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Abstract

In this chapter, a new technology for low‐temperature (LT, 400°C) boron deposition is
developed, which provides a smooth, uniform, closed LT boron layer. This technolo‐
gy is successfully employed to create near‐ideal LT PureB (pure boron) diodes with low,
deep junction‐like saturation currents, allowing full integration of LT PureB photodio‐
des with electronic interface circuits and other sensors on a single chip. In this way,
smart‐sensor systems or even charge‐coupled device (CCD) or complementary metal
oxide semiconductor (CMOS) ultraviolet (UV) imagers can be realised.

Keywords: low‐temperature boron deposition, ultrashallow p+n junction photodiode,
chemical vapour deposition, UV photodetector, CMOS imager

1. Introduction

Over the last few years, we have witnessed an increase in the demand for both high‐perform‐
ance ultraviolet and low‐energy electron detectors. These detectors are used in high‐tech
applications such as optical lithography and electron microscopy, medical imaging, protein
analysis and DNA sequencing, forensic analysis, disinfection and decontamination, space
observation, etc.

To meet these demands, a new silicon detector technology has been proposed by TU Delft
called “PureB” (pure boron) technology [1]. Conventional PureB technology is employed to
fabricate high‐performance photodiodes for vacuum/extreme/deep‐UV (VUV/EUV/DUV)
light, low‐energy electrons down to 200 eV, and X‐ray drift detectors [2–5]. A comparison of
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PureB technology to state‐of‐the‐art Si‐based UV and electron detectors is presented in Tables 1
and 2, respectively.

Detector ETH
PtSi‐nSi

IRD
AXUV

IRD
SXUVa

IRD
UVG

Hamamatsu
(S5226)

PureBb

Junction type Schottky n‐on‐p p‐on‐n p‐on‐n

EUV sensitivity
(A/W) at 13.5 nm

∼0.2c ∼0.265 ∼0.23 Unknown Unknown 0.267

Stability under
EUV

Unknownd Not stable Goode Unknown Unknown Δ ∼ 3%f

VUV sensitivity
(A/W) at 193 nm

∼0.03 ∼0.1 ∼0.01 ∼0.137 ∼0.1 0.102

VUV sensitivity
(A/W)at 157 nm

∼0.02 ∼0.1 <0.01 Unknown Unknown 0.123

VUV sensitivity
(A/W)at 121 nm

≤0.02 Unknown <0.01 <0.05 Unknown 0.116

Stability under
DUV/VUV

Δ ∼ 2% Not stable Unknown Δ ∼ 10% Not stable Δ ∼ 4%

References [6, 7] [6, 8–10] [9, 10] [6, 8] [6] [2, 3]

aSXUV: Si‐based n‐on‐p junction photodiodes with nitride metal silicide front window.
bData are based on as‐deposited PureB photodetectors without any post‐processing thermal annealing.
cValue from measurement at PTB [2, 3].
dStability proven only in the VUV range [6].
eNo more information is given in the reference.
fΔ: reduction in responsivity based on the data reported in the mentioned references.

Table 1. Performance overview of representative commercially available Si‐based UV detectors compared to the PureB
UV photodetector.

Detector Commercial BSE Commercial vCD Delta doped e2V CCD 97 PureB BSE

Electron signal gaina at 1 KeV ∼46 ∼126 ∼112 213

Electron signal gain at 500 eV ∼18 ∼52 ∼47 102

Electron signal gain at 200 eV Unknown Unknown ∼13 34

Stability Δ ∼ 5% Δ ∼ 5% Unknown Δ ∼ 4%

References [11, 12] [11, 12] [13] [4]

aElectron signal gain, Gph, is defined as Iph/Ibeam, where Iph is the output current of the photodiode and Ibeam is the current
of the incident electron beam, assuming a negligible dark current.

Table 2. Performance overview of representative commercially available, research‐reported Si‐based electron detectors
compared to the PureB electron detector.
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However, due to the relatively high temperature (HT) of boron deposition (500–700°C), it is
hard to integrate this technology fully into a standard integrated circuit/ complementary metal
oxide semiconductor (IC/CMOS) process flow.

In this chapter, a newly developed technology for low‐temperature (LT, 400°C) boron chemical
vapour deposition (CVD) is presented, providing a smooth, uniform, closed LT boron layer.
This technology is successfully employed to create near‐ideal LT PureB diodes with low, deep‐
junction‐like saturation currents. The low‐temperature deposition at 400°C makes it possible
to integrate the LT PureB photodiodes fully with electronic interface circuits and other sensors
on a single chip. In this way, smart‐sensor systems or even charge‐coupled device (CCD) or
CMOS ultraviolet (UV) imagers can be realised.

What this chapter demonstrates is near ideal1, highly sensitive, radiation‐hard, low leakage
current diode characteristics. Moreover, since the boron deposition is conformal and highly
selective to Si, PureB technology is shown to be an attractive candidate for creating junctions
on silicon nanowires and advanced CMOS transistors including a source/drain in p‐type
FinFETs. The impressive properties that PureB devices provide have resulted in this technol‐
ogy becoming commercially available very quickly for ASML EUV lithography tools and
scanning electron microscopy (SEM) systems.

2. An analytical kinetic model for boron CVD

In references [14] and [15], the pattern dependency and the loading effect of CVD boron
deposition are identified as sources of non‐uniformity of the boron layer. Since investigating
these two effects requires a thickness‐monitoring technique, an end‐of‐line resistance meas‐
urement is introduced as a non‐destructive, accurate means of monitoring the boron layer
uniformity with fine resolution [16].

Figure 1. Temperature distribution profile simulated by commercial FLUENT© software for an ASM Epsilon One CVD
reactor when the total pressure is ATM. The hydrogen gas is considered to be the main gas flowing over the susceptor,
in order to simplify the simulation. The susceptor is heated up by an assembly of lamps to the deposition temperature
(here 700°C) [19].

1 Diode ideality factor, n≈1
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In this section, an analytical model is established to describe the deposition kinetics and the
deposition chamber characteristics that determine the deposition rate (DR) over the wafer. This
pre‐deposition prediction tool can be used to improve the set‐up and control of the final
deposition [17, 18]. It is also very useful for transferring recipes from one reactor to the other.

Some considerations such as the diffusion behaviour of the reactant (here BH3 species) through
the stationary boundary layer over the wafer with the mechanism of the diffusion, the gas‐
phase processes and the related surface reactions are taken into account by this model. To
develop the model, the actual parabolic gas velocity and temperature‐gradient profiles in the
reactor are considered as well, both of which have been calculated theoretically and also
simulated with FLUENT® software as shown in Figure 1.

The starting point for developing a mathematical model for the chemical and physical
behaviour of the CVD process is the expression for the temperature and velocity profile for a
fully developed flow. This can be calculated by solving the equation for energy conservation,
the continuity equation and the equation for the motion of the carrier gas:

0k 0g g x
T Tc u T
x x x

br ¶ ¶ ¶æ ö= =ç ÷¶ ¶ ¶è ø
(1)

0μ constantxuT
y y

gæ ö¶ ¶
=ç ÷¶ ¶è ø

(2)

where ux(y), x, y, μ0Tγ, and k0Tβ are, respectively, the gas velocity profile, axial position in the
direction of the gas flow, lateral position perpendicular to the direction of the gas flow,
temperature‐dependent thermal conductivity and dynamic viscosity of the carrier gas.

Figure 2. Schematic illustration of a classical boundary layer and reactor conditions over the susceptor.

To develop an analytical model, first we consider a system with a constant temperature in
which the active component rapidly decomposes at the susceptor, y = 0, for all axial flow
positions x ≥ 0 (Figure 2). Therefore, the concentration of the reactant species at y = 0 is zero
across the entire decomposition zone. The transport of material towards the susceptor in the
y‐direction goes entirely via gas‐phase diffusion (i.e. laminar flow through the stationary
boundary layer over the susceptor).
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The equation for mass conservation for this case is as follows:

( ) ( ) ( )2

2

, ,C x y C x y
u y D

x y
¶ ¶

=
¶ ¶

(3)

where C and D are the concentration profiles and the gas‐phase diffusion coefficient of the
active component in the carrier gas, respectively, and u(y) is an expression for the parabolic
velocity profile found by solving Eqs. (1) and (2) in the reactor chamber, which is given by

( )
2

0 24 y yu y u
h h

æ ö
= -ç ÷

è ø
(4)

Equation (4) is difficult to solve for a parabolic velocity profile. Therefore, the problem is first
solved for a constant flow velocity. Thereafter, the influence of a parabolic flow profile on the
obtained results is evaluated.

By following the derivation procedure described in more detail in reference [18], the concen‐
tration profiles at y = 0 can be calculated as

( ) 0 2
0

2.520.692 exp DC x C x
h u

é ù-
= ê ú

ë û
(5)

This is the average concentration profile of the reactants over the susceptor with a linear
velocity profile. This profile will be used to develop the final deposition rate model for boron
layer deposition.

Next, the deposition rate of the boron layer deposited in a CVD system by using B2H6 over a
bare, non‐rotating silicon wafer can be calculated as [18]:

( )
3

B
BnR 1 2 BH 2

0

2.52DR 0.264 exp Dx P x
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æ ö
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Figure 3. Boron deposition rate extracted either from the model or experimentally as a function of (a) axial position, x,
(b) main gas flow over the susceptor and (c) diborane partial pressure. In the figure, P1, P2 and P3 are the diborane
partial pressure applied, that is, 3.39, 2.55 and 1.7 mtorr, respectively. F1, F2 and F3 are the gas flow applied, that is, 20,
15 and 10 slm, respectively. All experiments were performed at atmospheric pressure [18].

In Figure 3, several experimental results are compared to model predictions. It should be noted
that a parameter fitting was performed for the ASM Epsilon One. The boron deposition rates
are extracted as a function of (a) the axial position, x, for different gas flow and diborane partial
pressure conditions; (b) gas flow over the susceptor; and (c) input diborane partial pressure
including curves for two different axial positions. By only adjusting the reactor/process
parameters, this model was also successfully transferred from the ASM Epsilon One to the
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Epsilon 2000 reactor, which has completely different reactor conditions. The experimental
results and model predictions for the Epsilon 2000 are shown in Figure 3a. It is worth noting
that this model is capable of predicting the deposition rate on any two‐dimensional (2D)
uniformly or non‐uniformly patterned wafer such as those used for advanced device fabrica‐
tion. The very small (less than 5%) deviation of the experimental results and model prediction
is plausibly related to the lateral diffusion of the diborane molecules, which becomes more
evident at lower gas flow and diborane partial pressure.

It can be seen that the data calculated on the basis of this model fit well with the experimental
results and have been very useful not only in the development of uniform boron layers with
little pattern dependence but also in the transferring of recipes from one reactor to the other.

3. Low‐temperature boron deposition at 400°C

In this section, a newly developed technology for low‐temperature (400°C) boron deposition
is discussed. The temperature dependency of the kinetics of the boron deposition on patterned
Si/SiO2 surfaces in the temperature range of 700°C–400°C is examined. The recipe‐to‐deposit
pure boron layer is explained. Also, selectivity issues that arise when the boron deposition
temperature is reduced from 700°C to 400°C are analysed. Lastly, some provisions are
recommended for minimising the undesirable boron deposition on oxide.

3.1. Temperature dependency of boron deposition

To develop a new technology for low‐temperature (400°C) boron deposition on silicon, the
temperature dependency of the deposition has to be studied to understand the kinetics of the
boron deposition on patterned Si/SiO2 surfaces. This study will be described in this section.

No. Reactiona Description

[R1] B2H6(g) + 2Si / B(s)⇔
T

2B_Si / B(s) + 3H2(g) B‐deposition

[R2] H desorption

[R3] H_Si / B(s) + H_Si / B(s)⇔
T

Si / B_Si / B(s) + H2(g) Cross‐linked

[R4] Migration

aH_Si/H_B and  are the silicon/boron atoms with H‐terminated dangling bonds or with free dangling bonds,
respectively.

Table 3. Chemical reactions of the CVD boron deposition.

The kinetics of boron CVD is investigated in references [17] and [18]. The lateral gas‐phase
diffusion length of boron atoms over silicon/boron surfaces during the CVD of pure boron
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layers is investigated in reference [20]. The chemical reactions contributing to the pure boron
CVD are listed in Table 3.

For high‐temperature deposition (700°C), as described in reference [21], there would be enough
energy to facilitate a reaction [R2]. This reaction releases hydrogen from the Si and/or B surface
sites as H2 and leaves Si and/or B sites free for deposition. In this case, the deposition starts
very fast, that is, after a few seconds of the surface being exposed to diborane gas under these
conditions, and a monolayer of boron appears and covers the surface [1]. Figure 4 shows a
schematic of the HT deposition mechanisms for the first few monolayers of boron layers when
a Si surface is exposed to diborane. In the high‐temperature deposition, the temperature‐
related reactions [R1]–[R4] proceed, leading to the adsorption of boron atoms, which are
deposited and/or suspended, as well as migration of the boron atoms along the surface. This
leads to a smooth, uniform, closed boron layer [17]. Triggering the intermediate reactions also
ensures very smooth layers with a roughness that can be around 2 angstroms, as measured by
HRTEM imaging and atomic‐force microscopy (AFM). This is illustrated by the analysis results
shown in Figure 5 for a 2‐nm‐thick layer.

Figure 4. Schematic of the deposition of the first few monolayers of boron layers for HT, 700°C, deposition when an Si
surface is exposed to B2H6 [22].

However, the experiments show that by lowering the boron deposition temperature from 700
to 400°C, the deposition rate drops considerably from 0.4 to less than 0.01 nm/min for depo‐
sition in an H2 environment, with a laminar gas flow of 20 slm. In this case, even after a long
deposition time at 400°C there is almost no measurable layer formed. Moreover, if such a layer
is deposited, it is not closed enough to make it suitable for device applications. As a result, the
performance of these devices is not comparable to the ones made by conventional 700°C boron
deposition.
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Figure 5. HRTEM image (left) and atomic‐force microscopy (AFM) measurement (right) of a 6‐min HT‐deposited bor‐
on layer surface. The AFM image was taken in a 500×500 nm2 scanning area. This HT layer is smooth and uniform at a
thickness of about 2 nm with a root‐mean‐square (rms) roughness value of 0.204 nm [21].

Several factors are responsible for this negative effect. Firstly, as shown with the previously
developed analytical kinetic model given in Eq. (6) [18], the deposition rate varies with the
deposition temperature T; that is, by lowering the T, the DR will drop significantly. Secondly,
at such a low deposition temperature, the gas‐phase diffusion length is very short. Lastly, by
lowering the deposition temperature, the intermediate reactions that produce adsorption at
700°C are no longer effective.

For example, due to the very low amount of energy available, reactions [R2]–[R4] are not
promoted in their forward direction. In addition, the presence of hydrogen in the reactor as a
carrier gas can suppress the deposition reaction of [R1] because most of the surface sites are
occupied by hydrogen that will not readily desorb at 400°C. Consequently, the first monolayer
coverage takes more time at this temperature than at 700°C. Also, the inhibited removal of H
from the Si surface at low temperatures plays an important role in increasing the roughness.
This can be seen in Figure 6 where the schematics of the deposition of the first few monolayers
of boron are shown at LT, 400°C. The HRTEM image and AFM measurement of the LT‐
deposited boron layer at 400°C with the newly developed recipe discussed in the next section
is shown in Figure 7. A layer roughness of around 6–8 angstroms was found for a 5‐nm‐thick
layer.

By switching to N2 as a carrier gas, reactions [R1–[R3] are triggered to proceed in the forward
direction, while reaction [R4] is suppressed, which is the necessary intermediate reaction for
providing a smooth, uniform, closed boron layer. Thus, only lowering the temperature in the
conventional 700°C PureB recipe to 400°C does not guarantee a sufficient layer deposition as
a promising capping layer. Therefore, for boron deposition at 400°C, a compromise between
the layer deposition rate and layer uniformity and smoothness is necessary, which demands
the development of a new recipe, to be discussed in detail in the next section.
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Figure 6. Schematic of the deposition of the first few monolayers of boron layers for (a) HT, 700°C, and (b) LT, 400°C,
deposition when an Si surface is exposed to B2H6 [22].

Figure 7. High‐resolution TEM image (bottom) and AFM measurement (top) of a boron layer deposited at 400°C for 16
min. In both cases, the thickness of the LT boron layer was extracted to about 5 nm, with a surface rms roughness val‐
ue of around 4–6 angstroms. The pictures on the left and right show a close‐up of the LT boron layer surface roughness
and the interface with the Si substrate, respectively [22].

The final point to discuss about the temperature dependency of boron deposition is the
investigation conducted of the deposition at the intermediate temperatures 600°C, 500°C and
450°C. By lowering the deposition temperature, the gas‐phase diffusion coefficient is lowered
and the deposition rate based on Eq. (6) is reduced. In addition, the lower temperatures mean
that intermediate reactions [R2]–[R4] are triggered less in their forward direction, resulting in
a higher H‐coverage of the surface. Moreover, the gas‐phase diffusion lengths of boron atoms
on both the Si and oxide surfaces also decrease. Altogether, this causes the deposited layer to
become increasingly rough when shifting from 600°C to 500°C and 450°C. The properties of
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layers deposited on bare Si at temperatures between 700°C and 400°C are given in Table 4.
What can be clearly seen is the increase in the roughness of the layers as the deposition
temperature decreases.

For deposition at the lower temperatures, 450°C and 400°C, the ellipsometry measurement
gave a roughness that is much greater than the average layer thickness, which may not be
relevant. These parameters become very dependent on the exact deposition conditions because
of both the absence of the other intermediate reactions ([R2]–[R4]) and the fact that the gas‐
phase diffusion lengths of the boron atoms on both the Si and oxide surfaces decrease.

Next, we will discuss the process and recipe requirements needed to make the boron deposi‐
tion possible at 400°C.

Pure boron Dep. Temp.a

700°C 600°C 500°C 450°C 400°C

Dep. time (min) 10 10 16 20 60

Thickness (nm) 3.74 3.21 3.14 1.77 1.62

Roughness (nm) 0.38 0.81 1.23 2.64 3.73

aThe recipes only differ in time and temperature. Their structure is the same in all cases, even for 400°C, and the depositions
were done only in an H2 ambient environment.

Table 4. Thickness and roughness of deposited layers extracted from ellipsometry measurements, as a function of
deposition temperature and time.

3.2. LT boron deposition at 400°C

As discussed above, the presence of hydrogen gas can suppress the forward direction of
reaction [R2]. This is necessary to release the hydrogen from the surface, to decrease the H‐
surface coverage, and to suppress reactions [R1] and [R3]. Therefore, the deposition rate is
limited by reaction [R2]. The release of hydrogen is important as it facilitates the migration of
deposited boron atoms along boron/silicon surfaces via the intermediate reactions [R3] and
[R4], leading to a smooth, uniform, closed boron layer deposition. However, in the case of
deposition in N2, unlike that of H2, reactions [R1]–[R3] are not suppressed, causing hydrogen
atoms to be released more easily from the surface and reducing the H‐surface coverage. This
leads to a higher deposition rate. However, due to the lower mobility of boron atoms in this
environment, an increase in boron layer roughness was also expected. Therefore, for boron
deposition at 400°C it is necessary to start the deposition in a nitrogen environment to facilitate
the first monolayer deposition, and then switch to a hydrogen environment to make the surface
smoother and to maintain the boron coverage over the entire silicon opening. This procedure
can be repeated a few times with different cycle lengths, as shown schematically in Figure 8,
to achieve a smooth, uniform, closed boron layer. Lowering the chamber pressure can also
facilitate the release of hydrogen from the surface and decrease the H‐surface coverage. Thus,
deposition at a lower ambient pressure is preferable.
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Figure 8. Schematic illustration of carrier gases switching sequences in the LT PureB recipe [22].

The HRTEM image in Figure 9 shows an LT boron layer deposited at 400°C at a chamber
pressure of 95 torr, with the newly developed recipes applied in four‐ and six‐cycle sequences
of carrier gas switching. As can be seen in these images, with more switching sequences a
smoother boron layer can be created.

Figure 9. HRTEM image of an LT boron layer deposited after (left) the six‐ (right) and four‐cycle recipe sequences. The
deposition chamber pressure was 95 torr [22].

Besides a new recipe, some additional treatments were also needed prior to the wafers being
loaded into the reactor. The first treatment was a standard ex situ‐cleaning procedure prior to
deposition (i.e. 10 min: HNO3 100% at 25°C; 5 min: DI water; 10 min: HNO3 70% at 110°C; and
5 min: DI water), immediately followed by a 4‐min HF (0.55%) dip to remove native oxide and
H‐passivate the surface to prevent native oxide formation. This was followed by Marangoni
drying, which is an effective substitute for spin‐rinse drying, to prevent the formation of wet
spots. These wet spots readily form on mixed hydrophilic‐hydrophobic surfaces during spin‐
rinse drying, resulting in particle contamination from residues left behind after evaporation
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[23]. Unlike the 700°C deposition, for the 400°C deposition there was no in situ baking step [1].
Thus, the wafers were directly loaded into the pre‐prepared reactor at the 400°C deposition
temperature. The lack of the in situ bake made the HF dip with Marangoni drying a very crucial
step and meant that the wafers had to be loaded immediately into the N2‐purged load lock of
the reactor to prevent any native oxide formation.

3.3. Issues with lowering the deposition temperature of the boron layers

During an HT (700°C) deposition, there is sufficient energy; therefore, the boron atoms that
arrive above the oxide‐covered surfaces are very mobile and can move around and diffuse
laterally to reach the Si surface and become available for the layer deposition. However, during
an LT (400°C) deposition, due to the very low amount of available energy, all those boron
atoms are very limited in terms of movement and therefore they remain wherever they are.
This means that the concentration of the boron atoms over oxide‐covered surfaces can increase
significantly so that the probability of desorption from the oxide‐free sites and/or defects
becomes much lower than in the 700°C case. In fact, a significant amount of boron was observed
to be deposited on the oxide. This was also promoted by the longer deposition time needed to
achieve a reliably closed layer because of the low deposition rate and extra thickness needed
to compensate for the large amount of roughness, as can be seen in Figure 10.

Figure 10. HRTEM images of flat/bevelled oxide surfaces of a small 40×40 μm2Si window with (a) LT and (b) HT boron
layers [21, 22].

These parasitic boron depositions on the flat/bevelled oxide are unwanted and can cause
problems in the subsequent processing steps. For example, the adhesion of plasma‐enhanced
chemical vapour deposition (PECVD) layers of TEOS‐SiO2 was seen to degrade. This is
illustrated in the SEM images of Figure 11. Similar adhesion issues were also witnessed in the
case of physical vapour deposited (PVD) Al deposition on these surfaces. Boron depositions
at 500°C can be performed without any parasitic deposition over most oxide surfaces, even at
micron‐sized windows. However, still for some oxide qualities this kind of unwanted parasitic
deposition was observed. An example is given in Figure 12b and c, where two different dyes
with the same layout are shown with and without adhesion issues for subsequent PECVD
TEOS and PVD Al layer depositions.
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Figure 11. Examples of poor PECVD TEOS‐SiO2 adhesion as a result of parasitic boron deposition during LT deposi‐
tion of boron on flat/bevelled oxide surfaces near micron‐sized Si windows where the LOR is high [21].

Figure 12. Examples of poor adhesion and layer delamination for the same layout. Die (a) shows PECVD TEOS depos‐
ited over 400°C boron. PVD Al was deposited after PECVD TEOS deposition over 500°C boron for two different dies
on the same wafer. Die (b) displays the adhesion problems. However, die (c) does not display the same adhesion prob‐
lems as die (b). The insets show the zoom‐in for different structures with micron‐sized openings [21].

3.4. Precautions to minimise the parasitic boron deposition at low temperatures

To minimise the undesirable parasitic boron deposition on the oxide, there are a few precau‐
tions that can be taken into account. Firstly, the chances of parasitic boron deposition can be
reduced by using the higher quality oxide, which has a lower density of oxide surface‐free sites
and/or defects. Secondly, the global and local oxide coverage ratios can be optimised in the
layout of the oxide mask to reduce the unnecessary boron atom accumulation over the oxide
areas. Likewise, the deposition and process parameters, such as diborane partial pressure, gas
flow and total deposition pressure, can be optimised to minimise the loading effects [15, 24].
These will otherwise also increase the accumulation of boron atoms over certain oxide areas,
thus increasing the probability of parasitic boron deposition there. Also, we have found that
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this poor adhesion could depend on the ex/in situ treatments before the PECVD TEOS‐SiO2 or
PVD Al layers are deposited. Furthermore, the adhesion of these extra layers after boron
deposition is also influenced by the exact conditions on the surface. For example, a large
amount of hydrogen resides on the surface just after boron deposition and is in general known
to reduce adhesion. This H coverage can be reduced by carrying out the baking steps in air.
An investigation of these extra treatments would have to be included in the process develop‐
ment when working with LT boron deposition.

By taking the aforementioned precautions into account, the LT boron deposition was success‐
fully performed to create near‐ideal LT PureB photodiodes with low, deep‐junction‐like
saturation currents.

4. LT PureB UV photodiode fabrication

The post‐metal LT boron deposition was successfully performed to create p+n photodiodes
with nm‐thin, boron‐only beam entrance windows and near‐theoretical UV sensitivity with
negligible optical and electrical degradation [25]. Figure 13 shows the processing steps of the

Figure 13. Processing steps of the fabricated photodiodes with boron‐only beam entrance windows, for boron deposi‐
tion both before (a) and after (b) metallisation [25].
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fabricated photodiodes with boron‐only beam entrance windows, for boron deposition both
before and after metallisation.

Figure 14. Measured I‐V characteristics of both pre‐metal HT and post‐metal LT PureB photodiodes with an active area
of 9.6×9.6 mm2. Schematics of the fabricated photodiodes are shown in Figure 13. The boron layer thickness was meas‐
ured by ellipsometry to be 3.2 and 4.5 nm for the HT and LT photodiodes, respectively [25].

Figure 15. Measured VUV spectral responsivity as a function of wavelength for HT and LT PureB photodiodes (area:
9.6×9.6 mm2) before and after high‐level irradiation and after a final cleaning procedure [22].
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The I‐V characteristics measured for both pre‐metal HT and post‐metal LT PureB photodiodes
with an active area of 9.6×9.6 mm2 are shown in Figure 14. The boron layer thickness was
measured by ellipsometry to be 3.2 and 4.5 nm for the HT and LT photodiodes, respectively.
As can be seen, low deep‐junction‐like saturation currents and near‐ideal diode characteristics
can be provided by LT boron deposition.

Figure 15 shows the measured responsivity in the VUV spectral range (120–400 nm) for both
pre‐metal and post‐metal LT PureB photodiodes. As can be seen in this figure, the response
for pre‐metal photodiodes is slightly higher than that for post‐metal ones. This could be
explained by a small thinning of the boron layer due to the extra processing necessary to open
the light entrance window (see Figure 13). The HT PureB device is also shown in Figure 15 as
a reference. As will be commented on subsequently, the rough LT boron surface proves to be
much less chemically resilient than the smooth HT boron layers.

Figure 16. Measured responsivity across the surface in one direction of a 9.6×9.6 mm2 LT PureB photodiode at wave‐
lengths of 193 and 121 nm, before and after high‐dose exposure, and after cleaning. The high‐dose exposure was per‐
formed with a circular beam spot of ø1 mm with a radiant exposure of 37 J/cm2 [22].

The optical stability of the post‐metal LT PureB photodetector was measured by exposing the
centre of the 10×10 mm2 dies to high‐dose VUV irradiation. The high‐dose exposure was
performed with a circular beam spot with a diameter of 1 mm, to a radiant exposure of 37 J/
cm2. The LT PureB photodiodes were found to be highly stable. To illustrate, the resulting
responsivity at the centre of the post‐metal LT PureB photodiode is included in Figure 16.

A slight dip in responsivity is visible after the 121‐nm exposure. This is the result of the build‐
up of carbon contamination during exposure. To remove this layer, an ozone‐cleaning
procedure was performed. For HT devices, the cleaning procedure successfully removes the
contamination, and the original high responsivity is regained [26]. By contrast, this treatment
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cannot effectively remove the carbon contamination of the LT device, probably due to the
rougher surface structure as shown in Figure 13. As can be seen, the rougher surface makes
the carbon contamination removal more difficult than the smooth surface structures. Addi‐
tionally, this rougher surface structure makes the silicon surface below the boron layer more
susceptible to oxidation [27]. The higher responsivity after standard ozone‐cleaning suggests
that the boron layer is thinned considerably, as can be seen in Figures 15 and 16. On closer
look at these figures, a reduced thinning can be clearly seen where the carbon contamination
was present for both measurement wavelengths (i.e. in the middle of the active area). There‐
fore, although the as‐deposited LT boron layer is optically robust, it is more vulnerable to
carbon contamination due to its rougher surface compared to HT boron layer, as can be seen
in Figure 9.

5. Summary

In this chapter, an analytical model is developed to describe the deposition kinetics and
deposition chamber characteristics that determine the deposition rate over the wafer, which
can be used as a pre‐deposition prediction tool to improve the set‐up and control of the final
deposition. The model has been very useful both in the development of uniform boron layers
with minimal pattern dependence and in the transferring of recipes from one reactor to the
other.

A new technology for low‐temperature (400°C) boron deposition is presented, which provides
a smooth, uniform, closed boron layer. The temperature dependency of the boron deposition
on patterned Si/SiO2 surfaces in the temperature range of 400–700°C is investigated. Some
selectivity issues that arise when the boron deposition temperature is reduced from 700°C to
400°C are discussed. Some provisions are recommended to minimise the undesirable boron
deposition on the oxide. For boron deposition at 400°C, it is necessary to start the deposition
in a nitrogen environment to facilitate the first monolayer deposition, and then switch to a
hydrogen environment to make the surface smoother and to maintain the boron coverage over
the entire silicon opening.

The LT PureB technology is then successfully employed to create near‐ideal LT PureB
photodiodes with nm‐thin, boron‐only beam entrance windows and a near‐theoretical
sensitivity for irradiation with either VUV/DUV/EUV light down to a wavelength of 10 nm.
Very low dark current of only 15 pA at -1 V bias voltage was measured for post‐metal LT PureB
photodiodes with an anode area of 9.6×9.6 mm2, which we relate to the fact that no post‐PureB
processing was performed.

It is believed that at temperatures of 400°C and lower, no silicon doping is possible during the
boron deposition. Yet, the LT boron layers provide a structure with excellent p‐n junction‐like
I‐V characteristics. Based on this observation, we make the assumption that during the
damage‐free LT boron deposition, which is most likely a result of a chemical reaction, a kind
of effective “hole” layer is built between the boron and silicon. This interface “hole” layer
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creates an electric field that repels the injected minority carriers (electrons) away from the
interface.
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