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Abstract

Lung transplantation is an established treatment option for eligible patients with end-
stage  lung  disease.  Nonetheless,  there  exists  an  imbalance  between  donor  lungs
considered suitable for transplantation and the ever-growing number of patients dying
on the waiting list. This chapter reflects the potential alternative, normothermic ex-
vivo lung perfusion (EVLP), which has emerged to address this issue and how it can
expand the currently limited donor pool. Normothermic ex-vivo lung perfusion (EVLP),
as a novel preservation technique, is capable of assessing, evaluating, and improving
lung function prior to lung transplantation. Here, we (1) contrast the various available
commercial EVLP available and used around the world; (2) outline the University of
Alberta novel EVLP circuit; (3) discuss the limitations present between clinical and
laboratory applications;  and (4)  present  what  we are  currently  working on at  the
laboratory to further improve the assessment techniques used on EVLP.

Keywords: donor lung preservation, donor lung repair, ex-vivo lung perfusion, lung
transplantation, lung health index

1. Lung transplantation

1.1. History

Human lung transplantation (LTx) has been widely accepted as a modality of treatment for
advanced stage lung disease [1]. The annual report from the Registry of the International
Society  for  Heart  and Lung Transplantation  (ISHLT)  states  more  than 45,000  LTx cases
performed worldwide since the 1990s. In 2012, ISHLT reported that in that year it had the
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second highest  annual  activity,  following the  highest  activity  level  in  2011,  in  LTx per‐
formed. “The number of adult primary lung transplants in 2012 was 40-fold higher than the
number of pediatric primary lung transplants” [1].  The agency for healthcare policy and
research in the United States mentioned that “lung transplantation has evolved as a clinical
procedure achieving a favourable risk–benefit ratio and acceptable 1- and 2-year survival
rates” [1].

In the 1940s and the 1950s, a rise in animal experimentation verified feasibility of LTx proce‐
dure [2–4]. However, it was not until 1963 when the first human lung transplantation was
performed. The recipient of that first lung transplantation received a left lung, which was
donated from a cardiocirculatory death donor (DCD); however, the recipient survived for only
18 days [5]. From 1963 to 1980, almost 44 lung transplantations were attempted worldwide;
due to rejections and problems with anastomotic bronchial and tracheal healing, the survival
rates were only several days [6, 7].

The introduction of cyclosporine A in the 1980s, a powerful immunosuppressant, generated a
renewed interest in organ transplantation, including LTx. In 1983, Dr. Cooper from Toronto
performed the first successful human single lung transplantation, while Dr. Patterson per‐
formed the first double lung transplantation in 1988 [6, 7]. Despite the relatively short history
of thoracic transplantation, there has been significant improvement in post-transplantation
mortality rate from only weeks to several months and years. This success can be attributed to
the advent of the heart–lung machine, improved preservation solutions, immunosuppression
regimes, and specialized patient care by transplant clinics.

1.2. Indications

Lung transplantation is considered for patients with end-stage lung disease. Referral for
transplantation is urgent when the lung disease begins to limit basic daily activities and poses
a high risk of death in the short term.

According to ISHLT, the most common primary indication for adult lung transplants between
January 1995 and June 2013 was chronic obstructive pulmonary disease (COPD, 33%) not
associated with α1-antitrypsin deficiency (A1ATD), followed by interstitial lung disease (ILD,
24%), including idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF, 16%) associated with
bronchiectasis, and 6% of COPD associated with A1ATD [8, 9]. For the 45,711 lung transplants
that occurred from 1990 to 2012, recipients with COPD not associated with A1ATD, ILD, and
CF contributed to the greatest amount of growth in the number of LTx [8, 9].

1.3. Criteria

The appropriate timing for patients to be referred for lung transplantation is when they are
believed to have less than 50% of a survival chance in 24–36 month period. An additional
consideration is the patient’s quality of life. The following are the guidelines for referral for
LTx, based on the underlying lung disease [10] (Table 1).
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Criteria for referral in patients with COPD and alpha1-antitrypsin deficiency emphysema are as follows:

• BODE index > 5

• Postbronchodilator FEV1 < 25% predicted

• Resting hypoxemia (i.e., PaO2 < 55–60 mm Hg)

• Hypercapnia (PaCO2 > 50 mm Hg)

• Secondary pulmonary hypertension

• Clinical course marked by rapid rate
of decline in FEV1 or life-threatening
exacerbations

FEV1, forced expiratory volume in 1 s; PaO2, partial pressure
of arterial oxygen; PaCO2, partial pressure of arterial carbon
dioxide

The BODE index, a multidimensional 10-point scale, can
be used to assess the need for transplantation in patients
with COPD. It consists of the following [46]:

• B—Body mass index

• O—Degree of airflow obstruction

• D—Degree of dyspnea, as measured by the modified
Medical Research Council dyspnea scale

• E—Exercise capacity (E), which is measured with a 6
min walk test

Criteria for referral in patients with cystic fibrosis are as follows:

• Postbronchodilator FEV1 < 30% predicted

• Resting hypoxemia, i.e., PaO2 < 55 mm Hg

• Hypercapnia (PaCO2 > 50 mm Hg)

• Clinical course—Increasing frequency and severity of exacerbations (ICU stays)

• Development of pulmonary hypertension

Criteria for referral in patients with idiopathic pulmonary fibrosis are as follows:

• DLCO < 39%, predicted

• A 10% or greater decrement in forced vital capacity (FVC) during 6 months' follow-up

• FVC < 60–65%, predicted

• Decrease in oxygen saturations <88% during 6 min walk test

DLCO, diffusion capacity of carbon monoxide; FVC, forced vital capacity.

Table 1. Guideline criteria for referral to lung transplantation, based on underlying lung diseases [10].

1.4. The burden

The Canadian Organ Replacement Registry (CORR) has reported that in the past decade, the
annual number of lung transplants has gradually increased over the years [11]; meanwhile,
the waiting list increases at a much faster rate. Therefore, a staggering increase in the morbidity
rate and a high waiting list mortality rate have been reported [11]. With the advancements of
medical knowledge and specialized patient care over the years, lung disease patients with
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other ailments can now have their nonrelated lung conditions managed appropriately and live
longer till they require a lung transplant.

Currently, more than 80% of donor lungs are potentially injured and therefore not considered
suitable for transplantation [12]. At the University of Alberta, we report that from 2007 to 2011
there have been a total of 681 lungs offered, and only 183 lungs deemed acceptable for LTx.
This equates to approximately a 27% utilization rate over the past 5 years. With the University
of Alberta/Mazankowski Alberta Heart Institute acting as a catchment for over 6 million
Canadians, this institute performs the majority of thoracic transplantations for several
provinces in Canada. Unfortunately, with such a low lung utilization rate, there are more than
24 deaths/year for patients waiting for a suitable donor lung. Having said that, various
strategies need to be implemented to increase the utilization rate of the current standard lung
donor pool.

During recent years, transplant centers worldwide have started to include the use of lungs
from extended/marginal criteria donors, living lobar donors, as well as tapping into the unused
pool of donors after circulatory death (DCD) [13, 14]. Normothermic ex-vivo lung perfusion
(EVLP) emerged as a new and promising platform, with the clinical potential to increase the
number of transplantable lungs and improve the early and late outcome post-transplantation.
EVLP has the potential to assess, evaluate, and recondition lungs, and eventually expand the
limited donor pool. Currently, EVLP is limited to only 4–6 h of a reconditioning window [13].
This narrows therapeutic interventions that can be applied during this short perfusion time.
The need for an extended clinical EVLP protocol (≥12 h) is critical to achieve its full potential.
Gene therapy and stem cell therapy are promising therapeutic examples. However, their
respective delivery techniques using EVLP are yet to be optimized.

2. Normothermic ex-vivo lung perfusion

2.1. Lung preservation

Since the late 1980s, conventional donor lung preservation has been focused around the use
of cold static preservation (CSP): placing them on ice for transportation to a recipient site. CSP
supports the slowing down of cell metabolism, thus, reducing the demand for oxygen and
other substrates [15]. Low metabolic state decreases enzymatic activity related to ischemia and
hypoxia, thereby protecting the graft from their deleterious effects. However, the associated
decrease in function of vital enzymes such as Na+/K+ ATPase causes an ionic imbalance, leading
to edema and a rise in intracellular calcium, which causes cellular injury [16]. With the lungs
inflated during CSP, studies have shown significant generation of reactive oxygen species,
leading to more damage of the donated lungs [17, 18].

Over the years, there has been a predominant effort to optimize retrograde and antegrade
flushing solutions, with the compositions representing mostly extracellular characteristics [19].
Further studies reported better results utilizing flush solutions, with temperatures at 10°C,
whereas others supported the routine use of solutions in the 4–8°C range [20]. This was
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achieved after flushing the lungs with the respective flush solution and storing them on ice for
the duration of the transport of the donor lungs to the recipient site. Cold preservation was
thought to benefit the lungs more than other organs, given the ability to store them inflated
with oxygen, allowing for efficient aerobic metabolism and maintaining their gas-exchange
surface [21].

2.2. Definition and history

Physiological normothermic ex-vivo lung perfusion is a novel method that maintains the organ
in a more physiological protective condition, outside the body, during preservation. EVLP will
help increase the utilization of donor lungs by allowing trained professionals to accurately
evaluate and assess the functionality of lungs (which otherwise would be unutilized) during
the transport period. While the lungs are on EVLP, they will be maintained under normother‐
mic physiological conditions to help alleviate the deleterious ischemia reperfusion injury that
is observed with CSP, furthermore, permitting the treatment/reconditioning of the lungs prior
to transplantation. Currently, with CSP, lungs have no way to be truly assessed for injury that
occurs during the transport period which can range from 6 to 8 h. Thus, transplanting lungs
that have suboptimal functions can result in poor postlung transplantation outcome and
increase the severity of primary graft dysfunction/failure.

Ex-vivo perfusion of organs began with the work of Carrel and Lindbergh in 1935 [22]. They
have documented 26 perfusions of whole organs: ovary, thyroid, kidney, and heart. Organs
that were perfused were functional for several days with active cellular proliferation. Since the
advent of the work of Carrel and Lindbergh on ex-vivo perfusion, ex-vivo systems were limited
to the study of organ physiology, including lungs [23]. It was not until 2001 that Stig Steen first
described the use of EVLP in clinical lung transplantation. Using a proprietary lung-perfusion
solution (STEEN SolutionTM), put together in Dr. Stig Steen and his team’s lab, the group was
able to reassess uncontrolled donation after cardiocirculatory death (DCD) lungs [24, 25]. Until
then, the majority of donor lungs were from brain-dead donors (BDD). With the help of EVLP,
the successful reconditioning of these DCD lungs (an unutilized donor pool) resulted in a
cascade of research to revisit the possibility of utilizing donor lungs from the DCD pool.

It was not until further modifications of the EVLP system and perfusion technique by the
University of Toronto group, which allowed perfusion of pig lungs on EVLP from only 4 to 6
h [25] to a prolonged 12-hour ex-vivo perfusion, without damaging the organ [26]. The group
went on to determine the impact of prolonged EVLP using injured ischemic donor pig lungs.
To mimic the clinical scenario, where lungs undergo a period of cold ischemia during trans‐
portation, pig lungs were preserved under CSP for 12 h and subsequently divided into two
groups: cold static preservation (the current gold standard) and normothermic EVLP for a
further 12 h of perfusion (total 24 h of preservation) [27].

It became evident that unlike CSP, normothermic EVLP demonstrated noticeable improve‐
ment with regard to overall lung function: less edema formation post-transplantation, better
alveolar–epithelial cell tight junction integrity, enhanced metabolic function, and improved
oxygenation [25].
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2.3. The circuit

As described in more detail in reference [14], in general, most EVLP platforms utilized around
the world (used experimentally or clinically) consist of the same components. The circuit
consists of a perfusion circuit with tubing, a reservoir, a pump, membrane gas exchanger, a
leukocyte depletion filter, and an ICU-type ventilator [14] (Figure 1). The system is then primed
with their respective perfusate and additives, and then warmed to 32–34°C. Once this tem‐
perature is achieved, careful institutional specific lung ventilation commences, allowing the
lungs to continue to reach a perfusate temperature of normothermia (37°C).

Figure 1. Schematic of the standard ex-vivo lung perfusion circuit [26].

The lungs are placed in a specially designed organ chamber. A pump, roller or centrifugal,
circulates the perfusate from the reservoir through a gas-exchange membrane and a leukocyte
filter, before entering the lungs via the pulmonary artery. Before entering the leukocyte filter,
the gas-exchange membrane is connected to a heat exchanger and a special gas tank: the heat
exchanger warms up/maintains the perfusate at normothermic temperatures, while the special
gas tank consists of a low oxygen mixture to deoxygenate the perfusate before returning to the
lungs (6% O2, 8% CO2, and 86% N2) [14]. The outflow perfusate returns to the reservoir either
through a left atrial (LA) cannula or via an open atrium, where it is then recirculated. Catheters
or pressure transducers are used to continuously monitor and measure pulmonary artery
pressures (PAP) and left atrial pressures (LAP), if it is a closed left atrial system. A temperature
probe monitors the circuit temperature throughout the perfusion, and flow probes measure
PA and LA perfusate flow (if the circuit has a closed left atrium). Finally, lungs are ventilated
with a standard intensive care unit (ICU) ventilator [14].
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2.4. EVLP protocols

Reference [14] outlines an in-depth review on the currently utilized EVLP platforms and their
protocols. As of today, there currently exist three different EVLP protocols utilized around the
world: (1) Toronto protocol, (2) Lund protocol, and (3) Organ Care SystemTM (OCS) protocol
(TransMedics, Andover, MA). These protocols vary in composition of their respective
perfusate, in perfusion and ventilation settings, and in the equipment used for their circuits
[14] (Table 2). In general, after cold pulmonary flush and retrieval using an extracellular fluid
(ECF)-type solution (low-potassium dextran solution, known as Perfadex®), the donor lungs
will be instrumented in the donor hospital or recipient hospital (after experiencing a period of
cold ischemia during transport) and placed on the EVLP platform for either immediate or
delayed normothermic perfusion, respectively. Interestingly, reference [28] investigated the
best timing for EVLP: at the donor hospital immediately after cold pulmonary flush or at the
recipient hospital after transport and a period of cold storage (delayed EVLP) [14, 28]. It was
further found that lower levels of inflammatory markers on bronchoalveolar lavage were
present, and less histological lung injury and superior post-transplant oxygenation were seen
in the group of delayed EVLP (4 h of cold storage followed by 4 h of EVLP) [14, 28].

Parameter Toronto Lund OCS

Perfusion

 Target flow 40% CO 100 % CO 2.0–2.5 1/min

 PAP Flow dictated ≤20 mm Hg ≤20 mm Hg

 LA Closed Open Open

 Perfusate SteenTM Solution SteenTM Solution + RBC’s hct 14% OCSTM solution+ RBC’s hct 15–25 %

Ventilation

 Start temp (°C) 32 32 34

 Tidal volume 7 ml/kg bw 5–7 ml/kg bw 6 ml/kg bw

 RR (bpm) 7 20 10

 PEEP 5 cm H2O 5 cm H2O 5–7 cm H2O

 FiO2 (%) 21 50 12

All parameters are listed for perfusion in steady state (preservation); values may vary during monitoring of the graft.
bw, body weight donor; bpm, breaths per minute; CO, cardiac output; FiO2, inspired fraction of oxygen; hct,
hematocrit; LA, left atrium; PAP, pulmonary artery pressure; RBCs, red blood cells; RR, respiratory rate; PEEP,
positive end-expiratory pressure; Temp, temperature.

Table 2. Comparison among the three different protocols currently used for EVLP [14].

2.4.1. Toronto protocol

The Toronto group uses an acellular perfusate, STEEN SolutionTM (XVIVO Perfusion, Gote‐
borg, Sweden), which was originally described by Stig Steen and coworkers from the Lund
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University [25]. This proprietary solution is an extracellular solution, with the addition of
human albumin, which maintains optimal colloid pressure, and dextran-40, which protects
the endothelium from complement- and cell-mediated injuries and inhibits coagulation and
platelet aggregation [14, 25]. Once the LA cannula is filled with STEEN SolutionTM (XVIVO
Perfusion, Goteborg, Sweden), perfusion commences at 10% of the calculated cardiac output
flow, and is incrementally increased till the final 40% cardiac output flow for the remainder of
the perfusion run, by 50 min from the start of perfusion [12–15]. Ventilation is initiated once
the perfusate temperature reaches 32°C at an immediate 7 ml/kg tidal volume, positive end-
expiratory pressure (PEEP) of 5 cm H2O, respiratory rate (RR) of 7 breaths/min, and with an
inspired fraction of oxygen (FiO2) of 21% [12–15] (Table 2). Unlike the other two protocols, the
Toronto method elects to have a closed left atrium and has the height of the reservoir adjusted
manually to maintain a positive LA pressure between 3 and 5 mm Hg [12–15]. Finally, the
Toronto group carefully monitors and maintains the mean pulmonary arterial pressure (PAP)
to stay below 15–20 mm Hg, which is flow-dictated. This is believed to avoid development of
hydrostatic pulmonary edema [14, 15].

2.4.2. Lund protocol

The Lund group utilizes a cellular perfusate, STEEN SolutionTM (XVIVO Perfusion, Goteborg,
Sweden), mixed with packed red blood cells (pRBCs) to obtain a hematocrit of 14% [14, 25]
(Table 2). In the Lund technique, ventilation begins at a tidal volume of 3 ml/kg at 32°C and
gradually increases by 1 l/min, for each degree, until it reaches 5–7 ml/kg at 37°C [14]. Other
parameters that differ from the Toronto protocol are the open LA system at 100% cardiac
output flow, respiratory rate (RR) of 20 breaths/min, and a FiO2 of 50% [14, 25, 29] (Table 2).

2.4.3. OCS (transMedics) protocol

The OCSTM protocol is based on a cellular perfusate like the Lund protocol; however, in this
protocol, the perfusate is composed of an OCSTM Solution® (TransMedics) or Perfadex® (XVIVO
Perfusion AB, Goteborg, Sweden) and pRBCs to achieve a hematocrit between 15 and 25% [14,
30]. Both of these solutions are low-potassium dextran-40 based solutions, without the addition
of human albumin (unlike STEEN SolutionTM) [14]. Perfusion flow is set to 2–2.5 l/min, PAP
maintained less than 20 mm Hg, with an open LA system, initiating ventilation at 34°C and 6
ml/kg, a RR of 10 breaths/min, PEEP of 5–7 cm H2O, and an FiO2 of 12% [14, 15, 30]. The
variations among these protocols have been summarized in Table 2.

2.5. EVLP application

2.5.1. Commercial application of EVLP

There are several commercially available EVLP platforms, under different stages of develop‐
ment. Today, there exist four EVLP platforms used commercially that differ in their technology
and perfusion protocol, and in the concept for clinical use.
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Equipment OCSTM Lung Vivoline® LS1 Lung Assist® XPSTM

Pump type Piston Roller Centrifugal Centrifugal

Flow Pulsatile Continuous Continuous Continuous

Ventilator Yes No No Yes

Monitor Yes Yes No Yes

Gas cylinder Yes No Yes Yes

Gas analyzer Portable No No In-line

Real time No No No Yes

X-Ray

Portability Yes No Yes No

OCSTM Lung (Transmedics); source: www.transmedics.com. Vivoline® LS1 (Vivoline Medical); source:
www.vivoline.se. Lung Assist® (Organ Assist), source: www.organ-assist.nl. XPSTM (XVIVO Perfusion AB); source:
www.xvivoperfusion.co.

Table 3. Comparison between commercially available devices for EVLP [14].

1. OCSTM Lung (TransMedics) is a portable device that uses a cellular-based perfusate, piston
pump (creating a pulsatile-type flow), LA open system, with all the required equipment
on board: batteries, gas cylinders for preservation and monitoring, and a ventilator for
use during transport of organs from donor to recipient hospital [14]. Whether there is any
benefit for pulsatile versus nonpulsatile flows has been a topic of controversy over the
years; however, some document that the presence of a pulsatile-type flow may be
beneficial for recruitment of the pulmonary vasculature, while being perfused under
physiological conditions [14, 31].

OCSTM Lung (TransMedics) was included in an international INSPIRE trial used to
compare normothermic preservation versus cold static preservation, ending its trial in
January 2014 [14, 30, 32, 33]. The University of Alberta Hospital being one of the centers
involved in this trial, we demonstrated the feasibility of prolonged EVLP using the OCS
system. Our results revealed how complications, postoperatively, in regards to primary
graft dysfunction (an acute lung injury that can occur in the first 72 h after transplantation),
were resolved after 30 days. Moreover, the patient/recipient demonstrated excellent
pulmonary function at 1 year post-transplantation, despite getting reconditioned extend‐
ed criteria lungs that otherwise would have been discarded [33].

2. Vivoline® LS1 (Vivoline Medical, Lund, Sweden) is a nonportable device that uses the
Lund technique, requires the availability of an external ventilator and gas cylinder, and
has an internal roller pump to create a continuous flow (nonpulsatile). It was utilized in
the United Kingdom under the “Donor Ex-Vivo Lung Perfusion in United Kingdom”
(DEVELOP-UK) trial to assess reconditioned extended criteria lungs versus standard-
criteria lungs; the trial ended in October 2015 [34].
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3. Lung Assist® (Organ Assist, Groningen, the Netherlands) is deemed “a less robust device
with its individual components fixed on a frame designed for EVLP, and for in situ
evaluation of lungs from uncontrolled DCD at the donor site, prior to explanting the
organs from the body” [14, 35].

4. XPSTM (XVIVO Perfusion AB) utilizes the Toronto protocol and only differs by the addition
of various in-line monitors to streamline organ assessment [32]. It contains a centrifugal
pump that delivers a continuous flow (nonpulsatile); it is a fully integrated device, and
unlike the other commercially available devices, it offers X-ray possibilities during EVLP
[14]. XPSTM (XVIVO Perfusion AB) has been involved in the FDA NOVEL lung trial:
“Normothermic Ex-Vivo Lung Perfusion as an Assessment of Extended/Marginal Donor
Lungs,” since May 2011–May 2014 to compare the reconditioned extended criteria lungs
versus standard-criteria lungs in the United States [14, 36]. A summary of the various
commercially available devices and their technological differences is described in Table 3.

Figure 2 provides a visual representation of the four commercially available devices previously
mentioned.

Figure 2. Commercially available ex-vivo lung perfusion devices. (A) OCSTM Lung (TransMedics); source: www.trans‐
medics.com. (B) Vivoline LS1 (Vivoline Medical); source: www.vivoline.se. (C) Lung Assist (Organ Assist); source:
www.organ-assist.nl. (D) XPSTM (XVIVO Perfusion AB); source: www.xvivoperfusion.com [37].

2.5.2. Potential applications of EVLP

As described in more detail in reference [38], there are a few applications that can benefit from
the platform of EVLP:

Transplantation
• Extended donor lung preservation

• Functional assessment prior to transplantation
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• Biological assessment before implantation

• Enabling organ’s natural recovery processes

• Active repair of injured lungs using various therapies

• Active molecular treatments for organ preparation

• Xenotransplantation studies

Regenerative medicine
• Bioreactive for lung de-cellularization and regeneration

• Stem cell and gene therapy for lung injury

Respiratory medicine
• Study of acute lung injury

• Functional studies for endobronchial interventions for chronic obstructive pulmonary
disease

• Study of lung physiology

Cancer
• Study of chemotherapeutic agents to evaluate lung toxicity and antitumor activity

• Lung cancer treatments

2.6. EVLP and lung transplantation

The first clinical use of EVLP was in 2001 by Stig Steen [39]. Steen evaluated lungs from DCD
donors and six extended criteria donor lungs for 60 min on EVLP before transplantation. It
was observed that the mean time in the intensive care unit (ICU) was longer for the perfused
lungs with EVLP compared to the standard criteria lungs. However, the 30-day survival rate
post lung transplantation from the perfused groups with EVLP was 100% [39–41].

Human ex-vivo lung perfusion (HELP) trial in 2011 was the first prospective clinical trial done
at Toronto General Hospital. Of the 23 lungs from high-risk brain death (BDD) and cardiac
death donors (DCD) that underwent 4 h of EVLP, 20 were considered suitable and later
transplanted [12, 26, 38, 42]. The criteria to terminate perfusion and discard lungs included
pulmonary vascular resistance (PVR), dynamic compliance (Cdyn), and peak inspiratory
pressure (PIP) decline by more than 15%, and also a change in partial pressure of oxygen/
fraction of inspired oxygen ratio (ΔPaO2/FiO2 or P/F ratio) of less than 350 mm Hg. Again, there
were no significant differences in primary graft dysfunction (PGD) trends, extubation time,
ICU/hospital stay, and 30-day mortality rate, compared to the standard criteria lungs [12].

In Europe, Zych et al. [43], from Hartfield, evaluated 13 sets of rejected lungs, of which 6
improved during EVLP and were later implanted: no difference in ICU stay and in 3 and 6
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months survival compared to the standard criteria lungs [43]. From Vienna, Aigner et al. [44]
perfused and reassessed 13 sets of lungs, of which 9 showed improvement after EVLP.

Currently, FDA mandated multicenter clinical trial (the NOVEL lung trial) to approve the
clinical use of EVLP for assessment of extended/marginal donor lungs. Eight centers using a
nonrandomized, controlled, clinical study in the United States were involved in the trial using
inclusion/exclusion criteria for perfusion on EVLP, described in the HELP trial [29, 38] (Table
4). The trial began in May 2011 and ended in May 2014; first report of 30 patients who received
EVLP lungs were comparable to 31 control groups of non-EVLP transplants. The 2014 updates
described 76 EVLPs yielding 42 transplants [45]. No significant difference was present between
transplanted lungs after EVLP reconditioning and the 42 non-EVLP perfused controls in
regards to the 1-year survival rates.

Inclusion Exclusion

Best PaO2/FiO2 < 300 mm Hg Pneumonia

Pulmonary edema Severe mechanical trauma

Bilateral infiltrates Contusion more than one lobe

Chest radiograph Gross gastric acid aspiration

Transplant team evaluation (poor lung deflation/inflation)

Blood transfusion (>10 units)

Donation after cardiac death
(PaO2/FiO2) ratio—partial pressure of arterial oxygen/fraction of inspired oxygen

Table 4. Inclusion and exclusion criteria for the HELP trial [29].

The end of the trial compared data from 84 recipients regarding their 30-day post-transplant
mortality as the primary endpoint between standard donor lungs (42 cases) and extended
criteria donor lungs (42 cases) after EVLP reconditioning (Using Toronto protocol and XPSTM

device) [14]. The secondary endpoints included PGD, days before extubation, need for
extracorporeal membrane oxygenation (ECMO) after transplant, ICU stay, and 1-year survival
[29].

The Gothenburg group published a study where 11 EVLPs were done over the course of 18
months period. Eight double and three single post-EVLP transplants were done. Despite the
reported 100% survival of the EVLP cohort, ICU stay and ventilation time were longer in
perfused lungs compared to that in controls [45].

2.7. University of Alberta experience with EVLP

The University of Alberta Hospital Transplant Program is the most geographically isolated
lung transplantation program in the world. Due to this geographical isolation and the large
catchment area served to Canadians, compounded by the shortage of suitable donor lungs, we
began experimenting with EVLP on a large porcine model in 2014. Our laboratory effort thus
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far has primarily focused on one of the most prevailing questions in literature regarding EVLP:
which perfusate, acellular or cellular-based, is more optimal for perfusing the lungs and how
can we overcome the current limitation we observe clinically to extend EVLP from merely 4–
6 h to >12 h safely?

Figure 3. The fully automated and mobile EVLP circuit at the U of A.

We began with constructing a circuit that should help us relieve our main issue here at the
University of Alberta—geographical isolation. As seen in Figure 3, our circuit contains all the
universal components that are present in the commercially available circuits discussed earlier
and illustrated in Figure 1: centrifugal pumps, a reservoir, tubing, deoxygenator/heat ex‐
changer, a leukocyte filter, pressure/flow probes, and an ICU-type ventilator. However, our’s
is the only laboratory in the world that currently uses a circuit that is fully automated and does
not require constant monitoring and/or manual manipulation throughout the perfusion.
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Unlike the EVLP circuit utilized at the University of Alberta, the Toronto group using the
XPSTM (XVIVO Perfusion AB) and the OCSTM Lung (TransMedics) are not fully automated.
Our circuit is capable of controlling and manipulating the flow, pulmonary arterial (PA) and
left atrial (LA) pressures, in real time without the need for manual alterations. Our software-
driven microcontroller (Figure 4) receives PA/LA pressures and flow in real time, while
adjusting the centrifugal pumps’ RPMs accordingly to maintain desired constant PA flow/
pressure control (user-selectable) and constant LA pressure. This is unlike that in the OCSTM

Lung (TransMedics), where the desired flow would need to be manually changed by an
attendee, or that in the XPSTM (XVIVO Perfusion AB), where the LA pressures are manually
altered by the use of gravity (adjusting the height of the reservoir).

Figure 4. Microcontroller interface for the EVLP circuit parameters.

The current design of our circuit provides us with the freedom of portability, with full
automation, to decrease the amount of cold ischemia the lungs experience when performing
our porcine experiments. That being said, so far our lab has been capable to demonstrate a
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reproducible technique to successfully perfuse these large porcine lungs up to 12 h. With
preliminary unpublished data demonstrating that an acellular based perfusate results in 50%
more edema formation after 12 h of perfusion, compared to perfusing with either cellular based
perfusate – whole blood or packed red blood cells (pRBCs) (p < 0.01). Here, edema formation
corresponds with the deteriorating lung vasculature and integrity. We believe that despite the
lungs showing stable physiological parameters during EVLP, especially with acceptable lung
oxygenation (P/F ratios) of >300 mm Hg, lung oxygenation is not a sensitive parameter of lung
health, even though it has been a widely accepted modality for evaluating lung integrity. Our
data confirms what others have shown, that the focus when assessing lung integrity/health
after EVLP should be with the trends of compliance over the duration of EVLP than oxygen‐
ation of the perfusate (P/F ratios) [27, 47–49]. Moreover, we believe that the blunting we observe
in lung vasculature tone throughout the duration of the perfusion (with serial hypoxic
challenges) can be another more sensitive physiological index of lung health. The decrease in
magnitude in hypoxic pulmonary vasoconstriction (HPV) response likely correlates with the
diminishing lung quality during EVLP, as supported by an ongoing cytokine profile that
accumulates over time.

3. Conclusion

Lung transplantation has shown over the years to be a life-saving therapy for patients that are
suffering from end-stage lung disease. However, despite the improvements in techniques, lung
donor grafts have the lowest graft acceptance rate of any solid organ [50]. With only 15–25%
of lungs from multiorgan brain death donors (BDD) currently deemed suitable for clinical
transplantation, the rest acquire too much injury during brain death, ICU-related complica‐
tions, or the onset of a prolonged cold ischemic time, rendering the donor lungs unusable.
Therefore, as observed at the University of Alberta, the mortality rate on the waiting list
continues to grow as clinicians must remain conservative in their donor selection to avoid post-
transplantation primary graft dysfunction (PGD). The advent of normothermic ex-vivo lung
perfusion (EVLP), as a novel donor preservation and reconditioning technique, has demon‐
strated over the years results that are positive if not different between lungs deemed unsuitable
(marginal/extended) and standard (unperfused) criteria lungs, after lung transplantation [12,
41].

Normothermic ex-vivo lung perfusion (EVLP) has the capability, as a platform, for real-time
functional assessment, evaluation, and reconditioning through administration of targeted
therapies, prior to lung transplantation––a capability that clinicians were unable to perform,
prior to the establishment of this platform, in 2001. Moreover, EVLP has permitted us to re-
explore other donor pools: marginal lungs, extended criteria lungs, and cardiocirculatory
death (DCD) lungs. As more research goes into developing the technology and improving the
current evaluative/assessment techniques, simplifying EVLP will help more centers around
the world to utilize its beneficial attributes and save lives: by expanding the currently limited
donor pool. Our transplant program at the University of Alberta serves as a massive catchment
area for the majority of thoracic transplantation, spanning 6 million km2 for more than 7 million
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Canadians. Being the most geographically isolated transplantation program in the world, our
continuous research to further develop our program one of a kind fully automated circuit and
to make it truly portable is imperative. We can save 24 human lives per year, if EVLP is used
just twice a month to recondition lungs that otherwise would be discarded because they
incurred too much damage or came from an unusable donor pool.

There is still much to investigate with EVLP and to refine. As we continue to seek out EVLP
techniques that will allow us to safely extend the limited clinical perfusion of human lungs
from merely 4–6 h to >12 h, it will open up more avenues for therapeutic interventions such
as cell and gene therapies. Normothermic ex-vivo lung perfusion is the future, and it will help
usher in a new era in medicine and lung transplantation, sooner than we think.
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