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Abstract

This chapter presents a compendium of the primary methods that are used to perform
water flow analyses with a focus on computational approximation methods. Some of
the  current  algorithms  for  carrying  out  this  type  of  analysis  are  summarized.  In
addition,  general  guidelines are provided for using the methodologies for  specific
types of analysis, such as transient-state flow caused by water drawdown and flow
in unsaturated media. Emphasis is placed on the need for stochastic analysis of water
flow.  Lastly,  conclusions  and  general  recommendations  are  given  for  performing
numerical groundwater seepage analyses in soils.

Keywords: flow of water, groundwater seepage, soils and earth structures, numerical
and analytical methods, transient flow, unsaturated soils, stochastic analyses

1. Theoretical foundations

1.1. General considerations

Flow through saturated or unsaturated soils is governed by Darcy’s Law, which was original‐
ly proposed for saturated media. Research has demonstrated that this law is also applicable to
the flow of water in unsaturated soils [1]. The main difference between these flows is that the
hydraulic conductivity for saturated media is a constant value, but it varies as a function of the
volumetric water content and also indirectly with changes in pore water pressure in unsatu‐
rated soils (Figure 1) [2, 3]. Darcy’s Law [4] is often written as follows:
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=v k i (1)

where v = Darcy’s velocity, k = hydraulic conductivity, and i = total hydraulic head gradient.

Figure 1. Change in the permeability of a partially saturated medium [5].

The average velocity at which the water moves through a mass of soil is linear and is equal to
the Darcy’s velocity divided by the porosity of the soil. In an unsaturated soil, the average
velocity is equal to the Darcy’s velocity divided by the volumetric water content of the soil.
The majority of analytical and numerical methods that are currently employed for solving
water flow problems consider only the Darcy’s velocity.

1.2. Equation for steady-state flow (saturated porous media)

The equation that describes steady-state flow in a porous medium is based on Darcy’s Law [4]
and on the principle of flow continuity (which states that the amount of water that enters the
medium is equal to the amount that exits) and is known as the Laplace’s equation (for a
homogeneous and isotropic medium with kx = ky = kz):

2 2 2

2 2 2 0h h h
x y z
¶ ¶ ¶

+ + =
¶ ¶ ¶

(2)

where h = total hydraulic head, and kx, ky, and kz = hydraulic conductivities in the x-, y-, and
z-directions, respectively.

The Laplace’s equation is satisfied under the following conditions: (a) the flow is steady-state,
(b) the soil is saturated, (c) the water and the solid particles are incompressible, (d) the flow
does not modify the soil structure, and (e) there are no sources (via injection or extraction of
water).
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1.3. Equation for transient flow (saturated or unsaturated porous media)

In transient flow, the water levels vary as a function of time, and thus, water is either stored
in or discharged from the medium. In these cases:

        –          Flowthat exits flowthat enters flowdischarged during atimeinterval t= D (3)

or:

                 Flowthat exits flowthat enters flowstored during atimeinterval t= + D (4)

Equation (3) refers to the case of water drawdown, and Eq. (4) refers to the case of water filling.
All the previous assumptions lead to the general mass balance equation:

( ) ( )x y
h hk k Q

x x y y t
q¶ ¶ ¶ ¶ ¶

+ + =
¶ ¶ ¶ ¶ ¶ (5)

where h = total hydraulic head, kx = hydraulic conductivity in the x-direction, ky = hydraulic
conductivity in the y-direction, Q = source term (applied boundary flux: injection or extrac‐
tion), θ = volumetric water content, and t = time.

Equation (5) is the so-called Richards’s equation, and it describes transient flow in unsaturated
soils. The term on the right (∂θ/∂t, the rate of change of the volumetric water content with
respect to time) is related to the change in the water level with time. When there is no variation
with time (∂θ/∂t = 0) and no source term (Q = 0), Eq. (5) becomes the Laplace’s equation, which
is used for steady-state flow in saturated soils. The Richards’s equation, or any of its modified
forms, has constituted the basis for the development of most numerical models to calculate
infiltration through unsaturated porous media under transient-state flow conditions [6].

2. Methods of water flow analysis

2.1. Analytical solutions

2.1.1. Exact solution

An exact analytical solution is generally only possible to obtain when the geometry of the flux
domain and the hydraulic and boundary conditions are simple (isotropic and homogeneous
media). However, soil is a heterogeneous, anisotropic, and discontinuous medium that has
different characteristics at each point. Thus, exact solutions are difficult and impractical to
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obtain in the case of the most complex flow problems, such as those in practical geotechnical
engineering. In consequence, approximate solutions are usually sought.

2.1.2. Conformal transformation or mapping

One of the approximate analytical solutions that is used to solve two-dimensional water flow
problems involves obtaining a function that can transform the problem from the complex
geometric domain into a problem whose solution is known [7]. These functions transform
geometric shapes from a complex plane ω into shapes in another complex plane ζ. Thus, the
mapping procedure defines the correspondence of the points of one shape in a plane ω to the
points of the respective figure in the plane ζ. A transformation or mapping function is called
conformal (conformal mapping) when it does not change the angles of intersection or the
approximate geometric shapes between the two planes of interest [8]. Based on this concept,
the Laplace differential equation can be solved for a domain G (Figure 2b) if the transformation
or conformal mapping of this domain with a simpler domain G1 (Figure 2a) is known [8–10].
The transformation is carried out by means of the analytical function of a complex variable.
One of the best known functions that transform a system of uniform flux in the ω plane
(Figure 2a) into a system of flux with confocal parabolas in the ζ plane (Figure 2b) is as follows
(representing the well-known Kozeny’s solution for unconfined flow through dams, Figure 3):

2z w= (6)

Figure 2. Conformal mapping [7].
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Figure 3. Kozeny’s solution for water flow through an earth dam with a horizontal filter [7].

2.1.3. Method of fragments

The method of fragments is an approximate analytical method of solution for confined flow
domains of finite depth. The fundamental assumption is that equipotential lines at different
parts of the flow region can be approximated by straight vertical lines that divide the flow
region into sections or fragments (Figure 4) [8, 11]. This method requires a form factor Φ that
is obtained by solving definite integrals set up for each fragment of the flow region. Tables of
expressions for different form factors for typical confined flow problems have been developed
[8, 11]. The equation for calculating the discharge q through all fragments using this method
is as follows:

1

n
m

n
n

n

h k hq k

=

D ×D
= =

F F

å
å å (7)

where k = hydraulic conductivity of the homogeneous and isotropic medium, Δhn = loss of
hydraulic head through fragment n, Δh = total loss of hydraulic head, and Φn = dimension‐
less form factor in fragment n.

Figure 4. Schematic representation of the method of fragments.
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The method of fragments was originally proposed to study confined flow in homogeneous
and isotropic media, but at present, it has been implemented in anisotropic media [12]. In
combination with conformal mapping and the Kozeny’s parabola, it has also been applied to
solve problems of unconfined flow through homogeneous levees with horizontal filters [13].

2.2. Graphical solutions

2.2.1. Confined flow

The most popular approximation technique for solving water flow problems is known as the
flow net. It is a graphical method that sets up two functions that satisfy the Laplace’s equation
and that geometrically constitute two families of orthogonal curves: (a) equipotential lines
(constant potential ϕ) and (b) flow lines or streamlines (constant values of the stream function
ψ). The graphical representation of these lines is the so-called flow net. A drawing that satisfies
the boundary and orthogonality conditions allows water flow problems with homogeneous
and isotropic soil to be solved simply and graphically. The expression that calculates the
discharge or rate of seepage q using a flow net is as follows:

( ) $f

e

n
q k h k h

n
= D = D (8)

where k = hydraulic conductivity of the homogeneous and isotropic medium, Δh = total loss
of hydraulic head, $ = nf/ne is the form factor, nf = number of flow intervals or flow channels,
and ne = number of equipotential intervals.

Flow nets are typically drawn on paper. However, nowadays, it is possible to draw flow nets
by computer using several numerical techniques based on finite element method (FEM) or
finite difference equations [14], such as successive over-relaxation (SOR) [15]. Examples of flow
nets that were drawn using these techniques in confined homogeneous and stratified domains
are shown in Figures 5(a and b)–7.

2.2.2. Unconfined flow

Free surface problems involve boundary value problems in which a portion of the boundary,
the free surface, is unknown and must be determined as part of the solution. The presence of
the free surface or water table makes the analysis methods more difficult. Dupuit’s parabola
[16] and Kozeny’s parabola [17] are rigorous solutions for drawing the upper flow line and are
only applicable for homogenous and isotropic media with specific geometries, such as vertical
walls (Dupuit) or with filters (Kozeny). Other approximated methods, such as the tangent [18,
19] and sine methods [20], allow mainly calculate the discharge point of the upper flow line.
Currently, this can be determined using numerical methods such as finite element method
(FEM) and finite differences (FD), among others. The Baiocchi’s method [21] and the extended
pressure technique [22] are two variants of the successive over-relaxation (SOR) method (based
on algebraic finite difference equations) that can be used to determine the position of the upper
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flow line in homogeneous media or media composed of materials with different permeability
values, respectively.

Figure 5. Flow nets in homogeneous and isotropic media obtained using the method of successive over-relaxations
(SOR) [23].

Figure 6. Flow net in a homogeneous and isotropic medium obtained using the finite element method (FEM) [24].

Figure 7. Flow net in a stratified soil under an impermeable dam obtained using the method of successive over-relaxa‐
tions (SOR) [23].

A simple graphical procedure to draw the Kozeny’s parabola or any parabolic upper flow line
in a homogeneous and isotropic medium is as follows (Figure 8a): (a) The distance a0 is
calculated with the formula a0 = y0/2 = [(d2 + h2)1/2-d]/2; (b)Draw a vertical line through O and
also a horizontal line through M; (c) Divide the OB segment in a number of equal parts, and
the MB segment must also be divided into the same number of equal parts; (d) Draw straight
lines joining the point O with the divisions made in the MB segment; (e) Draw horizontal lines
passing through the divisions made in the OB segment; (f) The intersections of the previous
lines are the points of the parabola sought. Figures 8(b) and 9 show upper flow lines obtained
using this graphical procedure and other numerical methods. Additionally, Figures 10 and 11
show flow nets that were numerically calculated in these types of free surface problems.
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Figure 8. Homogeneous and isotropic embankment: (a) graphical procedure to draw the upper flow line, (b) compari‐
son of the upper flow lines obtained using different methods [14].

Figure 9. Comparison of the upper flow lines in a homogeneous and isotropic embankment, obtained using different
methods [14].

Figure 10. Flow net in a homogeneous and isotropic embankment numerically calculated using the extended pressure
technique [14].
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Figure 11. Flow net in a dam with graded materials obtained using the extended pressure technique [23].

2.3. Numerical solutions (approximate solutions)

2.3.1. Finite elements

The finite element method (FEM) is a numerical technique that provides approximate solutions
to partial differential equations to solve a problem of a particular field. It is more versatile than
other methods because it can consider anisotropy, heterogeneity, and multiple boundary
conditions. The 2D finite elements that are generally used in water flow problems are triangles
[25] or a combination of triangles and squares [26] whose nodes coincide with their vertices;
in addition, triangles (2D) and tetrahedra (3D) can be used [27]. The hydraulic head is assumed
to vary linearly within each finite element, and the Laplace’s equation can be solved using a
variational approach. Thus, the solution to this equation in a domain is found by obtaining the
minimum of a function that is related to the equation and is defined for this domain. Based on
these assumptions and after several mathematical manipulations, the following systems of
homogeneous linear equations are set up:

[ ]{ } 0rS h = (9)

[ ]{ } 0rS y = (10)

The solution to Eq. (9) using a known method, such as Gaussian elimination, helps to determine
the hydraulic head h at the nodes in the mesh of finite elements where it is unknown. Similarly,
the solution to Eq. (10) provides nodal values of the stream function ψ. The flow net of the
problem can be obtained by drawing the isovalue curves for this pair of families. Likewise,
once the hydraulic heads h are calculated with Eq. (9), other results for the water flow problem
can be obtained, such as the hydraulic gradients, flow velocities, pore pressure, degree of
saturation, and flow rate, among others.

2.3.2. Finite differences

The Laplace’s equation can be solved using finite difference equations, which are the same as
those developed via truncated Taylor series or directly from Darcy’s Law [4]. Several methods
can be used to evaluate water flow problems that utilize finite differences, including: (a) the
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classical method of relaxations, (b) the method of successive over-relaxations, and (c) random
walks.

2.3.2.1. Classical method of relaxations

The classical relaxation method is an iterative process in which solutions for water flow
through porous media can be obtained by simply knowing the domain geometry and hy‐
draulic boundary conditions. This method can solve Laplace’s equation for a point (node)
relative to its surrounding points using an algebraic finite difference equation. For this
procedure, a square mesh with dimensions of δx = δy is drawn in the flow zone if the medium
is homogenous and isotropic (similar to those in Figure 11a and b), and a rectangular mesh
with dimensions of δx ≠ δy is drawn if the medium is anisotropic. The intersections of the squares
or rectangles constitute the nodes of the mesh. For these nodes, approximate values of the
hydraulic head or potential h (points where h requires to be calculated) must be assigned while
respecting the known values of h in the flow boundaries. These values usually correspond to
the upper and lower water levels or the upstream water level and downstream water level of
the problem at hand. The values assigned in the nodes are arbitrary and can be zero or the
result of a reasonable estimation. However, although there are several techniques that can be
used to ensure that the value of the potential imposed on the nodes where h is not known is
as accurate as possible (Young, 1950), it is important to verify the precision of the assigned
data manually by calculating the residue in each node [28]. For example, the difference between
the hydraulic potential of the four surrounding nodes is calculated with regard to the central
or interior node and so on. Therefore, the relaxation procedure involves the systematic
refinement of this residue throughout the grid until the residue in all mesh nodes of interest
is zero or practically zero. This value indicates that the Laplace’s equation in the study domain
has been fulfilled, and therefore, the flow problem has been solved for a certain water flow
problem. A disadvantage of the method of relaxations is that it is based on assigning arbitrary
values to the nodes in the study mesh, which makes it difficult for the residuals to equal zero
at an early stage of calculation. As a result, additional steps of reassigning values are generally
necessary, which makes the method long and laborious in practice.

2.3.2.2. Technique of successive over-relaxation

The technique of successive over-relaxation (SOR) [15] is a modification of the classical method
of relaxations in which the process of residual refinement at the nodes is automatic because it
utilizes the Gauss-Seidel iterative method (Figure 12); this makes it possible to obtain residuals
of zero or nearly zero at all the nodes, which allows water flow problems to be solved relatively
quickly and easily [29, 30]. An additional significant advantage of the SOR method is that it
can solve the so-called free surface problems (or unconfined flow problems), in which the
position of the free (or phreatic) surface must be determined to solve the problem. Other
improvements to the SOR method have been developed for this type of problem, including (a)
the Baiocchi’s solution [21] and (b) the extended pressure method [31, 22]. The former method
helps to determine the position of the phreatic surface (upper flow line for steady-state flow)
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in a homogeneous medium (Figure 10), and the latter method helps to determine this line in
both homogeneous and heterogeneous media (Figure 11) [14].

Figure 12. Schematic arrangement of nodes in the dam of graded materials in Figure 11 using the extended pressure
method [23].

2.3.3. Random walks

The random walk method (RWM) consists of studying the movements of a particle that travels
in a random way over the nodes of a mesh of a flow domain (Figure 13a and b), which allows
the hydraulic head to be determined at points of interest by numerical solution of the Laplace’s
equation in terms of finite differences. This method relies on the so-called Monte Carlo
techniques [32, 33], which are an alternative to the usual methods of water flow analysis.
Specifically, the method generates a series of random trajectories (via random numbers) that
start from node p0 in the mesh. Thus, the particle moves randomly through the interior nodes
of the mesh and stops when it reaches a boundary node, which is called an absorbent node,
because the value of the hydraulic head at that node is known (imposed boundary condition).
A complete trajectory is made up of a sequence of nodes, and the last node is an absorbent
node. The hydraulic head is then determined by counting the number of trajectories that end
at different boundaries, multiplying them by the value of the hydraulic head at the respective
boundary and dividing the result by the total number of trajectories. This procedure is repeated
several times, and the results are an unbiased measure of the hydraulic head at the node of
interest:

1 1 2 2
0

1 2

n f n fh
n n
+

=
+ (11)

where h0 = hydraulic head calculated at point p0 (Figure 13b), f1 and f2 = boundaries with
known hydraulic heads, and n1 and n2 = number of trajectories that reach boundaries 1 and
2, respectively.
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Figure 13. 2D and 3D meshes with which the homogeneous and isotropic flow regions are modelled by the random
walk method [24].

The RWM has been utilized to solve confined water flow problems [33] and also to calculate
the equivalent permeability kequivalent in simulated heterogeneous media (Figure 14) [24]:

– 1D water flow analysis→ kequivalent is the harmonic mean

– 2D water flow analysis→ kequivalent is the geometric mean

– 3D water flow analysis→ kequivalent tends to the arithmetic mean

Figure 14. Example of a random walk with the PASECA-2003 algorithm [24].

2.4. Stochastic solutions

The uncertainty due to the spatial variation of permeability is the most important factor that
must be taken into account in the analysis of water flow through soils. Figure 15 summarizes
the main techniques that are used to evaluate the propagation of this uncertainty. It is common
to utilize probabilistic techniques in combination with numerical methods, such as finite
elements (FEM), finite differences (FDM), integral equations (BEM), and random walks
(RWM). A stochastic analysis permits a more realistic evaluation of water flow problems and
can be useful in defining zones of uncertainty, which can be used to identify the parts of the
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flow region that are prone to significant variations in properties such as the hydraulic head
and hydraulic gradient, as is illustrated in Figures 16 and 17, respectively, [24]

Figure 15. A summary of the main techniques that are used to evaluate uncertainty in water flow analyses [24].

Figure 16. Standard deviation of the hydraulic head (m) under a sheet pile in a medium of two stratified isotropic ma‐
terials [24].
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Figure 17. Standard deviation of the (dimensionless) hydraulic gradient under a spillway structure in a medium of two
stratified isotropic materials [24].

3. Computer programs and general recommendations for different types of
analysis

Numerical techniques are currently preferred because of their ability to solve complex
problems in which Eqs. (2) and (5) can be generalized to heterogeneous media with anisotropic
materials and boundary conditions of variable complexity [34, 35]. The general methodology
for performing a steady- or transient-state water flow analysis is illustrated in Figure 18, which
shows that some of the most important data for performing water flow analysis are the
hydraulic parameters of the materials, which must be obtained from field or laboratory tests
that unfortunately are not always carried out because of time or cost. In addition, some tests
require specialized personnel and equipment, such as the tests to determine the hydraulic
parameters of unsaturated materials, including the soil–water characteristic curve (SWCC).
The necessary hydraulic functions of the soil for analyzing unsaturated soils are as follows:

– The water retention curve (Figure 27) is also known as the soil–water characteristic curve (SWCC)
depending on whether the suction is expressed in terms of the degree of saturation or the
volumetric water content, respectively. The SWCC is broadly defined as the relationship
between the amount of water in the soil and soil suction.

– The hydraulic conductivity function (Figure 28) represents the suction as a function of the
permeability.

Figures 19 and 20 show several general considerations for different types of water flow
analyses, which can be performed relatively easily and rapidly using any of the existing
specialized algorithms. Figure 21 summarizes some of the most popular programs that are
used to numerically solve water flow problems. One benefit of computer programs is their

Groundwater - Contaminant and Resource Management104



ability to facilitate the study of transient flow and unsaturated soil conditions, which are
difficult and laborious to solve analytically.

Several programs for water flow analysis consider soil classification systems that are different
from the Unified Soil Classification System (USCS, which is commonly used in geology, soil
mechanics, and geotechnical engineering) because they involve parameters that are used to
study unsaturated soils, such as:

– HYPRES database = Hydraulic Properties of European Soils

– USDA = United States Department of Agriculture

– STARING = Dutch ‘Winand Staring Soil Series’

These systems imply that it is not advisable to use only the standard parameters that the
computer programs include for certain types of materials (e.g., sand, clay, silt) because of the
variations in the characteristics of soils (European, USA, or Dutch). It is preferable to assign
the necessary hydraulic parameters based on the type of analysis and use values that are
obtained from laboratory or field tests of the materials of the earth structure or soil that is being
studied. In recent years, a comprehensive database that contains the hydraulic parameters of
different types of soils from around the world has been developed [36]. Additionally, some
algorithms [27] use granulometric curves as well as the index properties of the materials in the
flow region and various mathematical expressions to estimate the hydraulic functions that are
needed for the analyses (Figures 27 and 28). Some of the main mathematical models that are
used to obtain the soil hydraulic functions are as follows[37]:

– For the soil–water characteristic curve (SWCC)—Brooks and Corey model, Van Genuchten
model, Fredlund and Xing model, Aubertin et al. model (modified from Kovacs model) [38–
42].

– For the hydraulic conductivity function—Brooks and Corey model, Van Genuchten model,
Fredlund and Xing model [38–40].

Figures 25–31 show a case of the analysis of water flow through a cofferdam for La Yesca dam
in Mexico composed of graduated materials assuming that the soil in one part of the cofferdam
is partially saturated [37].

The PLAXFLOW algorithm [25] solves transient-state flow problems using the finite element
method (FEM) by means of an approximate solution to Eq. (5) and by representing the flow in
unsaturated soils with the Van Genuchten model. This algorithm performs analyses of transient-
state flow in two different ways (Figure 22): (a) with step-wise conditions, in which each phase
is defined by constant boundary conditions; that is, each time period is associated with a certain
water level and (b) with time-dependent conditions, in which the continuous variation of the
water level is explicitly considered as a function of time, which can be represented by linear
functions, harmonic functions, or data in tables.

Figures 23 and 24 show the results of water drawdown analyses that were carried out using
the SEEP/W [26] and PLAXFLOW [25] algorithms, respectively [35, 43].
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Figure 18. General methodology for steady- or transient-state flow analyses.

Figure 19. Data for water analyses.

Figure 20. General considerations for different types of water flow analyses.
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Figure 21. Some algorithms for the numerical modelling of groundwater flow.

Figure 22. Types of transient flow analyses with the PLAXFLOW algorithm [25].
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Figure 23. Results of a drawdown analysis [43] using the SEEP/W algorithm [26].

Figure 24. Lines of drawdown at different times during a water drawdown [35] obtained using the PLAXFLOW algo‐
rithm [25].

Figure 25. Geometry and materials of a cofferdam for La Yesca Dam in Mexico [37].

Figure 26. Boundary conditions for numerical analysis of the cofferdam for La Yesca dam in Mexico [37].
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Figure 27. Characteristic curves for materials from the cofferdam for La Yesca Dam in Mexico, used in this analysis
[37].

Figure 28. Hydraulic conductivity functions utilized in the numerical model of the cofferdam for La Yesca Dam in
Mexico [37].
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Figure 29. Finite element mesh [37] generated with the SVFlux algorithm [27].

Figure 30. Distribution of the pore water pressure [37] calculated using the SVFlux algorithm 27.

Figure 31. Flow net [37] obtained using the SVFlux algorithm [27].

4. Conclusions

An exact analytical solution of a water flow problem is generally only possible to obtain when
the geometry of the flux domain and the hydraulic and boundary conditions are simple
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(isotropic and homogeneous media). Exact solutions are difficult and impractical to obtain in
the case of the most complex flow problems, such as those in practical geotechnical engineer‐
ing. In consequence, approximate solutions are usually sought. Numerical techniques are
currently preferred over other methods due to their ability to solve complex problems in which
the equations for water flow analyses can be generalized to heterogeneous media with
anisotropic materials and boundary conditions of varying complexity. However, more
sophisticated analyses require the use of a greater number of material parameters, which
involves laboratory and field testing that require specialized knowledge and personnel. A
series of mathematical models is available to approximate these material parameters. How‐
ever, the results of numerical analysis should be compared to measurements from monitoring
(field instrumentation) of the structures being studied.

Some important comments about the numerical analyses of water flow are as follows:

– In 3D groundwater flow analyses, the use of finite difference equations requires less
computational time than the 3D finite element method.

– Computer programs facilitate analyses of transient flow and unsaturated soil conditions,
which are difficult and laborious to solve analytically.

– Computer programs cannot replace the good judgment of an engineer.
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