carriers  between  the  valleys  and  restores  the  spectral  fluctuations  of  Gaussian

orthogonal ensemble (GOE). A simplified description of such a nonstandard GUE‒GOE
transition, employing the mixed ensemble of 4 × 4 real symmetric matrices was also

proposed. Here, we complement our previous study by analyzing numerically the

spectral fluctuations of large matrices belonging the same mixed ensemble. Resulting

scaling laws relate the ensemble parameter to physical size and the number of atomic‐
scale defects in graphene flake. A phase diagram, indicating the regions in which the

signatures of GUE may by observable in the size‐doping parameter plane, is presented.

Keywords: graphene, quantum chaos, random matrix, time-reversal symmetry, gaus‐
sian ensemble

1. Introduction

The notion of emergent phenomena was coined out by Anderson in his milestone science paper

of 1979 [1]. In brief, emergence occurs when a complex system shows qualitatively different

properties then its  building blocks.  Numerous examples of emergent systems studied in

contemporary condensed matter physics, including high‐temperature superconductors and
heavy‐fermion compounds [2], are regarded as systems with spontaneous symmetry break‐
ing [3]. A link between emergence and spontaneous symmetry breaking, however, does not
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seem to have a permanent character. In a wide class of electronic systems, such as semicon‐
ducting heterostructures containing a two‐dimensional electron gas (2DEG), physical proper‐
ties of itinerant electrons are substantially different than properties of free electrons (or electrons

in atoms composing the system),  and are also highly‐tunable upon variation of  external
electromagnetic fields [4]. To give some illustration of this tunability, we only mention that

electrons in GaAs heterostructures can be usually described by a standard Schrödinger equation

of quantum mechanics with the effective mass meff =0.067me (where me is the free electron mass),
whereas  in  extreme cases  of  quantum states  formed in quantum Hall  systems,  effective
quasiparticles may not even show the Fermi‒Dirac statistics [5, 6].

It is rather rarely noticed that graphene, a two‐dimensional form of carbon just one atom tick
[7], also belongs to the second class of emergent systems (i.e., without an apparent spontaneous
symmetry breaking) described briefly above. In a monolayer graphene, effective Hamiltonian
for low‐energy excitations has a Dirac‒Weyl form, namely

(1)

where vF =106  m/s is the energy‐independent Fermi velocity, σ = (σx, σy) with the Pauli matrices

σx and σy, p = − iħ(∂x , ∂y ) is the in‐plane momentum operator, the electron charge is − e, and the

external electromagnetic field is defined via scalar and vector potentials, U (r ,  t) and

A(r ,  t), with the in‐plane position r = (x,  y) and the time t .
1
 In other words, the system build

of nonrelativistic elements (carbon atoms at normal conditions) turns out to host ultrarelativ‐
istic quasiparticles, providing a beautiful example of an emergent phenomenon, which binds
together two rather distant areas of relativistic quantum mechanics and condensed matter

physics [8]. This observation applies generically to bilayer or multilayer graphenes [9], as well

as to HgTe/CdTe quantum wells [10], although microscopic models describing such other Dirac

systems are slightly different. It is also worth to mention so‐called artificial graphenes, in which
waves (of different kinds) obey their effective Dirac equations [11‒13].

A peculiar nature of Dirac fermions in graphene originates from the chiral structure of the
Hamiltonian ℋeff, accompanied by the fact that coupling to the external electromagnetic field
is described by additive terms, which are linear in both scalar and vector potentials. A
remarkable consequence of these facts is the quantization of the visible light absorption [14],
an unexpected macroscopic quantum effect recently found to have analogs in other Dirac
systems [15, 16], and even in a familiar graphite [17]. Another intriguing effect of this kind
appears for dc conductivity of ballistic graphene [18]. In the so‐called pseudodiffusive
transport regime, the conductance of a rectangular sample (with the width W  and the length

L ) scales as G =σ0 ×W / L  for W ≫ L , where σ0 = (4 /π)e 2 / h  is the universal quantum value of

the conductivity [19, 20], whereas the shot‐noise power and all the other charge‐transfer
characteristics are indistinguishable from those of a classical diffusive conductor regardless

1 Strictly speaking, ℋeff Eq. (1) applies to quasiparticles near the K  valley in the dispersion relation. To obtain the effective

Hamiltonian for other valley (K') it is sufficient to substitute σy→−σy.
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the sample shape [21]. At high magnetic fields, the pseudo diffusive charge transport is

predicted theoretically to reappear for resonances with Landau levels in both monolayer [22]

and bilayer graphene [23]. In the presence of disorder, a fundamental property of the Hamil‐
tonian—the time reversal symmetry (TRS)—starts to play a decisive role. In particular,

effective TRS in a single valley may be broken even in the absence of magnetic fields, leading

to observable (and having the universal character) consequences for the conductance and

spectral fluctuations [24, 25], as well as for the peculiar scaling behavior predicted for the

conductivity [26, 27].

Although the interest in graphene and other Dirac systems primarily focus on their potential

applications [28, 29], quite often linked to the nonstandard quantum description [8], we believe

that the fundamental perspective sketched in the above also deserves some attention. In the

remaining part of this article, we first overview basic experimental, theoretical and numerical

findings concerning signatures of quantum chaos in graphene and its nanostructures (Section

2). Next, we present our new numerical results concerning the additive random matrix model

originally proposed in Ref. [25] to describe a nonstandard GUE‒GOE transition, accompanied
by lifting out the valley degeneracy (Section 3). The consequences of these findings for

prospective experiments on graphene nanoflakes, together with the phase diagram depicting

the relevant matrix ensembles in the system size‐doping plane, are described in Section 4. The
concluding remarks are given in Section 5.

2. Gauge fields, fluctuations and chaos in nanoscale graphene structures

Dirac fermions confined in graphene quantum dots [30] have provided yet another surprising

situation, in which a piece of handbook knowledge needed a careful revision [31].

Quantum chaotic behavior appears generically for systems, whose classical dynamics are

chaotic, and manifest itself via the fact that energy levels show statistical fluctuations following

those of Gaussian ensembles of random matrices [32]. In particular, if such a system posses

the time‐reversal symmetry (TRS), its spectral statistics follows the Gaussian orthogonal
ensemble (GOE). A system with TRS and half‐integer spin has the symplectic symmetry and,
in turn, shows spectral fluctuations of the Gaussian symplectic ensemble (GSE). If TRS is

broken, as in the presence of nontrivial gauge fields, and the system has no other antiunitary

symmetry [33], spectral statistics follow the Gaussian unitary ensemble (GUE). For a particular

case of massless spin‐1/2 particles, it was pointed out by Berry and Mondragon [34], that the

confinement may break TRS in a persistent manner (i.e., even in the absence of gauge fields),

leading to the spectral fluctuations of GUE.

When applying the above symmetry classification to graphene nanosystems [24, 25], one

needs, however, to take into account that Dirac fermions in graphene appear in the two valleys,

K  and K ', coupled by TRS. (In particular, real magnetic field breaks TRS and has the same sign

in the two valleys, whereas the strain‐induced gauge field preserves TRS and has opposite
signs in the two valleys.) If the valley pseudospin is conserved, a special (symplectic) time‐
reversal symmetry (STRS) becomes relevant, playing a role of an effective TRS in a single valley
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[24]. Both real magnetic and strain‐induced gauge fields may break STRS leading to the spectral
fluctuations of GUE [35]. As demonstrated numerically in Ref. [25], such fluctuations also
appear for particular closed nanosystems in graphene in the presence of random scalar
potentials slowly varying on the scale of atomic separation. Such nanosystems include
equilateral triangles with zigzag or Klein edges, i.e., with terminal atoms belonging to one
sublattice. Generic graphene nanoflakes with irregular edges show spectral fluctuations of
GOE [24], as strong intervalley scattering restores TRS in the absence of gauge fields (see
Figure 1). In contrast, the boundary effects are suppressed in open graphene systems, for which
signatures of the symplectic symmetry class were reported [36].

Figure 1. Transitions between symmetry classes and random matrix ensembles relevant for closed nanosystems in gra‐
phene characterized by the disorder strength, the intervalley scattering rate, and (optionally) placed in the weak mag‐
netic field B. (Reprinted with permission from Ref. [25].)

It is worth mention here, that triangular graphene flakes, similar to studied theoretically in
Ref. [25], have been recently fabricated [37, 38]. However, due to the hybridization with
metallic substrates, quantum‐dot energy levels in such systems are significantly broaden,
making it rather difficult to determine the symmetry class via spectral statistics.

3. Transition GUE‒GOE for real symmetric matrices

3.1. Additive random‐matrix models: brief overview

Additive random‐matrix models are capable of reproducing the evolutions of spectral statistics
in many cases when a complex system undergoes transition to quantum chaos or transition
between symmetry classes [32, 39]. The discussion usually focus on the auxiliary random
Hamiltonian of the form
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(2)

where H0 =(H0)
† and V =V † are members of different Gaussian ensembles,

2

 and the parameter

λ∈ 0, ∞ .

For instance, if elements of H0 are real numbers chosen to follow a Gaussian distribution with

zero mean and the variance (H0)ij
2 =(1 + δij) / N , where δij is the Kronecker delta and N  is the

matrix size, while elements of V  are complex numbers in which real and imaginary parts are

generated independently according to Gaussian distribution with zero mean and the variance

(ReV ij)
2 =(1 + δij) / 2N , (ImV ij)

2 =(1−δij) / 2N  (respectively), the Hamiltonian H (λ) (2) refers to

transition GOE‒GUE. For N =2, statistical distribution of the spacing between energy levels

S = | E1 − E2 |  can be found analytically [40], and reads

(3)

where erf(x) is the error function, i.e., erf(x)= (2 / π)∫
0

x

exp (− t 2)dt , and

(4)

The above follows from the normalization condition

(5)

The limiting forms of the spacing distribution given by Eqs. (3) and (4) are

(6)

(7)

coinciding with well‐known Wigner surmises for GOE and GUE, respectively [32]. For

N ≫1, it was also shown that actual spacing distributions obtained numerically can be

2 To describe transition to quantum chaos rather then transition between symmetry classes in a chaotic system, one can

choose H0 to be a diagonal random matrix, elements of which follow a Gaussian distribution with zero mean and the

variance (H0)ij
2 =δi j.
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approximated (with an astonishing accuracy) by PGOE−GUE(λfit;S ), where the empirical param‐

eter λfit ∝λ N  [39]. Similar scaling laws apply generically to all transitions between basic

symmetry classes.

Relatively recently, spectra of models employing self‐dual random matrices have attracted
some attention [41]. In such models, the matrix H0 in Eq. (2) is equivalent (up to a unitary

transformation) to the matrix having a block structure

(8)

where random matrix C  is an N × N  member of one of Gaussian ensembles, C T denotes the

transposition of C . The matrix V  in Eq. (2) is a generic 2N ×2N  member of the other ensemble

(hereinafter, we redefine the H (a) size as 2N ). In turn, for λ =0, each eigenvalue is doubly

degenerate. For λ ≠0, we have the degeneracy splitting accompanied by transition between

selected symmetry classes. Even in the simplest case of N =2, closed‐form analyticexpressions
for level‐spacing distributions corresponding to arbitrary 0<λ <∞ are missing. The approach

presented in Ref. [41] employs the relevant expressions for joint probability densities for

eigenvalues [42], allowing one to express level‐spacings distribution in terms of two‐dimen‐
sional integrals to be evaluated numerically.

In the remaining part of section, we focus on the transition between self‐dual GUE to GOE,
show that the corresponding Hamiltonian H (λ), and can be represented as real‐symmetric
random matrix, and present our empirical expressions approximating spacing distributions

obtained numerically.

3.2. Self‐dual GUE to GOE via 4×4 real‐symmetric matrices

We focus now on the situation, when the matrix C  in Eq. (8) is chosen to be an N × N  member

of GUE, whereas V  in Eq. (2) is a 2N ×2N  member of GOE.

For N =2, the matrix H̃ 0 can be written as

(9)

where a and b are real random numbers following Gaussian distribution with zero mean and

the variance a 2 = b 2 =1 / 2, whereas c and d  are real random numbers following Gaussian

distribution with zero mean and the variance c 2 = d 2 =1 / 4. Exchanging the second row with

the third row, as well as the second column with the third column, we find the matrix H̃ 0
4×4 is

equivalent, up to an orthogonal transformation, to
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(10)

The matrix on the right‐hand side of Eq. (10) is self‐dual, and can be further transformed as

(11)

where

(12)

Exchanging the second with the third row and column in the rightmost matrix in Eq. (11) we
arrive to

(13)

where the blocks A and B are real‐symmetric (A T = A) and skew‐symmetric (B T = − B) random
matrices.

Spectral statistics of the Hamiltonian H (λ)= (H0
4×4 + λV 4×4) / 1 + λ 2, with V 4×4 being a 4×4 GOE

matrix, were thoroughly studied before [43]. Here, we revisit our findings, before discussing
spectra of larger matrices in next subsection.

The nearest‐neighbor spacings distribution can be approximated by

(14)

with β(α)=α / (2α −1), PGOE(S ) given by Eq. (6), PGOE−GUE(κ;S ) given by Eq. (3), and the param‐
eters α and κ which can be approximated by empirical functions

(15)
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and

(16)

Eqs. (15) and (16) represent simplified versions of the corresponding formulas given in Ref.

[43]. A comparison with the numerical will be given later in this section.

3.3. Self‐dual GUE to GOE via 2N ×2N  real‐symmetric matrices

We consider now the case of large random matrices (N ≫1). A generalization of the reasoning

presented in previous subsection brought as to the unperturbed Hamiltonian H0 with the block

structure as given by the last equality in Eq. (13), but A= A T and B = − B T are now N × N  random

matrices. The elements of each block are independently generated according to a Gaussian

distribution with zero mean and the variance Var(Aij)= (1 + δij) / 2N  and Var(Bij)= (1−δij) / 2N ,

respectively. In turn, H0 can be unitary mapped onto the matrix H̃ 0 given by Eq. (8) with C

being an N × N  member of GUE. The additive random‐matrix model H (λ) is complemented

with the perturbation V  being a 2N ×2N  member of GOE.

Ensembles of large pseudo‐random Hamiltonians H (λ) were generated and diagonalized

numerically, to check whether the standard scaling law λfit ≃ (2N )1/2λ [44] applies to spacings

distribution of such matrices. Our presentation is limited to the matrix sizes 2N =200, 400, and

1000; the statistical ensemble consists of the total amount of 106, 105, or 104 matrices (respec‐
tively), same for each considered value of the parameter λ. To avoid the boundary effects, we

limit our numerical study to about 30% of the energy levels such that | E | ≤0.5. Selected

examples are presented in Figure 2.

We find that nearest‐neighbor level spacings of large matrix H (λ) follow the empirical

distribution having the general form as given by Eq. (14).

(17)

with the empirical relations of Eqs. (15) and (16) [see blue solid lines in Figure 3] now replaced

by

(18)
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Figure 2. Level‐spacing distributions for 105 randomly‐generated Hamiltonians H (λ) with the size 2N =400 (data‐
points). The scaling parameters λ is varied between the panels. The least‐squares fitted functions P(α, κ;S ) defined
by Eq. (14) are also shown (solid lines).

and

(19)
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The above formulae are marked in Figure 3 with red dashed lines. We also find that the scaling

law λ̃ =λfit ≃ (2N )1/2λ [with λ being the original parameter of H (λ)] is satisfied for the matrices

considered with a surprising accuracy (see Figure 4).

Figure 3. Least‐squares fitted parameters of P(α, κ;S ) Eq. (14) for different values of 2N  as functions of the scaled

model parameter (2N )1/2λ (datapoints). The empirical relations ᾱ4×4(λ) Eq. (15) and κ̄4×4(λ) Eq. (16) valid for

2N =4 are shown with blue solid lines; the relations ᾱN ≫1(λ) Eq. (18) and κ̄N ≫1(λ) Eq. (19) for large matrices are

shown with red dashed lines.

Figure 4. Scaling law for the best fitted parameters λ̃ =λfit in the distribution Pᾱ,κ̄(λ̃, S ) Eq. (17) approximating

P(S ) obtained numerically for random Hamiltonians H (λ) with 2N =200, 400, and 1000. [See the main text for

details.] Blue solid line marks λfit =λ.
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4. Consequences for graphene nanoflakes

4.1. Level‐spacing distributions revisited

In this section, the empirical distribution Pᾱ,κ̄(λ, S ) (17) with least‐square fitted λ =λfit is utilized

to rationalize level‐spacing distributions for triangular graphene nanoflakes with zigzag
edges.

At zero magnetic field, the tight‐binding Hamiltonian for weakly‐disordered graphene can be
written as

(20)

where tij = − t if the orbitals | i and | j are nearest neighbors on the honeycomb lattice (with

t =
2

3 3ħvF / a ≈3  eV, and a =0.246  nm being the lattice spacing), otherwise tij =0. (The symbol 
denotes that each pair ij  is counted only once.) The terms MV(ri) and U imp(ri) represent the

potentials abruptly and slowly varying on the scale of atomic separation (respectively). Here,
we put MV (ri)=0.7 t  if ri is the outermost atom position at zigzag edge, otherwise MV(ri)=0. The
random contribution U imp(ri) is generated in as follows: first, we randomly choose N imp lattice

sites Rn (n =1, …, N imp) out of N tot. Next, the amplitudes Un ∈ (−δ, δ) are randomly generated.

Finally, the potential is smoothed over a distance ξ = 3 a by convolution with a Gaussian,
namely

(21)

A model of substrate‐induced disorder, constituted by Eqs. (20) and (21), was widely used to
reproduce numerically several transport properties of disordered graphene samples [45‒48].
Here, we revisit the spectra of closed graphene flakes considered in Ref. [25], within a simpli‐
fied empirical model Pᾱ,κ̄(λfit, S ) (17), in order discuss the consequences for prospective
experimental observation of the zero‐field time‐reversal symmetry breaking in such systems.

A compact measure of the disorder strength is given by the dimensionless correlator

(22)

where the system area , and the averaging takes place over possible realizations
of the disorder in Eq. (21). For ξ≫a, Eq. (22) leads to

(23)
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For ξ = 3 a, used for numerical demonstration in the remaining of this article, Eq. (23) still

provides a good approximation of the actual value of K0 and can be rewritten as

(24)

Figure 5. Left: Level‐spacing distributions P(S ) for triangular graphene nanoflakes with zigzag edges. The flake area is

, the disorder strength is K0 ≈0.125, the number of edge vacancies Nvac is varied betweenthe panels.

Numerical results (replotted with permission from Ref. [25]) are shown with black solid lines. The other lines corre‐
spond to empirical distributions Pᾱ,κ̄(λ, S ) Eq. (17) with λ =λfit (red solid line), λ =0 (blue dashed line) or λ =∞
(blue dotted line). Right: Least‐squares fitted parameters for different numbers of edge vacancies 1≤ Nvac ≤30 and the

flake areas  (open symbols) and  (closed symbols), corresponding to the total number of

terminal atoms Nedge =270 and 540 (respectively). Solid line depicts the approximating power‐law relation given by
Eq. (25).

The numerical results are presented in Figure 5, where we have fixed the remaining disor‐
der parameters at δ / t =0.1 and N imp / N tot =0.034 leading to K0 =0.125.

3

 Level‐spacing distribu‐
tions P(S ) obtained numerically for triangular nanoflakes with zigzag edges [see left panels

3 The disorder parameters are actually same as in Figures 8 and 9 of Ref. [25], where we have mistakenly omitted the

factor π in the numerical evaluation of K0.
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in Figure 5, black solid lines] are replotted with permission from Ref. [25], where we used

approximately 1500 energy levels with energies 0.1≤ | E | / t ≤0.5 out of the total number of

N tot(Nvac)=32758− Nvac (corresponding the flake area , with Nvac being the

number of vacancies, randomly distributed along the system boundary. Typically, best‐fit‐
ted parameters λ =λfit of the simplified distribution Pᾱ,erlineκ(λ, S) (17) coincide with given in

Ref. [25] up to a second decimal place. New values of λfit for 1≤ Nvac ≤30 and two flake sizes

N tot(0)=8278 and N tot(0)=32, 758 are displayed in the right panel of Figure 5. The depend‐
ence of λfit on Nvac and N tot can be rationalize within a power‐law

(25)

where the total number of terminal sites

(26)

4.2. Phase diagram for triangular flakes with zigzag edges

Eq. (25) is now employed to estimate the maximal system size N tot, and the maximal number

of edge vacancies Nvac, for which signatures of TRS breaking still can be identified in the

spectrum. This is possible as long as λfit <λ⋆ =0.27 (see Eq. (19)), as for any λfit ≥λ⋆ we have

κ̄(λfit)=0 and level‐spacing distribution simply evolves from that characterizing GOE matrix
with approximate twofold degeneracy of each level toward GOE without such a degeneracy.
For instance, we obtain

(27)

(28)

(29)

On the other hand, system size and the number of energy levels taken into account must be
large enough to distinguish between spectral fluctuations of GUE and spectral fluctuations of
other ensembles.

Density of states (per one direction of spin) for bulk graphene reads

(30)

The number of energy levels N lev in the interval (0, Emax) can be approximated by
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(31)

Physically, occupying N lev electronic levels above the Dirac point one produces the electric

charge Q = −2eN lev, resulting in a typical experimental limit of Emax =0.2−0.3  eV for graphene

nanostructures on SiO2‐based substrates [49].

Level‐spacing distributions P(S ) are normalized such that . In turn, the variance

 raises as the lowest moment allowing one to distinguish between

different distributions. In particular, we have

(32)

(33)

where Eq. (33) refers to the empirical distribution Pᾱ,κ̄(λ, S ) given by Eq. (17) with λ→0. Similar

calculation for arbitrary λ is straightforward, but the resulting formula is too lengthy to be

presented.
4
 When Var{S } is calculates for a large but finite collection of spacings Nspc = N lev −1,

it becomes a random variable itself, with a variance which can be approximated by

(34)

where μ4 = ( S −S ) 4 denotes the fourth central moment and we have used the normalization

S =1. In turn, for spacings following the distribution Pᾱ,κ̄(λ, S ) (17) one can find they do not

follow GOE if

(35)

where the factor 3 in the nominator corresponds to the 3σ level of significance. Substituting

Eq. (31) one can rewrite the above as

(36)

4 We use the property of m-th cumulant of the distribution P(S )=
1

2 aP1(aS ) + bP2(bS) , which is equal to

S m
P =1 / 2(a (−m) S m

(P1)
+ b (−m) S m

(P2)
).. For P1 = PGOE and P2 = PGOE−GUE, see Eqs. (6) and (3), necessary

integrals for m =2,  3,  4 can be calculated analytically.
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For λ→0, we have μ4 −σ 2 → 21

16 π
2 −2π −4≈2.671, leading to

(37)

Figure 6. Phase diagram for triangular graphene nanoflakes with zigzag edges. Grey solid line in left panel (replotted

as a dashed line in right panel) corresponding to Eq. (37) for Nvac =0 splits the region where number of available en‐
ergy levels is insufficient to determine the class of spectral fluctuation (below the line) and the region where one

should be able to identify the unitary class with approximate twofold degeneracy (2 × GUE). Blue solid line in right

panel is same as solid line in left panel, but for Nvac =1, calculated numerically from Eq. (13) for λ =λfit(N tot) (see

Eq. (25)). Vertical red line in right panel marks the limit given by Eq. (27), above which the orthogonal class with grad‐
ual degeneracy splitting (2 × GOE →   GOE) appears.

Limiting values of N tot and Emax, following from Eqs. (27), (36), and (37) are in depicted

Figure 6, presenting the central results of this work. In the absence of edge vacancies

(Nvac =0), the attainable Fermi energy Emax =0.25  eV should make it possible to detect TRS

breaking in nanoflakes containing N tot ≳3 104 carbon atoms, corresponding to the physical

diameter of . For Nvac =1, the limit of N tot ≲9500 (see Eq. (27)) implies Emax ≳0.8

eV is required, slightly exceeding current experimental limits for graphene nanostructures.

5. Concluding remarks

We have revisited level‐spacing statistics of triangular graphene nanoflakes with zigzag edges,
subjected to weak substrate‐induced disorder. Our previous study of the system is comple‐
mented by comparing the spectral fluctuations with these of large random matrices belonging

to a mixed ensemble interpolating between GUE with self‐dual symmetry and generic GOE.
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http://dx.doi.org/10.5772/64240



The results show that for a fixed value of maximal Fermi energy Emax (in typical experiment,

the Fermi energy is tuned in the range − Emax < E < Emax by top gate electrode), the system size

required to detect signatures of the time‐reversal symmetry breaking at zero magnetic field is
bounded from the bottom by the condition for minimal number of quantum‐dot energy levels
allowing one to distinguish between different classes of spectral fluctuations. A finite number

of vacancies at the system boundary may lead to intervalley scattering restoring TRS, resulting

in additional, upper limit for the system size.

In conclusion, we expect that triangular graphene flakes with perfect zigzag edges may show

signatures of TRS breaking starting from physical sizes exceeding 15  nm. For a finite number

of atomic‐scale defects (starting from a single edge vacancy), one should search for signatures
of the unitary symmetry class in artificial graphene‐like systems rather then in real graphene
nanoflakes.
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