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resumo 
 

 

Este trabalho apresenta a criação da Plataforma para Configuração de 
Ambientes Virtuais Interativos (com o acrónimo em Inglês pSIVE). Tendo em 
mente a dificuldade necessária para a criação de ambientes virtuais, a 
plataforma tem como objectivo  possibilitar a não especialistas tirarem proveito 
de ambientes virtuais, em aplicações genéricas, como por exemplo visitas 
virtuais que sirvam como publicidade ou treino onde seja possível interagir com 
elementos do ambiente para extrair informação contextualizada. Para isto 
apresenta-se um levantamento de tecnologias e frameworks passíveis de 
serem envolvidos no processo de criação e justifica-se a escolha dos mais 
adequados para integrar a plataforma. 
A plataforma permite que utilizadores, a partir de uma ferramenta de 
configuração, criem ambientes virtuais e seus aspectos, bem como modos de 
interação e  indiquem o hardware a ser utilizado. Para a construção do mundo, 
é possível carregar modelos 3D associando-lhes  informação multimédia 
(Vídeos, Textos ou Documentos PDF). 
Paralelamente ao  desenvolvimento da plataforma, foi realizado um estudo 
comparativo entre duas técnicas de seleção por ray-tracing, que diferem 
quanto à origem do feixe. A análise dos resultados sugere qual técnica que 
melhor se adequa aos ambientes criados. O estudo também demonstra a 
flexibilidade da plataforma, uma vez que esta foi adaptada para servir como 
ambiente de teste. 
Apresenta-se ainda um caso de estudo, onde se mostra passo a passo a 
configuração de um ambiente virtual e a sua utilização no âmbito do projeto 
PRODUTECH-PTI. 
Por fim, são apresentadas conclusões e possíveis caminhos a serem seguidos 
para a evolução futura do trabalho. 
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abstract 

 
This dissertation presents the creation of the Platform for Setting-up Interactive 
Virtual Environments (pSIVE). Bearing in mind the difficulty required to create 
virtual environments, the platform aims to allow non-specialists to benefit from 
virtual environments in applications such as virtual tours as marketing or 
training where one could interact with elements of the environment to extract 
contextual information. For this, several frameworks and technologies possible 
of been integrated into the platform are presented, as well as which ones are 
more suitable. 
The platform allows users, from a configuration tool, to create virtual 
environments and set up their aspects, modes of interaction and what 
hardware to use. The construction of the world is done by loading 3D models 
and associating multimedia information (videos, texts or PDF documents) to 
them. 
Alongside its development, a comparative study between two ray-tracing 
selection techniques was performed. Based on the results analysis, it is 
suggested which technique better fits the environments created with pSIVE. 
The study also demonstrates the flexibility of the platform, since it was adapted 
to serve as a test environment. 
A case of study is introduced where a step by step configuration of a virtual 
environment is shown, as well as its use within the PRODUTECH-PTI project. 
Finally, the conclusions are drawn, and suggestions for future work are 
presented. 
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1 Introduction 

 

 

1.1 Motivation 

Virtual Reality (VR) systems are known to let users ‘feel’ the environment (either 

by images only or combining other stimuli), allowing them to be virtually anywhere and 

to perform different tasks from day-to-day events simulations to training under extreme 

conditions that were very difficult to have someone physically present. Companies from 

different areas of expertize are investing on Virtual Reality to reduce costs of physical 

infrastructure, time, and travel. For instance the automotive industry, that apply VR on 

various stages of its production line, from prototyping to productivity improvements 

(Mousavi, Faieza, & Ismail, 2011).  Yet, the advance of hardware to allow VR to feel 

real, and therefore deliver accurate results, is not followed by the software, or when the 

software is very advanced it still costs a large sum of money.  

The complexity of building a Virtual Environment (VE) along with the domain 

specific knowledge required and the lack of reusability of a VE (Gutiérrez, Vexo, & 

Thalmann, 2008) still keep possible users away from VR, either because of the cost 

(time and financial) or the lack of specialized manpower. Another limitation is the 

existence of several frameworks and libraries for developing Virtual Environments 

focused on several areas, both specific (graphics rendering, simulation of oil wells, 

medical applications, among others) and general (Virtual Reality, Augmented Reality,  

games, among others), each having their own way of implementing its functions and 

architectures (Gutiérrez et al., 2008). Because of these aspects, VR lacks of ways to 



2 

become more accepted and used, by delivering a high complexity that prevents general 

users to benefit from it. 

 

1.2 Objectives 

Addressing the needs previously mentioned, this dissertation has as main 

objective to develop tools to aid non-specialists to easily setup an immersive and 

interactive Virtual Environment to visualize 3D models originated from different 

sources and with different formats. Another objective is to provide a way to interact 

with additional information inside the immersive environment using non-conventional 

hardware, such as trackers and head-mounted displays, as well as exploring natural 

ways for the user to interact with the environment. 

Beside the ease of usage, the tools shall be flexible enough to handle several 

devices such as motion trackers and head-mounted displays in a transparent way, giving 

users the ability to personalize their experience with the environment according to the 

behavior delegated to a specific hardware and allowing them to be applied to different 

situations, such as the training of employees from a metallurgic factory by viewing 

contextualized information on 3D elements of its workplace, or even just providing a 

visit to a virtual museum. 

To support the development, a state of the art review ought to be done, on topics 

such as existing technologies and solutions that could be used to solve the issues hereby 

presented with the objective of finding out which ways would provide better solutions 

to cover the objectives of this work. 

Part of the work included in this thesis was developed within the PRODUTECH-

PTI Project. The project aims to create new processes and technologies for the 

technological production lines and is integrated by a wide consortium of companies and 

scientific entities, therefore ensuring a significant set of scientific and technological 

competencies and the presence of the needed agents and mechanisms to an effective 

appreciation of its results. 

In particular some of the work of this dissertation was developed within the task 

A,2.3 of the project, which has the objective to provide a platform and tools to ease the 

development and availability of Virtual Training for developers. The idea is to allow 

Portuguese industrials to provide simulations and 3D models of their products that can 
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be integrated easily in simulation tools (such as SIMIO) and, more relevant to this 

thesis, used to create 3D Virtual scenarios for training and marketing of the products. 

1.3 Structure 

This dissertation is divided into five major chapters. This first chapter presents the 

motivation and objectives of this work. The second presents concepts of Virtual Reality 

and Virtual Environments along with a review of existing frameworks that aid the 

creation of these environments, presenting some conclusions on if they are to be used or 

not on this work. 

 The third chapter presents pSIVE (platform for Setting up Interactive Virtual 

Environments) with details on its architecture and development, as well as its 

components.  

Chapter 4 presents a user evaluation used to assess the effectiveness of the 

selection techniques and points out which technique would be better applied to different 

situations. 

In Chapter 5 a case study using 3D models that were produced within the 

Produtech-PTI project for a real company: TEGOPI is presented. In this chapter we 

present how to load and configure 3D models (built with sketch up) to create a virtual 

visit of a plant where users can navigate and interact with the models in order to validate 

the project of a plant before its creation or/and get training and equipment information 

within a VR set-up. 

The sixth and last chapter contains final considerations about this work: 

difficulties encountered along its development and other issues that could not be 

included, but were identified as important for further development. 
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2 State of the art 

 

 

2.1 Virtual Reality 

In short terms, Virtual Reality can be defined as a “high-end human-computer 

interface that involves real-time simulation and interactions through multiple sensorial 

channels” (Burdea & Coiffet, 2003) to provide the user an immersion feeling. As 

Gutiérrez (Gutiérrez et al., 2008) refers to, Virtual Reality is The Science of Illusion. 

The immersion feeling refers to the user to feel immersed in the Virtual 

Environment, which means the feeling of being inside that environment and being part 

of it. Bowman and McMahan (Bowman & McMahan, 2007) as well as  Gutiérrez also 

agree that immersion itself is just the physical condition and the feeling of “presence” is 

the psychological state that leads the user to have the sense of being part of the Virtual 

Environment, and is triggered by sensorial simulations such as images, sound, force-

feedback etc., even though the user knows s/he is in a Virtual Environment. 

A typical way to induce the immersion feeling is through the use of a Head 

Mounted Display (HMD) to provide the visual rendering (with or without stereoscopy) 

along with trackers that detect the user position and allow to deliver adequate visual, 

audio and/or haptic stimuli. For instance, according to Gutiérrez, the basic setup of a 

classic Virtual Environment is a HMD to provide the visual rendering, attached with a 

positional tracker to keep track of the head or body position to adapt the view according 

to it, and a hand tracking device to point, select and manipulate virtual objects, whether 

it has force-feedback or not. 

From the birth of the term Virtual Reality (VR) in the beginning of the 90’s, much 

was expected As much as to create the possibility of building synthetic worlds that were 
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indistinguishable from what was real (Gutiérrez et al., 2008). Nowadays, in spite of VR 

advances and its recognition as a relevant tool to be applied in different areas, this 

expectation along with many other still remain as a dream, always closer, but still a 

dream. While VR cannot deliver such promise, users take advantage of specialized 

equipment to provide input to the VR system expecting to receive an output that can be 

visual, audio, haptic etc. that is at least acceptable to be a simulation of the real world – 

Multiple senses were stimulated since one of the first VR systems ever created, the 

Sensorama (Image 1). 

In the following sections the most used input and output devices will be briefly 

presented. 

 

 

Image 1.The sensorama (Gutiérrez et al., 2008) 

 

2.1.1  Output Devices 

When designing a Virtual Reality system the display is usually one of the most 

predominant aspects of the overall design (Craig, Sherman, & Will, 2009), since it is 

historically one of the first and most usual way of communication between the system 
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and the user. Also the immersion level of a VR application is generally directly defined 

by the kind of display provided to the user. However, besides their relevance, visual 

stimuli are not necessarily the only and most relevant output method for Virtual 

Environments. 

Output devices can be divided into as many classes as the human senses. 

Therefore, there are vision devices, audition devices, touch devices and the less 

common but not less important, taste and smell devices.  

 

Vision Devices 

 As mentioned before, vision devices were one of the first to be used to deliver 

feedback from a virtual application, with the first computer generated images back in 

1950’s (Gutiérrez et al., 2008). The display technology has evolved along with 

television, projector and LCD technologies. For Virtual Reality devices the most 

common are head-mounted displays (HMD) and Cave Automatic Virtual Environments 

(CAVE) (Burdea & Coiffet, 2003) but other devices as handheld displays, virtual tables 

and panoramic projectors are also used. 

Head-mounted displays are the most common type of displays used on Virtual 

Reality applications (Craig et al., 2009). From the first heavy helmets with screens 

attached to nowadays lightweight sunglasses-like with small screens. Yet presenting an 

additional weight to the user to carry, connected with cables to transmit the video and 

tracking information (the tracking information is usually supplied by an extra hardware 

that is attached to the HMD). The Oculus Rift (Image 2) is one of the most recent HMD 

low cost solution, and contains an internal tracking system for orientation. 

 

 

Image 2 Oculus Rift (OculusVR, 2013) 
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CAVE systems consist of a room, where high resolution images are projected on 

the floor, ceiling and walls allowing multiple users at the same time to receive the visual 

stimulus. The projection is performed by projectors that are located on the back of the 

screen along with special glasses to give depth perception. Image 3 shows multiple 

users in a CAVE environment, with only a leader wearing a tracking system but 

allowing multiple users to join the interaction.  

 

 

Image 3 Participants in a CAVE surrounded by screens displaying the virtual world (Craig et al., 2009) 

 

 

Audition Devices 

Sounds are present on real-life experience for most people and they offer precious 

information about the environment. Not differently, in VR systems the sound can play 

many roles (Gutiérrez et al., 2008). Providing rich information about the stimulated 

environment – for instance echoes and reverberations give the brain hints about 

direction and distance of elements as well as the size of an environment. Sound can also 

become an alternative feedback, for instance indicating the reception of user commands 

or alarms. 

However VR Sound Systems has some requirements to meet. First is the accurate 

3D positioning of the sound source. The position where the sound is perceived must 

match the position of the corresponding element in the Virtual Environment. Second is 

the acoustics simulation, which is essential to have spatial perception on the Virtual 

Environment. The last requirement is about the efficient generation of the sound in 
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(almost) real time which requires a trade-off between the accuracy of the simulation and 

the speed (Burgess, 1992).  

The setup of a VR sound system could be done with headphones, which have 

more precise control since the signal reaching each ear may be controlled 

independently. But when the user cannot (or wants to avoid to) wear any device – for 

instance a collaborative CAVE – the other possibility is to deliver the sound stimuli 

through multiple loudspeakers, however with this configuration the control of spatial 

information reaching the user is less precise. Loudspeakers systems are also usually 

cheaper than headphone-based systems (Burdea & Coiffet, 2003). 

 

 

Touch Devices 

Devices that stimulate the touch sense are called Haptic Devices, and can deliver 

the stimulation either through the skin (tactile) or through muscles and the skeleton 

(proprioceptic). Devices that send tactile feedback have a sort of ways to stimulate the 

skin tactile receptors for example air jets, electrical stimulators producing vibration or 

inducing heat (Burdea & Coiffet, 2003).  

Moreover, Gutiérrez (Gutiérrez et al., 2008) classifies these devices through the 

nature of the stimuli: passive devices and active devices. Passive devices are those 

which send feedback according and against the user’s movement and act on the force 

exerted during the user’s interaction with virtual elements, here the user is the energy 

supply for the device to work. While active devices use elements capable of sending 

stimuli actively, with no need for the user to input any kind of movement to supply the 

device. Passive devices are considerably safer since the user will not receive accidental 

torques or forces as s/he is the only source of energy. Commonly, devices combine both 

classifications, for instance a proprioceptic device (a joystick) that applies force against 

the movement through a brake (passive) can also be moved by a motor (active). An 

example of widely used equipment in research laboratories nowadays, the Geomagic 

Touch™ X, formerly known as Phantom, (Image 4) has a stylus (or a slot for the user to 

insert one finger) attached to a mechanic arm to measure its position and exert a 

controlled force vector against it. 
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Image 4 Geomagic Touch X (Geomagic, 2013) 

 

 

Taste and Smell Devices 

The sense of smell can stimulate the memorization of one’s concepts or 

experiences while taste can trigger anxiety or depression (Gutiérrez et al., 2008). Even 

though smell was addressed by one of the pioneer VR systems, the Sensorama by 

delivering different aromas through the air, taste stimuli still lack research (Craig et al., 

2009; Gutiérrez et al., 2008) and both, taste and smell, are not much addressed by 

current research, which does not mean they are forgotten. 

Olfactory (smell) systems usually contain different odorants, a system to deliver 

them through air and a control algorithm to determine the mix of odorants, its 

concentration and the time of the stimulus. Recent work is a system that can place odor 

on determined regions of a screen – the Smelling Screen (Matsukura, Yoneda, & Ishida, 

2013) – by delivering odorants through a four fans system, to arbitrary positions of the 

screen, see on Image 5 an user testing the system. 

 

Image 5 User testing the Smelling Screen to sense the aroma of coffee (Matsukura et al., 2013) 
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The sense of taste has been only marginally addressed in VR systems and few 

taste interfaces can be found in literature (Burdea & Coiffet, 2003; Craig et al., 2009; 

Gutiérrez et al., 2008).  Iwata (Iwata, Yano, Uemura, & Moriya, 2004), creator of the 

Food Simulator (Image 6), says that “Taste is very difficult to display because it is 

multi-modal sensation composed of chemical substance, haptics and sound”; his work 

addressed the chewing simulation: releasing flavoring chemicals onto the user’s tongue, 

giving the resistance to the user mouth as s/he chews a rubber cover while a sound is 

played, all corresponding to the food that is been simulated. 

 

Image 6 Food Simulator (Iwata et al., 2004) 

 

2.1.2 Input Devices 

It is difficult to find a single 3D input device that is universal and has good 

performance in all applications (Frohlich, Hochstrate, Kulik, & Huckauf, 2006), due to 

the variety of tasks, which requires diverse interaction devices and techniques. A major 

factor in the development of an input device is compatibility between the degrees of 

freedom available and the needs of the task. The expression “degrees of freedom” (DOF 

- Degrees of Freedom) is used to describe the number of system parameters that vary 

independently. 

Trackers are the main sensors used in VR to measure the position and orientation 

of users and 3D objects along time. These trackers are classified according to their 

working principle and can be divided into the following(Craig et al., 2009): 

Electromagnetic – This kind of tracking system consist of a set of transmitter and 

receivers of magnetic fields allowing determining the six DOF (position and 

orientation) of the sensor device. They do not require line of sight between the emitter 
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of the field and the sensors, have a good rate, usually have a smaller cost than others 

applied to Virtual Reality (Burdea & Coiffet, 2003). However, metals interfere with the 

functionality of such a system, as well as walls and floors of concrete. They also are 

sensitive to any electromagnetic waves and the precision decreases with increasing 

distance from the tracked object. Fortunately,   usually it is possible to keep control of 

the amount of metal within the environment. Also, Alan Craig says that “Cases where 

particular care must be taken to improve tracking accuracy are head-worn gear made of 

metal or with internal electronics, and wheelchairs. In the case of HMDs or stereo 

glasses with electronics, the best solution is to locate the sensor as far away from the 

electronics as possible” (Craig et al., 2009). An example of electromagnetic tracker is 

the Razer Hydra (Image 7), which is composed by a base emitting a magnetic field and 

two controllers that use the magnetic field to detect their position and orientation. 

 

Image 7 Razer Hydra (Razer, 2013) 

 

Mechanical – Although they were pioneers, mechanical tracking systems are still 

used and are probably more efficient tracking technique today. They are fast, with 

accurate calculation of the position of a single point on the target and do not need 

calibration. However, the tracked object is connected mechanically to a fixed position 

and this connection limits the user movements. But in situations where the movement of 

the user is already limited, the use of a mechanical tracking system does not imply an 

additional restriction and can be easily used – for instance a pilot sitting in a cockpit. 

The BOOM display (Image 8) was a common example of mechanical tracker, it is a 

Head Mounted Display connected to an articulated mechanical arm. The position and 

orientation information are obtained through that arm. 
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Image 8 Boom Head Mounted Display (Craig et al., 2009) 

 

Ultrasonic – these trackers require a set of transducers – transmitters (speakers) 

and receivers (microphones) – to determine position coordinates and orientation. They 

work by measuring the time that the ultrasonic signal takes to arrive at the receiver. The 

system detects the arrival phase signal and compares the relative values of signals, 

thereby calculating the distance between the receiver and the transmitter. By applying 

this with multiple transducer-pairs it is possible to determine position and orientation of 

the object. The problems related to acoustic systems are the need of line of sight 

between the transducer pairs, the dependence of the orientation of the receivers, and 

external noise interference. One workaround to solve some of these constraints is by 

mounting several transducers on the sensor device, providing redundancy thus allowing 

the sensor to go through different orientations and keeping contact with the transmitters. 

Ultrasonic systems are simple, efficient and have low price. In Virtual Environments 

they are usually used in combination with other tracking systems to ensure a good 

performance. Image 9 shows the Logitech 3D Mouse, with three microphones to detect 

ultrasonic signals and track its position and orientation.  

 

Image 9 Logitech 3D Mouse (SouVR, 2013) 
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Optical – This kind of tracking works similar to ultrasonic systems, but using 

light instead of sound, usually by recognizing the location and orientation of markers. 

These markers can be either passive or active; the first reflect light (typically infra-red) 

sent by the camera, usually reflecting spheres or circles, while active markers use LEDs 

that emit beams of light directly into the camera. The passive markers do not contain 

electronic nor mobile parts, which make them lightweight, robust and inexpensive, and 

do not require wires. However, these systems are expensive and require line of sight for 

at least two cameras at the same time. A known solution of optical tracking system is 

the Vicon Bonita (Image 10), that triangulates the position of markers to provide their 

position and orientation. 

 

Image 10 Vicon Bonita and Markers (Vicon, 2013) 

 

Inertial – Work with gyroscopes and accelerometers, which calculate 

respectively the position and orientation of users. The major problem of these systems is 

due to the fact that they only report relative movements, not absolute positions resulting 

in drift errors, for instance after a time using the system it may report a few degrees bias 

to a certain direction. Another aggravating circumstance is that accelerometers are 

sensitive sudden variations, generating errors that are accumulated, thus resulting in low 

accuracy. However, inertia-based systems do not require line of sight, have no problems 

with interference, are not very expensive or require transmitters. However, they need to 

be recalibrated often. Image 11 shows a solution by InterSense, the InertiaCube3, an 

inertial 3DOF tracking system,  
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Image 11 InterSense IntertiaCube3 (InterSense, 2013) 

                                                                                                                                                                                        

Trackers, however, are not enough to provide the needed input for a system, and 

other structures are required. Devices like the Data Gloves, can provide different, 

inputs according to gestures of the user’s hand, therefore providing more natural 

interaction with the system (Burdea & Coiffet, 2003). However, given its complexity 

they are expensive and, usually, are not adjustable for the user’s hand. The Fakespace 

Pinch Glove (Image 12) avoids the adjustability problem by using conducting wires 

instead of hard components. 

 

Image 12 Fakespace Pinch Glove (Fakespace, 2004) 

Other devices may aid the user to perform navigation and manipulations on the 

system, for instance the trackballs and 3D mice (Burdea & Coiffet, 2003). 

They consist of cylinders or spheres that provide input according to the force 

applied to it by the user. Even though its behavior is very similar to a usual mouse, they 

do not need surface to work on, are compact and do not require much space. The 

3DConnextion SpaceMouse® Wireless (Image 13) allow the user, for instance, to 

manipulate 3D models simply by pulling, pushing or twisting its cap. It also contains 2 

programmable buttons. 
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Image 13 SpaceMouse Wireless (3Dconnexion, 2013) 

 

 

 

2.1.3 Interaction 

Interaction in a Virtual Environment strongly depends on the input 

devices/interfaces available and the way one interacts with the environment and its 

elements to achieve certain objectives can be divided into smaller tasks.  

For instance if a user wants to change the color of a car that is far away s/he first 

will need to locate it, then s/he must tell the system that the object s/he wants to interact 

with is that specific car, if there is a restriction about the distance to the object to be 

manipulated, the user may also need to navigate first towards the car before.  

As proposed by Bowman et al. (Bowman, Kruijff, LaViola, & Poupyrev, 2004), 

the universal tasks are navigation, selection, manipulation and system control.   

Navigation is the act of moving from place to place and in a virtual world, as it is 

in the real life. It can be divided into two sub-tasks: travel (the motor component) and 

wayfinding (cognitive component). To move, one must define a path through the 

environment by using spatial knowledge about it – this is the wayfinding, while the 

travel task is conceptually simple, it is the proper act of controlling the movement 

through the world. In a virtual world all these information must be sent through input 

devices. Usually the travel is triggered by tracking the head and the input of commands 

(buttons, or other interfaces such as treadmills) to move the viewport accordingly (Craig 

et al., 2009).  
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Selection is the act of indicating options that were given inside the VE, for 

instance which way to go or which element of the scene the user wants to interact with. 

To achieve that there are a variety of methods, some of them use the placement and 

position of the user’s body, for instance pointing with a finger and gazing with the eyes; 

these are called selection at-a-distance (Mine, 1995), which means, the object is outside 

the user’s reach. One of the most common techniques to perform selection at distance is 

the ray-tracing, where a bean is fired and intersects the objects in the virtual world. 

Alternatively, it is possible to perform the selection by tracking the position of the 

user’s hand or by controlling a virtual cursor (also called virtual hand) until it is within 

the virtual object’s reach – this method is called local selection. Both methods are 

presented on Image 14. 

 

 

Image 14 Local versus at-a-distance selection (Mine, 1995) 

 

Manipulation after the selection, the user might want to manipulate the selected 

element, either by applying forces, altering the ‘physical’ state of an object or by 

changing attributes of the object.  

System Control is a command sent to change the system state or an interaction 

mode. Manipulation and System Control sometimes get under the same classification 

(Craig et al., 2009), and the issuing of a command to manipulate something (an element 

of the VE or the VE itself) can be achieved by different techniques for instance voice 

commands, gestures, graphical menus or by combining multiple techniques (Kim, 

2005). 
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2.1.4 Virtual Environment Graphic Menus 

Interaction between user and computers is achieved by the usage of a User 

Interface (UI), which includes both hardware and software (Kim, 2005). With the 

evolution of both, the methods and possibilities are rising even more, for instance the 

hardware could be from a simple keyboard to a high-end optical tracking system while 

software techniques go from 2D images to sound and image processing, creating a two-

way communication – translating the user inputs to computer representations that can be 

understood by it and act upon and then translate back to the user (Hix & Hartson, 1993). 

Considering the software, one of the most used graphical UI is a ‘menu’. Which 

can assume virtually any function: issue commands, change the mode of interaction, 

trigger events and so on. They are very common on 2D interfaces but, even though they 

present some problems related to the adaptation of 2D tasks, are still effective for 3D 

interactions (Bowman & Wingrave, 2001; Kim, 2005). 

Just like the 2D counterpart, three-dimensional menus have many formats and 

styles of presentation. Some of them, as described by Kim (Kim, 2005), are the 

following. 

Adapted 2D Menus are, as the name says, 2D menus that are mapped into 3D 

geometry – using text labels rendered on rectangles (Image 15) making them one of the 

easiest types of menus to implement into a VR application. Kim also classifies the 

placement of these menus, the surround-fixed windows that are displayed at a fixed 

position inside the world, display-fixed windows that are placed relatively to the head 

orientation and world-fixed windows that are located in the world or on objects and are 

evocable by the user. Bowman (Bowman & Coquillart, Sabine, Froehlich, Bernd, 

Hirose, 2008) calls attention to the drawback that pointing at items and menus is more 

difficult in free space than on the desktop and might lead to lack of precision and 

exhaustion (Kim, 2005). 
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Image 15 Adapted 2D menu in a three-dimensional environment fixed on the screen 

 

The Pen and Tablet metaphor adds feedback to the user which allows a more 

precise pointing as, instead of being placed directly on the environment, the 2D menu is 

projected on a physical tablet surface and  a stylus is used to activate the items, drag 

icons or press buttons (Bowman & Hodges, 1999). On this metaphor both stylus and 

tablet are tracked and duplicated into the virtual world (Image 16) so the menu is 

showed only when the tablet is within the user’s viewport. Another variation of the pen 

and tablet metaphor is the use of a device that shows the menus on a real 2D display, for 

instance a PDA; however, the user must be able to view the device, removing some 

immersion of the application.  

 

 

Image 16 Pen and tablet metaphor. Real (left) and Virtual (right) representation (Bowman & Hodges, 1999) 
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The use of graphical menus into VEs can be adapted to many needs, but even 

though studies attempt to better understand and apply them, there is no standard 

solution. 

2.2 Graphics frameworks 

Graphics frameworks and libraries have the purpose of presenting Virtual 

Environments visually, providing tools to interact with it through GUI (Graphic user 

interface) elements. Next, the frameworks covered by this work are presented, namely 

OpenSceneGraph, OpenSG and VTK (Visualization Toolkit). 

Most of the frameworks mentioned here are scene graphs, which is a structure that 

arranges the logical representation of a graphic scene in a hierarchical way composed of 

a sort of nodes in a tree structure – the representation can also be a graph, but since the 

nodes often have only a single parent node the most common representation structure is 

a tree. 

2.2.1 OpenSceneGraph  

OpenSceneGraph (OSG) is an engine for graphics rendering which creates an 

abstraction layer to OpenGL, created to facilitate the development of applications that 

require advanced graphics features such as games, simulators, Virtual Reality and 

others. It contains several frameworks associated with it – called NodeKits, each 

responsible for one aspect of the definition of the graphic environment. The central 

framework (osg)  manages the graphic scene as a whole and orchestrates the usage of 

the other frameworks, which are: osgParticle (particle system), osgText (fonts and 

texts), osgShadow, osgTerrain, osgAnimation, osgVolume (volume rendering) and 

osgViewer (GUI management) (R. Wang & Qian, 2010). 

OSG manages the resources on a plugin-based approach, which means, the 

support to multiple data formats necessary to create the graphic environment (3D 

Models, Textures, among others) is customizable, giving the user a better control of the 

resources in its application. As for the formats supported, they can be as long as the list 

of OSG’s plugins which can easily get up to 50. Most of the common and popular 3D 

formats are included, for instance Collada (widely supported by autodesk softwares), 

3D Studio Max (.3ds and .max), Blender, Maya and 2D elements like gif, jpg, tiff, etc.  

This framework was conceived under a strong open source paradigm and is free to 

use. Its functionalities (and users) have been growing since its creation in 1998, with 
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thousands of users participating in the official mailing list (R. Wang & Qian, 2010), 

which is very active. The current stable version is the 3.2 counting with 511 

contributors, to the date.  

 

2.2.2 OpenSG 

The name OpenSG is very similar to OpenSceneGraph but they are (slightly) 

different frameworks. Even though they are designed to render a scene, OpenSG 

differentiates on the clustering and multi-thread safety capabilities (Voß, Behr, Reiners, 

& Roth, 2002). OpenSG focus on the clustering capability by simplifying for the user 

the whole process transparently for the application, supporting a wide variety of 

graphics clusters.  The list of supported elements to get imported to a scene also covers 

the most popular formats, for instance Collada, Shape Files (cartography) and VRML. 

Moreover, OpenSG leaves a door opened to those who design scenes to 

OpenSceneGraph by supporting OSG’s binary format (ive), so a whole scene could be 

exported from OSG directly into OpenSG. 

OpenSG started around the same period as OSG, when SGI started to slow the 

Performer (another framework) development. It is also open-source and its current 

version is 2.0; however its development is currently almost stalled, with a not-so-active 

mailing list and few contributors. 

2.2.3 VTK 

The Visualization Toolkit (VTK) is also a framework that abstracts the usage of 

OpenGL, but differently of the other frameworks mentioned, it does not have a 

hierarchical structure. Instead it adopts entities called actors that contain the information 

regarding the geometry of the objects. 

In addition to the Actors, VTK has other graphic entities: light sources, particle 

systems, shadows and 2D and 3D widgets. Regarding the GUI support, VTK already 

presents a sort of plugins that are well defined, for example QT and wxWindows for 

windows management (Schroeder, Martin, & Lorensen, 2006). VTK also supports 

various types of image files (png, jpeg, tiff, bmp and ppm) and 3D objects (VTK’s own 

xml, 3D Studio Max, obj, among others). An important difference of VTK is the native 

capability to support Image Processing with a set of filters and effects.  
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VTK is open source and is supported by Kitware, a professional company that 

offers training and support. The core language of VTK (as well as the other frameworks 

mentioned) is C++ but it supports wappers of the core to work with other languages, 

even interpreted ones as Python, Java and Tcl (Schroeder et al., 2006). 

 

2.3 Virtual Environments Frameworks  

When creating a Virtual Environment (VE), there are a few things the developer 

must take into consideration such as the handling of different input/output devices 

(Trackers, Projectors, Head Mounted Displays etc…), graphics rendering, the way to 

interact with them, etc. (Anthes & Volkert, 2006; Bastos, Raposo, & Gattas, 2005;  

Bierbaum et al., 2001; Gutiérrez et al., 2008). Given the high complexity of building a 

VE from scratch, in the past ten years the development of new and the improvement of 

existing frameworks to aid the creation of VEs has been very active (Anthes & Volkert, 

2006; Bierbaum & Hartling, 2005; Dassault Systèmes, 2012; Kelso, Arsenault, 

Satterfield, & Kriz, 2002; Pavlik & Vance, 2012; Teixeira et al., 2012; F. Wang, 2010) 

Those frameworks give the freedom to build the VE with aid in important steps of the 

development, such as the handling of devices, projection systems, and interaction 

behavior. This saves the development team’s time and effort although different 

frameworks offer different solutions, which means, the benefits offered by a specific 

framework could be enough to one case but not for another. For instance, a simple 

environment, with few functions would be more concerned about the device abstraction 

provided, so this aspect would be important to define the framework to choose but for a 

large environment with heavy and complex components would be mandatory to 

distribute the application among processing nodes, so a framework that supports 

distributed systems would be better. 

Those frameworks also present themselves as a (partial) solution for the lack of 

flexibility on the VE systems since, as highlighted by (Gutiérrez et al., 2008), “the 

‘reinventing the wheel’ and ‘not invented here’ syndromes limit the innovation and 

delay the use of VEs in wider areas for the general public” which means, the 

specialization applied to the VE systems tie them up to their own scope giving limited 

possibility to reuse for another purpose. Whether commercial or free solutions, such as 

VR Juggler (Just & Bierbaum, 1998), 3DVIA Studio (Dassault Systèmes, 2012), Vizard 

(WorldViz, 2012) and inVRs (Anthes & Volkert, 2006), the main objective of those is 
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either reduce the complexity of building the VE or provide the flexibility that VE 

systems lack.  

On the following sub-chapters different solutions are going to be presented after 

an analysis based on available documentation and publications about different 

frameworks to build Virtual Environments as well as  quick experience where possible, 

focusing on the following aspects: 

 

 How to interact or use the framework; 

 Which modules/interfaces it provides; 

 Extensibility; 

 Which Graphic Engine it depends on. 

 

2.3.1 VR Juggler 

Described as “a virtual platform for the creation and execution of immersive 

applications, that provides a Virtual Reality system-independent operating 

environment” (A. Bierbaum et al., 2001) , VR Juggler (VRJ) was born on Iowa, United 

States on the Iowa Center for Emerging Manufacturing Technology from Iowa State 

University, in 1998 (Just & Bierbaum, 1998) and is still very active around the world 

(Aron Bierbaum & Hartling, 2005; Fowler, Carrillo, Huerta, & Fowler, n.d.; Melin & 

Allard, 2002; Pavlik & Vance, 2012) and even in Portugal (Costa, Pereira, & Dias, 

2007). 

It provides free and open source application framework along with a set of C++ 

classes to create VR Applications with support to various graphic APIs, such as 

OpenGL (Shreiner & Group, 2009), OpenSceneGraphs (R. Wang & Qian, 2010), 

OpenSG (Voß et al., 2002) and VTK (Schroeder et al., 2006), maintaining the easy and 

generalized management of displays and input and output devices (Just & Bierbaum, 

1998) also supporting cluster applications. 

VR Juggler introduces a modular architecture to VR Applications. Those 

modules, shown on Image 17, give VRJ the flexibility to be used on a wide variety of 

VR systems. Beginning with VR Juggler Portable Runtime (VPR), which is the 

Abstraction layer between VRJ and the operating system. Providing platform 

independent functionalities, such as threads, sockets and I/O primitives. It’s the VPR 

that orchestrates the whole set of modules. In VRJ instead of programming the “main()” 
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function, the VPR defines a set of interfaces to be handled by its kernel, and all 

applications are built as objects, so called application objects, implementing the 

interfaces derived from base classes for specific graphic engines to be called by the 

kernel.  

Along with the cross-platform possibility for the system to run, the Tweek module 

provides a collection of different technologies that allows Java user interface to 

communicate with a C++ application, maybe the only drawback of this module is the 

imposition of CORBA (Common Object Request Broker Architecture) as the 

communication middleware, given the fact that it went from a bleeding-edge technology 

to an almost forgotten technology (Henning, 2006) even though it is still been 

maintained and updated
1
 by the Object Management Group.  

The Juggler Configuration and Control Library (JCCL) handles the configuration 

of the components with a XML-based configuration system that allows runtime changes 

and it is a structured method to process XML configuration files that can also be used to 

control application specific settings defined by the user, for instance the position and 

color of an element on the virtual world. On a short attempt of using JCCL to parse user 

data to the application, it was very hard to define on which step of the 

application/rendering loop the configurations were parsed; moreover, the documentation 

regarding this tool is outdated and almost inexistent. 

The Gadgeteer module provides a device management system that handles the 

control, acquisition and representation of VR devices data. It is very extensible since it 

is  possible to write new drivers for devices that are not yet supported. In contrast with 

JCCL, the documentation on this matter is very detailed and defines all the steps and 

basic functions the driver interface must have (“Gadgeteer Device Driver Authoring 

Guide,” 2010). The Gadgeteer also integrates with the Virtual Reality Peripheral 

Network (VRPN) (II, Hudson, & Seeger, 2001) extending the supported devices list and 

allowing the distribution of peripherals through a network. 

Sonix is an optional component that provides a layer to immersive audio 

capabilities.  

                                                 

1
 CORBA version 3.3 or CORBA/ZIOP was released on 2012 by the OMG 
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Image 17 VR Juggler Architecture (VR Juggler Website, 2012) 

 

This architecture allows extension to a specific module without impacting the rest 

or existing applications, for instance adjusting the Gadgeteer to receive a new device is 

transparent to applications (Bierbaum et al., 2001) but this also makes the system 

become easily large since even if the application does not  use a module it is still there 

inside VRJ, for instance the Tweek module and the Corba communication layer. 

Another drawback for VRJ is the complexity of the configuration files, since it requires 

many small adjustments that could be confusing, particularly for first time users and the 

tool (Image 18) provided to manage those files is simple and just provides an user 

interface to edit the XML fields which an experienced user would just edit directly on 

the file. 

 

Image 18 VR Juggler Configuration Tool 



25 

2.3.2 inVRs 

Born at Johannes Kepler University, Austria, the Interactive Networked Virtual 

Reality System (inVRs) presents a full VR Framework structured in a flexible and 

modular architecture (Anthes & Volkert, 2006). It provides “independent modules for 

interaction, navigation, and networking, an additional system core module, and two 

interfaces for the abstraction of input devices and output devices” (Anthes & Volkert, 

2006). Most of the users of inVRs remain in academic environments from Austrian and 

German universities focusing on the network and collaborative capabilities of the 

framework, as seen on Image 19, that allows collaborative interaction on the same 

world by users geographically separated. Besides that, the framework presents itself, 

also, as a solution to build Virtual Environments (VE) on a not necessarily networked 

environment, given its modularity and modules independency that allow using not all 

modules at once. 

 

 

Image 19 inVRs Applications (Anthes & Volkert, 2006) 

 

The framework is written in standard C++ with additional libraries that are 

platform independent and Open Source. Currently inVRs is bound to OpenSG 1.8 as its 

scene graph API. Since late 2011 it is also possible to work with OpenSceneGraphs but 

the inVRs core is still dependent of OpenSG functionalities such as threading. As for 

audio, it supports only OpenAL, however Anthes and Volkert (2006) say that “other 
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libraries are planned as well”. Currently its development is stalled without major 

updates since 2011. 

The modular architecture of inVRs, seen on Image 20, as previously stated can be 

individually connected to the core but they also can be used as independent libraries. 

Either way, the modules have boundaries well defined, and they communicate with the 

interfaces to handle input devices, such as trackers and sensors, and output devices like 

displays and audio. The abstraction provided by the Input Interface allows the 

application to recognize only three components: buttons, axes and sensors. Each input 

device is represented by a combination of those three components. 

 

 

Image 20 Overview of inVRs (Anthes & Volkert, 2006) 

 

Among all modules, the system core is the most important since it contains, 

beside the core functions, all information towards the VE created (user and world 

database). The Event Manager handles the communication between the databases and 

other modules but only the Transformation Manager manipulates objects in the VE. The 

framework splits navigation and interaction into two different modules, the Navigation 

Module provides pre-defined modes to travel along the VE, making use of the abstract 

controllers defined by the input interface. The Interaction Module also uses abstract 

controllers but it has two main tasks, object selection and object manipulation. The 

Network Module is the responsible to distribute the events among the networked VE. 

inVRs seems to be a nice and reliable system but its setup consists of many XML 

files with very tiny details that demand close attention and show a high level of 

complexity. Those files must be written manually, since there is no tool to aid but the 

configuration guide, which makes the process of configuration slow, tiring and possibly 



27 

discourage the first-time user since the learning curve of the configuration step is long. 

Another drawback of inVRs is that even though its development is active, it is slow and 

has a small community of contributors so it is hard to expect new features or 

improvements to be released fast. But the possibility of reducing the complexity to 

connect separated people inside the same VE through network is a considerable 

advantage along with the pre-defined interaction and navigation techniques which save 

time and allow  defining the technique to be used in a faster way regarding the world 

built.  

 

2.3.3 Vizard 

Vizard VR Software Toolkit stands as an integrated tool developed by WorldViz 

(Santa Barbara, US) designed for rapid prototyping. It is a commercial solution but a 

demo version is available at no cost. It is used among different institutions from 

universities, such as the Virtual Human Interaction Lab at Stanford University, to 

companies as Archidimex
2
 on Netherlands. 

Vizard at first sight appears to be an IDE (Integrated Development Environment) 

with a friendly GUI to help the user setup the environment but keeps the development 

process at a relatively low level, since the VE is built using Pyton Scripts wrapping a 

scene graph engine, specifically Open Scene Graph (OSG), and the core C++ functions 

developed by WorldViz. Even though it requires some programming knowledge, the 

core functions provide resources to make possible the creation and deployment of even 

a hard task rapidly. Also the scripting language is claimed to be something that even a 

user with no programming skills could start and take a dive into interactive 3D 

environment. Image 21 shows Vizard IDE with a snippet of the Pyton Scripting and the 

integrated preview feature. 

 

                                                 

2
 http://archidimex.nl/ 
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Image 21 Vizard IDE (WorldViz, 2012) 

 

This solution also offers the possibility of using OSG directly through native C++ 

or using Pyton bindings. This possibility gives the user the ability to interact with the 

graphic engine and add tweaks or new modules to expand its functionalities or improve 

the existing ones. 

The core functions of Vizard also include: a physics engine, a device abstraction 

module capable of communicating with a vast list of I/O devices (also integrated with 

VRPN), a clustering handler and a module to integrate augmented reality. The cheaper, 

but more limited, version starts at US$ 75,00 (single license), however it only supports 

standard displays in full screen, limits the user on what is possible to customize and 

extend from core functionalities and has no distributed rendering. The most complete 

version starts at US$ 6000 a single license for academic usage. 

 

2.3.4 3DVIA Studio  

Dassault Systèmes (2012) presents a toolkit highly used in industry to perform 

simulation or training, among other possibilities. Formerly called Virtools, the 3DVIA 

Studio is a solution to build, not only generic VEs covering a wide range of features 

from graphics rendering, creating user interfaces, physics simulation, artificial 

intelligence. 
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3DVIA Studio offers different editors to aid the creation of a VE with just some 

mouse clicks, for instance (Dassault Systèmes, 2012) shows the configuration of a new 

tracking device. Besides the graphic editors to aid the creation of VEs, it is possible to 

use the Virtools Scripting Language along with LUA. This characteristic makes it 

flexible enough to be used by non-specialists and to allow lower level coding to create 

personalized simulations or rendering but since its core engine is closed the 

personalization is theoretically limited.  

 

 

Image 22 Trackers setup on 3dvia Studio (Dassault Systèmes, 2012) 

 

 

 

2.3.5 Other Solutions 

Beside the tools hereby presented, the range of solutions is vast, when it comes to 

aid the user building a Virtual Environment, and solving problems related to it. Just like 

inVRs some of those will already provide pre-defined ready to use interaction 

techniques, for instance Avango developed by IMK/Fraunhofer Institute (Kuck, Wind, 

Riege, & Bogen, 2008) that stands as a framework to develop distributed Virtual 

Environments, focusing on high-end systems. The drawback of Avango is that it was 

built to work with SGI Performer Scene Graph, and since SGI stopped distributing the 
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Performer, they migrated to OpenSceneGraphs, but it still lacks of experience on this 

Scene Graph. 

Not as simple as Avango but with more flexibility, the DIVERSE system was 

developed at Virginia Tech Institute (Kelso et al., 2002). It also supports distributed 

systems also depending on SGI Performer, but with the possibility of switch to VTK. 

ViRAL (Virtual Reality Abstraction Layer) is a framework based on graphic 

components (Bastos, Silva, Raposo, & Gattass, 2004)  that eases the creation of 

extensible applications with integrated WIMP (Windows, Icons, Menus and Pointers) 

interfaces. Its usage is through graphical interfaces, where the user creates, configures 

and connects to components. It was developed by the Group of Computer Graphics 

Technology at PUC, Rio de Janeiro. 

Also from the Group of Computer Graphics Technology at PUC, Rio de Janeiro, 

the LVRL (Lightweight Virtual Reality Libraries) (Teixeira et al., 2012) was introduced 

aiming not only the creation of new VR applications, but also the conversion of existing 

desktop graphic applications to VR without altering its structure, providing a set of 

libraries with a minimalist programing interface to allow non VR developers to easily 

setup a Virtual Environment with manipulation and interaction techniques ready to use. 

 

 

 

2.3.6 Conclusion 

From the previous overview, it became clear that the first main difference to be 

taken in consideration on when choosing a solution is the pros and cons of commercial 

and free solutions. Therefore the first comparison is presented on Table 1, accounting 

the main differences observed. 

Table 1 Free versus Commercial solutions 

Free Commercial 

Low level tool Interactive GUI 

Possibility to work directly with the 

graphic engine 
Core engine (mostly) not accessible 

Requires programming skills Layman friendly 

Cross Platform Majority for Windows Platform 
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Free solutions are, initially, harder to work with and stand as a challenge with a 

large learning curve but with higher flexibility, since they provide a set of low level 

tools and the possibility to interact directly with the core graphic engine and expand or 

add tweaks at will, while commercial solutions do not have the same flexibility due to 

theoretically
3
 limited level of customization, but their interactive user interface allows 

non-experts to work with it and develop VEs with little effort even though it would be 

restricted to proprietary plugins to extend the framework’s functionalities.  

Besides the differences they have similarities as the complex architecture, which 

hide many implementation details, which could generate a total chaos when a developer 

needs to change or adapt core functionalities. This complexity delivers also a problem 

when installing or configuring the tools, either the dependencies are a problem to put 

together, or small details could compromise the whole application and preclude its 

usage. For instance, inVRs depends on many sets of files that point to other large sets of 

files and if one of the paths is wrong, it will not  be possible to use the framework – 

what is very easy to happen since all the configuration is hand-made with no 

configuration tool aid. 

However, when it comes to define the best, it is impossible to fully answer 

without knowing what is the problem to solve. Each one of the solutions presented 

before will deliver acceptable solutions to different – or even equal – sets of problems. 

What must be taken into consideration is what the solution proposes to do, if that will be 

enough to solve the problem, and even if that will be too much. For instance, VR 

Juggler has so many different components that even small problems tend to have a 

complex solution provided, sometimes with unrequired components. 

 

  

                                                 

3
 Theoretically since everything that does not require direct altering the core engine is possible. 

For instance Vizard encapsulates the graphic engine but allows extending its functionalities through C++ 

code. 
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3 Easily configurable Virtual Environment 

Even though there are tools and options to aid on the construction of a Virtual 

Environment, it still represents a challenge to laymen and non-experts. To put together 

all the different elements (such as models, shaders and 2D information), program the 

behaviors and interactions from scratch would discourage one to explore the 

possibilities that Virtual Reality may open. Also, it would be a “reinvention of the 

wheel” every time a VE is needed, to put everything together and recreate all the 

behaviors and interactions when those could be reduced as universal tasks and 

reutilized, most likely to be similar among them. 

Given those problems, hereby pSIVE (platform for Setting up Interactive Virtual 

Environments) is proposed, a platform to provide an easily configurable Virtual 

Environment to virtual immersive visits. Allowing the creation of customizable 

environments with domain specific information attached but without requiring the 

mastery of programing languages neither theory related to Virtual Reality and such. 

The pSIVE was designed to be an abstraction layer between a set of frameworks 

and libraries, chosen from those identified on chapter 2.3 and the final user. The 

following sections present its structure with details on implementation and usage as well 

as more information on tools and components that were used to provide the flexibility 

and robustness of the system. It was conceived to support the fast and easy creation of 

Virtual Environments with the possibility to attach information to different positions or 

elements of the environment to later be viewed and interacted with on a three 

dimensional space.  

Different combinations and setups of tools were available to build pSIVE over, 

but it was important to choose the one that proved to be the most flexible and easier to 

work with, to provide abstraction enough to hide to the user the implementation details 

by accepting new devices ideally without need of changing the source code, and to keep 
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any required alteration punctual and with a minor effort. Before choosing frameworks, it 

was important to list a possible set of functionalities that were expected to be delivered 

as well as the different types of accepted input/output devices to be hooked on the 

platform. 

 

 

 

3.1 System Requeriments 

It was expected that the platform would provide an easy setup, to allow the user 

get it up and running with few steps. To achieve that, pSIVE had to be at the same time 

simple, to avoid creating too many details that might confuse and discourage the user of 

using the system, and flexible enough to be able to handle robustly the different type of 

inputs whether models, information or ways of interaction. The user was supposed to 

just choose the hardware to work with - HMD or desktop as output, different types of 

trackers, gamepads or even mice and keyboards as input - the models to be loaded and 

their position in the Virtual Environment as well as the information to be attached either 

to a single model or to a defined point in space (multiple points on a single model).  

It was required as well to support an art pipeline to give freedom to the user to 

create a Virtual Environment composed by 3D models arranged on CAD (computer-

aided design) like software, which means, no need to calculate and apply 

transformations such as translation and orientation of the model on the world manually. 

The hardware to be handled by the platform on a first stage was required to ensure 

the coverage of, at least, part of the devices owned by the Institute of Electronic 

Engineering and Telematics of Aveiro (IEETA), which are listed on Table 2. 
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Table 2 List of equipment to support 

Device Description Picture 

Intersense Intertrax2 USB 3DOF Inertial 

Tracker 

 

Intersense 

InertiaCube3 

USB 3DOF Inertial 

Tracker 

 

Intersense InertiaCube 

BT 

Bluetooth 3DOF Inertial 

Tracker 

 

Nintendo Wii Remote Bluetooth Gamepad 

with built-in 

accelerometer 

 

Razer Hydra Gamepad and 6DOF 

Magnetic Tracker 
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Device Description Picture 

Microsoft Kinect USB Optic Motion 

Sensor 

 

Wintracker USB 6DOF Magnetic 

Tracker 

 

Virtual Realities 

VR2000 

Head Mounted Display 

with built-in 3DOF 

Tracker 

 

 

With this, three major objectives guided the conception of the platform:  

 Simple Configuration,  

 Flexible Virtual Environment,   

 Well Defined Graphics Design Pipeline. 

To achieve the simple and flexible configuration, pSIVE must have runtime 

changeable configurations that can be defined once, and then just be reused by any other 

environment and be prepared to handle extensions with ease. 

For the graphics design pipeline, the first step is to define which kind of 

information is needed and then seek for a solution that can easily export this 

information and build a layout of the Virtual Environment just by drag-and-drop 

elements on the model or part of it. 
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3.2 Archtectural Decisions 

How to interact? Which libraries or frameworks to use? Create with no 

framework but OpenGL? Those questions were to be answered before the 

implementation of pSIVE started, and this section explains the main decisions taken 

during its conception. 

 

3.2.1 Frameworks and Modeling Tools 

 

At first, the main doubt was to use a framework or build pSIVE from scratch. 

After the study of graphic engines and frameworks, it was opted to use a framework to 

save resources and to fasten the development, since the implementation was conducted 

by a single programmer. 

From all engines and frameworks studied, VR Juggler (VRJ) was chosen since it 

had all the qualities needed to meet the project requirements and its community is still 

active developing new features or aiding to solve problems encountered by the users 

since its creation back in the late 90’s. The project activity was the main point that made 

VRJ the chosen, as while it had a very active community, inVRs had practically no 

activity at all. Even emails sent to its supporters were not answered nor was the mailing 

list working.  

As for the graphics engine, the choice was linked to the choice of VRJ as the base 

framework. Even though it supports a number of graphics engines, some are more 

developed, accepted and therefore, easy to work with. The choice was made between 

OpenSceneGraph and OpenSG. Both were easy-to-work-with solutions and had the 

required characteristics for pSIVE. But again, the activity of the project weighted on the 

decision, OpenSG is very outdated and lacks updates and improvements. 

OpenSceneGraph was chosen even though it is known that VRJ makes use of an 

outdated version of OSG Viewer, which does not have features that were implemented 

for the newer versions, as semi-automated event handling. This might seem a minor 

problem, however it causes a chain reaction, for instance the 2D Widgets for OSG are 

fully based on the newest viewer architecture requiring adjustments and adaptations to 

work with the older viewer. But since it is necessary to simulate the behavior of the new 
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viewer class, they run with problems and weird behavior, for instance the resizing 

according to the content of a widget. 

Since OpenSceneGraph supports a vast list of formats, the graphics design 

pipeline might be solved by using many known software, for example Autodesk 3D 

Studio Max, Google SketchUp, Maya, Blender and any other software that exports 

models into a format accepted by OpenSceneGraph. Most companies that integrate 

PRODUTECH, and would benefit from pSIVE, reported to have Google SketchUp as 

their main modeling tool and given to the facts that a plugin
4
 is available to export 

elements created with SketchUp directly to OSG’s native format and it is possible to use 

it with SketchUp’s free version. Based on this information, SketchUp was selected as 

the main modeling software, nonetheless pSIVE can handle any modeling software as 

long as the exported format is supported. 

The alternative of using a well-known game engine such as Ogre and Unity was 

also considered but in general they are more specialized with focus on game 

applications. More generic graphics engines, as scene graphs, can cover more easily a 

wide variety of applications, and adapt to different application types more easily. 

 

 

3.2.2 Virtual Environment Interaction 

With the frameworks and the graphics pipeline defined, it was time to focus on 

how someone would interact with the Virtual Environments created by the platform. 

The interaction methods were defined according to the sub-division of the universal 

tasks as proposed by Bowman (Bowman & Hodges, 1999). 

The navigation task was divided into three subtasks: direction/target selection, 

velocity/acceleration selection and input conditions. To select the direction (how the 

user would indicate the direction of the motion or the final point of the travel), pSIVE 

would work with a gaze based steering, meaning that wherever the user is looking (or 

orientating the head) is the direction to go. The gaze steering is just a first 

implementation, but the system would also allow more navigation styles, for instance 

controlling the direction with a joystick instead of the head.  

                                                 

4
 Plugin available at https://github.com/rpavlik/sketchupToOSG 
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The velocity or acceleration would be variable according to the user’s will, 

starting at a medium speed and allowing increasing or decreasing it by pressing a button 

or pushing a joystick. Navigation requires at least a 3DOF tracker attached to the head, 

to track the movement direction and a tracker or gamepad with at least 6 buttons or 2 

axis and 2 buttons considering the possibility of traveling onwards, left/right or 

backwards the desired direction plus selecting the speed.  

Selection’s subtasks are indication of object, indication to select, and feedback. 

By decomposing the selection the decisions were mainly how to indicate which objects 

to select and how to trigger the act of selecting something using some visual feedback. 

Among the methods explained on section 2.1.3 for performing a selection, the ray-cast 

method seemed the most adequate for a fast development and combined with the 

equipment available would be possible to vary the origin of the ray – or how to indicate 

the object. Firstly, with the selection being indicated with the head orientation, and 

centering the object on the screen. Secondly, with the beam originating from a virtual 

laser pointer, controlled by the user’s hand. These adaptations of ray-cast are called 

Gaze-Based Selection and Laser Pointer Selection (Mine, 1995). The indication to 

select would be done the same way as travelling, by pressing a button. The requirements 

for the selection vary according to the technique used for the first step – the Gaze-Based 

Selection would require a 3DOF tracker, which could be the same used for navigation, 

plus one extra button on the tracker/gamepad on the hand to trigger the selection. As for 

the Laser Pointer, a 3DOF tracker attached to the hand could be used, but it would not 

provide positional information, so the origin of the laser would be fixed on the space. 

Using 6DOF trackers would be better since it allows the user to properly control the 

laser pointer as if it was really on the hand. 

While navigation and selection seemed pretty clear in terms of where and how 

they would be used, manipulation required first the consideration of where and what 

would require it. According to the needs of the project, one must be able to interact with 

objects and access information and multimedia items previously attached to them, so the 

first elements that would require manipulation were the items of an object. For instance 

a video could be fixed in the world for someone to view, but at the same time it could 

be placed according to the position of the user’s hand. Some three-dimensional elements 

of the scene also would be manipulable, for instance part of a model that could be 

moved to enhance the vision of its details. For a first version of pSIVE, the best way of 

manipulating objects would be by attaching them to the user’s hand as if s/he is really 



39 

holding something and had a mapping of the hand to control both position and 

orientation of the object. The manipulation could also be performed by using a 3DOF 

tracker, but it would not provide the positional information, so a 6DOF tracker would be 

better used.  

One suggested interaction set up would be a Nintendo Wii Remote to input data 

by pressing its buttons as shown on Image 23, along with a tracker on the HMD to 

provide the system with the positional/orientation information of the user’s head. The 

number of buttons on the Wii Remote fit for most of the basic interaction techniques 

suggested for pSIVE, but it would not be the only option. 

 

 

Image 23 Suggested button configuration on Wii Remote 

 

The methods here presented are not the only option to interact with the system, as 

well as the types of devices recommended. The platform must be extensible to receive 

new styles without the need of much change – for instance a further version of pSIVE 

would allow the addition of a new navigation style without changing any of the other 

interaction tasks, and would be presented to the final user just as a new option on the 

configuration tool. 
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3.2.3 Configuration Interface 

To put everything together pSIVE needed a simple configuration interface where 

even laymen could set up a Virtual Environment with the desired settings. This interface 

would allow the user to select which devices and interaction techniques are to be used, 

load 3D models previously built with SketchUp (or any other modeling tool) attaching 

information and multimedia files to them. Since some time would be necessary to build 

this configuration, it also should be able to export and import previously created 

designs.  

 

 

3.3 System Development 

The platform can be divided into three blocks, the modeling tool, the 

configuration tool, and the Virtual Environment itself. Image 24 shows the 

communication between the different blocks and its required functionalities. 

 

 

Image 24 pSIVE elements and their roles 

 

•Create Base Layout 

•Place and Adjust Elements 

•Export Elements individually 
to OSG Format 

Modeling Tool 

•Choose Devices 

•Load 3D Elements 

•Attatch Information to 
elements 

•Select Interaction and 
Manipulation Techniques 

•Export Layout 

 

Config 
Interface 

•Load Devices 

•Load Layout 

•Parse Information 

•Run Environment 

Virtual 
Environment 
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Getting from the point where the modeling tool is already capable of exporting 

elements to a format that OpenSceneGraph can work with, this section will focus on the 

two other blocks. 

Image 25 shows a short overview of pSIVE’s structure. The Virtual Environment 

depends on a series of settings to be configured before running using the configuration 

tool. While the Virtual Environment is built on top of a group of frameworks, namely 

VR Juggler to handle input/output devices along with VRPN (that adds an extra set of 

supported devices to VR Juggler through network). VR Juggler also handles the 

window system creation and the system calls (to the operating system). 

OpenSceneGraph is the graphic rendering framework but most of its features are 

encapsulated by VR Juggler. The light blue elements are modules built using elements 

of both frameworks and manage the whole Virtual Environment.  

 

 

Image 25 Platform Overview 

 

The Virtual Environment was developed using C++ since it is the native language 

of VR Juggler and OpenSceneGraph, and has also been widely accepted as a robust and 

efficient programming language. Even though the developer had short experience with 

this language, the wrapper of VR Juggler for JAVA is not well developed and still lacks 

functionalities, and thus the system was created with Microsoft™ Visual Studio 2010, 

however it is multiplatform, since all coding was designed to be OS independent. 
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To build the Configuration Tool, JAVA was the chosen language. Since it is the 

language on which the developer had most experience at, requiring less time to create it. 

Externally to the developed software, pSIVE also required the preparation of the 

files that configure the hardware to be used. Please refer to the Annex 03 for more 

details on this topic. 

 

3.3.1 Virtual Environment 

The Virtual Environment for pSIVE can be compared to a blank canvas, with all 

tools available waiting to be painted. It had to be generic to the point where one could 

load a single model just to see and rotate it in a VE or load a whole factory complex 

with machinery on which the user could interact with a document describing the 

machines or watch a documentary on the maintenance of a part on the place where it is 

located. Not only the elements of the virtual world had to be generic, but also the device 

handling, the file formats to show as contextualized information as well as the 

interactions that trigger and control all of it. To do so, a group of modules was 

developed.  

Their configuration as well as the whole environment characteristics required a 

layout design to be read by the program as well as for more features such as debugging 

or fine tunings. The simplest and quickest way to do so was by using the eXtensible 

Markup Language (XML). A pSIVE layout is based in two main elements: System and 

Data. While system properties are responsible for controlling environmental settings 

such as screen size and interaction styles, the data elements contain the location of files 

to be loaded and possible adjustments for the model positions and rotations. Image 26 

shows a sample configuration file with just one 3D Model with information associated 

to it in the form of multimedia files and text. 
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Image 26 pSIVE Sample configuration file 

 

 

3.3.1.1 Multimedia Module 

To handle the input and exhibition of multiple formats of 3D models and its 

multimedia contents, the multimedia module takes advantage of the plugin architecture 

from OpenSceneGraph through the osgDB library, which loads dynamically the plugin 

needed for different kinds of formats. With this, many formats are possible of loading 

with generic code, requiring only the handling of its graphical output and behaviors. 

Besides the models, the currently supported formats for additional information are just 

2D data: PDF Files, Videos and Plain Texts. 

This module is composed by 5 major elements (Image 27): Extended Node, Video 

Player, PDF Reader, and Text Viewer. 

 

Image 27 Multimedia module architecture 
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The Extended Node was a method to keep the structure of OSG basic element 

(Node) to store the 3D model and to keep information on any multimedia element 

associated to it (Metadata). For the platform each model became an Extended Node and 

its loading was done by defining the location of the physical file on the hard disk and 

applying, when needed, the transformations to place it on the desired position or 

orientation. As for the Metadata, it contains the description of every external elements 

associated to the model, for instance the label and the location, provided with the 

configuration tool.  

For the documents, the PDF Reader loads them from the metadata stored on the 

Extended Node but currently the implementation of a direct PDF loader is incomplete, 

and a pre-processing is required to transform each page into images. This step occurs 

hidden from the user: on the moment a layout is generated every PDF file is 

automatically converted to images and stored along with the layout. The display of a 

document is done by attaching each page as a texture of a plane on the space.  The 

advantage of this method of loading the documents is the possibility of avoiding large 

files to be loaded during the running of the environment, impacting the performance – 

By converting the files from an external tool (configuration) it’s possible to reduce the 

image quality/size to keep it compact and yet readable. 

The user can control the reader by pressing buttons of the input device, the 

navigation controls are disabled and receive the function of changing pages (left/right), 

zoom in and out (forward/backward) and closing the reader. The reader stays partially 

below the line of sight (Seen on Image 28), requiring the user to look slightly down to 

read. 

 

Image 28 pSIVE showing a PDF file 
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Similarly to the PDF reader, a Video Player was built within the multimedia 

module. The player displays the video on a surface that is placed right in front of the 

user, but still on the space, so the user can still look around and see the rest of the 

environment as shows Image 29. The loading of the video was done by using the 

ffdshow video library that is dynamically loaded by the osgDB library. Internally, it 

converts each video frame to a texture and places it on the plane in front of the user. 

Although, video plugin of OSG does not include audio, so the Video Player built had to 

manually get the audio from the video and play it synchronously. 

 Audio playback used the SDL (Simple DirectMedia Layer) library to provide 

access to audio devices without platform dependence. The current implementation of 

the Video Player does not provide spatial sound, so the sound is directly outputted to the 

speakers/headset as it is. 

 Just like the reader, the video player also takes input from the device chosed by 

the user to control the state of the video (play/pause) and to close the player and return 

to the menus or to traveling.  

 

 

Image 29 pSIVE playing a video 

 

Currently the display of plain text is done by simply mapping the desired text to 

the center of the screen fixed to the window, which means that no matter where the user 

looks, the text will stay in the same position until it is closed. 

Yet the module currently addresses the basic requirements, it is expected to be 

extended to support more formats and methods to present them to the user. 
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3.3.1.2 Interaction 

 The module to handle interaction takes care of the whole set: navigation, 

selection and manipulation. Each element is responsible for handling the aspects of the 

interaction. The interaction module is divided according to the organization shown on 

Image 30. 

 

Image 30 Interaction Module 

 

Navigation, as previously defined, is currently done according to the head 

direction. But the core of this element is built to allow further extension of its 

capabilities and addition of new navigation styles. The only required proprieties are the 

speed and the direction to translate the user to. 

Currently there is no physics or limitations for navigation, so it is possible to fly 

around the environment without colliding to walls or be limited to a ground (no 

gravity).   

Selection can be performed either by head orientation or laser pointer
5

. 

Depending on the style selected by the user, the interaction module provides adapted 

feedback to aid the user to know when an element contains information or when it is 

ready to be selected. In both methods, when the user selects an object with contents 

associated to it, a text box is showed on the center of the screen (Image 31) with the 

name or description of that object.  

                                                 

5
 Using one or another selection style is up to the user to decide but the laser pointer selection 

requires a 6DOF tracker, if no tracker with positional data is found than pSIVE automatically switches to 

head orientation mode. 
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Also, to provide the user with additional feedback regarding if an object is 

correctly indicated for selection, when the selection mode is set to Laser Pointer the 

laser beam goes from red to green (Image 32) when the object is intercepted by it.  

To perform the selection, the user has also to provide an input (currently a button 

press) to tell the environment that the indicated object is to be activated, this act triggers 

the Menu Module to start showing a menu with all the multimedia or text information 

attached to the model. 

 

 

Image 31 User selecting a dinner table by head orientation inside pSIVE 

 

 

Image 32 User selecting a dinner table by laser pointer inside pSIVE 

 

Regarding Manipulation, the only interaction provided by the module is the 

control of documents positions and orientation by linking it to a tracker positioned on 

the user’s hand. Yet for test purposes the manipulation of models was also attempted 

and is currently deactivated because of the lack of time to test and apply better 
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techniques. Image 33 shows a skull model
6
 that had its orientation controlled by a 

3DOF tracker using pSIVE modules. 

 

 

Image 33 Manipulation of a Skull Module using pSIVE modules 

 

3.3.1.3 Menus 

To provide a way for the user to access information inherent to virtual elements 

the Virtual Environment presents 2D adapted menus created accordingly to the elements 

that are available for a certain element. The structure of this module is as shown on 

Image 34. 

 

 

Image 34 Menu Module 

                                                 

6
 Kindly provided by Dryas Arqueologia, Lda 
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Each Extended Node will be associated to a set of menu entries, according to its 

Metadata. The creation of the entries is done by the Menu Factory that will generate 

generic elements, to be extended according to its type. The behavior of each element 

defines how the multimedia module is triggered. Therefore each multimedia type 

requires a Specific Item Type defined into the Menu Module.  

When an element that contains multimedia associated is selected, the menu 

module displays the previously generated items fixed to the screen. The Widget 

Management is responsible for the display and navigation on the items. The current 

version of the Menu Module uses a rectangular representation for each item, containing 

the label provided by the user during the creation of the layout file (Image 35). The 

controls for interacting with the items are simple: The controls for forward and 

backward change the highlighted (dark gray) item, a third button activate the item, 

triggering its behavior. 

 

 

Image 35 A three item menu on an environment created with pSIVE 

 

Currently the menu module is built over the osgWidget library, it adds support for 

2D GUI windows and elements in the 3D world. Even though other options such as Qt 

gui elements were available, they were found to be complex to interact with from the 

Virtual Environment (computing intersections, modifying and visiting), while 

osgWidget is basically nodes and image derivatives, therefore well integrated with other 

scene objects. 
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However, the library depends on a virtual window created over the scene and 

events pre-defined to control the interaction with the widgets. Those elements were 

found to be not complete on the viewer required by VR Juggler, an early version of 

current OSG viewer class. Even though it was possible to emulate a 2D window, it lacks 

of the full functionalities required by osgWidget, restricting the menus of a single level 

(no nested menus or submenus) and with fixed content (not possible to resize the 

elements). 

 

3.3.1.4 Utilities 

The utilities module provides elements aid for the development of pSIVE and for 

the functioning. It contains 2 components (Image 36): Math and Text. 

 

 

Image 36 Utilities Module 

 

The Math component was required to provide functions that the default math 

library did not had. Specifically the conversion of rotation matrices to quaternion angles 

for the manipulation of objects – as mentioned before, this functionality is currently 

disabled but still present. The conversion was needed to simplify the communication 

between the VR Juggler math library (GMTL) and OSG math library. Since they are 

different and their conversion from one to another is manual, it was decided to avoid 

matrices where possible, so working with quaternions was a measure to keep a pattern 

for angles. This conversion is also not provided by both math libraries, requiring pSIVE 

to have custom math functions. 

osgText is the library from OSG responsible for displaying text within the 

environment, but its functionalities were found rather complex to work with. Text 
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component provides methods that abstract the complexity of osgText, allowing the 

display of text simply by providing the position and the text to be displayed. 

3.3.2 Configuration Tool 

The configuration tool is a simple application to generate the XML file that will 

control the whole application without the need for the user to edit directly the xml file. 

It will allow users to generate the layout and tell VR Juggler which hardware to use on 

the Virtual Environment. Its interface was designed to rely on tabs, each one controlling 

a specific aspect of the system. The hardware Tab allows the user to choose from a list 

(previously defined by the developer) of equipment supported by pSIVE, dividing them 

into three classes: Head Tracking, Hand Tracking/Controller and Output. Models tab 

loads the 3D files giving the possibility of adding information to each file and adjust its 

position/orientation. The last tab controls the interaction styles to be used on the 

environment: Navigation speed, Selection style and Manipulation (of the documents). 

Image 37 presents some views of the configuration tool created. 

  

Image 37 pSIVE configuration tool 

 

The list of devices to be used is sent to pSIVE transparently for the user. The 

configuration tool changes the files that define each device so the correct ones can be 

loaded by the platform. Those files are defined by VR Juggler, for it is the responsible 

for abstracting the input and output. 

The current configuration tool lacks some flexibility since all options have to be 

previously programmed into it. A better approach is to adopt an architecture based on 

plugins, allowing adding new interaction styles and hardware without the need of 

altering the code. Also, due to the lack of time, the tool does not have an importing 

option to load previously created layouts.  
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4 User Evaluation 

During the latest stages of development a study was proposed to assess the 

effectiveness and to find out which selection technique was better applied to different 

situation, given the importance of object selection on the context of the platform, and 

the possibility of adding diverse selection methods. 

In a Virtual Environment where the selection can be only performed by the 

specific variations of ray-tracing used on pSIVE, no study is conclusive on which one is 

better – by direct comparison. For instance, the study conducted by Sanz (Sanz, 2011) 

that compares the head oriented selection versus the laser point selection but focusing 

on how they are affected by occlusion and showing how to minimize this specific 

problem by distorting the object or adding a virtual x-ray lens. 

The evaluation performed revisits the experiment conducted by Bowman ( 

Bowman, Johnson, & Hodges, 1999) on which volunteers performed the selection, with 

different techniques, of a highlighted object among a grid with nine cubes and moved it 

to place in a specific area. However, this evaluation considered only the selection step. 

To assess the selection techniques, a user evaluation was conducted, having as test 

environment the pSIVE itself as a base, and extending its functionalities to record data 

and measures. Any device supported by pSIVE could be used to perform the evaluation, 

but the Razer Hydra was chosen as it is easy to operate and provides 6DOF allowing to 

easily emulate the natural act of pointing. Since the Hydra is composed of two 

controllers, one was placed on the back of each volunteer’s head, to track its orientation, 

along with the head mounted display VR2000 since the built-in tracker is not yet 

supported neither by VR Juggler nor the VRPN. The other controller was given to the 

volunteer to hold for inputting commands to start the simulation and to trigger the 

selection. The second controller was also used as a laser pointing, by tracking the 

position and orientation of the hand.  
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The evaluation consisted of using the two variations of ray-tracing present in 

pSIVE to perform the selection of a particular object among a group of objects. As 

shown on Image 38, the user is presented a grid of blocks, each block  55cm tall, and 

prompted to select the green one. This work did not take into account the problem of 

occlusion, since all objects were visible and do not overlap. 

 

 

Image 38 Selection technique evaluation environment created with pSIVE 

 

4.1.1 Hypothesis 

The techniques present on pSIVE are two variations of ray-tracing, as mentioned 

before. These variations were widely discussed by Mine (Mine, 1995) who classified 

them as laser point selection and gaze selection. The concept is similar, to select an 

object just point it – but while gaze selection describes the act of indicating the object 

with the orientation of the head, laser point selection (LP) is controlled with the hand as 

if the user is holding a laser pointer and directed the beam to the desired object. 

Recently gaze selection refers to the properly gaze been used to indicate the object, by 

tracking the eyes of the user (Cournia, Smith, & Duchowski, 2003; Jimenez, Gutierrez, 

& Latorre, 2008). To avoid ambiguities the variation compared here will be referred to 
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as selection by head orientation (SHO). The main objective of this study is the direct 

comparison between LP and SHO to assess their adequacy to various situations.  

Liang and Green (Liang & Green, 1994) were one of the first to implement the 

selection analogous to the manipulation of a laser pointer and stress that a known 

problem it has is the difficulty to select distant or smaller objects, since it requires a 

high angular precision. Thus, it is expected at first that for distant targets this selection 

will perform worse when compared to SHO.  

The literature also shows that several authors conducted exhaustive tests in order 

to compare different selection techniques based on ray-tracing, however we do not find 

comparisons involving controlling the beam with the head orientation and having the 

same origin. Instead, some of them show techniques where the beam has the origin on 

the head but the direction is controlled with the hand, as shown by Sanz (Sanz, 2011). 

However these techniques are less common, since most of the comparisons are made 

between the laser pointer and the selection made from the eye direction (gaze). 

From the analysis of related work and theoretical aspects, the following 

hypotheses were formulated about this experience: 

 H01 – Less errors at long and medium range selections for SHO, in comparison 

to LP  

 H02 – Higher average time taken to perform the selection for LP during the first 

selections (between 5 and 30 meters) given to the time that the user might need 

to get the hand in a comfortable position. 

 H03 – The method with which the volunteers start won’t interfere with the 

results. 

4.1.2 Method 

Different variables are used on the evaluation. The first is the position of the 

element of interest (green cube) on the grid, which is decided randomly after each step. 

The second is the distance between the grid and the volunteer, starting at 5 meters and 

increasing 5 meters each step until the final position 70 meters away from the user. 

These distances were selected to provide feedback for various scenarios, from the 

selection of close objects to a situation where the objects are smaller defaulting the 

selection. Also, different combinations of both variables allow the evaluation of cases in 

which, for instance, the object on the lower part of the grid is easier if it is close or 

distant. 
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The output variable (or dependent variable) considered was the performance of 

the volunteers with both techniques, assessing basically the number of mistakes and the 

time elapsed. Other data that could present itself interesting is the learning effect for the 

volunteer according to the initial method (SHO or LP), this being an important 

secondary variable. 

Several measures were automatically recorded by the platform, corresponding to 

the user’s performance: number of errors (one represents a selection performed on the 

wrong object), time elapsed from the activation of the test and the selection, the distance 

of the grid and the position of the correct object on each step. The method that the 

volunteers began with was also recorded (SHO or LP). 

Besides quantitative aspects, any relevant additional information provided by the 

volunteers during the experiment was noted down by an observer, for instance personal 

comments/opinions, issues found and suggestions. A questionnaire was requested to be 

filled inquiring about the volunteer profile, its opinions on multiple aspects of the 

interaction with the test (easy to orientate, pleasant, etc…), the satisfaction rate for each 

selection method, the favorite method and any comment about difficulties or any other 

test related subject. 

The participants were undergraduate and postgraduate students from courses 

related to computers and information system at the University of Aveiro. On total, the 

evaluation had the participation of 16 volunteers (14 male and 2 female) with ages 

between 19 and 26 years, without experience with Virtual Reality systems but, in 4 

cases, experience with computer games (namely first person shooters). Half of the 

volunteers started with LP and the other half with SHO, however they did the 

experience with both methods. Corresponding to an experimental design within-groups 

(Dix, Finlay, Abowd, & Beale, 2003). 

Previously to the experiment, the volunteers were presented with a brief 

explanation on what the evaluation consisted and what they were required to do. An 

additional training cycle was performed right before each selection cycle (from 5 to 70 

meters) so the users could understand the functioning of the system with both selection 

styles, resulting in a total of 56 selections between training and evaluation, half for each 

method. The volunteers were responsible for the activation of tests at every step, giving 

them time to ask questions or make comments without interfering with the acquired 

measures. 
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4.1.3 Results 

 

Two participants were unable to perform all selections, the first due to a technical 

problem during the training cycle that saved corrupted data, and the second  due to the 

impossibility of using the Head Mounted Display while keeping the glasses on, and 

since he had myopia the volunteer decided not to complete the entire SHO cycle. 

Regarding the results obtained, as shown on Image 39, for almost all distances 

(except one) SHO maintained fewer errors, therefore suggesting the confirmation of 

H01. However, it is worth noting the fact that, although the results obtained with both 

techniques are close , LP was better within the range from 5 to 30 meters and that the 

number of errors obtained with both techniques increased with  distance as expected. 

 

 

Image 39 Sum of errors by distance 

 

As for the average elapsed time needed to perform the selection on each distance, 

Image 40 shows that the selection of LP has, in most instances, longer times. However, 

the original difference tends to soften in the range of 10 to 25 meters. As predicted by 

H02, the higher times (for LP) in the first selections were also confirmed and explained 

by the fact that users took some time to find a comfortable position for the hand before 

starting the selection. Also, this was reported by 8 of the 16 volunteers during the test. 
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Image 40 Average elapsed time by distance 

 

In contrast to what was supposed by H03, there was a notable difference in both 

time and the number of errors recorded for those who started using the LP method. 

Analyzing the results shown in Image 41, it was evident that the number of errors 

accounted for those who began with SHO and were currently using LP was 

approximately two times higher than those who started with LP and were currently 

using SHO. A possible explanation is the fact that both techniques require small and 

precise movements, which are more easily obtained when controlling the beam with the 

head. The change from fine movement (with head) for wider movement (hand) or vice 

versa reflected in the learning rate of the user. So those who started with PL are 

subjected to a type of control that requires more training to be used, as the users 

reported (see Table 3), might have focused more to understand how to interact with the 

system, which resulted in a performance improvement when using even SHO. 

Participants also indicated that in addition to getting used to the device, they also 

needed some time to realize what to do and how to do it . 
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Image 41 Average elapsed time and errors according to the starter method 

 

In comparison, it was noted that LP was worse independently of what was the 

initial method . These results are reflected on the opinions provided by volunteers. On a 

scale from 1 to 5, where 1 means strongly disagree and 5 strongly agree: it can be seen 

on Table 3 that despite the fact that both techniques are pleasant, LP presents irritant 

features and requires more training than SHO. 

Table 3 Questionnaire results (median of each index) 

 SHO PL 

Ease of Orientation 4 4 

Pleasant 4 4 

Annoying features 2 4 

Intuitive 4 4 

Requires Training 3 4 

Useful for near Obj. 5 4 

Useful for Distante 
Obj. 

4 3 

Satisfaction Rate 4 3 

 

It is also noticed that SHO was the technique preferred by most of users and 

quantitative data show that it was also more efficient regardless of the position of the 

object. Additionally, it is worth highlighting that the fact that some participants 

SHO LP SHO LP

Started with SHO Started with LP

Avg Time 2,74 2,95 1,71 2,45

Minimum Time 0,55 0,63 0,48 0,75

Maximum Time 26,83 20,40 5,84 15,52

Error amount 35 100 19 49
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possessed gaming experience did not seem to influence the overall result, since there 

was no significant difference observed. 

 

 

 

4.1.4 Conclusions 

The results obtained indicate that the size of the object and the distance from the 

user influence the performance of the selection and present itself as one of major 

limitations of ray-tracing (Sanz, 2011); however, several techniques can be applied to 

improve it. For example, working on Fitts’ Law and changing the size of the object or 

distorting it according to distance (Balakrishnan, 2004; Sanz, 2011; Teather & 

Stuerzlinger, 2011).  

The selection by head orientation was more effective both according to 

quantitative results and the personal opinion of the volunteers, once it presented a lower 

error rate during most of the experiment (except for distances lower than 25 meters), 

however the results were very close and the learning rate afforded by laser pointer (LP) 

selection was significant and thus further research is required to a better understanding 

of what happened.  

After the experiment, it was decided that the head selection should be the most 

adequate as a primary selection style since it was more precise and pleasant for the 

volunteers. However, when manipulation of 3D elements comes to mind, a combination 

of both techniques could be used; for instance the initial selection of an object or 

document inside the Virtual Environment could be achieved by SOC and any further 

interaction would be controlled by the LP (laser pointer), allowing 6DOF interaction.  
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5 Case study 

Under the task A.2.3 from the PRODUTECH-PTI Project, a real case scenario 

was proposed. This task required pSIVE to allow the creation of interactive visits for 

marketing and virtual training for workers from Portuguese companies on a virtual 

version of their facilities. 

One of these companies is TEGOPI - Metallurgy and heavy metalworking - 

specialized on the manufacturing of wind power towers. TEGOPI is located in Vila 

Nova de Gaia, Portugal and parts of its facilities were reproduced into pSIVE to validate 

the accomplishment of the objectives for the tasks A.2.3. 

The following sections present the process of creation and configuration of pSIVE 

to run an interactive visit to the facility. 

5.1.1 Creating layout 

As previously explained, some of the companies involved in PRODUTECH 

already used SketchUp as a tool for modeling their equipment for simulations on the 

software like SIMIO. TEGOPI is one of those, and kindly provided the 3D models for 

the components. They were put together with SketchUp representing the real factory 

(Image 42).  
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Image 42 TEGOPI factory recreated on Google SketchUp 

 

The virtual facility was created using a free version of Google SketchUp and 

exported to OpenSceneGraph’s format. Currently the only way to add interactive 

information is by loading models one by one and indicating the information to load 

within configuration tool for pSIVE. That required each element that should contain 

information to be exported individually as a single file. To do so, the element should be 

selected from the overall design and exported individually – This will keep the 

positional and orientation information, so when different models are loaded on pSIVE, 

they will stay the same as they were on the original SketchUp model. Once the 

exportation of elements with contents associated was done, the rest of the layout can be 

exported as a single 3D model. Image 43 illustrates the process of selection and 

exportation of a single machine from the design. 
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Image 43 Exporting a single machine from the virtual factory 

 

With the 3D models ready, one must use the configuration tool to generate the file 

that controls and setup the environment. In this case, the interaction style was set to 

navigate and perform selections with the Razer Hydra (Laser pointer selection), and 

head tracking with Intersense Bluetooth. 

As for the models, one could load them one by one or by adding multiple at a 

time. Table 4 shows the steps taken to load the models, along with a brief explanation. 

 

Table 4 Configuration of TEGOPI layout 

 

Step 1. Click on Load Models and select the models to be loaded (one or multiple) 
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Step 2. Each model will require a label 

 

Step 3. If the model needs to be translated or rotated, 

the tool will ask for the values (meters/degrees) 

 

Step 3. Inform the number of attachments. 

For each one, steps from 4 to 7 will be repeated 
 

Step 4. Indicate the attachment type 

 

Step 5. Give a label to the attachment  

(to be displayed on the menu) 

 

Step 6. If the attachment is a file, indicate the full 

file path, or else enter the text 

 

Step 7. Verify if the information is correct. If not, 

the application goes back to step 4. 

 

Step 8. After loading all models, click Generate 

Layout and save the file in the same folder as the 

pSIVE running script 

 

For demonstrational purposes the only element with data associated is the 

machine highlighted on Image 43, a ferrule machine – it creates ferrules from huge 
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metal plates. The remaining of the factory was exported as a single base element. Image 

44 shows the created configuration file for pSIVE. 

 

Image 44 Generated config. file 

 

 

5.1.2 Running Application 

After the configuration is done, it is necessary to make sure all devices are 

connected. Some of them require a VRPN server running to communicate with VR 

Juggler (which is the case of Razer Hydra). A pre-compiled version of the VRPN Server 

is available along with pSIVE. – More on the device configuration and setup is 

available in Annex 2 of this document. 

From this scenario, the first step is to turn on the VRPN server. For the Hydra, the 

controllers must be placed on their base for the first calibration. After the detection and 

calibration, the VRPN server will show the message that everything is working properly 

(Image 45). The devices that are configured directly into VR Juggler do not need the 

VRPN server, they just have to be connected to the computer that will run the 

environment. 
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Image 45 Starting VRPN server 

 

The next step is to run pSIVE’s startup script. This is where the devices are 

handled to the application, VR Juggler’s Gadgeteer will perform a quick verification to 

make sure they are working (Image 46), and the environment will start according to the 

settings chosen during the configuration step. 

 

 

Image 46 Starting pSIVE Virtual Environment 

 

The first view is the factory as a whole (Image 47), as created on Sketchup. The 

user is free to travel around it by using the Hydra joystick.   
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Image 47 Tegopi's Factory Overview inside pSIVE 

 

From this point on, it is possible to interact with all elements that had multimedia 

files attached. For this example, one element with information was created. Itis a ferrule 

machine, as mentioned previously. It is located on the area of the virtual factory without 

walls. Orientating the head towards it makes its label appear on the screen (Image 48). 

With the label it is possible to identify elements on the factory without the need of 

displaying the menu. 

 

 

Image 48 Ferrule machine highlight inside pSIVE 

 

With the machine on focus, pressing the activate button on the controller will 

display the menu options for that element (Image 49). In this case, it’s possible to read 
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Tegopi’s informative document, or watch two videos: one about the machine operation 

and the other about an equipment that is used to verify the consistency of the ferrules 

produced. 

 

 

Image 49 Menu associated with the ferrule machine 

 

For instance, a factory employer going under training could watch the video about 

the machine he is about to operate, as seen on Image 50, in an environment that will 

make him feel as if he was really on the factory.  

 

 

Image 50 Video about the ferrule machine operation 
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Another scenario corresponds to a virtual visit for marketing purposes; in this case 

after moving around the facilities it is possible to view a catalog (Image 51) on Steel 

Towers created by TEGOPI. 

 

 

Image 51 Steel Towers catalog 

 

5.1.3 Conclusions 

From the moment the Sketchup model was putted together, it took, for the system 

developer, approximately 10 minutes to run a fully functional environment, the steps to 

export elements, prepare the configuration and run the environment are easily done once 

the user has a minimum experience with the platform. Since no technical knowledge, 

but the design of the models, is needed it is believed that with a brief explanation any 

one could setup an environment like this. 

Also, during the creation and testing of demo environments, it was possible to 

identify some problems with pSIVE and some improvements were done in order to 

overcome them. On a first visit using the Selection by Head Orientation (SHO), there 

was no way to know if an object was on the center of the screen and therefore, selected. 

A cross was added on the screen to give feedback and aid the user centering the object. 

Another problem found was the resolution and placement of documents that 

hindered the comprehension of its content. To ease this, the calculations for the 

document position were reviewed. However, the resolution is still a concern that is 

unissued, for low resolution screens and images the legibility is still hindered problem.  
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6 Conclusions and Future Work 

This dissertation presented pSIVE, a platform that abstracts the usage of several 

frameworks to set up Virtual Environments, allowing even laymen (on subjects about 

computer programming and Virtual Reality) to work with it. Yet several frameworks 

already ease the creation of Virtual Environments none of them addressed the problem 

to include users from different areas without needing to interact directly with code or 

configuration files that were practically impossible to be used by non-experts.  

Even though pSIVE is still on its first stages, it is already possible for a user with 

minimal information to run an interactive environment with few steps, as described in 

previous chapters. 

The time was a constant issue to finish this work, along with the lack of 

experience of the developer with C++ and Virtual Reality. It was not possible to fully 

cover every aspect a Virtual Environment could have, or to offer a better user interface 

for setting up the files required by pSIVE. 

The lack of feedback for the user to know which elements in the Virtual 

Environment contain information associated without selecting it is a known problem, 

but still not addressed. Some ideas have already been discussed for implementation, 

such as adding a glow effect to elements that have information, but still not 

implemented. 

Some improvement was done during the experiment to assess the selection 

techniques and during the creation of TEGOPI’s environment, since they revealed the 

downsides and problems of decisions and approaches adopted on the platform. With 

more real cases and with further usage more problems would keep showing as well as  

better ideas to improve the platform. 

During a meeting, with representatives of various companies participant of 

PRODUTECH-PTI, that took place on July/2013, pSIVE was presented, in order to 
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demonstrate its capabilities and potential by allowing some of the meeting participants 

to interact with it, These participants gave very positive feedback on how it could 

already be used for marketing purposes and to allow virtual visits and training. 

The current version of pSIVE is a prototype and still requires further refinement 

in its structure and modules. Furthermore, it is still limited and does not have the 

elements to provide a better and more natural usage of the Virtual Environment, for 

instance adding gravity and allowing interactions with different types of equipment 

(body tracking with Kinect, haptic feedback with Phantom, etc…). Therefore, it is clear 

that pSIVE still needs further work to be done to improve it and provide a better tuned 

version of the platform: 

 Add physics and collision detection.  

 Add spatial audio support and the possibility of adding an acoustic model for the 

environment so the sound would be as real as possible. 

 Improve the existent interaction techniques or create new. 

 Ease the addition of devices not yet listed on the configuration tool. 

 Improve the creation and management of GUI elements, since the support 

provided by OpenSceneGraph isn’t supported by VR Juggler. The possible 

creation of a generic Toolkit would not only benefit pSIVE, but all the VR 

Juggler and OpenSceneGraph community. 
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Annex 01 – VR Juggler 3.x Basic Installation Guide 

 

Mostly the needed information will be available on the user guides provided on 

VR Juggler’s website. This document stands as a step by step guide to configure VR 

Juggler to aid a rapid setup performed by anyone, either by choosing to build it or to use 

a pre-built version under Windows. 

All information hereby presented is present in a detailed form on VR Juggler’s 

Guides, on its website: http://vrjuggler.org. 

 

Building from Source 

Available at https://code.google.com/p/vrjuggler/ 

 

First of all, it is mandatory to have several dependencies on which VR Juggler 

relies on (Table 5). Unfortunately building VR Juggler can prove itself slow, requiring a 

bit of knowledge on building third-part code and patience. There are two groups of 

dependencies, the required and the partially required. As the name says, VR Juggler 

needs the required to build its core functions at least. The other group is ‘Partially” 

required because some components of VR Juggler Suit may rely on them, but they are 

not mandatory. 

 For more detailed information please refer to 

https://code.google.com/p/vrjuggler/wiki/BuildingFromSvn. 

 

Table 5 List of Libraries required by VR Juggler 

Name Description/Information Available at 

Required Packages 

Python 

Optional – Used to run the 

configuration tool to help 

setting up the environment 

variables 

http://www.python.org/getit/ 

CppDOM 

XML parser – The project is 

stalled and had known issues 

to build under windows 

environments. A custom 

https://github.com/rpavlik/cppdom 

http://vrjuggler.org/
https://code.google.com/p/vrjuggler/
https://code.google.com/p/vrjuggler/wiki/BuildingFromSvn
http://www.python.org/getit/
https://github.com/rpavlik/cppdom
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Name Description/Information Available at 

branch is maintained by 

Ryan Pavlik to add CMake 

Support. 

Boost 1.34+ 

 

C++ library providing many 

powerful utility classes and 

libraries – Tested with boost 

1.46. It’s possible to compile 

Boost from source but 

windows visual studio builds 

up to VS2010 are made 

available by BoostPro 
7
 

http://www.boost.org/ 

http://www.boostpro.com/download/ 

 

x64 of versions 1.4x 

http://www.airesoft.co.uk/boostlibs 

GMTL 

A generic math library that 

makes use of C++ templates 

and STL paradigms – No 

compilation needed. GMTL 

is comprised of header files 

 

 

http://ggt.sourceforge.net/ 

Partially Required Packages 

Java 

Developer Kit 

The JavaSE SDK (or JDK) 

is used to compile all the 

Java code used in the 

Juggler Project. Without it, 

none of the Java code can 

be built. Requires version 

1.4 or newer. 

http://www.oracle.com/technetwork/ 

java/javase/downloads/index.html 

omniORB 

A C++ implementation of 

CORBA 2.3, required for 

the Tweek C++ API. 

http://omniorb.sourceforge.net/ 

                                                 

7
 BoostPro will stop supporting the free installers soon, but up to the time of this writting they 

were still active, and a message by BoostPro indicates that a community of users will keep them alive. 

http://www.boost.org/
http://www.boostpro.com/download/
http://www.airesoft.co.uk/boostlibs
http://ggt.sourceforge.net/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://omniorb.sourceforge.net/
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Name Description/Information Available at 

Doozer   

VRPN 

Virtual Reality Peripheral 

Network. Implements a 

network-transparent 

interface between 

application programs and 

the set of physical devices 

(tracker, etc.) 

http://www.cs.unc.edu/ 

Research/vrpn/obtaining_vrpn.html 

OpenAL SDK 

+ 

ALUT SDK 

 

http://connect.creativelabs.com/ 

openal/Downloads/ 

Forms/AllItems.aspx 

SDL Simple DirectMedia Layer http://www.libsdl.org/ 

DirectX SDK  
http://www.microsoft.com/en-

us/download/details.aspx?id=6812 

 

Once the dependencies are ready, it is simple:  

 

1. Chose a version of the source. It could be either a stable release or a developer 

version from GIT repository. 

a. If it is from a stable release, download the zipped file and extract it 

b. If it is from the GIT, make sure you have GIT installed. Find an appropriate 

folder and execute: 

i. git clone https://code.google.com/p/vrjuggler/ 

2. Browse the folder and run the application called build_windows.py. It will 

prepare the environment and guide the user setting the environment variables required 

to build VR Juggler. 

a. Set the install folder and point the dependency folders according to the console 

output. Once the input is finished it will launch Visual Studio. 

b. If any error occurs, either typo or something else, simply delete the file 

“options.cache” so it can start over. 

c. After launching Visual Studio, it will prompt to install VR Juggler. This must 

wait until the Step 3 is complete. 

http://www.cs.unc.edu/Research/vrpn/obtaining_vrpn.html
http://www.cs.unc.edu/Research/vrpn/obtaining_vrpn.html
http://connect.creativelabs.com/openal/Downloads/Forms/AllItems.aspx
http://connect.creativelabs.com/openal/Downloads/Forms/AllItems.aspx
http://connect.creativelabs.com/openal/Downloads/Forms/AllItems.aspx
http://www.libsdl.org/
http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=6812
https://code.google.com/p/vrjuggler/
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3. On Visual Studio, everything is ready, under the menu build, select Batch Build, 

check the wanted setup and hit Build. Some projects may fail due to missing include 

files. This is normal, since not all of them are mandatory. 

a. After Building, Return to the Console of build_windows.py and continue with 

the installation by entering “y” or just hitting Enter. 

b. Input Y again so it can install all dependencies as well. 

c. Steps 3.a and 3.b are optional; the installation is a mere copy of all files to a 

specific directory selected by the user on the first steps of the environment setup. 

4. Proceed to the First Steps part of this annex 

 

 

 

Pre-Compiled Version 

Available at http://www.danilo-souza.net/VRJuggler-3.0.1-1.rar 

 

The compressed file contains everything is needed to run VR Juggler 

Applications, with and all the dependencies as well. Simply extract the files. The 

content is divided into VR Juggler which, as the name says, is the actual VR Juggler 

Libraries and configuration files. And the VR Juggler Deps which is the folder 

containing all the dependencies. 

 

 

First Steps 

Sample projects available with the package above or with the source code 

 

To start working with VR Juggler the step is to set up the environment variables 

to point to its files and dependencies. The variables are: 

 

 VJ_BASE_DIR – The folder of VR Juggler Files  

o ie.: C:\dev\VRJuggler\VRJuggler-3.0.1-1 

 VJ_DEPS_DIR – The dependencies folder 

o ie.: C:\dev\VRJuggler\VRJuggler-3.0.1-1-deps 

 VJ_CFG_PATH – The path to the configuration files located within the 

installation folder.  

http://www.danilo-souza.net/VRJuggler-3.0.1-1.rar
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o ie.: %VJ_BASE_DIR%\share\vrjuggler\data\configFiles 

 VJPATH – the path to all binaries of VR Juggler and its plugins 

o ie.: 

%VJ_BASE_DIR%\lib;%VJ_DEPS_DIR%\bin;%VJ_DEPS_DIR%\lib;

%VJ_BASE_DIR%\lib\gadgeteer\drivers;%VJ_BASE_DIR%\lib\gadget

eer\plugins;%VJ_BASE_DIR%\lib\jccl\plugins;%VJ_BASE_DIR%\lib\

vrjuggler\plugins 

 Finally Add “%VJ_BASE_DIR%\lib;%VJ_DEPS_DIR%\lib” to Path 

 

Instead of creating a new project and setting everything up, it is much easier to 

adapt an existing project to the needs of the user. Along with the VR Juggler Suite, 

many different sample projects are available, one for each graphics engine that is 

compatible with it. 

In case of using the pre-compiled version provided in the beginning of this guide, 

a solution for Microsoft Visual Studio 2010 is available on the folder “samples”. 

Otherwise, it is necessary to use cmake to configure the source code and generate the 

solution file.  

Some samples were designed as a starting point for VR Juggler. As recommended 

on VR Juggler’s Getting Started Guide the following projects are considered as for 

starters: 

 simpleInput: No graphics rendered, this project demonstrate how to obtain input 

from the devices 

 simpleApp: OpenGL application that draws a cube in space 

 contexApp: Extends simpleApp by allowing interaction with the cube through a 

tracker. 

 MPApp: OpenGL application to demonstrate multi-processing in VR Juggler. 

These projects can be compiled right away, and as long as the environment 

variables are set, no problem will happen. 

To run an application it is necessary to tell it the configuration files of the devices 

(input and output) that are going to be used (A brief explanation on the device setup are 

given on Annex 03 – Please refer to it before running the applications). 
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Some sample simulator configuration files are available along with VR Juggler, 

they simulate the behavior of both input and output devices through mouse and 

keyboard for input and a single screen as output of even 6 displays systems. 

An interesting example is the “sim.wand.mixin.jconf”, that simulate a tracker with 

positional data and several buttons along with “sim.base.jconf” to provide a viewport 

for the rendering to occur along with simulated head tracking by using the keyboard. 

Once the compilation of the previously mentioned projects was completed 

successfully, run the application “MPApp”, using as configuration the both files 

referred before. To do so, type “MPApp.exe sim.wand.mixin.jconf sim.base.jconf” in a 

command prompt on the build destination folder. The result should be as follow: 

 

 

 

The simulator window will show a moving water-like element and two 

simulations of head and wand. By pressing Z and X the wand will tilt left or right and 

the input windows will grab the pointer and use it to simulate a positional tracker.  
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Annex 02 – VRPN Guide 

The VRPN is available 

@ 

http://www.cs.unc.edu/Research/vrpn/obtaining_vrpn.html 

 

VRPN stands for Virtual Reality Peripheral Network. It is a free cross-platform 

open source tool that handles many devices, usually used for Virtual Reality Systems. It 

is used by many Virtual Reality software, both commercial and free solutions. It acts as 

a server, enabling the access to hardware through an abstraction layer that standardizes 

their data. Any device made available through VRPN will be outputted as a generic 

hardware that can contain three types of data: 

 Tracker – Any device/module that contains position and orientation 

 Analog – Any type of axis (Joysticks for instance) 

 Button – Any type of binary button 

For instance, each Razer Hydra gamepad has a Tracker, 2 analog channels (x and 

y axis for the joystick) and a set of buttons. The current supported hardware as well as 

technical information and guides are available on its web-site: 

http://www.cs.unc.edu/Research/vrpn/index.html. 

This guide will exemplify the configuration and connection to obtain data from a 

mouse using a pre-compiled VRPN Server for Microsoft Windows
8
. Other devices 

follow the same idea is mostly the same, however each device will have its 

characteristics and sometimes different configuration parameters. 

For the VRPN a mouse is composed of 2 analogs and 3 buttons. Each device is 

defined into the ‘vrpn.cfg’ file that is inside the “bin” folder, along with the server’s 

executable. The configuration file contains also short instructions for using the different 

devices supported by VRPN. To add the mouse locate the line “#vrpn_Mouse Mouse0” 

and uncomment it by removing the “#” symbol. “vrpn_Mouse” is the device identifier 

for the server to load and “Mouse0” is the label that identifies the device externally. 

After saving and closing the file, the server is ready to run. To do so, simply 

execute the file “vrpn_server.exe”. Some devices print some information that is 

                                                 

8
 Updated versions of VRPN are nightly built and are available at 

http://public.vrac.iastate.edu/~rpavlik/downloads/vrpn-visual-studio-snapshots/  

http://www.cs.unc.edu/Research/vrpn/obtaining_vrpn.html
http://www.cs.unc.edu/Research/vrpn/index.html
http://public.vrac.iastate.edu/~rpavlik/downloads/vrpn-visual-studio-snapshots/
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obtained during their connection or calibration (if needed), the mouse will not, so once 

the server is opened and no error is shown, everything is working fine. Also, each 

device may require a series of libraries to be accessed, the mouse for instance requires 

the XINPUT library that is provided by the DirectX, if no DirectX is installed, an error 

message will be shown alerting about the lack of the XINPUT dll. 

To perform a quick check, it is possible to use the “vrpn_print_devices” 

application. It runs by receiving the name of the device and the ip address of the server 

to connect, for this example, run “vrpn_print_devices Mouse0@localhost”. The 

application will show the data obtained from the mouse as on Image 52: 

 

 

Image 52 VRPN showing mouse status 

 

At the same time, information on the connections active are displayed on the 

server window (Image 53). 
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Image 53 VRPN Server messages 

 

A VRPN client performs the connection to the server and receive the information 

from it as the device change its state (button press/release, analog or tracker values 

change). A simple client in C++ can be built as the code snippet bellow: 

#include "vrpn_Analog.h" //VRPN Analog device Header 
  
#include <iostream> 
#define DEVICE "Mouse0@localhost" //Device to connect 
//Callback to recieve the device updates 
void VRPN_CALLBACK analog_callback( void* userData, const vrpn_ANALOGCB 
analogDevice ){ 
 int nbChannels = analogDevice.num_channel; //Get the number of analog 
channels available 
  std::cout << "Data Received: "; 
 
 for( int i=0; i < analogDevice.num_channel; i++ ) { 
 std::cout << analogDevice.channel[i] << " "; 
 } 
  
 std::cout << std::endl; 
} 
  
int main(int argc, char* argv[]){ 
 vrpn_Analog_Remote* vrpnAnalog = new vrpn_Analog_Remote(DEVICE); //Connect 
to the device’s analog component 
  
 vrpnAnalog->register_change_handler( 0, analog_callback ); //Set the 
callback for analog input 
  
 while(1) {//Update 
 vrpnAnalog->mainloop();  
 } 
  
 return 0; 
} 
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To build the code, it is required to add the folders include and lib to the compiler 

and linker respectively, also link with vrpn.lib. In this guide, the code was compiled 

using Visual Studio 2010. The result should look like Image 54. 

 

 

Image 54 VRPN demo client 

 

Buttons and Trackers are read in the same way, just requiring a new callback for 

each one and a new connection. The following code adds the mouse buttons to the 

client: 

 

#include "vrpn_Analog.h" //VRPN Analog Header 
#include "vrpn_Button.h" //VRPN Button Header 
#include <iostream> 
#define DEVICE "Mouse0@localhost" //Device to connect 
 
  
//Callback to recieve the device updates 
void VRPN_CALLBACK analog_callback( void* userData, const vrpn_ANALOGCB 
analogDevice ){ 
 int nbChannels = analogDevice.num_channel; //Get the number of analog 
channels available 
 std::cout << "Data Recieved: "; 
  
 for( int i=0; i < analogDevice.num_channel; i++ ) { 
 std::cout << analogDevice.channel[i] << " "; 
 } 
  
 std::cout << std::endl; 
} 
 
/*The buttons will all be handled the same way,  
  They will evoke this callback. 
  Each one has the identifier and its current state 
*/ 
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void VRPN_CALLBACK button_callback( void* userData, const vrpn_BUTTONCB 
button ){ 
 std::cout << "Button '" << button.button << "': " << button.state << 
std::endl; 
} 
 
int main(int argc, char* argv[]){ 
 vrpn_Analog_Remote* vrpnAnalog = new vrpn_Analog_Remote(DEVICE); //Connect 
to the device's analogs 
 vrpn_Button_Remote* vrpnButton = new vrpn_Button_Remote(DEVICE); //Connect 
to the device's buttons 
 vrpnAnalog->register_change_handler( 0, analog_callback ); //Set the 
callback for analog input 
 vrpnButton->register_change_handler( 0, button_callback ); //Set the 
callback for button input 
  
 while(1) {//Update 
 vrpnAnalog->mainloop(); 
 vrpnButton->mainloop(); 
 } 
  
 return 0; 
} 
 
 
 

The result should be something like Image 55 

 

 

Image 55 VRPN demo client  improved 

 

For implementations of the client using another language than C++, it is possible 

to build the wrappers from the source code for Java and Python, as well as a port to 

Android. 
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Annex 03 – Devices Configuration on VR Juggler 

For a full guide refer to 

http://vrjuggler.org/docs/vrjuggler/3.0/configuration.guide/configuring_vr_juggler.html 

 

This guide will briefly explain the structure of VR Juggler configuration files for 

input devices by showing a step-by-step configuration of the Razer Hydra through the 

VRPN. 

VR Juggler, just like VRPN, will abstract the physical devices and classify them 

into a set of categories so for the application any device that fits its requirement, can be 

integrated without the need of altering the code. 

The VRPN server used on Annex 02 is already capable of provide access to the 

Hydra as is. The only required step is to adding “vrpn_Tracker_RazerHydra Hydra0” to 

the VRPN.cfg file or by uncommenting the line that contains 

“vrpn_Tracker_RazerHydra” the important point is to remember the label given to it (in 

this case is Hydra0).  

After the configuration is done, opening the VRPN server will output a message 

warning that the calibration is been executed. Leave the controllers on their base, and in 

the correct side of the magnetic emitter until the message that everything is working is 

displayed shows up. 

For the VR Juggler part, there are two ways of creating a new configuration file: 

first is to manually edit a text file, and the other is to use the configuration interface. For 

this guide, we will stick to the manual text file editing since the configuration interface 

is not trivial and will be more trouble than help. 

A configuration file must have:  

 The driver mapping telling which driver to load from VR Juggler’s core 

 The device itself (Physical or Simulated) 

 Device Proxies to provide the abstraction between device and application  

 Proxy Alises to add an extra layer of abstraction, for instance to refer to a button 

on a gamepad as “Up Button” and so the application will just need to refer to it 

as its label. 

 Position Filters to correct placements and coordinate systems. 

 

http://vrjuggler.org/docs/vrjuggler/3.0/configuration.guide/configuring_vr_juggler.html
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The starting point to any input device configuration is the driver mapping. On this 

case, the driver VR Juggler needs is “VRPN_drv”. It is added on the configuration as: 

<input_manager name=”VRPN Input” version=”2″> 

<driver>VRPN_drv</driver> 

</input_manager> 

Since it is coming through VRPN, the Gadgeteer (module responsible for I/O in 

VR Juggler) will act as a VRPN client. That way any device supported by it can be 

integrated into VR Juggler. However, the devices from VRPN are available 

“disassembled”, so it is necessary to combine the different elements (buttons, analogs 

and trackers) to have the full device available on the Juggler side. It is also possible to 

use only part of the elements available.  

The Hydra consists of two units with where each one has 1 tracker, 8 buttons and 

3 analog axis. To correct the coordinate system, a pre-rotation is required and to add 

both units the settings must be as follow: 

<vrpn name=”HydraDevice” version=”2″> 

<tracker_server>Hydra0@localhost</tracker_server> 

<button_server>Hydra0@localhost</button_server> 

<analog_server>Hydra0@localhost</analog_server> 

<tracker_count>2</tracker_count> 

<button_count>16</button_count> 

<analog_count>6</analog_count> 

<min>-1.0</min> 

<max>1.0</max> 

<position_filters> 

<position_transform_filter name=”Position Transform 0″ version=”1″> 

<pre_translate>0.0</pre_translate> 

<pre_translate>0.0</pre_translate> 

<pre_translate>0.0</pre_translate> 

<!–X–> 

<pre_rotation>0.0</pre_rotation> 

<!–Y–> 

<pre_rotation>180.0</pre_rotation> 

<!–Z–> 

<pre_rotation>0.0</pre_rotation> 

<custom_scale>1.0</custom_scale> 

<device_units>1.0</device_units><!—Meters --> 

<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<!–X–> 

<post_rotation>0.0</post_rotation> 

<!–Y–> 

<post_rotation>0.0</post_rotation> 

<!–Z–> 

<post_rotation>0.0</post_rotation> 

</position_transform_filter> 

</position_filters> 

</vrpn> 
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Device proxies are required to add an abstraction layer, but in this case they also split 

the device into two independent units. On this configuration, the right unit will become 

a wand, to control navigation and input of buttons data, while the left will be a head 

tracking device. However, it is just a scenario. Any other setup is possible of 

accomplishing as long as the application can handle.  

Again another position filter is applied so the right unit can be placed on the hand 

like a remote control, horizontally. The left unit is adjusted to stay vertical, to be placed 

on the back of the head. 

<position_proxy name=”Wand Proxy” version=”1″> 

<device>HydraDevice</device> 

<unit>1</unit> 

<!–Right controller–> 

<position_filters> 

<position_transform_filter name=”Position Filters” version=”1″> 

<pre_translate>0.0</pre_translate> 

<pre_translate>0.0</pre_translate> 

<!–X–> 

<pre_rotation>0.0</pre_rotation> 

<!–Y–> 

<pre_rotation>0.0</pre_rotation> 

<!–Z–> 

<pre_rotation>0.0</pre_rotation> 

<custom_scale>1.0</custom_scale> 

<device_units>1.0</device_units> 

<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<!–X–> 

<post_rotation>90.0</post_rotation> 

<!–Y–> 

<post_rotation>0.0</post_rotation> 

<!–Z–> 

<post_rotation>0.0</post_rotation> 

</position_transform_filter> 

</position_filters> 

</position_proxy> 

<position_proxy name=”Head Proxy” version=”1″> 

<device>HydraDevice</device> 

<unit>0</unit> 

<!–Left controller–> 

<position_filters> 

<position_transform_filter name=”Position Filters” version=”1″> 

<pre_translate>0.0</pre_translate> 

<pre_translate>0.0</pre_translate> 

<!–X–> 

<pre_rotation>0.0</pre_rotation> 

<!–Y–> 

<pre_rotation>0.0</pre_rotation> 

<!–Z–> 

<pre_rotation>0.0</pre_rotation> 

<custom_scale>1.0</custom_scale> 

<device_units>1.0</device_units> 
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<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<post_translate>0.0</post_translate> 

<!–X–> 

<post_rotation>0.0</post_rotation> 

<!–Y–> 

<post_rotation>0.0</post_rotation> 

<!–Z–> 

<post_rotation>0.0</post_rotation> 

</position_transform_filter> 

</position_filters> 

</position_proxy> 

 

 

Finally, by adding the alias, a label is associated to the proxies so the system can 

refer to. 

<alias name=”VJWand” version=”1″> 

<proxy>Wand Proxy</proxy> 

</alias> 

 

<alias name=”VJHead” version=”1″> 

<proxy>Head Proxy</proxy> 

</alias> 

 

As for the buttons and analogs, the process is basically the same without the need 

of position filters. To define the axis of the joystick, two analog proxies are created 

along with the respective alias: 

<analog_proxy name="rAnalogXAxis" version="1"> 

<device>HydraDevice</device> 

<unit>3</unit> 

</analog_proxy> 

<analog_proxy name="rAnalogYAxis" version="1"> 

<device>HydraDevice</device> 

<unit>4</unit> 

</analog_proxy> 

 

<alias name="rUpDown" version="1"> 

<proxy>rAnalogYAxis</proxy> 

</alias> 

<alias name="rLeftRight" version="1"> 

<proxy>rAnalogXAxis</proxy> 

</alias> 

 

The full configuration file is available along with pSIVE. Also, for a deeper 

understanding the official guides are highly recommended. 
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Annex 04 – pSIVE Installation Guide 

 

As pSIVE is based on VR Juggler and OpenSceneGraph, they must have been set 

up prior to the installation. For VR Jugger the basic steps are listed on Annex 01, 

however the configuration files created for the equipment available on IEETA must be 

within VR Juggler’s folder. 

The files are along with pSIVE and they must be placed inside the 

“VJ_CFG_PATH” folder, so the VR Juggler can find them. The files are inside the 

“VRJ Config” folder. 

OpenSceneGraph can be downloaded ready to use, but it will not have the plugin 

required by pSIVE to load video files. The framework has to be built from scratch with 

the ffmpeg plugin as well. Instructions for building and installing the framework are 

available on its website (www.openscenegraph.com). 

Once OpenSceneGraph is built and installed, some environment variables have to 

be created: 

 OSGHOME – OpenSceneGraph’s root folder. 

o Ie.: C:\dev\OpenSceneGraph\OpenSceneGraph-3.0.1 

 OSGPATH –  The path to all binaries  

o Ie.: %OSGHOME%\bin;%OSGHOME%\data;%OSGHOME%\lib 

 Add %OSGPATH%  to the Path 

 

Another pSIVE requirement is JAVA for the configuration tool, it is 

recommended to have JAVA SE 7u45. 

Currently pSIVE is available as a Visual Studio 2010 Solution (image xxx), 

however it is a future goal to adapt it to cmake and allow it to be prepared for any 

compiler. With the environment set, the pSIVE just have to be built. 

 

http://www.openscenegraph.com/
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Image 56 pSIVE project on Visual Studio 

 

Once pSIVE is built, it have to be placed within the folder bin (image) of the 

platform to replace the previous built and to be started from the script – that is 

controlled by the configuration tool. 

 

Image 57 pSIVE folder 


