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Abstract

The frequency of melanoma doubles every 20 years. The early detection of malignant
changes augments the therapy success. Confocal laser scanning microscopy (CLSM)
enables the noninvasive examination of skin tissue. To diminish the need for training
and to improve diagnostic accuracy, computer-aided diagnostic systems are required.
Two approaches are presented: a multiresolution analysis and an approach based on
deep layer convolutional neural networks. For the diagnosis of the CLSM views,
architectural structures such as micro-anatomic structures and cell nests are used as
guidelines by the dermatologists. Features based on the wavelet transform enable an
exploration of architectural structures at different spatial scales. The subjective
diagnostic criteria are objectively reproduced. A tree-based machine-learning algo-
rithm captures the decision structure explicitly and the decision steps are used as
diagnostic rules. Deep layer neural networks require no a priori domain knowledge.
They are capable of learning their own discriminatory features through the direct
analysis of image data. However, deep layer neural networks require large amounts of
processing power to learn. Therefore, modern neural network training is performed
using graphics cards, which typically possess many hundreds of small, modestly
powerful cores that calculate massively in parallel. Readers will learn how to apply
multiresolution analysis and modern deep learning neural network techniques to
medical image analysis problems.

Keywords: confocal laser scanning microscopy, skin lesions, multiresolution image
analysis, convolutional neural networks, machine learning, computer-aided diagnosis
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1. Introduction

The skin is the largest organ of the body. Its surface comprises up to two square meters. It is
the organ that is in direct contact to the environment and is therefore exposed to several
environmental influences such as sun radiation, temperature, infections. The skin consists of
three main layers: the epidermis, the dermis and the hypodermis (subcutis), whereby each
layer is subdivided into several sublayers (strata) [1]. As the outermost layer, the epidermis
provides a protective barrier of the body’s surface which keeps water in the body, protects
against heat and ultraviolet radiation and prevents infections (caused by bacteria, fungi,
parasites, etc.) [2, 3]. The horny layer (stratum corneum), which is the top layer of the
epidermis, undergoes a continuous process of renovation (every 4 weeks). Keratinocytes,
which represents 90% of the cell types in the epidermis, protect the body against ultraviolet
radiation. Keratinocytes are derived from epidermal stem cells residing in the lower part of
the epidermis (stratum basalis). During their lifetime, they migrate through the different strata
of the epidermis. Via this process, they are pressed to the epidermis surface by the continu-
ously succeeding cells. During the migration through the different strata, the keratinocytes
cells undergo multiple stages of differentiation, whereby they change shape and composi-
tion and are filled with keratin. Different stages and corresponding strata are represented in
Figure 1. Keratin, a structural protein, is the key structural material making up the outer layer
of the epidermis and protects the cells from damage or stress. On their way to the outermost
strata, the keratinocytes lose liquid and become hornier. Corneocytes are keratinocytes that
have completed their differentiation program. They are dead cells in the stratum corneum and
are shed off (by desquamation) as new ones come in. Keratinocytes protect against ultravio-
let radiation by taking up melanosomes from epidermal melanocytes. The melanosomes are
vesicles which contain the endogenous photo protectant molecule melanin. Melanocytes are
melanin producing cells which comprise between 5 and 10% of the cells in the basal layer
(stratum basalis) of the epidermis. The production of the skin pigment melanin is stimulat-
ed by ultraviolet radiation (melanogenesis). Melanocytes have several arm-like structures
(dendrites) that stretch out to connect them with many keratinocytes. Once synthesized,
melanin is contained in the melanosomes and moved along the dendrites to reach the
keratinocytes. The melanin molecules are stored within keratinocytes (and melanocytes) in
the perinuclear area, around the nucleus, where they protect the DNA against ultraviolet
radiation. Thereby, a melanin molecule transforms nearly all the radiation energy in to heat.
This is done by ultrafast internal conversation of the energy from the excited electronic states
into vibrational modes. The ultrafast conversion shortens the lifetime of the excitation states
and therefore prevents the formation of harmful free radicals.

The dermis is connected to the epidermis through a basement membrane (a thin sheet of fibres)
and provides anchoring and nourishment for the epidermis. The dermis contains collagen
(stability), elastic fibres (elasticity) and an extrafibrillar matrix as structural components. The
papillary region (stratum papillae) in the dermis is composed of connective tissue which
extends towards the epidermis. These finger-like projections are called papillae and strengthen
the connection between the dermis and the epidermis. In addition to the structural compo-
nents, blood vessels are present in the dermis providing nourishment for the dermal and
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epidermal cells. Furthermore, the dermis contains hair follicles, sweat glands and lymphatic
vessels. (In addition to the presented components, the dermis also contains mechanoreceptors
that enable the sense of touch and thermoreceptors that provide the sense of heat). The
hypodermis is beneath the dermis. Its tasks comprise energy storage, heat insulation and the
connection of the skin with inner structures like muscles and bones. The hypodermis consists
primarily of loose connective tissue and adipocytes (fat cells), which are grouped together in
lobules (subcutaneous fat). Furthermore, the hypodermis contains larger blood vessels and
nerves than those found in the dermis.
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Figure 1. The layer architecture of the epidermis.

2. Malignant melanoma and benign nevi

The primary cause for the increasing number of melanomas is the extreme sun exposure during
sun-bathing (especially for people with low levels of skin pigment). The malignant melanoma
is a type of cancer that develops from the pigment containing melanocytes [4]. Melanomas are
mainly caused by DNA damage resulting from the ultraviolet radiation [5]. It is observed that
strongly pigmented people are less susceptible to (sun induced) melanomas, which demon-
strates the protection function of melanin. At the early stage, melanocytes begin an out-of-
control growth [5]. In a posterior stage (invasive melanoma), the melanoma may grow into the
surrounding tissue and can spread out around the body through lymph or blood vessels
deeper in the skin. People with melanomas at the early stage are treated by surgical removal
of the skin lesion. In cases where the melanoma has spread out, patients are treated by
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immunotherapy or chemotherapy. Most people are cured if spreading has not occurred.
Therefore, the early and reliable recognition of melanomas at the early stage is of special
importance [6]. The difference between a benign or malignant tumour is its invasive potential.
If a tumour lacks the ability to invade adjacent tissues and to metastasize then it is benign,
whereas a malignant tumour is invasive or metastatic. A nevus (birthmark) is a sharply
circumscribed and benign chronic lesion of the skin. The melanocytic nevus results from
benign proliferation of the dendritic melanocytes. Due to the pigment melanin, they are mostly
brown. Nevus cells are related to the melanocytes, but they show a lack of the dendrites and
are ovalin shape. They are typically arranged in cell nests. The majority of acquired nevi appear
during the childhood up to young adults (the first two decades of life). A melanocytic nevus
present at birth is called a congenital nevus. They are rarely about one in every 100 newborns.
Nevi are harmless. However, 25% of malignant melanomas arise from pre-existing nevi.

3. Confocal laser scanning microscopy

In conventional microscopy, the entire field of a tissue sample is simultaneously illuminated
by light and displayed. Although the brightest light intensity results from the focal point of
the objective lens, other parts of the tissue are still illuminated, resulting in a large unfocused
background section. This background noise diminishes the image quality. Both conventional
and confocal laser scanning microscopy (CLSM) can use reflected light to image a tissue
sample. The reflected light from the illuminated spot is then re-collected by the objective lens.
In addition to the reflected light from the focal point, the scattered light from sample points
outside the focus light (coming from places above or below the focus) is projected by the optical
system of the microscope and therefore contributes to the image assembly. This causes a
blurring and obscuring of the resulting image. Confocal microscopy overcomes this problem
by placing a pinhole in the conjugate focal plane (hence the designation confocal) that allows
only the light emitting from the desired focal spot to pass through [7]. Any light outside of the
focal plane (the scattered light) is blocked. Figure 2 shows the principle: the out of focus light
(red), coming from places above the selected focal plane, is blocked by the pinhole in the
conjugate focal plane. The (in focus) light from focal plane (blue) can pass through the pinhole
and is detected. Therefore, a blurring is avoided and sharp and detailed images are produced
(in other words: the image information from multiple depths in the sample is not superim-
posed). In confocal microscopy, a light beam is directed by a dichroic mirror to the objective
lens where it is focused into a small focal volume at a layer within the tissue sample (Figure
3). A laser, with a near-infrared wavelength, is used as a coherent monochromatic light source.
The same microscope objective gathers the reflected light from the illuminated spot in the
sample. The dichroic mirror separates the reflected light from the incident light and deflects
it to the detector. Before the light reaches the detector, the out of focus sections are blocked by
the pinhole in the conjugate focal plane. The in focus light that passes through the pinhole is
measured.
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Figure 2. Principle of the confocal (left) and laser scanning (right) microscopy.

The detector, which is usually a photomultiplier tube or avalanche photodiode, amplifies and
transforms the intensity of the reflected light signal into an electrical one that is recorded by a
computer. In contrast to conventional microscopy, there is never a complete image of the
sample at any given instant; rather only one point in the selected plane of the sample is
observed. In order to create an image, light from every point in the plane (x-axis, y-axis) must
be recorded. This can be done by a raster scanning mechanism which uses two motor driven
high-speed oscillating mirrors, which pivot on mutually perpendicular axes. Coordination of
the two mirrors, one scanning along the x-axis and the other on the y-axis, produces the
rectilinear raster scan (Figure 2). During the scanning process, the detected signal is transferred
to a computer that collects all the “point images’ of the sample and serially constructs the image
pixel by pixel. The brightness of a resulting image pixel corresponds to the relative intensity
of the reflected light. The contrast in the images results from variations in the refractive index
of microstructures within the tissue. Information can be collected from different focal planes
by raising or lowering the objective lens. Then successive planes make up a ‘z-stack’. A stack
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Figure 3. Principle of the confocal laser scanning microscope.
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is a sequence of images captured at the same horizontal position (x- and y-axes) at different
depths (z-axis). The images are taken enface (horizontally). The confocal laser scanning
microscopy is performed with a Vivascope 1000 (Lucid Inc., USA) which uses a diode laser at
830 nm wavelength and a power of <35 mW at tissue level. A x30 water-immersion objective
lens with a numerical aperture of 0.9 is used with water as an immersion medium. The spatial
resolution is 0.5-1.0 pum in the lateral and 3-5 pm in the axial dimension.

The images contain a field-of-view of 0.5 x 0.5 mm. Up to 16 layers per lesion can be scanned.
Allimages, stored in BMP file format, are monochrome images with a spatial resolution of 640
x 480 pixels and a grey level resolution of 8 bits.

4. Interpretation of confocal laser scanning microscopic images

The reflectivity of the tissue depends on chemical structures. Melanin and melanosomes have
a high refractive index which contributes strongly to the contrast of the resulting image [8-
10]. Due to such dominating variations of the refractive index, only a certain part of the in
falling light is reflected. This makes the appearance of the tissue in a CLSM image so different
from conventional histological views. The power of the 830 nm laser limits the imaging depth
to a maximum of 350 um, corresponding to the papillary dermis (higher power could damage
the skin). Figure 4 shows the views of different skin layers [11]. The stratum corneum shows
large polygonal anucleated corneocytes (A). Skin folds and marks appear as dark structures.
The next layer is the stratus granulosum (B). The stratum spinosum (C) contains keratinocytes
in a honeycomb pattern. In the stratum basalis (D), the basal cells are uniform in size and show
higher reflections than spinous keratinocytes and appear very intensively. The dermatological
guidelines for the interpretation of melanocytic skin lesions in CLSM views are as follows.

Figure 4. CLSM views of normal skin.

For the diagnosis of CLSM views of benign common nevi and malignant melanoma, architec-
tural structures such as micro-anatomic structures; cell nests, etc., play an important role [12].
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Monomorphic melanocytic cells, melanocytic cell nests and readily detected keratinocyte cell
boarders are suggestive of benign nevi, whereas polymorphic melanocytic cells, disarray of
melanocytic architecture and poorly defined keratinocyte cell borders are suggestive of
melanoma (Figure 5). The images are taken from the centre of the tumours.
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Figure 5. CLSM images of malignant melanoma (left) and common benign nevi (right).

Layers from the plane of the spinous keratinocytes (polygonal cells) to the plane of the basal
cells (dermo-epidermal junction) are used for diagnosis.

5. Analysis of tissue structures at different scales

As shown in the previous section, the information at different scales (from coarse structures
to details) plays a crucial role in the diagnosis of CLSM images of skin lesions. Wavelet analysis
is a method to analyse visual data by taking into account scale information [13].

Figure 6. Scale-space sequence of a successively Laplacian of Gaussian-filtered image.

The multiple resolutions enable a scale invariant interpretation of an image. Figure 6 illustrates
the principle of scale space analysis for four levels of scale (clockwise direction). In the top left
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image (scale 1), the feature detection responds to fine texture. The images at higher scales are
generated by a Laplacian of Gaussian filter (LoG(x, y)), which is also known as Marr-Hildreth
operator or Marr wavelet (Figure 7), whereby the kernel size (0) of the Gaussian increases step
by step.

Ly ) o
LoG(x,y)=—| ——=——1|-e 2°
(x,5) nc4[ lom

The blue and red colours indicate positive and negative values. The images become increas-
ingly blurred and smaller details (or regions) progressively disappear. The detected features
are then associated with a larger scale scene structure. The multiresolution analysis is closely
analogous to the human vision system which seems to prefer methods of analysis that run
from coarse to fine and, repeating the same process, obtain new information at the end of each
cycle [14] (Figure 6 counter clockwise direction). The wavelet decomposition can be realized
as a convolution of the image with a filter bank, consisting of high pass and low pass filters [15].
Whereby, for example a first-order derivative can be used as a convolution kernel for the high-
pass filter and a moving average as a kernel for the low-pass filter. In our study, the filter
coefficients are defined by the Daubechies 4 wavelet transform.

¥ 10

Figure 7. Shape of the Laplacian of Gaussian convolutional filter kernel.

The wavelet decomposition performs a multi resolution analysis, whereby the image is
successively decomposed by the filter operations followed by sub-sampling. The (pyramidal)
algorithm consists of several steps and operates as follows: at the beginning, the image rows
are filtered by the high-pass filter and in parallel by the low-pass filter (Figure 8). From both
operations result two images (which are called sub-bands), one shows details (high pass) and
the other is smoothed out (low pass). The sub-sampling is done by removing every second
column in both sub-bands. Subsequently, the columns of both sub-bands are high-pass and
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independently low-pass filtered. This results in four sub-bands, which differ by the kind of
tiltering. Again a sub-sampling is done by removing every second row in each sub-band. This
is the end of the first step. The mixed filtered (high-low pass, etc.) sub-bands are stored. Only
the double low-passed sub-band is processed in the second step (Figure 8). The second step
repeats the operations of the first step. Again this results in four sub-bands and the fourth
smoothed sub-band is used as entry for the following step. At every step, the resulting sub-
bands are reduced to half the resolution. The sub-bands with higher spatial resolution contain
the detailed information (high pass), whereas the sub-bands with the low-resolution represent
the large scale coarse information (low pass). The output of the wavelet decomposition consists
of the remaining ‘smooth-...-smooth” components and all the accumulated ‘detail’ compo-
nents. In other words, via the wavelet decomposition, the image array is decomposed into
several sub-bands representing information at different scales. The output of the last low-pass
filtering is the mean gray level of the image.

After the dissection of the quadratic sub-bands, they are usually arranged in a quadratic
configuration, whereby the three sub-bands of the first step fill 3/4 of the square, the three sub-
bands of the second step fill 3/16 of the square, etc. The sub-bands representing successively
decreasing scales are labelled with increasing indices (Figure 9). Then, the architectural
structure information is accumulated along the way of the sub-bands (from coarse to fine). In
image processing, it is convenient to display the smoothed image as lowest sub-band in the
upper left corner of the quadratic sub-band configuration. The coefficients values in the
different sub-bands reflect architectural and cell structures at different scales.
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Figure 8. The multiresolution filter bank of the wavelet decomposition.
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Figure 9. The sub-bands resulting from the successive high and low pass filter operations.

The tissue features are derived from statistical properties of the sub-band coefficients. For the
ith sub-band of size N x N, the coefficients are given by:

di = {d1(kll)

1<,1=1,N}

The texture features are based on the variations of the coefficients within each sub-band and
the weighted sum of all the coefficients into each sub-band. The standard deviations of the
coefficients inside the single sub-bands and the energy and entropy of the different sub-bands
are calculated and used as features (for details see: [16]). The standard deviation of the
coefficients represents how exposed the tissue structures in the considered sub-band at the
given scale are. The total energy of the coefficients in a given sub-band shows to what degree
the structures at the corresponding scale contribute to the image. The distribution of the energy
of the sub-bands is represented in a power spectrum, enabling an evaluation of their relative
contributions.

The next task in automated image analysis is the use of machine-learning algorithms for
classification purposes on hand of the feature values [17]. The algorithm learns, by use of a
training set, how to assign the tissue images to given classes. Then, in future, the algorithm
can apply the gained knowledge to predict the class of unknown tissue. By means of the
classification procedure, the primary inhomogeneous set of CLSM samples, consisting of a mix
of malignant melanoma and benign common nevi cases, is split into homogeneous subsets,
which are assigned to one of the two tumour classes: common benign nevi or malignant
melanoma. A homogeneous subset means that it contains only CLSM images with similar
feature values, representing one specific kind of tissue. For the discrimination of the CLSM
images, the CART (Classification and Regression Trees) algorithm is used [18].

The tree representation consists of different nodes and branches. There is a root node, several
leaf (terminal) nodes and inner nodes (Figure 10). The first node in the tree is the root node. It
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contains the feature values of the whole set of CLSM image samples. A leaf node is a homo-
geneous node which contains only samples belonging to the same class of tissue. The inner
nodes contain more or less inhomogeneous sample sets. A branch in the decision tree involves
the testing of one particular texture feature (binary tree). Then, the considered node, which is
the parent node, is split into two child nodes (Figure 10).

Node

Parent Node
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Cividren Noes

—_—
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\ Determing Threshold 1

'
!

Condition? Condition 3
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p— i Wevminal Vi

Node 4

Figure 10. Generation of a decision tree.

Cenditiond .

The feature is tested by comparing its numerical value with a threshold value that divides the
value range. The threshold value is selected automatically by the algorithm in such a way that
the subsets of samples in the child nodes are purer than the set in the parent node. To this
purpose, an information measure is used which indicates the degree of homogeneity; the value
in the leaf nodes is zero and the higher the value of an inner node, the higher is its inhomo-
geneity. At every branch in the tree, subsets with smaller values of the information measure
are generated. The decision tree is generated recursively (details are shown in: [16]). Whereby
the algorithm consists in principal of three parts: the determination of the optimal splitting at
every node; the decision whether the node is a leaf node or an inner node; the assignment of
a leaf node to a specific class (Figure 10). To classify an unknown sample, it is routed down
the tree according to the values of the different features. When a leaf node is reached, the
sample is classified according to the class assigned to the leaf. The tree-based machine-learning
algorithm captures the decision structure explicitly. That means the generated decision rules
are ‘Modus Ponens’, with a precondition and conclusion part, and are intelligible in such a
manner that they can be understood, discussed and used as diagnostic rules.

IF(...and.ConditionI.and.ConditionZ)THEN(CIass = A)
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In total, 39 different features are calculated for 16 frequency bands (labelled from 0 to 15). The
mean value is calculated from the first four frequency bands; therefore, 13 values result for
each feature. The highest frequency bands contain only information about very fine grey level
variations, such as noise, and are therefore not considered for the image analysis. The proce-
dure for image analysis (including feature extraction and calculation) was developed with the
‘Interactive Data Language’ software tool IDL (IDL 7.1, ITT Visual Information Solutions). The
tree classification is done by the CART analysis software from Salford Systems, San Diego,
USA.

6. Biological motivation for neural networks

A neuron is an electrically excitable cell that receives, processes and transmits information as
electrochemical signals. It consists of several dendrites, the soma and an axon (Figure 11). The
soma is the cell body which contains the nucleus and all the necessary cytoplasmic cell
structures. The dendrites are cytoplasmic extensions of the cell body with many branches
allowing the cell to receive signals from other neurons. The axon is a special extension which
carries signals away from the soma. At its terminal, the axon undergoes extensive branching,
enabling communication with many target cells. The neurons maintain voltage gradients
across their membranes. Ion channels, embedded in the membrane, enable the generation of
intracellular-extracellular ion migrations. The resulting changes in the cross-membrane
polarization generate an electrochemical pulse, known as the action potential. These changes
in the cross-membrane potential are transferred as a wave of successive depolarization and
repolarisation processes along the cell’s axon. The axon terminal contains synapses, specialized
connections to target neurons, where neurotransmitter chemicals are released. Synaptic signals
may be excitatory or inhibitory. Once the pulse from the soma along the axon reaches the
synapses, a neurotransmitter is released at the synaptic cleft. The neurotransmitter molecules
bound at the receptors in the post-synaptic membrane (of the target neuron) and opens ion
channels. Then, the electrochemical pulse is transmitted to the target neuron.
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Figure 11. Microanatomy of a natural neuron (left), principle of an artificial neuron (right).

An artificial neuron is a mathematical model of a biological neuron. Artificial neurons mimic
the behaviour of the biological neurons. The input of the artificial neuron is represented by a
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vector:x=(x;, X,, .., X,), Whereby its dimension reflects the number of contributing dendrites

(Figure 11). In the mathematical model, each ‘dendrite” contributes individually through a
weighted signal to the input signal. The weight factor w;=(wj;, wy,, ..., w;,) simulates the ratio

of synaptic neurotransmitters, whereby positive values represent excitatory and negative
values inhibitory behaviour (a weight value zero means that there is no connection between
the involved neurons). The summation function represents the soma of the neuron j. The
exciting and inhibiting signals are added in the function:

Fil= inwﬁ
i

The firing behaviour of the neuron is represented by the activation function. Its activation
depends on the output of the summation function z; and a threshold value ©. If the summation
function exceeds the threshold, the neuron is firing and transmits an output signal y;:

Yi= ¢(Zj - 6)

The biological motivation of the activation function is the threshold potential in natural
neurons. Step and sigmoid functions are often used as transfer functions.

7. Artificial neural networks

Artificial neural networks consist of a number of artificial neurons, the computational units,
which are interconnected. Each unit performs some small calculation based on inputs it
receives from other units, whereby the associated weight factors can be tuned. This tuning
occurs by allowing the network to analyse many examples of previously observed data. The
most common type of neural network is the feed forward neural network (containing no loops),
and in such networks, the computational units are organised into layers from an input layer,
where data are fed into the network, to an output layer, where the result of the network’s
computation is outputted in the form of a classification result or regression result (Figure 12).
Traditionally, each neuron in a layer is connected to all other neurons in the previous or
subsequent layers (fully connected network). Between the output and input layers are hidden
layers, and networks that consist of more than one hidden layer are known as deep learning
algorithms. Such feed forward neural networks have been shown to be universal approxima-
tors, thatis to say they can learn to approximate any continuous function to arbitrary precision,
given enough hidden neurons [19]. Neural networks must be trained. The training data are
previous observations that have been collected, and the task of the network is to learn a
function which should map new input data to a classification label.
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Figure 12. Structure of a feed forward artificial neural network.

In general, feed forward neural networks are supervised machine-learning algorithms. Figure
12 shows a network with three layers: (1) an input layer, where data are fed in, (2) a hidden
layer consisting of neurons that each contain an activation function that reads in data from the
input neurons, performs some calculation, and outputs a value, and (3) an output layer that
reads data from the hidden layer and makes a prediction based on this input. All connections
between neurons have independently adjustable weights (Section 6). All layers are fully
connected meaning that each neuron in the input layer is connected to every neuron in the
hidden layer. The network learns by adjusting the weights between each of the connected
neurons until the network makes good predictions by minimising an error function (backpro-
pagation algorithm).

Fully connected neural networks are useful where individual features of a dataset are not very
informative. In image data, where an individual pixel is not likely to be very informative taken
on its own, a local combination of pixels may very well be informative and represent an object
of interest. However, neural networks are also far more computationally intensive than many
other machine-learning algorithms, with the number of tuneable parameters quickly growing
into the millions as the network increases in depth or size. Also, neural networks typically
work on image data directly, without feature reduction, meaning the dimensionality of the
data being analysed by neural networks is much higher than that of other algorithms, which
often work on extracted features. One could therefore summarise that neural networks are
most useful for high m high n problems—problems where there exist many observations (1)
of high dimensional data (m). Of late, neural networks algorithms have re-emerged as a
popular technique in machine learning, especially in the field of image analysis. This re-
emergence has come due to anumber of recent developments in neural network design as well
as independent hardware developments. In real-world applications, their usage has grown
beyond image analysis and has also been shown to be useful for other tasks, such as natural
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language processing and artificial intelligence [20, 21]. Nevertheless, a number of advance-
ments in recent years resulted in an upsurge in the usage of neural networks.

First, hardware advancements have made it feasible for larger neural networks to be trained
in reasonable amounts of time. As mentioned previously, neural networks that learn on very
high-dimensional data require many neurons and layers, meaning networks can consist of
many millions of parameters that need to be tuned. This results in large network architectures
that have, for a long time, been unfeasibly difficult to train on standard desktop workstations.
However, computational enhancements have meant this is no longer the case. These compu-
tational advancements are the result of rapid developments in graphics processing unit (GPU)
technology due to the ever increasing requirements of the gaming industry, resulting in great
improvements in the parallel processing power of GPUs. In 3D gaming, the vast majority of
processing power is spent on matrix multiplications, such as transforms and perspective
calculations, in order to depict the 3D worlds of games in 2D to the user. Such calculations are,
for the most part, performed using matrix and vector multiplications. Such matrix calculations
can be performed in parallel, and hence gaming GPUs have evolved to be particularly suited
to such parallel processing tasks. To this end, GPUs typically consist of boards with many
small, less powerful cores that can perform highly parallel computations. While CPUs tend to
possess 2—4 large and fast cores, GPUs possess many hundreds of smaller cores. Crucially,
almost 90% of the computational effort required to train a neural network is spent on vector,
matrix, and tensor operations, meaning they can benefit from all the recent technological
advancements in GPU technology. Indeed, with Moore’s Law no longer holding, parallelised
algorithms may, in future, be the only way to analyse very large data [22]. Second, empirical
data have shown that neural networks with large numbers of hidden layers outperform many
algorithms at several machine-learning tasks, especially in computer vision, object recognition
and object detection. Deeper and deeper neural networks, with larger and larger numbers of
neurons, have achieved human-level performance at very human-like tasks, such as playing
video games [23] and playing the game of Go [24]. Deeper networks, however, contain more
neurons, each of which needs to perform some calculation, and have its associated weight
tuned, resulting in longer training times and larger memory requirements. Again, advances
in hardware and optimisation techniques have meant that ever deeper networks are now
trainable within reasonable timeframes [25]. Third, more and more data are permanently
stored, archived and saved than ever before. This is especially true in fields such as medicine,
where large amounts of data are accumulated during routine activities. In the past, these data
might have been archived or stored in offline tape drives, or even discarded. However, this is
no longer necessarily true as the cost per GB of storage has declined so rapidly, meaning easier
access to more data and less likelihood of data being discarded. Deep learning algorithms
require large amounts of data to train and access to very large datasets, and the ability for
individuals to store large amounts of data has meant they are being applied to such problems
more often.

Traditional feed forward neural networks consist of layers, where each neuron is connected
to every other neuron in the layers above and below it. These are known as fully connected,
or affine, layers. Fully connected neural networks do not consider the spatial relation between
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pixels in an image. Pixels which are close together are treated exactly like pixels which are far
apart when being processed by the network. For the learning of high-level features, this is
suboptimal. In terms of image analysis, one particular type of neural network algorithm has
stood out as being especially adept at image classification and object recognition. This is the
convolutional neural network. The idea behind convolutional neural networks is to restrict the
network to take inputs only from spatially nearby neurons. In other words, the layers are not
fully connected, as in the example in Figure 12.

8. Convolutional neural networks

In the fields of image analysis, object detection and pattern recognition, convolutional neural
networks are the state of the art algorithm for practical applications. Following on from our
previous work, where we applied multiresolution analysis and CART as tree-based machine-
learning method (Section 5), we decided to test the applicability of convolutional neural
networks at a similar classification task. Because neural networks learn their own discrimina-
tory, high-level features, the dataset requires no pre-processing or feature extraction, with the
exception of image resizing and pixel value normalisation. This is in direct contrast to our
previous efforts, where a dedicated feature extraction phase was necessary. Convolutional
neural networks (CNN), in effect, emulate the way in which classical pattern recognition
works, where local features (edges, corners, etc.) are extracted and combined to generate higher
level representations that can be used for object recognition. Convolutional neural networks
are locally connected, where each neuron is connected only to those that are spatially close
(local receptive fields) in the previous layer, mimicking the visual cortex of some animals.
Pixels that are closer to each other are more strongly correlated than those which are further
away from each other, and this is something which the convolutional neural network has been
designed to be able to account for through its architecture [26].

Network architectures with fully connected layers do not take into account the spatial structure
of the images. Instead of using a network architecture which is tabula rasa, convolution neural
networks (CNN) try to take advantage of spatial structures in images. They use three basic
ideas: local receptive fields, shared weights and pooling. It is helpful to represent the input
image as a square of neurons, whose values correspond to the pixel intensities. Then, only
small, localized regions of the input image are connected to a neuron in the first hidden layer.
Such aregion in the input image is called the local receptive field for the corresponding hidden
neuron. In other words, the hidden neuron learns to analyse its particular local receptive field.
If the receptive field has a size of 5 x 5 pixels, then the hidden neuron is connected by 5 x 5
weights, which are adjusted during learning. The input of the hidden neuron is given by the
summation function:
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The value b, , denotes the input activation at position (x, y). The output of the hidden neuron
is given by the activation function, for example the sigmoid function. The convolutional
operation can be considered as a sliding window, which travels over the image, with the
window centre moving one or more pixel a time. This is defined by the stride length. If the
window is moved by one pixel, the stride length is 1. For each position of the local receptive
field, there is a different hidden neuron in the first hidden layer. The map from the input layer
to the hidden layer (convolutional layer) is called a feature map. The weights w, ,, defining the
feature map are the shared weights. The shared weights define the convolution kernel
(convolution is generally the workhorse of image processing). The pixels in the local receptive
field are multiplied element-wise with the kernel. Features maps are generated using only
neurons which are spatially close to each other, known as spatial connectivity. Each feature
map is defined by a specific set of shared weights enabling the network to detect different
kinds of features (edges, corners, etc.). The CNN therefore learns objects related to their spatial
structure. For image analysis purposes, more than one feature map are required. Therefore, a
complete convolutional layer consists of several different feature maps. In addition to the
convolutional layers, CNNs also contain pooling layers which usually follow immediately
after the convolutional layers. Pooling layers simplify the information in the output from the
convolutional layer by generating a condensed feature map (this removes the positional
information of the features learned, meaning the learned features are position invariant). For
example, each unitin the pooling layer may summarize a region of 2 x 2 neurons in the previous
convolutional layer. Pooling is done for each feature map separately. The final layer in the
convolutional network is a fully connected layer. This layer connects every neuron from the
last pooling layer to every one of the output neurons.

A depiction of a typical 7-layer convolutional neural network can be seen in Figure 13. Images
are read into the network in the input layer. From this input, a number of feature maps (4) are
generated, which are subsampled in a max-pooling phase. Then, both phases are repeated once
more, before connecting to a conventional fully connected layer which is finally connected to
the output layer. CNNs often contain multiple fully connected layers before the final output
layer, and modern CNNs can contain many convolution/max-pooling pairs.
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Figure 13. The structure of a typical seven-layer convolutional neural network.
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Figure 14 describes the convolutional layer and max-pooling layer in more detail. The input

into the convolutional neural network is a vector x& R""”, and the input layer has one neuron
per feature. However, the layers can be thought as having their neurons arranged as depicted
in Figures 11 and 12. In the case above, a 5 x 5 kernel is used, with a stride of 1, which results
in a feature map of size 32 - 5 + 1 = 28 x 28. Typically, a convolutional layer is followed by a
max-pooling layer, which acts as a type of sub-sampling, in this case halving the size of the
previous feature map (Figure 13).

Convolutions Max-pooling

YTOO0R

28x28 14x14
Figure 14. Principle of the convolutional layers and max-pooling layers [27].

Convolutional neural networks possess several characteristics that make them very suitable
for the analysis of histological images. First, convolutional neural networks are capable of
building models which are translation invariant and robust to transformations in the images,
such as rotation, and they can learn features which are robust to scaling. They also generate
models which are position invariant. This is especially important for microscopy imagery,
where a lesion, for example, has no ‘right way up’, and cannot even be rotationally normalised.

9. Deep learning analysis of a CLSM image dataset

As stated previously, the goal was to train a model which would classify newly seen images
as either malignant or benign. The neural network that was designed was based on the
structure of the LeNet-5 convolutional neural network structure and was developed using
the Keras deep learning library for Python [26]. The network consisted of a total of eight
layers: the input layer, two pairs of convolutional and max-pooling pairs, two fully connect-
ed layers, and the output layer. The rectified linear unit (ReLU) was used throughout as the
neuron nonlinearity. The ReLU is a computational unit which uses a ramp function [the
rectifier f(x)=max(0, x)] and is currently the most popular activation function for deep neural
networks. Because of the depth of network, a graphics processing unit (GPU) was used, which
greatly increases the speed at which the network can train. In terms of hardware, a mid-
range NVidia gaming GPU with 2 GB of dedicated video memory and 640 cores was used
for training the network. The card is capable of 1306 GFLOP/s and has a memory band-
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width of 86.4 GB/s. At the time of writing, the card can be purchased for under $150. The
card was installed in a Linux workstation with 32 GB of RAM and a 3.5 GHz 6-core AMD
processor running the Xubuntu 14.04 operating system. To illustrate the differences in
computational power between a GPU and CPU, and to demonstrate the enormous impact
using a GPU can have on training times, we benchmarked our code. Training the network
over 20 epochs required 2 min 4 s of time, averaged over three runs, when using the GPU.
When using the CPU, this time was 57 min 59 s for 20 epochs (also averaged over three runs),
nearly 30 times slower. Experimenting with different parameters, or testing new network
structures, can become very tedious when hours of computational power are required per
run or experiment. The GPU reduces this time to minutes.

Dropout was used to control overfitting at two points in the network’s structure: once after
the convolutional and max-pooling pairs, and once again after the first fully connected layer.
Dropout helps to control overfitting by randomly setting a certain set percentage of the
neurons’ weights to zero, effectively forcing the network to relearn those weights, with the
intention of mitigating the learning of noise. The output of the network is finally determined
by a sigmoid logistic function, squashing the results of the entire network to a value between
0 and 1. Values closer to 1 are therefore classified as being malignant, while values closer to 0
refer to a benign prediction. Such an output can also be used examine the network’s confidence
at a classification, with a value of 0.99 meaning a highly confident malignant prediction and a
value of 0.51 representing an unconfident malignant prediction.

9.1. Input into the neural network

Images are read directly by the neural network. The only pre-processing which was performed
was to resize the images from 640 x 480 to 64 x 64 pixels. Images are read by the neural network
as a series of pixel values stored in a vector. Therefore, a single image is stored as a vector x,
so that one instance of an image *” € *"" = [°x°x” . 5,/ The dataset consisted of 1= 6897 images,
each 64 x 64 pixels in size, representing a dimensionality m =4096. The entire dataset is therefore

stored in an 7 x m matrix:
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To reduce the memory footprint, neural networks are typically trained using mini-batches,
which are randomly selected subsets of X. Targets, or labels, are stored in an n-dimensional
column vector:
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Therefore, to input an image into a neural network, it must first be converted into a vector of
pixel values. Each image vector’s label is stored numerically in a separate target vector, y. Once

these have been prepared, a training matrix X, a test matrix X,.,, and their corresponding

train/ test/

target vectors y,,.;, and y,., must also be generated.

9.2. Keras

Recently, a number of frameworks have been developed for deep learning, ranging from low-
level, general purpose math expression compilers, such as Theano, to higher level frameworks
such as Torch. For this analysis, the Keras framework was used. Keras is written in Python
and is based on the Theano framework. It offers a high level control over network construction,
abstracting the low-level Theano code, making it possible to design neural network structures
in a layer-wise, modular fashion. Layers and functionality are added to the network piece by
piece and are finally compiled into a complete network once the desired structure has been
built. Users of Python can install Keras using pip, by typing pip install keras at the comment
prompt. Keras has a number of requirements, including Theano (which can also be installed
using pip install Theano at the command prompt). Briefly, once Keras has been correctly
installed and successfully imported into the environment, a convolutional neural network is
created by instantiating an object of the Sequential class, and then by adding layers to this
object until the desired network is complete. For example, a convolutional layer can be added
to the network using the add function: model.add(Convolution2D(...)). Configuring network
properties, such as when to use dropout or specifying which activation function should be
used, is also performed using the add function of the model object. The network is built in this
way until the desired structure has been defined, and is then compiled using the model object’s
compile function. As Keras is based on Theano, the model is generated into Theano code, which
itself is compiled into CUDA C++ code, and subsequently run on the GPU. Upon successful
compilation the model, it can be trained on a dataset using the fit function, which takes the
training data set as one of its parameters. A trained model can then be tested using the held
back test data, using the trained model’s evaluate function. Full Python source code for the
generation of the model can be found in this book chapter’s GitHub repository under https://
github.com/mdbloice/CLSM-classification. This source file contains a complete implementa-
tion of the network, including the generation of all the plots and figures shown in the Section
10.

10. Results

10.1. Multiresolution analysis

Overall, 857 images of benign common nevi (408 images) and malignant melanoma (449
images) were used as study set [29]. To get more insights into the classification performance,
a percentage split was performed by using 66% of the dataset for training and the remaining
instances (34%) as the test set (Table 1). The classification results of 572 cases (276 benign
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common nevi, 296 malignant melanomas) in the training set and 285 cases (132 benign common
nevi, 153 malignant melanomas) in the test set.

CART Training set Test set

% Correct Benign Malignant % Correct Benign Malignant
Benign 96.6 267 9 78.0 103 29
Malignant 98.0 6 290 84.1 24 129

Table 1. Classification results for features based on multiresolution analysis.

The CART classification shows a correct mean classification of 97.3% samples in the training
set and a correct mean classification rate of 81.1% in the test set. In this study, the images were
resized to 512 x 512 pixels. To illustrate the differences in the wavelet sub-bands of both tissues,
the spectra of the wavelet coefficient standard deviations are shown for typical views of benign
common nevi and malignant melanoma (Figure 15). The image of benign common nevi show
pronounced architectural structures (so called tumour nests), whereas the image of malign
melanoma show melanoma cells and connective tissue with few or no architectural structures.
These visual findings are reflected by the wavelet coefficients inside the different sub-bands.
The standard deviations of the wavelet coefficients in the lower and medium frequency bands
(4-10) show higher values for the benign common nevi than for malignant melanoma tissue,
indicating more pronounced structures at different orders of magnitude. The tissue of
malignant melanoma appears more homogeneous (due to a loss of structure), and the cells are
larger as in the case of benign common nevi. The standard deviations in the sub-bands with
higher indices (representing finer and more pronounced structures) are lower than in the case

of benign common nevi.
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Figure 15. Sub-band spectra for benign common nevi (right) and malignant melanoma (left).

71



72

Microscopy and Analysis

The analysis of the classification tree shows that seven classification nodes indicate benign
common nevi and six nodes malignant melanoma. The visual examination of the selected
nodes demonstrates characteristic monomorphic melanocytic cells and melanocytic cell nests
for benign common nevi [28, 29]. Contrary polymorphic melanocytic cells, a disarray of
melanocytic architecture and poorly defined or absent keratinocytic cell borders are charac-
teristic for malignant melanomas.

10.2. Convolutional deep learning neural network

For this study, a dataset consisting of 6897 CLSM images of skin lesions was obtained from
our university hospital. The dataset consisted of images of skin lesions in layers of various
depths. Before training, the images were randomised and placed into a training set and test
set, with the training set consisting of 5000 images and the test set consisting of 1897 images
(Table 2). It is important to note that, in the case of this project, each image was treated
individually, and not treated as belonging to one particular patient or even lesion. The test set,
therefore, contained different layers or lesions from potentially the same patient as the training
set, as a single patient may have had several scans or may have been examined on multiple

occasions.

Full Dataset Training Set Test Set
Total 6,897 5,000 1,897
Benign 3,607 2,655 952
Malignant 3,290 2,345 945

Table 2. The distribution of the classes in the whole dataset and in the training and test set.

Class imbalance occurs when a training set has far more samples of one particular class than
another. For example, a small class imbalance existed in the dataset analysed in this chapter,
with the samples of benign nevi slightly outnumbering the samples of malignant melanoma
(there existed 317 more samples of the former compared to the latter). There are a number of
techniques which can be employed to address class imbalance, such as data augmentation
(generating synthetic data from your original dataset) or simply by discarding samples to
better balance the dataset. In the case of our dataset, class imbalance was not at the degree as
to make it problematic. When the training set and test sets were split, however, we ensured
that the test set was largely balanced. Class imbalance can also affect how results, such as
accuracy and precision/recall, should be perceived when analyzing a trained model on a highly
imbalanced test set.

The network, after training for 20 epochs, achieved 93% accuracy on the unseen test set. The
model’s accuracy on the test set during training, as well as the model’s error rate on the training
set through each of the 20 epochs is shown in Figure 16.
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Figure 16. The model’s accuracy on the test set and its logistic loss against the training set.

Loss on the training set eventually reduces to almost 0 (meaning it is at this point overfitting
heavily), while the accuracy of the model on the unseen test set fluctuates but is tending
towards an accuracy of approximately 90%. The accuracy of the final model after epoch 20,
when training was terminated, was 93%. A confusion matrix, shown in Figure 17, describes
the model’s accuracy on the test set, in terms of absolute numbers of predicted and actual labels
for both the benign and malignant classes.
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Figure 17. Confusion matrix.

Here, all true/false positives and true/false negatives can be seen. From these values, the
precision, recall (sensitivity), and F; score (a weighted average of the precision and recall, given

ecision - recall
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1

“precision + recall ) Were calculated, as shown in Table 3.
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Precision Recall (Sensitivity) F, score Support
Benign 0.94 0.91 0.93 952
Malignant 0.91 0.94 0.93 945
Avg/total 0.93 0.93 0.93 1897

Table 3. The generated model’s precision, recall and F, score measured against the test set.

Table 4 describes the results of the model in absolute terms, with results for the model’s
predicted labels for both classes versus the actual labels for each class. As well as this, the total
number of actual and predicted labels is shown.

Actual
Predicted Benign Malignant Total
Benign 868 84 952
Malignant 52 893 945
All 920 977 1897

Table 4. The generated model’s predicted labels versus the actual labels, measured on the test set.

10.3. Transfer learning

Transfer learning is a term that can be applied to several aspects of machine learning. In the
case of neural network-based machine-learning approaches, transfer learning often refers to
the act of using a pre-trained network as the starting point for a learning procedure, rather
than starting with a network which has been initialized with random weights. This is often
performed as a time-saving measure, but can also be done when the new data to be classified
is scarce. Also, it can be performed only when the data used for pre-training is similar to the
new data which should be classified. Furthermore, it constrains the practitioner into using a
network which has the same architecture of the pre-trained model. Therefore, it is not useable
in all situations, and it does not make sense to use, say, a network pre-trained on the ImageNet
dataset (a commonly used benchmarking dataset, containing millions of samples of 1000
classes of images) in the context of CLSM lesion classification.

However, there exist several types of laser scanner-based approaches to skin lesion analysis,
where the use of transfer learning may be beneficial. Other methods in the field include two
photon excitation fluorescence microscopy, second harmonic imaging microscopy, fluores-
cence-lifetime imaging microscopy and coherent anti-stokes Raman microscopy. Whether or
not transfer learning could indeed be implemented in this context would depend entirely on
how well the features learned during pre-training match the features that exist in the new data
(in other words, whether the learned features transfer well from one domain to the other). For
example, several new methods produce colour images, which would mean the features learned
in the analysis described here would likely not transfer well to this new domain (of course,
colour images could be converted to greyscale). However, it is conceivable that other technol-
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ogies, that also produce greyscale images, could make use of a pre-trained network, and thus
benefit from pre-trained weight initialisation and therefore transfer learning.

The machine-learning community often makes available pre-trained networks for others to
use, such as in the Model Zoo (https://github.com/BVLC/caffe/wiki/Model-Zoo). Some of the
networks available on the Model Zoo took many weeks to train on powerful hardware, and is
considered a very useful resource by many who do not have the time or the computational
resources available to them for such aninvolved learning task. Of course, a pre-trained network
could be made available for the CLSM or skin lesion analysis community, if the network was
trained on a sufficiently large dataset and if indeed the learned features would transfer well
to other domains.

11. Discussion

Confocal laser scanning microscopy is a technique for obtaining high-resolution optical images
with depth selectivity. It enables the noninvasive examination of skin cancer in real-time. This
makes CLSM very suitable for screening and early recognition of skin tumours, which augment
the success of the therapy. The training of pathologists to acquire and refine their visual
diagnostic skills is very time-consuming. To implement diagnostic capabilities on a computer,
it is of considerable interest to understand how the diagnostic process unfolds and which
texture features are critical for a successful diagnosis. For medical diagnosis, it is important to
duplicate the automated diagnostic process.

The multiresolution approach with wavelets features mimics the diagnostic guidelines of the
dermatopathologist, as they use multiscale features for the examination of CLSM views. The
decision rules generated by machine-learning algorithms, such as CART, represent explicit
knowledge that can be used to analyse and refine the diagnostic process. The generated rules
can be implemented in viewer software which enables a visual evaluation of the diagnostic
performance by the dermatologist. This can be used as a training aid for ongoing dermatolo-
gists in education. As shown in the Section 10, the algorithm performance allows a correct
classification of 78.0% of the benign common nevi cases and 84.1% of the malignant melanoma
in the test set. In contrast, sensitivity and specificity of 85.5 and 80.1% are reached by the human
observer (overall performance 82.8%).

Although the CART algorithm discriminates the training set automatically (unsupervised),
the feature extraction algorithm is predefined. Algorithms based on artificial neural networks
do not perform or require hand-defined analyses of the image features with predefined
(filtering) methods. Instead, they use neural computation inspired by the visual system of
mammals. Neural networks process an image by use of a hierarchical processing architecture
which mimics the way the visual cortex processes visual stimuli from the primary cortex (V1)
to different layers (V2-V8) which are selective for different components of the visual stimuli
such as orientation, colour, size, depth and motion. Neural networks are well suited for
detecting similarities in images. However, the distributed representation of the acquired
knowledge complicates the extraction of the diagnostic information. They deliver nothing



76  Microscopy and Analysis

about the inference mechanism leading to a classification in a form that is easy readable for
the human observer. Nevertheless, we can demonstrate a real example as to why artificial
neural networks will play an ever more important role in automated medical diagnostic
systems. A recent work reported that pigeons (columba livia) proved to have a remarkable
ability at discriminating benign from malignant human breast histopathology images and at
detecting cancer relevant micro calcifications in mammogram images after differential training
with food reinforcement [30]. The discrimination was done by the pigeons via two distinctively
coloured response buttons. For a correct discrimination, food was immediately provided by a
dispenser. The pigeons proved not only to be capable of image memorization but were able
to extend the learned skills to novel tissue images. It results that their diagnostic skills are like
that of trained humans. It should be noted that the capabilities were acquired without the
benefit of verbal instructions as in the case with human education. The low-level vision
capabilities of pigeons appear to be equivalent to those in humans; feedforward and hierarch-
ical processing seem to dominate. It can be assumed that pigeons do not explicitly analyse the
images with predefined criteria and explicit instructions as humans do. The reinforcement
training of the pigeons resembles the training of artificial neural networks. Given the high
diagnostic accuracy of the pigeons they may serve as a model for the development and
amelioration of artificial networks (or vice versa). We still do not know in detail how pigeons
differentiate such complex visual stimuli but colour, size, shape, texture, and configurational
cues seem to participate. Their visual discrimination performance may guide the basic research
in artificial neural networks in order to develop computer-assisted image diagnostic systems.
Experienced dermatopathologists reported that a beginner (a person in education) examines
the CLSM views strictly according to the dermatological guidelines (Section 4), as the com-
puters do by multiresolution analysis. Based on the large amount of previously viewed
specimens, an experienced person reports the CLSM views more by its visual appearance
(personal communication). This is similar to the image analysis performed by a trained neural
network. The receptive field of a sensory neuron is a particular region in the visual system in
which a stimulus will trigger the firing of that neuron. In vision research, it is known that a
cat’s visual cortex only develops its receptive fields if it receives visual stimuli in the first
months of life [31]. The receptive fields in the primary visual cortex can be thought as “feature
detectors” or ‘flexible categorizers’. This means that they learn the structure of the input
patterns and become sensitive to combinations that are frequently repeated [14]. This also
demonstrates the importance of convolutional neural networks in image processing and
analysis.

In this work, and given the relatively small dataset size, the performance of the trained neural
network model is encouraging. However, the results must be considered as a proof of concept,
and not a model that could be used in a clinical setting, despite the good accuracy of the trained
model. For example, the images were collected from a single department, at one hospital in a
single region in Austria. To judge the potential real-world accuracy of a trained model would
require a far larger dataset, collected from several regions worldwide, and carefully curated
to ensure no unintentional bias is introduced (by only collecting data from patients of a certain
age range, for example). By training a model on a far larger dataset such a model could be used
in real-world clinical settings as a diagnosis aid.
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The work here shows that deep layer neural networks have the capacity to learn the high-level
discriminatory features required to classify malignant and benign skin lesions. This can be
achieved without any dedicated feature engineering phase, data pre-processing or a priori
domain knowledge. In the case of the CLSM image classification task presented here, all that
was required was a labelled dataset of previous observations. However, what is also true is
that neural networks require far more training data than traditional machine vision methods
that work on extracted features. This is due to the very high dimensionality of the data, which
in our case was R*, in contrast to the analysis of the extracted features where the dimen-
sionality was R¥. To compensate for a far higher dimensionality, a much larger dataset is,
therefore, a necessity. In other words, deep learning neural networks are most suitable for
situations where you encounter data with ‘high m, high n” properties —high dimensional data,
like images, of which many samples exist —such datasets are common in the medical domain,
meaning deep learning should be of especial interest to researchers in the area of healthcare
informatics.

As parallelized hardware advances, Moore’s law begins to plateau, and the amounts of data
being stored increases, algorithms that take advantage of this perfect storm will become more
and more relevant. We have shown in this chapter that classical approaches to image classifi-
cation can indeed be emulated by deep neural networks fed with large amounts of observed
data. In fields such as medicine, where data are in such abundance, highly parallelized
algorithms may be the only approach that can deal with such large data sources in a meaningful
way. Fortunately, this is no longer the domain of specialized research institutes with access to
cluster computing: such algorithms are trainable without large investments in hardware and
can be performed on a standard desktop workstation equipped with a modestly priced GPU.
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