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Abstract

Artificial neural networks (ANNs) are powerful tools that are used in various engi‐
neering fields. Their characteristics enable them to solve prediction, regression, and
classification problems. Nevertheless, the ANN is usually thought of as a black box, in
which it is difficult to determine the effect of each explicative variable (input) on the
dependent variables (outputs) in any problem. To investigate such effects, sensitivity
analysis is usually applied on the optimal pre‐trained ANN. Existing sensitivity analysis
techniques suffer from drawbacks. Their basis on a single optimal pre‐trained ANN
model produces instability in parameter sensitivity analysis because of the uncertainty
in neural network modeling. To overcome this deficiency, two successful sensitivity
analysis paradigms, the neural network committee (NNC)‐based sensitivity analysis
and the neural network ensemble (NNE)‐based parameter sensitivity analysis, are
illustrated in this chapter. An NNC is applied in a case study of geotechnical engineering
involving strata movement. An NNE is implemented for sensitivity analysis of two
classic problems in civil engineering: (i) the fracture failure of notched concrete beams
and (ii) the lateral deformation of deep‐foundation pits. Results demonstrate good
ability to analyze the sensitivity of the most influential parameters, illustrating the
underlying mechanisms of such engineering systems.
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tivity analysis, NNE‐based sensitivity analysis

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

In solving complex civil engineering problems, conventional analytical and empirical method‐
ologies suffer from many difficulties. This is mainly because of the limitations of such methods
in handling large, complex structures that may require time‐consuming and exhausting tasks.
In such situations, soft‐computing techniques come into the picture. They are effective estimation
tools that reduce the cost and time of design and analysis. Neural networks are useful soft‐
computing tools that can be used for classification and prediction in complex civil engineering
problems [1–3].

Sensitivity analysis is a necessary approach for understanding the relationship and the
influence of each input parameter on the outputs of a problem. The key point behind sensitivity
analysis is that by slightly varying each explicative input parameter and registering the
response in the output, the explicative parameters with the highest sensitivity values gain the
greatest importance. Sensitivity analysis of the most significant parameters can be very useful
for analyzing complex engineering problems.

Neural network‐based parameter sensitivity analysis in civil engineering systems is gaining
more importance due to the remarkable ability of neural networks to explain the nonlinear
relationships between the explicative and response variables of a problem [1, 4]. Commonly,
a specific training technique is used to develop one optimal neural network to be a system
model, and this model is then used for sensitivity analysis [5–10]. Yet, it is relatively difficult
to determine the most optimal neural network model, for reasons such as random initialization
of the underlying connection weights in the neural network model, different features of various
learning techniques used to train the neural network, the absence of a reliable technique for
defining the optimal structure in neural network modeling, etc. To overcome these difficulties,
two potential techniques, namely neural network committee (NNC)‐based sensitivity analy‐
sis [1] and neural network ensemble (NNE)‐based sensitivity analysis [11], are illustrated.
These two paradigms utilize a group of pre‐trained optimal neural networks to handle the
neural network modeling, thereafter implementing parameter sensitivity analysis individually
and lastly defining the sensitivity of parameters. This chapter is organized as follows. A
complete explanation is given of some traditional neural network‐based sensitivity analysis.
Thereafter, the NNC‐based parameter sensitivity analysis method is presented, followed by a
geotechnical engineering case study of strata movement and two case studies related to
classical civil engineering. Then, the NNE‐based sensitivity analysis paradigm is described,
followed by two illustrative case studies. Finally, a complete summary of the chapter is
presented.

2. Typical neural networks-based sensitivity analysis algorithms

Many studies have been concerned with improving existing neural network‐based sensitivity
analysis methods [9]. Among the different techniques, the partial derivative algorithm [5] and
the input perturbation algorithm [10] have superior performance compared to other techni‐
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ques based on the magnitude of weights [6, 7]. Therefore, these two algorithms are explored
in detail in this chapter, along with some other techniques.

2.1. Partial derivative algorithm

The partial derivative algorithm is a famous neural network‐based sensitivity analysis
technique [5, 11]. Its characteristics enable it to deal with neural networks that apply first‐
derivative activation functions, such as back‐propagation neural networks (BPNNs) and radial
basis function neural networks (RBFNNs) [1, 8]. By implementing the partial derivative
algorithm, it is possible to identify the variations of output parameters of neural networks with
respect to small changes in each input parameter, thereby defining the contribution of each
such input on the output parameters. This can be done by deriving the output parameters of
the neural network with respect to input parameters, in other words, by calculating the
Jacobian matrix that contains the partial derivatives of outputs with respect to inputs [5, 11].

For a successful BPNN model having input �� with �� as the total number of inputs and output�� with �� as the total number of outputs, the Jacobian matrix 
∂��∂��  can be defined by using the

chain rule as [1]
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where �� is the ith input variable ℎ�, ℎ� − 1,…, and ℎ� are the hidden neurons from the nth to
the first hidden layer, respectively; ��, �ℎ�, and �ℎ1 are the output values for output neuron�, hidden neurons ℎ�, and �1 in the respective nth and the first hidden layer; �ℎ�� is the
connection weight between the kth output neuron and the hidden neuron ℎ�; �ℎ� − 1ℎ� is the
connection weight between the hidden neurons ℎ� − 1 and ℎ� and ��ℎ1 is the connection
weight between the ith input neuron and the hidden neuron ℎ1; ��, �ℎ�, and �ℎ1 are the
weighted sums of kth output neuron, the hidden neuron ℎ�, and ℎ1, respectively; �′ denotes
the derivative of the activation function f. ��, �ℎ�, and �ℎ1 can be given as
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where ��, �ℎ�, and �ℎ1 are the biases of the kth output neuron, the hidden neuron hn, and, h1,

respectively.

For p training samples of each input �� on the output �� of the neural network, ��� can be

calculated as
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For each input parameter, the value of c can be used as a factor for classification of the influence
of total inputs on the outputs of the neural network model. The most important or crucial input
parameter may have the highest c value [1].

2.2. Input perturbation algorithm

The input perturbation algorithm is another common method for neural‐network‐based
sensitivity analysis [6, 9]. It implements a small perturbation on each input of the neural
network model and measures the corresponding change in the outputs. This perturbation is
applied on one input individually at a time while all other inputs are fixed, and the response
for perturbation of each output is registered. Sensitivity analysis is performed by giving a rank
for each response of the output generated by the same perturbation in every input parameter.
The input that has the highest effect on the outputs after perturbation is considered the most
influential or important [1].

In essence, when a larger amount of perturbation is added to the selected input parameter, the
mean square error (MSE) of the neural network increases. The variance of the input parameter
can be represented as �� = ��+ ���, where �� is the current selected input variable and ��� is
the perturbation. The perturbation can be varied from 0 to 50% by steps of 5% of the input
value. Depending on the increasing value of the MSE corresponding to each perturbed input,
outputs can be ranked and thus sensitivity analyses are performed [1, 8].

2.3. Weights method

This method was proposed by Garson [12] and Goh [13]. In this method, for each hidden
neuron, the connection weights are divided into components related to each input neuron.
This method was simplified by Gevrey et al. [8] to give the same results as the initial method.
For the purpose of illustration, a multilayer neural network with a single hidden layer is
considered; thereafter, for each hidden neuron the following calculations are used:

For � = 1 to ��
For � = 1 to ��
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where �� and �� are the number of input and hidden neurons, respectively; ��� is the weight

corresponding to input neuron i and hidden neuron j. The percentage relative contribution of
all inputs ��� is then calculated as
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End

2.4. Profile method

This method was proposed by Lek et al. [14–16], and further explained by Gevrey et al. [8].
The key point behind this method is to analyze one particular input at a time while fixing the
values of all other inputs. The procedure starts by dividing the value of each input parameter
into equal subintervals, whereas all other inputs are set prior to minimum, quarter, half, three
quarters of the maximum and maximum, respectively. At the end of this task, patterns of five
values corresponding to different input parameters result and the median value for each
pattern is calculated. The median values are plotted with respect to the subintervals to form a
profile that explains the contribution of the input parameter. Finally, for all inputs, a set of
curves explaining the relative importance for all input parameters is obtained [8].

2.5. Stepwise method

In this method, one input parameter is blocked and the responses of the outputs are recorded.
This process is performed step by step for all input parameters and the responses of the outputs
are recorded by means of the MSE. Depending on the MSE, the relative importance of each
input variable is ranked correspondingly. There are two main strategies for the stepwise
method. The first is to construct a number of neural network models by evolving the input
parameters one by one. This strategy is called forward stepwise, while the backward stepwise
strategy can be implemented in the reverse way, that is, constructing neural network models
by first using all input parameters and then blocking each input parameter [8, 17].

This method can be improved to reduce the difficulty of producing many neural network
models by using a single model. In this model, one input parameter is blocked and the MSE
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is calculated. The parameter with the maximum MSE value is ranked as the most important
and can then be either removed from the model or fixed at its mean value so that the contri‐
bution of other parameters can be found, and so on.

3. Neural network committee-based sensitivity analysis

Consider a neural network model with a sensitivity analysis‐ranking vector � = [�1, �2, …, ��]
and the actual sensitivity analysis‐ranking vector �0 = [�1, �2, …, ��], where �� and �� are the

calculated and actual ranks of ith input parameter, respectively, and n is the number of input
parameters. To reduce the difference between R and �0 to minimum, it is not efficient to use

single neural network model to perform sensitivity analysis. The reason is the absence of
persistence in sensitivity analysis of one neural network model even when a major sensitivity
analysis strategy is implemented. In recognition of this fact, it is more effective to utilize a set
of good pre‐trained neural network models instead of using a single optimal model for
sensitivity analysis. This procedure is well used in neural network committee (NNC)‐based
sensitivity analysis [1].

The mathematical foundation of NNC‐based sensitivity analysis starts from the weak law of
large numbers in probability. Having �1, �2, … infinite set of random variables with no corre‐

lation between any two of them, each having the exact value of � and variance �2, the sample
average convergence in probability can be written as [18]
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or, in other words, for a small number �, the following can be expressed:
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By considering single neural network sensitivity analysis‐ranking vector R, the elements�1, �2, … can be defined as random variables; in other words, R is composed of n random
variables. In the case of neural network ensemble‐based sensitivity analysis, a set of random
variables ��1, ��2, …, ��� related to �� are obtained. Depending on the weak law of large numbers,
for a large number m, the mean of ��1, ��2, …, ��� can converge to the actual ranking values �� in�0. Therefore, in NNC‐based sensitivity analysis, it is possible to find a ranking vector R that
is close to the actual ranking vector �0.

As the number of input variables is specified and the input variables are not completely
random, due to the many specifications that appear during neural network model training,
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the condition of the weak law of large numbers that is applied on an infinite number of random
variables is not satisfied. For this reason, optimization strategy can be an efficient tool to select
a number of good pre‐trained neural network models and skip those with weak performance.
By electing the best neural network elements and eliminating the bad ones, optimization can
generate good predictions of sensitivity analysis‐ranking vectors [1].

Depending on the above principles, we can summarize NNC‐based sensitivity analysis in three
basic procedures. First, groups (seeds) of successful neural network models are prepared using
neural network‐training techniques such as back propagation (BP) or radial basis functions,
etc. Then, a set of best‐performance models are chosen to compose the optimal NNC that is
used in performing ensemble neural network sensitivity analysis by individual applications
of sensitivity analysis, giving large numbers of R. Finally, the mean of R is calculated to find
the accurate approximation of �0. A schematic diagram of NNC‐based sensitivity analysis

strategy is given in Figure 1.

Figure 1. A schematic diagram of NNC‐based sensitivity analysis strategy.

Figure 2. NNC‐based sensitivity analysis strategy stepwise procedure: A–N, the neural network model seeds;�1 – ��, �1 – ��, and �1 – ��, the candidate groups of neural network models; �1 – ���, ��1 – ���, and��1 – ���, the superior neural network models; ellipse refers to a sensitivity analysis ranking of an input parameter.
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The basic steps for the NNC‐based sensitivity analysis algorithm are shown in Figure 2 and
can be explained as follows:

1. Select the best available types of neural network model empirically. These are called
“seeds” for NNC‐based sensitivity analysis.

2. Each seed involves a set of neural network models. These models are varied by means of
a number of hidden neurons or hidden layers to produce a candidate group of neural
network models.

3. Depending on the MSE, a subset k of superior neural network models is picked up, where� = 310� has been experimentally specified and m is the number of neural network models

in the candidate group. Thereafter, sensitivity analysis is employed on each model to
generate a group of sensitivity analysis‐ranking vectors R.

4. For each input parameter, the mean of the related ranking number in the sensitivity
analysis‐ranking vector R is calculated to form a predicted ranking vector close to the
actual ranking vector �0, which is calculated as

1 1

1ˆ , 1,2, ,N K st
i i is t
a a r i l

NK = =
» = = ¼å å (8)

where �� is the predicted value of �� in �0 for variable �� in R, K is the number of elements

in the candidate group of neural network models (committee), N is the number of neural
network seeds, and l is the number of input parameters.

4. NNC-based sensitivity analysis of strata movement

Strata movement is a critical problem in geotechnical engineering because of the complex
highly nonlinear properties involved. It is necessary to define the most significant factors
involved in strata movement. Therefore, NNC‐based sensitivity analysis strategy is used. The
dataset of strata movement is composed of 168 samples taken from multiple typical observa‐
tion stations of earth surface movement above underground metal mines. The dataset has six
input parameters and three output parameters as shown in Table 1. These parameters
characterize the working operation of strata movement of underground metal mines.

In NNC‐based sensitivity analysis, four scenarios are chosen, depending on the output
variables (Table 1): scenario (1) all output parameters, (2) only MAU, (3) only MAL, and (4)
only AA. At the beginning, radial basis function and BP neural networks are selected as seeds,
because of their proven ability to handle nonlinear features. Then, 50 neural network models
are generated by each seed to construct two candidate sets of neural network models. There‐
after, 15 superior neural network models are chosen from each set to form a committee
containing the best‐performed neural network models. After that, sensitivity analysis is
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applied to each model by utilizing both a perturbation algorithm and a partial derivative
algorithm to produce a group of ranking vectors R. Next, the sum of corresponding ranking
numbers that is considered as a score for input parameters is calculated. The score is a reflection
of the near actual ranking �0. The sum is used instead of the mean to prevent the repetition of

the identical values for different parameters, in order to have fewer neural network models
from which to decide the final ranking. The best‐performed neural networks and the input
parameter ranking for scenario (1) are illustrated in Table 2.

Parameter Characteristics Parameter type

MCU Mean consistency of upper wall rock Input

LCL Mean consistency of lower wall rock Input

SAO Slope angle of ore body Input

TO Thickness of ore body Input

LO Length of ore body Input

DE Depth of excavation Input

MAU Movement angle of upper wall rock Output

MAL Movement angle of lower wall rock Output

AA Avalanche angle Output

Table 1. Measured parameters of strata movement [1].

Best-performed neural network model MCU LCL SAO TO LO DE

RBF1 5 6 1 4 3 2

RBF2 2 1 6 5 4 3

RBF3 3 6 5 2 4 1

RBF4 5 6 3 1 4 2

RBF5 4 6 3 2 5 1

RBF6 5 4 2 3 6 1

RBF7 4 6 5 2 3 1

RBF8 2 6 3 5 4 1

RBF9 4 6 5 2 3 1

RBF10 2 5 6 3 4 1

RBF11 3 4 1 6 5 2

RBF12 3 4 2 6 5 1

RBF13 2 4 3 6 5 1

RBF14 2 4 3 6 5 1

RBF15 4 2 3 5 6 1

BP1 1 4 3 6 5 2
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Best-performed neural network model MCU LCL SAO TO LO DE

BP2 2 4 3 6 5 1

BP3 4 2 3 5 6 1

BP4 4 3 2 6 5 1

BP5 2 3 4 6 5 1

BP6 4 2 1 5 6 3

BP7 5 3 2 6 4 1

BP8 4 3 1 5 6 2

BP9 4 3 2 6 5 1

BP10 4 3 1 5 6 2

BP11 3 4 2 5 6 1

BP12 3 5 1 4 6 2

BP13 4 3 2 5 6 1

BP14 4 3 1 6 5 2

BP15 3 5 1 4 6 2

Table 2. Sensitivity analysis rankings produced by best-performed neural network model groups [1].

Scenarios Score and ranking MCU LCL SAO TO LO DE

(1) Score 101 120 80 138 148 43

Ranking 3 4 2 5 6 1

(2) Score 96 114 64 162 145 49

Ranking 3 4 2 6 5 1

(3) Score 96 81 87 75 155 136

Ranking 4 2 3 1 6 5

(4) Score 109 121 113 103 86 98

Ranking 4 6 5 3 1 2

Table 3. NNC-based sensitivity analysis results for strata movement.

The outcome sensitivity analysis for the four scenarios is illustrated in Table 3. It is clear from
the table that for scenario (1), DE has the highest importance, followed by SAO, MCU, LCL,
TO, and LO, respectively. In scenario (2), the degree of importance is the same as in scenario
(1), but LO is more significant than TO. Nevertheless, in scenario (3), TO has the highest
significance, above that of LCL, SAO, and MCU, which have approximately similar signifi-
cance, and then DE and LO have the least significance. Finally, in scenario (4) LO has the highest
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contribution followed by DE, TO, MCU, SAO, and LCL, respectively. However, the contribu‐
tions of DE and TO are very close to those of MCU, SAO, and LCL.

Figure 3. Activity analysis of dependent variables for strata movement based on NNC‐based sensitivity analysis re‐
sults [1].

The working condition of strata movement is defined by the predictability of response
parameter (output parameters). For this reason, the scores of the input variables after sensi‐
tivity analysis for three scenarios (MAU, MAL, and AA) that are related to the response
variables are plotted in Figure 3. The response variable with the highest sensitivity against
explicative variables has the highest predictability, and this can be calculated by finding the
variance of the score vector of the explicative variables. The result of that procedure is 1965.6,
1068.4, and 150, corresponding to the response variables MAU, MAL, and AA, respectively. It
is obvious that MAU has the highest predictability, followed by MAL and AA. Therefore, we
can consider the angles of the upper wall rocks as the most significant feature, ahead of the
lower wall rocks and the avalanche angle that are less important.

5. NNE-based parameter sensitivity analysis

The NNE‐based parameter sensitivity analysis technique is a modified version of the NNC‐
based sensitivity analysis. It reduces the time‐consuming procedure of using different neural
network types as seeds by using just one preferred neural network type as the seed [4]. NNE‐
based parameter sensitivity analysis incorporates the following steps: (1) one preferred type
of neural network is considered as the seed, (2) a set of k‐neural network models that are varied
with regard to the number of hidden neurons and hidden layers is defined, (3) from k‐neural
network models, a group of n best‐performed models (� < �) is picked up and the other poorly
performed models are eliminated to form an NNE model, and (4) a sophisticated sensitivity
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analysis algorithm is performed on the NNE model to obtain a sensitivity ranking of all input
variables of the engineering problem under consideration. A schematic diagram of NNE‐based
parameter sensitivity analysis is shown in Figure 4.

Figure 4. A schematic representation of NNE‐based parameter sensitivity analysis.

6. Illustrative case studies

To highlight the application of NNE‐based parameter sensitivity analysis technique, two civil
engineering case studies are explained. The first is the determination of the importance of
material properties in the fracture failure of a notched concrete beam and the second is the
specification of significant parameters in the lateral deformation of a deep‐foundation pit [4].

6.1. Fracture failure of notched concrete beam

Fracture failure is the most common problem facing engineers in the analysis and usage of
concrete structures [19,20]. Good knowledge of appropriate material properties is necessary
during modeling of the fracture behavior of concrete structures. Such material properties are
defined by a three‐point bending of a notched concrete specimen. Therefore, the NNE‐based
parameter sensitivity analysis strategy is used to find the most crucial material properties in
the fracture failure of a notched concrete beam. The geometry of the notched concrete beam is
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shown in Figure 5, with experimentally determined mean values of material properties [21]:
modulus of elasticity �� = 35 GPa, tensile strength �� = 3 MPa, compressive strength�� = 65 MPa, fracture energy �� = 100 N/m, and compressive strain at compressive strength

in the uniaxial compressive test �� = 0.003. A group of 20 notched concrete beam samples is

prepared depending on a stratified Monte Carlo‐type simulation called Latin hypercube
sampling (LHS) [22], using FReET software [23] with a correlation control procedure [24].

Figure 5. Notched concrete beam under three‐point bending [4].

Figure 6. Force‐displacement curves at the notch tip S from 20 simulated realizations of notched concrete beams [4].

The 20 notched concrete beam samples are determined by employing the following steps: (1)
material properties are considered as random variables and mean values are obtained by
experiments; (2) for each property, the LHS stochastic simulation is utilized to produce 20

random realizations of ��, ��, ��, ��, ��  that feature variation of 0.15 and that obey a rectan‐
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gular probability distribution, to impose variability for the creation of the training set. Each
random realization determines a numerical nonlinear fracture mechanic calculation of a
notched concrete beam; and (3) the finite element method (FEM) software ATENA [25] is
applied to each realization to simulate the tensile fracture of the corresponding notched
concrete beam. The fracture failure is described by a force‐displacement curve at the notch tip
S (Figure 5). A set of 20 force‐displacement curves is illustrated in Figure 6. This set can be
used as input data for the NNE‐based sensitivity analysis. These curves describe the correlation
between material fracture‐mechanical properties and the nonlinear response of the beam. The
sensitivity of the material properties to tensile fracture is studied depending on three forces:�0.02, the force corresponding to 0.02‐mm displacement; �max the maximum force; and �0.15
the force corresponding to 0.15‐mm displacement. For each force, NNE‐based parameter
sensitivity analysis is applied to determine the significance of the material properties.

Parameter Characteristics Parameter type

Ec Modulus of elasticity Input

ft Tensile strength Input

fc Compressive strength Input

Gf Fracture energy Input

εc Compressive strain Input

F0.02 Force at 0.02‐mm displacement Output

Fmax Maximum force Output

F0.15 Force at 0.15‐mm displacement Output

Table 4. Material properties in fracture failure of notched concrete beam [4].

Force Ranking

Ec ft fc Gf εc

F0.02 1 2 3 4 5

Fmax 2 1 4 3 5

F0.15 4 2 3 1 5

Table 5. Sensitivity analysis results of material parameters in fracture failure [4].

In NNE‐based sensitivity analysis paradigm, a BP neural network with five input neurons and
one output neuron (Table 4) is used as the seed to create a set of k‐candidate neural network
models. These models correlate the relationship between the material properties and the
fracture failure. Depending on the performance of these models, the three best‐performed
neural network models are selected in the NNE model and the input perturbation algorithm
is used for parameter sensitivity analysis. The result of the sensitivity analysis in this case is
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shown in Table 5. It is obvious from the table that ��, followed by �� and ��, are the most

important parameters in the fracture failure of the notched concrete beam.

6.2. Lateral deformation of deep-foundation pit

The construction of underground structures such as subway system tunnels, etc. requires deep‐
foundation pits. The working condition of a deep‐foundation pit is usually defined by means
of lateral deformation [26]. This lateral deformation usually involves a group of variables
(Table 6), namely surface load q, deformation modulus of soil E, Poisson’s ratio λ, soil cohesion
C, and internal friction angle of soil ϕ. To analyze the working process of the deep‐foundation
pit, it is essential to study the sensitivity of these variables in order. Therefore, NNE‐based
parameter sensitivity analysis is applied to determine the importance of parameters in the
lateral deformation of deep‐foundation pits. For such analysis, a deep polygon‐shaped
foundation pit, as in [27], is utilized, having an excavation depth of 9.71 m, a width of earth‐
retaining wall of 8.7 m, and a length of reinforcement piles of 19.0 m, with the insertion ratio
about 1.0. For testing cases, an orthogonal design of experiments is used to generate 25 testing
cases, as shown in Table 7 [27]. The testing cases are employed within the NNE‐based
sensitivity analysis paradigm to finally specify the contribution of each parameter to the lateral
deformation y of the deep‐foundation pits.

Parameter Characteristics Parameter type

q Surface load Input

E Deformation modulus of soil Input

ε Poisson’s ratio Input

C Soil cohesion Input

ϕ Internal friction angle of soil Input

y Lateral deformation of deep‐foundation pit Output

Table 6. Properties in lateral deformation of deep‐foundation pit [4].

No. q (kPa) E (kPa) ε C (kPa) ϕ (rad) y (cm)

1 1 (5.0) 1 (3855) 1 (0.325) 1 (5.63) 1 (0.1386) 63.7

2 1 2 (6168) 2 (0.376) 2 (7.44) 2 (0.1834) 35.3

3 1 3 (7710) 3 (0.410) 3 (8.65) 3 (0.2133) 26.7

4 1 4 (9252) 4 (0.444) 4 (9.86) 4 (0.2432) 20.9

5 1 5 (11,565) 5 (0.478) 5 (11.68) 5 (0.2731) 12.5

6 2 (8.0) 1 2 3 4 55.8

7 2 2 3 4 5 32.1
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No. q (kPa) E (kPa) ε C (kPa) ϕ (rad) y (cm)

8 2 3 4 5 1 21.9

9 2 4 5 1 2 16.3

10 2 5 1 2 3 25.2

11 3 (10.0) 1 3 5 2 47.8

12 3 2 4 1 3 26.1

13 3 3 5 2 4 16.2

14 3 4 1 3 5 30.4

15 3 5 2 4 1 22.1

16 4 (12.0) 1 4 2 5 37.1

17 4 2 5 3 1 18.0

18 4 3 1 4 2 34.9

19 4 4 2 5 3 25.8

20 4 5 3 1 4 18.9

21 5 (15.0) 1 5 4 3 25.2

22 5 2 1 5 4 42.4

23 5 3 2 1 5 30.1

24 5 4 3 2 1 22.4

25 5 5 4 3 2 15.6

Table 7. Orthogonal experimental design for producing testing samples [27].

Model Ranking

q E λ C ϕ

NNM1 5 1 2 3 4

NNM2 5 1 2 3 4

NNM3 5 1 2 3 4

Table 8. Sensitivity analysis results in lateral deformation of deep‐foundation pit [4].

As in the previous case study, a BP neural network is chosen as the seed in NNE‐based
sensitivity analysis to generate a set of k‐candidate neural network models having five inputs
and one output as listed in Table 6. By selecting three superior neural network models, namely
NNM1, NNM2, and NNM3, and implementing input perturbation algorithm for sensitivity
analysis, the ranking of each input parameter corresponding to each neural network model is
shown in Table 8. It is clear that E is the most important parameter, followed by �, �, �, and q,
respectively.
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7. Summary

A short review of traditional neural network sensitivity analysis techniques was illustrated,
followed by the presentation of two advanced techniques, NNC‐based sensitivity analysis and
NNE‐based sensitivity analysis. These two techniques utilized selective superior neural
network models along with some mathematical concepts to analyze the sensitivity of signifi‐
cant explicative variables. The efficiency of NNC‐based sensitivity analysis paradigm was
verified by studying the underlying influential parameters in strata movement. The effective‐
ness of NNE‐based sensitivity analysis paradigm was proved by two case studies in civil
engineering, the fracture failure of notched concrete beams and the lateral deformation of deep‐
foundation pits. These paradigms are essential for understanding the neural‐network‐based
sensitivity analysis of critical engineering problems, due to their ability to determine the most
and least important parameters, thereby reducing the inputs of neural network models to
generate better predictability. They are good tools for analyzing the mechanism of engineering
problems that black‐box neural network models cannot explain.
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