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Abstract—In recent years the Internet has grown by incorpo-
rating billions of small devices, collecting real-world information
and distributing it though various systems. As the number of
such devices grows, it becomes increasingly difficult to manage
all these new information sources. Several context representation
schemes have tried to standardize this information, however none
of them have been widely adopted. Instead of proposing yet
another context representation scheme, we discuss an efficient
way to deal with this diversity of representation schemes. We
define the basic requirements for context storage systems, analyse
context organizations models and propose a new context storage
solution. Our solution implements an organizational model that
improves scalability, semantic extraction and minimizes semantic
ambiguity.
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I. INTRODUCTION

When we think about the Internet we mostly consider
servers, laptops, routers and fixed broadband that have almost
reached every household. But the fact is the Internet is growing
very fast as we speak in to new kinds of devices. Everyday
devices (from mobile devices to environmental sensors net-
works) are now connected to the Internet, sharing massive
amounts of information. According to the ICT Knowledge
Transfer Network (ICT KTN), the number of mobile devices
is expected to increase worldwide from 4.5 billion in 2011 to
50 billion by 2020 [1].

As microcosms of the Internet of Everything (IoE), cities
stand to benefit the most from the untapped information
shared by all these devices. Smart cities means many things
to many people. Yet, one thing remains constant: part of
being “smart” is utilizing information and communications
technology and the Internet to address urban challenges. In
smart cities, an entity’s context can be used to improve effi-
ciency, optimize resources and detect anomalies. The following
example illustrate the importance of context information for
smart cities. Before leaving home a citizen can reserve a
parking space close to their destination. While they drive,
the vehicle dynamically selects the best course. The selection
not only takes into account traffic congestion but also road
conditions, road accidents and other anomalies. A vehicle,
upon approaching a semaphore, can announce its presence.
With this information the semaphore can minimize the delay
of each vehicle. Ambulances and other emergency vehicles
have priority over the remaining, as such the semaphore
automatically grants them a green light. At home the fridge
connects to several supermarkets and produces a shopping list

based on its contends and in the prices announced for each
product.

In summary context information has the potential to dra-
matically improve the efficiency of smart cities. All the citizens
benefit from the shared information without the need to manu-
ally gather it. Context information can be gathered, processed
and shared among citizens, services and other devices.

For scenarios like the previous one to become reality,
it is necessary to develop a way to manage such diverse
machine made context information. One of the challenges is
to store massive amounts of context information and provide
a discriminative retrieval process.

Without loss of generality let us only consider pothole
detection (a task of utmost importance for city officials). In
an ideal context storage system, information related with road
conditions should be automatically tagged with an appropriate
tag. The information published by various sensors (on board of
multiple vehicles, of multiple brands) does not explicit mention
road condition’s, it only contains measurements related with
the vehicle. It is therefore necessary to allow search with
concepts instead of simple words. It is quite difficult to
add these functionalities to standard full-text search engines
(present in several databases).

This is the main focus of this paper. The common defini-
tions of context information [2], [3] does not provide any in-
sight about its structure. In fact, each device can share context
information with a different structure. E.g. sensory information
and location information can be used to characterize an entity
context, yet the two can have very different structures.

The main objective of context representation is to stan-
dardize the process of sharing context information through
several services. Context-aware platforms strongly benefit from
an uniform environment: the storage process is easier (the
information follows a known structure) and the analysis of the
information becomes simpler. Standard context management
platforms commonly store context information in relational
databases. We can devise a mapping process easily only if there
is a common context representation. Multiple context represen-
tations have been proposed, such as ContextML [4], SensorML
[5] COBRA-Ont [6], OASIS XDI [7] and OASIS XLIFF [8].
All these representations try to solve the same problem, but
each representation is quite different and incompatible with
the other. None of the above mentioned representations have
been widely accepted either by the academia or the industry.
Usually, each context-aware platform defines its own context
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representation based on the platform scenarios. This breaks
compatibility between platforms and limits the quantity of
context information that can be used in M2M applications.

It is possible (but unlikely), that in the future a context
representation standard will be widely adopted. Until then,
context-aware platforms have to deal with multiple context
representations. The work presented in this paper addresses
this problem and analyses possible representation schemes
independent of storage solutions.

The remainder of the paper is organized as follows. In Sec-
tion II we analyse how context information can be organized
and define the basic requirements for context storage solutions.
Two context organization models are proposed and analysed
in Section III. We studied the organization models’ impact on
context information solutions in Section IV. Section V contains
implementation details of our context storage solution. The
results of the organization models evaluation are in Section
VI. Finally the discussion and conclusions are presented in
Section VII.

II. CONTEXT ORGANIZATION

Context information is an enabler for deeper and further
data analysis, requiring the integration of an increasing number
of information sources. As previously mentioned, nowadays no
widely accepted context representation scheme exists; instead
there are several approaches to deal with context information.

We identified three different approaches. Previous works
have adopted existing context representations [4], [9], [10].
These representations were optimized for that specific scenario,
however this approach limits the quantity of context sources.
Later on the authors recognized that the usage of a single
context representation limits the context expressiveness [10].

Another possibility would be employing ontologies to
normalize the storage process. For each context representation
scheme there is an ontology that maps the representation into
the internal data model [11]. This type of platform supports
several context representations, yet it is necessary to define a
new ontology for each representation.

Finally, we can accept the diversity of context representa-
tion as a consequence of economic pressures, and prepare for
this inevitability.

According to the authors [12]–[14], the best solution to
classify context information is through bottom-up characteri-
zation. Bottom-up characterization is massively dimensional,
and there is no global consistency imposed by current practice.
Although sensor information is not tagged by users, we can
model the tagging process as keyword extraction [15]–[17]. A
keyword is a sequence of one or more words that provide
a compact representation of a document’s content. Ideally,
keywords represent in condensed form the essential content
of a document.

A context storage solution must fulfil 3 requirements ([18]):
ability to scale, generalize storing process and discriminative
retrieval. Since the number of sensors is rapidly increasing,
the quantity of context information is also increasing, and
a context database must be robust to this increase. Simple
replications allows a database to scale retrieve operations. A

database system can be distributed through several nodes in
order to improve write operations. Each node contains a set of
the whole database (horizontal partitioning/sharding [19]). The
last two requirements complement each other. In other words,
the ideal context database must store and accurately pinpoint
any piece of context information associated with any type of
sensor. The most common methods to implement discrimina-
tive retrieval are through semantic web or information retrieval
(IR) system. Since semantic web methods require ontologies
(which in this scenario is a disadvantage) a context database
must provide a discriminative retrieval based on IR systems.

III. CONTEXT ORGANIZATION MODEL

The common definitions of context information [2], [3]
are so broad that any information related to an entity can be
considered context information. These definitions also do not
provide any insight about the structure of context information.
From now on we will refer to a unique piece of context
information as a document.

The simplest way to model context information (without
making any assumptions about context information) is through
a single dimensional model (see Fig. 1). Each document is
characterized with a unique key, stored in a key-value structure
and indexed by an information retrieval system.

Fig. 1. Representation of a single dimensional model.

This organization model is as broad as the common defini-
tions of context information. As a consequence it does not not
take full advantage of the information retrieval system. Which
can lead to poor semantic extraction, semantic ambiguity and
scalability issues. Consider a scenario where some sensors
published several times faster than the others. The information
retrieval system is flooded by the sensors that publish at higher
rates. As a consequence, the terms present on these messages
are penalized (too common in the corpus). It becomes quite
difficult to search information with these terms. It is not trivial
to distribute the information retrieval system for several nodes.
As a consequence, the performance of the context storage is
related with the information retrieval dimension.

In order to minimize these drawbacks we propose a n
dimensional model. The first dimension is the sensor identi-
fication. Instead of storing a data completely independently,
they are organized by sensor. The platform stores all the
documents, but only needs to index the sources (device/sensor).
The remaining dimensions are used to select sets of data from



a specific source. For the remaining of this paper we will only
consider a two dimensional model (sensor identification and
time). Higher dimension models only improve the selection
process, do not minimize the number of sources in the informa-
tion retrieval system. Without loss of generality let us consider
a three dimensional model, composed by: sensor identification,
time and location. A document is uniquely identified by a
sensor id, a timestamp and a geographic location. It becomes
possible to select documents based from a specific sensor, time
and place. However, the sources indexed by the information
retrieval system do not change. In short, a higher dimensional
model can improve the selection in the storage component, but
adds little semantic value to the information retrieval system.

It is possible to prove that a two dimensional model is
as general as a single dimension model with two reasonable
assumptions:

1) Each source (device/sensor) produces a continuous
data stream.

2) The semantic value of the source can be extracted
from a single document.

These assumption are verified empirically based on a care-
ful analysis of context information in M2M scenarios. In the
single dimensional model each individual document is treated
independently. But in reality, the majority of sensors send
information periodically or when a specific event is detected.
This process is better modelled as a continuous data stream
than a set of independent documents (assumption 1). As such
context information is modelled with two dimensions (sensor
identification and time) instead of a single dimension (see Fig.
2).

Fig. 2. Representation of a two dimensional model.

Without making assumptions about context information
the single dimensional model must use a canonical informa-
tion retrieval system to provide discriminative retrieval. Each
document is analysed and divided into discriminative terms.
The document is analysed without taking into account their
semi-structured representation. The data sent by the sensors,
commonly published in semi-structured representations (e.g.
XML, YAML, JSON, BSON), can be mapped into a entity-
attribute-value (EAV) model [20]. The sensor is the Entity,
what it measures are the Attributes and the measurements
itself are the Values. The semantic value of the data is in the
Attributes, the Values are physical measures that change over

time and by itself have little semantic value. As a consequence,
most of the semantic value of the stream can be taken from a
single document (assumption 2).

In summary the single dimensional model is broader than
the two dimensional model. Due to this, the single dimen-
sional model it is not optimized for M2M scenarios. The two
dimensional model was specifically developed for managing
context information in M2M scenarios. In Section IV we
compare several context storage approaches and discuss how
the impact of the two organization models. We demonstrate
how a organization model can improve scalability and the
retrieval process.

IV. CONTEXT STORAGE SOLUTIONS

In this section we analyse several context storage ap-
proaches. A single dimensional database can be implemented
with a relational, document store and key-value database. The
first two approaches (relation and document store databases
respectively) are rather limited and should only be used in
simple M2M scenarios. The third solution implements a singe
dimensional model through a combination of a key-value
database with a canonical information retrieval system [18].
Table I summarizes which requirements are fulfilled by the
different approaches to context databases.

TABLE I. REQUIREMENTS FULFILLED BY EACH SOLUTION.

Databases/ Generalize Discriminative
Requirements store retrieval

Scalability

Relational Implementation
Database

Partial Partial
dependent

Document Implementation
Store

Full Partial
dependent

Key-value
Database

Full Full Partial

Proposed
Solution

Full Full Full

Relational databases, in general, are not completely suit-
able for storing context information. None of the key re-
quirements for complex M2M environments are completely
fulfilled. It is possible to approximate a single dimensional
model with relational databases: context information can be
stored in a single table, some relational databases already
support full-text search and the majority of the databases
support replication. Sensory information is stored as text fields
(key-value approach), using a single table with three columns:
the first column holds a unique identifier, the second column
holds the timestamp document and the last column holds the
document. The third column is then indexed by the full-text
search engine.

The full-text engine, present in relational databases, is
rather limited. They lack several features present in more
flexible information retrieval system. They contain a simple
index that contains keywords instead of primary or external
keys. The search is based on keyword similarity and not
concept similarity.



Document store databases are databases designed to store,
retrieve and manage documents. In this context, documents
are semi-structured data, typically encoded in XML, YAML,
JSON or BSON. Documents, for this type of databases, are
similar to records in a relational database. However, they are
less rigid and do not follow a standard schema. Document-
oriented databases typically provide a query mechanism based
on information retrieval systems or custom indexes.

A document store database implies conversions of docu-
ment representations, whenever the source document represen-
tation is different from the document representation. The query
mechanism is also limited. Although based on information
retrieval systems the indexes are commonly created automati-
cally based on the document structure. Therefore, in order to
retrieve documents it is necessary to known the structure of
the documents.

As previously mentioned these approaches are rather lim-
ited. There is no clear separation between the storage and the
information retrieval system. Which makes it rather difficult
to add a custom EAV document analyser or define with
entities must be indexed. Another issue is that these solutions
scalability is closely related with their implementation and not
with their approach.

The third approach combines a key-value database with
an information retrieval system. Each individual document is
treated independently, stored in the key-value database and
indexed in the information retrieval system. This approach
suffers from the main disadvantage of a single dimensional
model solution: poor scalability. However, scalability is one of
the most important requirements for context storage solutions.

Its considerably simple to scale storage through several
machines. Each machine contains a portion of the informa-
tion. However, the same method is not easily applied to a
information retrieval system. The information retrieval system
requires all the corpus to identify the most relevant and
discriminative terms. A single dimension model analyses and
indexes every document without taking into account its source.
As the number of documents grow the performance of the
index degrades rapidly.

As a counterpart to these approaches, we propose a modu-
lar context database that organizes context information in two
dimensions. Our implementation combines Apache Cassandra
(tabular database) with Apache Lucene (information retrieval
system). The proposed solution has two major advantages: im-
proved semantic extraction and scalability. Mapping sensorial
data into a conceptual EAV model allow us to only extract
terms with semantic value improving the semantic extraction.
Taking into account that each source produces a continuous
data stream, we only need to analyse some documents to
semantically characterize the source. We have to store all
the documents but only need to index information related to
the sources and not all the individual documents (millions of
documents but only some hundreds of sources).

Our proposed organization model (with two dimensions)
analyses some documents per source and only indexes the
source, not all individual documents. The performance of
the information retrieval system depends on the number of
sources and not on the number of documents. There are
millions documents, but only hundreds of sources, as such

the performance of the information retrieval system is only
affected with the addition of new sources.

V. IMPLEMENTATION

In this section we discuss important details about our
solution. The context storage is divided into 3 different compo-
nents as depict in Fig. 3. The storage and index components
store and index context information respectively, the router
communicates with the index and storage components in order
to fulfil each operation. All the components communicate with
each other through message passing.

Fig. 3. Propose context storage architecture.

The components communicate with each other using the
ZeroMQ1 socket library. ZeroMQ supports several transporta-
tion methods: TCP sockets, inter-process communication and
inter-thread communication. Messaging passing allows the
application to be distributed through several machines and
each component can be written in any programming language,
without being restricted by the router component. This strategy
is then specially suitable for the diversity of environments in
M2M applications.

Although the modular solution in our architecture has
several advantages, it can also produce sub-optimal solutions.
Conceptually it is easier to devise storage and index compo-
nent as two independent components. The router component
(central component) decomposes each operation as a sequence
of independent operations from the remaining components.

In order to decrease coupling, each component follows two
design patterns: abstract factory and command. Each operation
is encapsulated as a message object and each message object is
in turn encapsulated as an action object. The abstract factory
creates an action object from message objects, this way the
translation is transparent to the component. The command
design pattern makes the process of executing an action
transparent to the component. Each action object implements a
execute method that contains the necessary steps to execute the
respective action. Another advantage of the command pattern is
multitasking, each operation of the component is independent
of each other, so multiple requests can be performed at the

1http://www.zeromq.org/



same time using different threads (as depicted in Fig. 4). The
combination of abstract factory and command design pattern
allows us to achieve a modular storage system with focus on
parallelism instead of single request performance.

Fig. 4. General architecture of the components.

The index component is mainly an information retrieval
system, responsible for indexing and searching relevant doc-
uments. It was prototyped in Java, using Apache Lucene2 at
its core. This component was developed with special attention
to parallelism. The IndexWriter class was expanded to support
periodical commits (safe store in the disk) with a background
thread. The component also uses near-real-time search3. This
feature allows an index changes to be visible to a new searcher
with fast turnaround time. We also developed a custom docu-
ment analyser that maps JSON documents into a EAV model
and extract the semantic value of the attributes.

The storage component is mainly a tabular database respon-
sible for storing all the documents. It was prototyped in Java,
using Apache Cassandra 4 as its core. Apache Cassandra is
one of the fastest tabular databases currently available, initially
developed by Facebook and inspired by Amazon’s Dynamo
[21]. Cassandra is designed to handle big data workloads
across multiple nodes with no single point of failure. The
context information is stored in a single table with three
columns: the first column holds a unique identifier, the second
column holds the timestamp document and the last column
holds the document.

VI. PERFORMANCE EVALUATION

In Section III we analysed two context organisation models:
single dimensional and two dimensional mode. As previously
discussed a single dimensional model can lead to poor scala-
bility. All the documents are indexed, even if generated from
the same source. As the number of documents grows the
performance of the information retrieval system degrades. Our
two dimensional model only indexes the sources of data and
not individual documents, optimizing the information retrieval
system for M2M scenarios.

We analysed the performance of the two organization
models on a smart city simulation, specifically a pothole
detection scenario. It is one of the main scenarios of the
APOLLO project 5. The APOLLO project’s main objective
is the development of a platform that supports new scenarios

2lucene.apache.org/core/
3blog.mikemccandless.com/2011/06/lucenes-near-real-time-search-is-

fast.html
4cassandra.apache.org
5http://atnog.av.it.pt/projects/apollo

in the area of M2M communications. The pothole detection
scenario consist of identifying potholes on the road based on
the vibrations of the vehicle. (similar use-case to project [22]).
In this scenario 50 vehicles have a sensor that measures the
acceleration, geographic location and the speed. The sensor
sends information only when the vehicle has a speed greater
than 2.5 m/s. After analysing the sensor’s information flow
we estimated that a sensor sends on average 629 documents
per day.

To better understand the impact of the models in the
information retrieval system it is necessary to understand how
these systems work. For this evaluation we are not interested
in document decomposition, term filtering or term weighting
process. We are specifically interested in the model used by
the information retrieval system. The majority of information
retrieval use a term-document matrix to compute the similarity
between documents and queries. In a term-document matrix
specific type of co-occurrence matrix, each row represents a
unique term and each column represents a document. The size
of the co-occurrence matrix can be used as a rough estimate
for the size of the index.

In the considered scenario the number of terms is constant,
all the sensors send information in the same format. Fig. VI
represents a sample of the information sent by the sensors,
some fields are omitted for privacy reasons. On average these
documents have 73 terms. Several of them are numerical values
and are discarded by the standard document analyser ending up
with 13 terms. Our custom document analyser (a combination
of a standard document analyser with a EAV model) only
extracts the attributes. The number of terms is further reduced
to 11.

{
"accelerometer": {

"x": [...],
"y": [...],
"z": [...]

},
"geohash": "...",
"id": "...",
"latitude": 40.6325,
"longitude": -8.6436,
"speed": 16.81,
"timestamp": [...],
"version": 1

}

Fig. 5. Sample document sent by a sensor used in APOLLO.

For this specific scenario, and considering a single di-
mensional model, the index size can be estimate with the
following expression: IS(t) = sources× rate× terms× t =
50 × 629 × 13 × t. IS stands for index size. sources are
the number of sources of information (in our scenario there
are 50 sources of information), rate is the average number of
documents sent by the sensors per day, terms is the number
of terms in the documents and t represents the passage on time
in days.

Using a two dimensional model, in this specific scenario,
the index size does not depend of time. We can estimate the
index size with the following expression: IS(t) = sources×



terms = 50× 11 = 550. The index contains the sources and
not individual documents, as such from day one the index is
complete. It grows only if a new source is added.

The two estimates are plotted in Fig. 6. It is visibly that
with a single dimensional model, the index size grows rapidly.
As a consequence the performance of the index decreases. On
the other hand, with a two dimensional model, the index size is
more stable. The index only grows with the addition of a new
information source. In short, with a two dimensional model
the index performance is limited by the number of sources
and not by the number of documents.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  5  10  15  20  25  30

In
d

e
x
 S

iz
e

Time (days)

Single dimensional model
Two dimensional model

Fig. 6. Estimation of the index size.

Single dimensional models have another major drawback
apart from poor scalability. The index stores all the documents
regarding their source. Documents sent by the same source
have similar semantic value. As a consequence, the term-
document matrix has a larger amount of repeated information.
Ultimately this lead to poor semantic extraction and semantic
ambiguity (curse of dimensionality [23]). Taking into account
our smart city scenario, consider a search by “accelerometer”
where only the first 50 results are analysed. A storage solution
that implements a two dimensional model returns exactly 50
sources. However, a storage solution that implements a single
dimensional model returns 50 documents that might not cover
the 50 relevant sources.

VII. DISCUSSION AND CONCLUSIONS

As the number of sensors increase, it becomes increasingly
difficult to store, process and analyse context information.
There are countless context representation schemes, however
none of them have been widely either adopted by the academia
or the industry. Within this paper, we defined the basic context
storage requirements, analysed the impact of context organiza-
tion models and proposed a new context storage architecture
for generic M2M applications

We defined the basic requirements for context storage
systems, and two context organization models. The organi-
zation models were evaluated with a simulation based on
a smart city scenario. Four context storage solutions were
presented and analysed. The first two (based on relational
and document store databases) are rather limited. The third
solution (key-value database combined with a canonical in-
formation retrieval system) implements a single dimensional

model to organize context information. This model leads to
poor semantic extraction and scalability. We proposed a storage
solution that implements a two dimensional model, minimizing
the drawbacks of the precious approach. Our solution fulfils a
broader set of requirements than the remaining.
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