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Abstract

Cellulose  is  the  most  available  biopolymer  on  earth  existent  in  wood  and  other
lignocellulosic sources, which can be isolated as nanofibers to reinforce composites. The
aim of this chapter overview was to explain cellulose nanofibers’ preparation meth‐
ods from different plant sources. The chemical treatment of cellulose fibers including
dilute alkali swelling, acid and base hydrolysis, and bleaching was carried out followed
by a mechanical method to isolate nanofibers. In this study, the effect of few palnt source
variations  and  mechanical  processes  used  in  extraction  procedure  on  nanofibers
morphology, crystallinity, and chemical composition was evaluated. Characteristics of
extracted cellulose nanofibers obtained from different plant sources were presented as
well.

Keywords: natural fiber, extraction, cellulose nanofibers, chemical composition, mor‐
phology, crystallinity, thermal properties

1. Introduction

Over the past few decades, the use of plants as alternative sources of fibers instead of synthet‐
ic fibers has attracted more attention of many researchers. Employing natural fibers dates back
to the early 1990s when German automakers were ahead in this field [1, 2]. The main goal of
using natural fibers is recycling worthless materials which are found abundantly in nature.
Table 1 shows comparison between glass and and natural fibers properties [3].

Natural fiber application in construction and automotive industry is in significant progress
due to low density and relatively low cost compared to glass fiber. Natural fibers are the
miniature composites, which are composed of millions of microfibrils. Microfibrills are
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crystalline cellulose in a matrix contains lignin, hemicellulose , and other polysaccharides [4,
5]. According to the Food and Agricultural Organization (FAO) annually more than 35 million
tons of fibers from plants and animals are produced in the world. These fibers have served
useful purposes in the human society as they are widely used to make such valuable
commodities as fabrics, ropes, papers, and packaging [6]. Lignocellulosic natural fibers
obtained from plants are regarded as green, environmentally friendly materials due to their
Biodegradability and high specific strength [7]. An important aspect of these fibers is their
more recent application as reinforcement in composites. Compared to their inorganic
counterparts, natural fibers used in composites offer such major benefits as abundance, low
cost, renewability, and biodegradability, while they enjoy additional properties including low
density (1.5 g/cm3) and large surface area (50–70 m2/g) as well as such mechanical properties
as high aspect ratio, modulus, and strength [8–10].

Properties Natural fiber Glass fiber

Density Low Double than natural fibers

Price Low Low

Renewable Yes No

Recycle Yes No

Biodegradability Biodegradable Nonbiodegradable

Table 1. Comparison between glass and natural fiber properties.

1.1. Sources of biofibers

Natural fibers, or lignocelluloses, are classified according to their wood and non-wood sources.
Depending on the part of the plant that they are derived from, five categories of fibers are

Figure 1. Classification of natural fibers.
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identified: (1) bast or stem fibers; (2) leaf fibers; (3) seed-hair fibers, (4) core, pith, or straw
fibers; and (5) all other plant fibers not included above. In other words, the four main categories
of fibers are obtained from grain (cotton), vascular (flax, hemp, jute, rami, and wheat), grass
(beet pulp, and bamboo), and algal sources (Valonica and Vetricosa).

Among the lignocellulosic sources, wood is consumed for paper production and cotton is used
in the textile industry. However, only a small portion of annual plants such as hemp, wheat,
soy hulls, bamboo, and other animal feed plants are used for energy production, most of which
are burned as agricultural waste. Figure 1 shows classification of natural fibers [8, 11, 12].

1.2. Structure of biofibers

Native fiber is comprised of small long thin filaments called microfibrils that consist of
alternating crystalline and noncrystalline cellulose domains [13]. A single plant, typically 1–
50 mm in length and around 10–50 μm in diameter, is called an elementary plant fiber. A plant
fiber consist of few cells having cell walls compose of semicrystalline cellulose orientated in
the direction of fiber and lying within a matrix of hemicellulose and lignin. A cell wall also
surrounds a central lumen which help water uptake to the plant fiber [14, 15]. The fiber owes
its high mechanical properties to 30–100 molecules of cellulose arranged in an extended chain
conformation [16]. Figure 2 presents an arrangement of cellulose fiber.

Figure 2. Scheme of cellulose fiber morphology.

Figure 3 shows the cell wall structure of a fiber [14, 17].

The secondary cell wall consists of an outer (S1), a middle (S2), and an inner (S3) layer, each
consisting of microfibrils oriented in a specific angle with respect to one another [18–20].

The main constituents of natural fibers include cellulose, hemicellulose, lignin, pectin, wax,
and water-soluble compounds. Hemicellulose is contains polysaccharides (excluding pectin)
which remains connected to cellulose after lignin is removed. Hemicellulose is different from
cellulose in three main ways [16]: First, it comprises various units of sugars (xylose, mannose,
galactose, glucose, and rhamnose) [21]; second, it has a considerably higher degree of branch‐
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ing; and third, its degree of polymerization is 10–100 times lower than that of cellulose. In
contrast to cellulose, the constituents of hemicellulose vary from plant to plant. Consequetly,
hemicellulose is amorphous in structure and surrounds cellulose nanofibers [14, 16, 22].

Lignin is a perfectly amorphous and hydrophobic polymer formed by a combination of linear
and cyclic hydrocarbon derivatives of phenyl propane. The structure of lignin is not yet known,
but its mechanical properties are known to be inferior to those of cellulose [14, 16]. It provides
the necessary hardness and firmness to plants. Lignin cannot be hydrolyzed in acid but is
immediately oxidized in a warm alkaline environment and easily removed with phenol [16].

Pectin is the collective name for heteropolysaccharides mainly made of polygalacturonic acid.
It is an amorphous polymer that gives flexibility to the plant [16].

Figure 3. Scheme of plant fiber structure, S1, S2, and S3 layers.

1.3. Chemo-physical properties of cellulose

The specific structure of cellulose biopolymers defines their chemical and mechanical prop‐
erties. As shown in Figure 4, the molecular structure of cellulose consists of β-D-anhydro-
glucopyranose repeating units that are bonded covalently together using acetal functional
groups between the equatorial groups of C4 and C1 carbon atoms (β-1, 4-glycosidic bonds [23,
24].

Sensitivity to the hydrolytic attack of the β-1, 4-glycosidic linkages between the glucose
repeating units is the factor determining the chemical stability of a cellulose molecule. It is
clear from the molecular structure of cellulose that it is a linear polymeric chain having a large
number of hydroxyl groups. The reason for this linear conformation is the β-glucose link at
the C1–O–C4 to yield cellobiose units [23, 25, 26].

A second intramolecular hydrogen bonding may exist between the hydroxyl functional groups
on the C6 and C2′ carbon atoms of the neighboring glucose units. Moreover, an intermolecu‐
lar hydrogen bonding exists between the hydroxyl groups on the C6 and C3ʺ carbon atoms of
cellulose molecules that are adjacently located on the same plane [23, 27–29].
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Figure 4. Show cellulose structure.

It is known from Infrared spectroscopy and X-ray diffraction (XRD) investigations of cellu‐
lose organization in plants that crystallites and low degree of scattered amorphous regions are
the main constituents of cellulose [30, 31]. Native cellulose, namely cellulose I, is the crystal‐
line cellulose while that precipitated out of alkali solutions is generally known as regenerat‐
ed cellulose or cellulose II [30, 32]. Cellulose II is the most thermodynamically stable form due
to the presence of an additional hydrogen bond per glucose residue [30, 33, 34].

It should be noted that cellulose gains its unique properties (Table 2) mentioned earlier after
it reaches to its nanoscale [35].

Component Young’s modulus (MPa)

Biomass 20

Single fiber network 40

Microfibril 70

Cellulose nanocrystal 50–143

Cellulose nanofiber 145–150

Table 2. Young’s modulus of cellulose after it reaches its nano-size [35].

Table 3 presents a comparison mechanical properties of glass, jute fibers and celluloe
nanofibers [31, 36].

Specific fiber Young’s modulus (GPa) Tensile strength (GPa) Density (g/cm3)

Glass fiber ∼72.4 at 21°C ∼3.4 at 21°C 2.54–2.62

Jute fiber 13–26 0.39–0.77 1.3–1.45

Cellulose nanofibers ∼150 ∼10 1.5

Table 3. Comparison between mechanical properties of nanofibers and other fiber [31, 36].
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1.4. Cellulose nanofibers (CNF) extraction methods

A variety of methods may be used for the extraction of cellulose nanofibers, each of which
yields a unique type of nanofiber. Some of the extraction methods used are outlined below:

1.4.1. Biological method (hydrolytic enzyme)

This method is based on the use of micro-organisms, bacteria, or fungi. In this method, fibers
are produced with diameters in the order of 100 nm form a bunch of nanofibers including those
approximately 2 nm in diameter. These fibers have excellent intrinsic properties that yield
crystallinity percentage values of around 89–84% [16].

1.4.2. Mechanical method

Mechanical or physical methods of extraction include cryocrushing, grinding, high-pressure
homogenization, ultrasound, and steam explosion methods. The fibers obtained by these
methods have a low strength and a small length-to-diameter ratio because of applying high
tension on fibers. Another disadvantage of this method is its failure to easily manufacture
fibers of nanosize diameters. [14, 16].

1.4.3. Chemo-mechanical method

These comprise the most common methods used for producing nanofibers with diameters less
and length-to-diameter ratios higher than those produced by the mechanical method [16]. In
these methods, the non-cellulosic content is removed by acid hydrolysis and alkali treatment
[37]. Comparison of the advantages and disadvantages of conventional nanofiber extraction
methods indicates that the chemical-mechanical ones are the safest for nanofiber isolation.
Figure 5 schematically present a chemo-mechanical method for production of cellulose
nanofibers

Figure 5. Scheme of chemo-mechanical method for production of cellulose nanofibers.
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2. Experimental

2.1. Chemical treatment for CNF isolation

Some researchers have used an alkaline-acid pretreatment prior to mechanical isolation of CNF
in order to solubilize lignin, hemicellulose, and pectins [2, 38]. The chemical treatment is
accomplished in the following four steps:

(1) Soaking fibers in the 17.5 wt.% sodium hydroxide (NaOH) solution for 2 h; thus, the
exposed surface area of the cellulosic fibers is enhanced and they become more suscepti‐
ble to hydrolysis [16];

(2) Hydrolyzing the fibers in the hydrochloric acid (HCL) solution (2 M) at 80°C to solubi‐
lize hemicellulose [39];

(3) Treating the fibers with 2 wt.% NaOH solution for 2 h at 80°C in order to disrupt the lignin
structure and to break down the carbohydrate and lignin linkages [16, 40]; and

(4) Bleaching the fibers with sodium hypochlorite, sodium chlorite, and hydrogen peroxide
performed in an acidic environment at 50°C for 1 h [41].

2.2. Mechanical treatment

Cellulose nanofibers are extracted from the secondary cell walls by mechanical treatment
without any damages to the cellulose. The degree of polymerization of cellulose, morpholo‐
gy, and aspect ratio of the CNFs depend on the defibrillation technique employed. Refining,
grinding, and ultrasonication processes are performed for the mechanical isolation of CNF
from wood and non-wood fibers [10, 42].

2.2.1. Grinding

Grinding is used to break up cellulose microfiber into nanosized fibers. The grinding ma‐
chine consists of one rotating and one static grind stone where the pulp slurry passes through.
In the fibrillation mechanism using a grinder, the hydrogen bonds are disintegrated under
shear forces and the pulp is transformed into nanoscale fibers [42].

2.2.2. Ultrasonication

The mechanical process in which cellulose fibers are isolated using oscillating power by means
of hydrodynamic forces of an ultrasound device is called “high intensity ultra sonication”
(HIUS) [43]. When the ultrasonic energy is absorbed by the molecules, the cavitation evolv‐
ing during the process give rises to a strong oscillating power, which generates high-intensi‐
ty waves that lead to the formation, expansion, and explosion of microscopic gas bubbles [44].
Many efforts have been directed improving the HIUS resulting oscillating power to isolate
nanofibers from cellulosic sources [42]. Table 4 reports some of the plant sources of nano‐
scale cellulose fibers produced by a supergrinder and the ultrasonic system.

Nanofibers
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Process Sources

Grinding and ultrasonic Bagasse

Grinding and ultrasonic

Ultrasonic Rice straw

Grinding Rice husk

Grinding and ultrasonic Maize

Grinding and ultrasonic Sawdust

Table 4. Different mechanical methods for isolating cellulosic nanofibers.

3. Results and discussions

3.1. Chemical composition characterization

An important factor affecting the application of natural fibers as biodegradable materials is
their chemical composition. It is, therefore, essential to determine their chemical and mechan‐
ical properties of fibers used for manufacturing different products such as composites or
newspaper. The three major chemical constituents of fibers extracted from lignocellulosic
products are α-cellulose, lignin, and hemicellulose [45]. The factors affecting the properties of
CNFs such as yield, dimensions, and mechanical properties of nanocellulose include chemi‐
cal composition, the structure of the base material, and the processing method used for their
extraction. Efficient isolation of cellulosic nanomaterials strongly depends on the removal of
hemicellulose and lignin [1, 7]. Lignocellulosic fibers may be transformed into individual fibers
during the extraction process by employing chemical purification via acid hydrolysis, alkali
treatment, and bleaching. Applying the dilute alkali treatment to the lignocellulosic fibers
breaks up the structural bonds between lignin and saccharides to remove the lignin content.
Acid hydrolysis is used to destroy and solubilize the hemicellulose and pectin. Bleaching
separates the Klasson (insoluble) lignin by oxidizers such as sodium chlorite, sodium hypo‐
chlorite, and hydrogen peroxide [2, 40, 46]. Table 5 presents the chemical compositions of
fibers extracted from different sources in the three raw, pre-, and post-bleaching stages. As it
can be noticed the cellulose content from different sources after purification is in the range
of 85 to 95 %; while the residual lignin content is obtained to be between 0.8 to 11%.

Figure 6 presents wheat-straw fibers before and after bleaching. Clearly, the brown color is
present in the sample before the removal of insoluble lignin, indicating that lignin is an
amorphous phase that keeps reducing with increasing removal efficiency. Comparison of the
colors in this Figure 5 shows that almost all the residual lignin (insoluble lignin) in the sample
was eliminated and the sample becomes pure white after bleaching.
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Sources Cellulose (%) Hemicellulose (%) Lignin (%)

Bagasse

Raw fiber 42.2 21.8 23.5

Before bleaching 88.23 8.82 2.95

After bleaching 91.8 7.37 0.82

Rice straw (stem)

Raw fiber 46.5 22.5 29.1

Before bleaching 79.3 4.8 15.9

After bleaching – – –

Rice husk

Raw fiber 34.67 27.3 25.7

Before bleaching 67.36 14.83 11.74

After bleaching 94.3 1.8 1.42

Wheat straw

Raw fiber 50.01 25.32 24.46

Before bleaching 86.2 3.7 10.1

After bleaching 93.7 2.95 3.35

Wheat straw (stem)

Raw fiber 49.8 27.2 23.1

Before bleaching 85.5 3.8 10.8

After bleaching – – –

Sawdust

Raw fiber 33.38 28.71 37.08

Before bleaching 57.84 18.71 23.2

After bleaching 86.24 7.76 5.98

Table 5. Chemical compositions of fibers from different sources after selective chemical treatments.

Figure 6. Image of raw wheat straw fiber, and its pulp before and after bleaching.
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3.2. Morphology description

Cellulosic fibers are made of cell walls that collectively form its structure. It is commonly
established that chemical and mechanical treatments bring about changes in fiber morpholo‐
gy [10, 47]. Microscopic examinations indicate that raw fiber bundles consist of individual
microfibers that are bonded together by lignin (Figure 6). Hence, chemical treatments are used
to reduce the surface roughness and the size of the bundles. It has been reported that fiber
diameter is reduced to the nanoscale as a result of chemical and mechanical treatments. This
can be related to the removal of such non-cellulose constituents as lignin, hemicellulose, and
waxes.

Figure 7. SEM images of a) raw fiber, b) pre-treated fiber, and c) bleached fiber.

Scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM),
transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques are
used to characterize the morphology of the nanocellulose fibers produced. As can be seen, in
Figure 6, the microfiber diameter is reduced as a result of chemical operations due to remov‐
al of the non-cellulosic material. It is clear from the the FE-SEM and TEM images that the
extracted nanofibers have a network structure and are in the form of entangled fibrils. Table 6
presents the variations in the diameter of the nanocellulose fibers isolated from different plant
sources. The CNFs can have diameters varying from 15–200 nm depending on their source
and the mechanical method used to disintegrate them. The average diameters of individual
CNFs vary from 18 to 45 nm.

Sources Process Diameter Average (nm)

Bagasse Ultrasonic 700 W 44

Rice straw Grinding 19

Wheat straw Grinding 27.89

Wheat straw Ultrasonic 400 W 45

Sawdust Grinding 21.74

Sawdust Ultrasonic 400 W 1–15 μm

Table 6. Diameters and aspect ratios of cellulosic nanofibers extracted from different sources.

Nanofiber Research - Reaching New Heights22



Comparing the two mechanical methods used to convert microfibers to nanofibers, the grinder
method was found to have a higher mechanical efficiency. This is due to its higher power
compared to that of the ultrasonic device. It was found (Table 6) the fiber extracted from
sawdust disintegrated by ultrasonic 400 have diameter between 1-15 μm. The reasons for this
could be: First, the low shear stress of the ultrasound to separate the fibrils; and second, the
stronger fiber structure of sawdust compared to the other sources of lignocellulose listed in
Table 6.

Figure 8 shows the FE-SEM and TEM of CNFs as a network of intertwined long nanofibers
with a cellulosic appearance.

Figure 8. (a) FE-SEM and (b) TEM of cellulose nanofibers.

3.3. Crystallinity and thermal properties

The amount of crystallinity in the cellulosic nanofibers is expressed as total crystallinity
index (TCI). Represented by Equation (1) in this equation, A1372 is absorption in 1372 cm−1 and
A2900 is absorbtion in 2900 cm−1 in ATR spectrum. Generally, the peak in the infrared spec‐
trum at 1372 cm−1 represents the modified C-H standardization of crystalline regions, and
reveals any change in crystallinity, and that at 2900 cm−1 represents C-H stretching, which is a
measure of amorphous regions. The absorption band at these two points represents the total
crystallinity index, which is representative of the degree of crystallinity. The TCI values are
reported in Table 7.

1372

2900

ATCI
A

= (1)

One well-known characteristic of cellulosic materials is that they experience fast thermal
degradation at low to moderate temperatures, particularly at temperatures below 400°C. The
thermal decomposition of lignocellulosic materials begins with the disintegration of hemicel‐
lulose followed by pyrolysis of lignin, depolymerization of cellulose, active flaming combus‐
tion, and char oxidation. The thermal stability of cellulosic fibers is an important parameter
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for using them in the manufacture of composites. The structure and chemical composition of
cellulosic fibers drastically influence their thermal Degradation. The first stage takes place at
temperatures ranging from room temperature up to 120°C, at which a little weight loss is
observed in the TGA thermogram of CNFs; Which is related to the evaporation of water. The
second stage Occurres at temperatures in the range of 220 to 390°C, where the destruction of
the crystalline regions are started and polymer decomposition is simultaneously triggered,
which led to enhance the amorphous structure and ultimately to reduction in the degree of
polymerization. The third stage from 390 to 600°C involves the complete destruction of the
crystalline region and the formation of D-glucopyranosemonomers by the decomposition of
cellulose, which could be further converted into free radicals [48–50].

Sources TCI

Bagasse 1.26

Rice straw 1.4

Rice husk 1.56

Wheat straw 1.32

Wheat straw 1.232

Maize 1.564

Sawdust 2.507

Table 7. TCI values of nanofibers from different sources.

4. Conclusions

Today, cellulose nanofibers because of their unique reinforcing effect are widely used in
Nanocomposite. The effect of type of plant source and mechanical process used for produc‐
tion of nanofibers, on its properties, including the specific surface area and aspect ratio is
impressive. Among the mechanical methods used to produce nanofibers, super grinder has
the maximum efficiency. Due to creating higher tension. Different sources,produce nanofib‐
ers with cellulose content ranging between 85–95% and diameter changing between 18–45 nm
depend on the employed mechanical method.
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