
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322427129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 3

Multitemporal Analysis in Mediterranean Forestland
with Remote Sensing

Ignacio Melendez-Pastor, Encarni I. Hernández,
Jose Navarro-Pedreño, Ignacio Gómez and
Magaly Koch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63721

Abstract

The study employs a Fourier transform analysis approach to assess the land-cover
changes in a mountainous Mediterranean protected area using multi-temporal satellite
images. Harmonic analysis was applied to a time series of Landsat satellite images
acquired from 1984 to  2008 to  extract  information about  land cover  status  with a
vegetation  spectral  index,  the  Normalized  Difference  Vegetation  Index  (NDVI).
Ancillary cartographic information depicting land cover classes and the enlargement of
the protected area over time (i.e., maps showing the original delineation in 1995 and
subsequent enlargement in 2007) were employed as additional factors to understand
vegetation-cover changes. Significant differences in the NDVI and harmonic compo‐
nents values were observed with respect to both factors. The application of the Fourier
transform was  particularly  successful  to  extract  subtle  information.  The  harmonic
analysis of the NDVI time series revealed valuable information about the evolution of
the landscape. The initially protected area (northern sector) seems more affected by
human activities than the southern sector (enlarged area in 2007) as revealed by the
analysis  of  the first  harmonic  component  that  was closely related with vegetation
coverage. Rural abandonment is a major driver of land-cover changes in the study area.

Keywords: landscape dynamics, forest management, rural abandonment, remote
sensing, Fourier transform

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Land cover (i.e., biophysical attributes of the Earth’s surface) changes play an important role in
the global environmental changes [1,2]. Land-cover changes may result from human-induced
land-use changes or natural processes such as climatic variability and natural disturbances [3].
Studying land-cover change is a challenge because it represents a global dynamic phenomen‐
on  affecting  the  Earth’s  large  surface  areas  and  continuously  evolves  throughout  time.
Fortunately, the status and rate of land-cover changes may be estimated and monitored through
the analysis of remotely sensed data [4]. Remote sensing allows the study of the role of terrestrial
vegetation in large-scale global processes (e.g., the carbon cycle) [5]. The scientific community
often relies on data gathered by satellite sensors because of their synoptic view, worldwide
coverage, and repeated temporal sampling capability of the Earth’s surface enabling monitor‐
ing of vegetation dynamics from regional to global scales [6,7].

Optical multispectral remote sensing sensors record the reflected portion of electromagnetic
radiation-illuminating land covers. They record reflected light as digital counts that can be
later transformed into comparable physical measurements such as surface reflectance, which
facilitates the comparison with spectrometer measurements of surface covers. Many data
transformation techniques (i.e., mathematical operations to reexpress the information content
of multispectral and hyperspectral data) exist to perform spectral comparison across sensor
platforms, which greatly facilitate the interpretation of land cover types [8]. In this context,
vegetation indices have been used to derive measures that correlate with surface biophysical
properties [9] and as such facilitate the analysis of large amounts of satellite data for spatial-
and temporal-scale analyses [10]. Vegetation indices are directly related to plant vigor, density,
and growth conditions and can be used to detect environmental conditions and human
activities [4,11]. The most frequently used vegetation index is the Normalized Difference
Vegetation Index (NDVI) as described by Rousse et al. [12], which is employed in this study.

Vegetation indices are frequently employed for the characterization of vegetation dynamics
and landscape changes using satellite time-series data. They are fundamental data for
monitoring vegetation phenology or land-cover changes associated with events such as fire,
drought, land-use conversion, and climate fluctuation [13,14]. However, using vegetation-
index time series for the analyses of vegetation changes involves a highly complex task and
requires the application of specific techniques and methodologies that have been developed
over time [11]. The application of Fourier Transform (FT) technique (harmonic analysis)
facilitates the extraction of valuable and interpretable characteristics from the time series,
which are usually distorted by atmospheric noise, sensor instability, and/or orbit deviations
[15]. Harmonic analysis of vegetation-index time series can be used to analyze changes in land
covers and vegetation status by examining the altered values of amplitude, phase, or the
additive term over a period of years [11,16].

The objective of this study was the evaluation of landscape dynamics by the Fourier Transform
technique for the analysis of land-cover changes using a satellite image time series. Harmonic
analysis was applied to a time series of Landsat satellite images acquired from 1984 to 2008 to
extract information about landscape dynamics using a vegetation index. Landscape dynamics
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were assessed by combining harmonic analysis results with ancillary cartographic information
about the types of land cover classes of the protected area.

2. Material and methods

The study area is located in the Rodeno pine forest protected reserve (Paisaje Protegido de los
Pinares de Rodeno or PPPR in Spanish) of the southern Iberian System in the Sierra de Albarracín
shire (Teruel province, Spain). The study area is positioned around 40.33 °N and 1.36°W. The
PPPR was established in 1995 covering an area of 3355.34 ha (Figure 1). In 2007, the protected
landscape was enlarged to about 6829.05 ha. The PPPR occupies part of the municipalities of
Albarracín, Gea de Albarracín and Bezas, with a current population (2015) of 1049, 387, and
67 inhabitants, respectively.

Figure 1. Location map of the study area, the Rodeno pine forest protected reserve (PPPR). Original and enlarged pe‐
rimeters of the protected area are shown.

It is a mountainous area with maximum altitudes ranging from 1063 to 1601 m and a mean
altitude of 1315 m. The climate is characterized by significant seasonal temperature variations
between summer (up to 35°C) and winter (down to −22°C). It is classified as wet sub-Medi‐
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terranean with an average annual temperature of 9–10°C and annual precipitation of 600–700
mm [17].

The name Rodeno is attributed to the characteristic Permian–Triassic reddish sandstones and
conglomerates found in this area (Figure 2a). Other important lithological materials are
Ordovician quartzite and Jurassic limestone and dolomites. Ordovician materials were
affected by Hercynian orogeny, and the totality of the study area was shaped by the Alpine
orogeny [18,19]. Lithology is an important factor affecting plant species distribution. Extensive
Pinus pinater Arr. forest (Figure 2b) dominates in sandstones and quartzite areas (i.e., more
acid soils), while Quercus ilex L. and Juniperus thurifera L. are more prone to calcaric soils (i.e.,
soils developed from limestone and dolomite parent materials). In addition to the environ‐
mental value of PPPR, the protected area contains an interesting cultural heritage. The presence
of numerous rock paintings is particularly noteworthy, which are fortunately protected by law
and are recognized as a world heritage by UNESCO (Rock Art of the Mediterranean Basin on
the Iberian Peninsula URL: http://whc.unesco.org/en/list/874)

Figure 2. Pictures of the study area: (a) north view from the Peña de la Cruz peak (see location in Figure 1) and (b)
characteristic view of a Pinus pinaster forest.

Geographical information systems (GIS) and remote-sensing techniques are excellent tools for
the identification and analysis of landscape spatial patterns [20]. Thus, satellite imagery and
cartographic data were analyzed with digital image processing methods and spatial analysis
techniques to detect spatial–temporal land-cover changes. A multitemporal Landsat satellite
dataset formed the basis for the change detection procedure. Images were acquired by the
multispectral Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors
onboard Landsat satellites. Images were selected at regular intervals of 8 years from 1984 to
2008. The dates of available scenes were 1984-09-21 (Landsat 4-TM), 1992-04-20 (Landsat 5-
TM) the only available scene without cloud cover, 2000-08-08 (Landsat 7-ETM+), and
2008-09-15 (Landsat 7-ETM+ SLC-off). An additional Landsat 7-ETM+ SLC-off acquired on
2008-10-01 was employed for filling gaps in the 2008-09-15 Landsat 7 image. Digital image
processing procedure included preprocessing of satellite multispectral images to ensure the
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temporal comparability (spatial and radiometric coherence and filling the gaps of SLC-off
images) between scenes, followed by the calculation of a vegetation index and the application
of Fourier Transform analysis to assess temporal changes of land covers.

In addition, several cartographic data sources were employed. For instance, the official
protected area boundaries were obtained from the Aragon Territorial Information System
(SITAR http://sitar.aragon.es) of the Aragon autonomous community government. The data
comprised vector perimeters of the protected area in 1995 and after its enlargement in 2007.
Furthermore, a land-cover map was derived from the National Forest Map of Spain [21]. Seven
land-cover classes were defined according to dominant vegetation classes included in the
vector cartography (Table 1). Pinus pinaster L stands is the most characteristic vegetation type
within the protected area.

Land cover class Description

Pinus sp.  Pine forest dominated by Pinus pinaster L at non-calcareous soils. Pine forest at calcareous soils is
denoted by the presence of Pinus nigra J.F.Arnold stands.

Juniperus thurifera Pure stands of small trees of Juniperus thurifera L developed at calcareous soils.

Quercus ilex  Quercus ilex L. stands preferentially developed at calcareous soils. Usually in the presence of
Juniperus thurifera.

Juniperus mixture Formations of medium-sized shrubs dominated by Juniperus thurifera and Juniperus communis L.
They have been intensely grazed and are under natural vegetation processes.

Shrubs  Xerophyte shrubs and pastureland at recursively grazed areas.

Rocky  Non-calcareous rocky areas with the presence of small herbs and shrubs such as Cistus laurifolius L.
or Erica scoparia L.

Agricultural  Non-irrigated cereal crops.

Table 1. Descriptions of land cover classes.

2.1. Preprocessing

Satellite image preprocessing included geometric and atmospheric corrections with the aim to
ensure the spatial comparability with other data sources and to obtain at-ground reflectance
pixel spectra. Various geo-referenced data types were used for the geometric correction: aerial
ortho-photos (1 m pixel resolution) and digital cartography (scale = 1:25000). The 2000 Landsat
7 ETM+ scene was selected because of its very good visual quality. It was geometrically
corrected using Ground Control Points (GCP) identified on the ortho-photos and cartographic
maps. A quadratic mapping function of polynomial fit and the nearest-neighbor resampling
method were used for the correction. The nearest-neighbor resampling method was selected
because it ensures that the original (raw) pixel values are retained in the resulting output
image, which is an important requirement in any change detection analysis [8]. The maximum
allowable root mean square error (RMSE) of the geometric correction was less than half a pixel,
a reference value frequently cited as acceptable [5,22,23].
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Since May 2003, Landsat 7 images suffer a radiometric problem caused by a malfunctioning
scan line corrector (SLC), which compensates for the forward motion of the satellite, and
subsequent efforts to recover the SLC were unsuccessful. Fortunately, Landsat 7 is still capable
of acquiring useful image data with the SLC turned off, particularly within the central portion
of any given scene, and various interpolation and compositing schemes have been developed
to expand the coverage of useful data [24]. A local linear histogram-matching method using
two SLC-off images (i.e., 15th September 2008 and 1st October 2008 Landsat 7-ETM+ scenes)
was applied to fill the gaps [25]. A rescaling function is derived after applying a local linear
histogram matching in a moving window over each missing pixel. A rescaling function is then
used to convert the radiometric values of a single input scene into equivalent radiometric
values of the scene being gap filled, and the transformed data are then used to fill the gaps of
that scene [26]. The adaptive local linear histogram adjustment algorithm can yield good
results if the scenes have comparable seasonal conditions (the scenes were taken within the
shortest revisit time of the satellite over the study area, i.e., 16 days) and do not exhibit radical
differences in target radiance (i.e., presence of clouds, snow, sun glint, or changes in solar
illumination geometry) [25].

Atmospheric correction involves the estimation of the atmospheric optical characteristics at
the time of image acquisition [27]. Radiometric calibration was applied prior to the atmospheric
correction. The conversion of raw digital numbers (DNraw) of Landsat level 1 (L1) image
products to at-satellite radiance values (Lsat) required the application of current rescaling
values [28] by applying the following expression [24,28,29]:

255
MAX MIN

sat MIN

L L
L DN Ll l

l

-æ ö
= × +ç ÷
è ø

(1)

Where Lsat is the at-satellite radiance [W/(m2 sr μm)]; LMINλ is the spectral radiance that is scaled
to Qcalmin [W/(m2 sr μm)] (Qcalmin is the minimum quantized calibrated pixel value, i.e., DN = 0,
corresponding to LMINλ); LMAXλ is the spectral radiance that is scaled to Qcalmax [W/(m2 sr μm)]
(Qcalmax is the maximum quantized calibrated pixel value, i.e., DN=255, corresponding to
LMAXλ); and DN are digital numbers of the L1 image product. Surface reflectance values (ρ)
were computed using the image-based COST method [30] and applied according to Melendez-
Pastor et al. [31]. They computed the path radiance (Lp) values using the equation reported in
Song et al. [32] and assuming a 1% surface reflectance for dark objects [30,33,34]. The optical
thickness for Rayleigh scattering (τr) was estimated according to the equation given in
Kaufman [27].

2.2. Vegetation index

The spectral reflectance of the vegetated surface covers recorded by remote sensors can be
compressed into vegetation indexes [9], which are directly related to plant vigor, density, and
growth conditions and may also be used to detect unfavorable environmental conditions [4].
Vegetation indexes provide an effective way to perform valuable large spatial-and temporal-
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scale analyses with large amounts of satellite data [10]. The normalized difference vegeta‐
tion index (NDVI) [12] has been frequently employed for vegetation status assessment and is
formulated as follows:

NIR red

NIR red

NDVI r r
r r

-
=

+ (2)

Where ρNIR is the reflectance of the near infrared spectral band and ρRED is the reflectance of
the red spectral band. NDVI has been related with several vegetation parameters such as
changes in the amount of green biomass and chlorophyll content, leaf water content, CO2 net
flux, absorbed photosynthetically active radiation (APAR), leaf area index (LAI), and many
others [35]. It is also employed as vegetation status data source in many environmental
modeling approaches [36,37].

2.3. Fourier transform

Satellite NDVI time series can be analyzed by means of the Fourier Transform in order to obtain
its frequency domain components [11]. Harmonic or Fourier analysis allows the decomposi‐
tion of temporal data to the frequency domain, by which frequency information is represent‐
ed in terms of the sum of a set of sine and cosine functions [38]. Harmonic analysis allows a
complex curve to be expressed as the sum of a cosine waves (terms) and an additive term [39].
The Fourier Transform converts a function f(x) to the frequency domain by a linear combina‐
tion of trigonometric functions [40].

The correct interpretation of harmonic analysis results requires the consideration of several
key concepts [11,41]: (1) each wave is defined by a unique amplitude and phase angle, where
amplitude is the difference between the maximum value of a wave and the overall average of
the time series (usually 0 because the mean is equal to the harmonic term with k = 0), and the
phase angle defines the offset between the origin and the peak of the wave over the range 0
to 2π; (2) the additive or zero term is the arithmetic mean of the variable over the time series;
(3) high amplitude values for a given term indicate a high level of variation in the temporal
variable time series, and the term in which that variation occurs indicates the periodicity of
the event; and 4) phase indicates the time at which the peak value for a term occurs. Each term
indicates the number of complete cycles completed by a wave over a defined interval [16]. In
this study, the Fourier Transform was applied to the 24-year Landsat time series. The additive
term and the first two harmonic components of the NDVI time series were extracted for all
land-cover classes for subsequent analysis. IDRISI Selva © software (Clark Labs, Clark
University) was employed for the harmonic analysis of the time series.

2.4. Statistical analyses

Statistical analyses were used to assess the influence of the time of landscape protection (1995
original perimeter of the protected area vs. 2007 park enlargement) and the land-cover classes
on the vegetation cover status as denoted by the NDVI images and derived harmonic
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components. Data for statistical analysis were obtained by randomly selecting pixels on the
NDVI and harmonic components images. A total of 2742 pixels within the current perimeter
of the PPPR were obtained to extract the NDVI and harmonic component values, and further
statistical analyses were performed with the IBM-SPSS statistics 23 © software (IBM
Corporation).

Input variables were checked for normal distribution with the Kolmogorov–Smirnov test.
Required variable transformations were applied to ensure the normality of input variables. A
one-way analysis of variance (ANOVA) test was employed to detect the NDVI or harmonic
component differences using the protected area declaration (PAD) as factor. The same
procedure was applied to detect NDVI or harmonic component differences using land-cover
classes (LC) as a factor. In addition, a two-way ANOVA test was employed to assess the
harmonic component differences using protected area declaration (PAD) and land-cover
classes (LC) as factors.

3. Results and discussion

The PPPR study area is a mountainous area with a landscape dominated by the presence of
large coniferous forest (Pinus sp.). Figure 3a shows a false color composite RGB = 742 of the
1984 Landsat TM image. Green areas are associated with coniferous forest, whitish areas
correspond to almost bare soils of agricultural fields, and reddish areas correspond to
sandstone areas with different vegetation classes. A digital elevation model (DEM) shown in
Figure 1 allowed the topographic characterization of the area. The mean altitude and aver‐
age slope of the 1995 protected area and the 2007 enlargement area are very similar. The mean
altitude and average slope of the PPPR are 1315 m and 13.7°, respectively.

Figure 3. Satellite imagery and cartographic data: (a) false color composite RGB = 742 of the 1984 Landsat satellite
image and (b) land cover map from the National Forest Map.

The major land cover class is Pinus sp. forest that accounts for 80% (5439.69 ha) of the PPPR
(Figure 3b and Table 2). The proportion was slightly higher for the 2007 enlargement area
(88% or 3147.39 ha) compared to that for the 1995 perimeter (70% or 2292.30). Shrub (432.9 ha),
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rock (405.99 ha), and agriculture (371.52 ha) classes represent about 6% each. Juniperus thurifera
land cover class is not present in the 1995 perimeter. Meanwhile, Quercus ilex, Juniperus
mixture, and shrub land-cover classes are no present in the 2007 enlargement.

Land cover clases Current PPPR (ha) 1995 perimeter (ha) 2007 enlargement (ha)

Pinus sp. 5439.69 2292.30 3147.39

Juniperus thurifera 18.72 No presence 18.72

Quercus ilex 97.02 97.02 No presence

Juniperus mixture 65.43 65.43 No presence

Shrubs 432.90 432.90 No presence

Rocky 405.99 108.72 297.27

Agriculture 371.52 268.65 102.87

TOTAL 6831.27 3265.02 3566.25

Table 2. Land cover surface (ha) distribution in the current PPPR, the original protected area (1995) and 2007 park
enlargement.

The average NDVI values for each land-cover class (Table 3) were computed for each satellite
image (from 1984 to 2008). Pinus sp. and rocky areas had the largest average NDVI values
with 0.53 and 0.51, respectively. On the contrary, shrubs and agricultural fields had average
NDVI values less than 0.36. Juniperus thurifera, Quercus ilex, and Juniperus mixture stands had
sequentially decreasing NDVI values from 0.43 to 0.37.

Variables x̄ ± σ PAD Land cover

NDVI 1984 0.50 ± 0.31 0.000 *** 0.000 ***

NDVI 1992 0.59 ± 0.35 0.000 *** 0.000 ***

NDVI 2000 0.46 ± 0.28 0.000 *** 0.000 ***

NDVI 2008 0.51 ± 0.32 0.000 **** 0.000 ***

A0 0.51 ± 0.30 0.054 N.S. 0.008 **

A1 0.04 ± 0.59 0.000 *** 0.000 ***

A2 0.05 ± 0.62 0.000 *** 0.000 ***

P1 1.95 ± 1.92 0.060 N.S. 0.220 N.S.

P2 5.30 ± 0.92 0.000 *** 0.000 ***

** = p ≤ 0.010 ; *** = p ≤ 0.001 ; N.S. = not significant.
Independent ANOVA test for protected area declaration (PAD) and land cover class factors. Descriptive statistics
(mean ± standard deviation) of variables are included. Phase values are in radians.

Table 3. One-way analysis of variance results (p-values) for NDVI and harmonic components images.
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One-way ANOVA of the NDVI values of the sampled points allowed the independent
comparison of the effect of protected area declaration and land-cover classes on vegetation
index values (Table 3). Significant differences of NDVI values were observed for both factors.
Different land cover types tend to report different values of NDVI, thus allowing the identi‐
fication of temporal patterns of the vegetation index for each land cover type. In addition, the
average NDVI values for both protected area declaration (PAD) subzones could be different
by their dissimilar landscape structure. These changes in the vegetation index values are
related to the phenological changes in the land covers being characteristic of a particular type
of vegetation and may be affected by human actions [11]. Several authors have noted the
usefulness of vegetation time series for classifying land cover classes in mountainous areas
such as the study area [42] and for detecting changes in forest stands [43,44].

The first two harmonic terms and the additive term were derived from the Fourier Trans‐
form of the NDVI time series (Figure 4). Harmonic analysis allowed the conversion of the
NDVI time series from the time domain to the frequency domain, which is very useful to
mitigate noise effects and gain information about the time at which NDVI changes occurred.
Such information could be obtained after a combined interpretation of the phase and ampli‐
tude components. The first three or four harmonic terms concentrate vegetation phenology
patterns, while the high-frequency noise is partitioned into the higher harmonic terms [41].
The additive term (A0) corresponds with the average NDVI of the time series.

Figure 4. Cartography depiction of NDVI-based Fourier Transforms: (a) additive or amplitude 0 image, (b) amplitude
of the first harmonic component, and (c) phase of the first harmonic component.

The average values of the amplitude of the first harmonic component (A1) and the second
harmonic component (A2) are shown for each land cover class (Figure 5a). Highest ampli‐
tude values were observed for Pinus sp., rocky and agricultural land cover classes suggest‐
ing larger temporal variations of NDVI values compared to those for the other land cover
classes. Conversely, Quercus ilex stands seem to be highly stable throughout the time that is
particularly important for a low-growth rate species. Juniperus thurifera and Juniperus mix‐
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ture land cover classes had moderate A1 values suggesting a progressive but slow regrowth
of vegetation due to cessation of rural activities.

Figure 5. NDVI-based Fourier Transform results: (a) mean value of the amplitude (with standard deviation error bars)
for the first two harmonic components for each land cover class; and (b) mean phase value of the first harmonic com‐
ponent phase (in years) for each land cover class.

A two-way ANOVA test with the sampled values of the first two harmonic components and
the additive term was performed. Protected area declaration and land cover class were
employed as factors. Only land cover classes present in both PPPR protected areas (1995
original area and 2007 enlargement) were considered. A total of 2502 pixel of Pinus sp., rocky
and agricultural land cover classes were analyzed (Table 4). In relation with the protected area
declaration factor, all amplitude and phase variables exhibited significant variations except
for the second harmonic component. In relation with the land cover factor, significant
differences were observed for zero term and the phase values but not for the other ampli‐
tude terms (A1 and A2). Finally, the effects of the interaction of both factors were assessed.
Only significant differences were observed for the phase of the first component. A two-way
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ANOVA test with NDVI values was discarded because such variables did not show any
relevant information. Significant differences of NDVI values for PAD and LC factors were
always detected.

Factor Variable df F p-value

PAD A0 1 14.374 0.000 ***

A1 1 8.221 0.004 *

A2 1 2.145 0.143 NS

P1 1 4.746 0.029 *

P2 1 1.985 0.159 NS

Land cover A0 2 260.635 0.000 ***

A1 2 2.867 0.057 NS

A2 2 1.661 0.190 NS

P1 2 14.583 0.000 ***

P2 2 4.833 0.008 **

PAS | Land cover A0 2 2.958 0.052 NS

A1 2 1.297 0.274 NS

A2 2 1.735 0.177 NS

P1 2 24.030 0.000 ***

P2 2 3.697 0.025*

* = p ≤ 0.050; ** = ≤ 0.010; *** = p ≤ 0.001 ; N.S. = not significant.
Protected area declaration (PAD) and land cover class are the factors. Degrees of freedom, F statistic, and p-values are
included.

Table 4. Two-way analysis of variance results for the harmonic component images.

A final interpretation of the Fourier Transform results was obtained after considering the
results of the visual inspection of the images complemented with ancillary geographical
information and the two-way ANOVA results. The amplitude of the first harmonic compo‐
nent (A1) was primarily associated with changes in the forest stands by logging and the
significant cessation of grazing. We analyzed the A1 image in a GIS and located the highest
numeric values areas (dark red areas in Figure 4b). Such areas were identified on aerial
photography from 1997 and 2008 available at the aforementioned SITAR. We observed a
progressive vegetation re-growth of such areas after the cessation of past clear-cutting
(currently logging activities are less aggressive, i.e., horses are even used to transport logs to
minimize environmental impact) and the progressive decrease of grazing pressure by the rural
abandonment. The phase of the first harmonic component (P1; Figure 4c) was less than π (in
radians or 180 degrees) for such high A1 values suggesting that the peak of the first harmon‐
ic component for such areas was before 1996 (Figure 5). The average values of the phase 1
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component were computed as a function of the land cover classes within the entire PPPR. The
peak of the first harmonic component was for the late 1980s and early 1990s with later values
for Pinus sp., rocky and agricultural land cover classes. The evolution of the population is a
factor commonly used to explain the dynamics of the landscape [45]. The current landscape
of the Spanish Mediterranean mountain areas is the result of multiple biophysical agents, such
as demographic trends, and the political and economic dynamics [46]. The population of the
Sierra de Albarracín is continuously decreasing since the early XX century due to rural
abandonment. This process of decline in rural population results in a reduction of an exten‐
sive livestock activity that is largely responsible for the maintenance of shrublands and
pastures [47] and promoting forest regeneration [7]. In the last 25 years, Spain has under‐
gone deep social and administrative changes (rural abandonment, new forestry policies, and
administrative changes) promoting vegetation recovery by the reduction of grazing pressure
as a result of depopulation of rural areas [48]. Nevertheless, agricultural and logging activi‐
ties still persist within the park but are well regulated.

Finally, the application of the Fourier Transform was particularly interesting to extract subtle
information. The solely NDVI analysis suggested large temporal and land cover-dependent
differences on the vegetation cover, but subtle changes seemed to be undetectable. The
harmonic analysis of the NDVI time series revealed highly valuable and easily interpretable
information. Higher amplitude values (A0, and A1) were observed for the three land cover
classes (Pinus sp., rocky and agricultural) within the 2007 enlargement area. The two-way
ANOVA revealed significant differences of the additive term and the first harmonic compo‐
nent (A1 and P1) as a function of the PAD factor (Table 4). The additive term also have
significant differences as a function of the land cover factor (higher values for the forest cover).
The application of the two-way ANOVA was particularly useful to understand the com‐
bined effect of land protection and land-cover classes on vegetation dynamics. We suggest that
our first harmonic component was a good indicator of vegetation recovery processes. The fact
that no significant differences of the A1 component were obtained for the land cover factor but
were significant for the PAD factor suggests that the expansion of the park had a positive
impact on vegetation coverage in the reclaimed areas. Such differences could not be directly
attributable to a poor management of the protected area because the northern sector of the
park is closest to the major population centers of the shire (Albarracín and Gea de Albarra‐
cín), while the southern sector has greater inaccessibility (worst road network). The presence
of a lumber mill in Albarracín (northern study area) suggests larger logging in the northern
sector (better accessibility) compared to that in the southern sector of the protected area. The
distance to urban areas or roads is a critical factor affecting land-cover changes induced by
processes such as deforestation [49,50] land abandonment [51] or urban growth [52].

Future research should be focused on updating the Fourier Transform time series analysis with
the inclusion of additional images for September-October 2016 (in order to maintain the 8-year
interval). In order to continue the Landsat time-series analysis, Landsat-8 imagery (available
from April 2013 on) would be the most appropriate choice as this sensor has similar charac‐
teristics to Landsat 7. However, their comparability is somewhat complex by the reflectance
differences expected by their notably dissimilar specifications (i.e., narrower bands, 16 bits
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instead of 8 bits for the OLI (operational land imager) sensor) [53]. It is difficult to compre‐
hensively model their spectral reflectance differences, which also depend on the surface
reflectance and atmospheric state [54]. Recent studies have modeled the relationship be‐
tween the vegetation indices images obtained from ETM+ and OLI [54–56]. This information
is very important for future applications of remote sensing to assess landscape temporal
dynamics. Vegetated areas had better NDVI agreement than non-vegetated surfaces (espe‐
cially water areas) [55], and the seasonal agreement of both sensors is better for forest and
shrub areas during growth periods than for others land covers [56]. In addition, OLI images
are very infrequently saturated [54], and hence more precise quantitative applications of
remote sensing are expected for complex landscapes such as wetlands, mountainous areas and
forest.

4. Conclusions

This study applied the Fourier Transform technique to analyze land-cover changes based on
a NDVI time series of satellite images in a mountain forestland, considering the expansion
stages of a protected reserve. Although the complexity of the study area (geomorphology)
could affect the expected results, the harmonic analysis provided a highly efficient method to
minimize the time-series noise effect and to extract valuable information for interpreting
spatial and temporal changes of land covers. The first two harmonic components plus the
additive term were selected for the evaluation of the landscape dynamics. Higher amplitude
values were obtained for very dynamic land cover classes or drastic landscape changes (e.g.,
intensive logging areas), while lower amplitude values were associated with slow regenera‐
tion vegetation classes. Further statistical analysis revealed significant differences of NDVI
harmonic components for the expansion stages of the protected reserve and land-cover factors.
Those results suggested a complex landscape dynamics greatly influenced by the land
management and vegetation classes. The interpretation of such landscape changes and
underlying driving factors was supported by previous research of key socioeconomic and
environmental factors. The study area is suffering serious depopulation problems manifest‐
ed by the progressive expansion of forest areas at the expense of former grazing land.
Awareness of environmental and cultural values of the study area has led to the progressive
protection of the area to improve conservation and management. In this sense, the use of
remote sensing images to explore and understand the temporal evolution of ecosystems was
an excellent source of knowledge to improve land management. The Landsat scenes selected
to analyze vegetation cover changes between the four time periods in this Spanish Mediter‐
ranean mountainous protected area provided valuable information usable to understand
landscape dynamics. The combined use of land cover and protected area development maps
with the first harmonic components enabled the analysis of landscape dynamics as influ‐
enced by rural abandonment. The multitemporal NDVI analysis with the Fourier transform
allows assessing the places and the time that logging activities have taken place. The use of
these techniques can help improve the study and ecological conservation in remote rural areas
throughout the world.
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