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Palavras Chave recuperação de informação, extração de informação, mineração de texto,

aprendizagem automática, processamento de linguagem natural, bioinformá-

tica.

Resumo O desenvolvimento de novos métodos experimentais e tecnologias de alto

rendimento no campo biomédico despoletou um crescimento acelerado do

volume de publicações científicas na área. Inúmeros repositórios estrutura-

dos para dados biológicos foram criados ao longo das últimas décadas, no

entanto, os utilizadores estão cada vez mais a recorrer a sistemas de recu-

peração de informação, ou motores de busca, em detrimento dos primeiros.

Motores de pesquisa apresentam-se mais fáceis de usar devido à sua flexibi-

lidade e capacidade de interpretar os requisitos dos utilizadores, tipicamente

expressos na forma de pesquisas compostas por algumas palavras.

Sistemas de pesquisa tradicionais devolvem documentos completos, que ge-

ralmente requerem um grande esforço de leitura para encontrar a informação

procurada, encontrando-se esta, em grande parte dos casos, descrita num

trecho de texto composto por poucas frases. Além disso, estes sistemas fa-

lham frequentemente na tentativa de encontrar a informação pretendida por-

que, apesar de a pesquisa efectuada estar normalmente alinhada seman-

ticamente com a linguagem usada nos documentos procurados, os termos

usados são lexicalmente diferentes.

Esta dissertação foca-se no desenvolvimento de técnicas de recuperação de

informação baseadas em frases que, para uma dada pesquisa de um utiliza-

dor, permitam encontrar frases relevantes da literatura científica que respon-

dam aos requisitos do utilizador. O trabalho desenvolvido apresenta-se em

duas partes. Primeiro foi realizado trabalho de investigação exploratória para

identificação de características de frases informativas em textos biomédicos.

Para este propósito foi usado um método de aprendizagem automática. De

seguida foi desenvolvido um sistema de pesquisa de frases informativas. Este

sistema suporta pesquisas de texto livre e baseadas em conceitos, os resul-

tados de pesquisa apresentam-se enriquecidos com anotações de conceitos

relevantes e podem ser ordenados segundo várias estratégias de classifica-

ção.





Keywords information retrieval, information extraction, text mining, machine learning, na-

tural language processing, bioinformatics.

Abstract Modern advances of experimental methods and high-throughput technology

in the biomedical domain are causing a fast-paced, rising growth of the vol-

ume of published scientific literature in the field. While a myriad of structured

data repositories for biological knowledge have been sprouting over the last

decades, Information Retrieval (IR) systems are increasingly replacing them.

IR systems are easier to use due to their flexibility and ability to interpret user

needs in the form of queries, typically formed by a few words.

Traditional document retrieval systems return entire documents, which may

require a lot of subsequent reading to find the specific information sought, fre-

quently contained in a small passage of only a few sentences. Additionally, IR

often fails to find what is wanted because the words used in the query are lex-

ically different, despite semantically aligned, from the words used in relevant

sources.

This thesis focuses on the development of sentence-based information re-

trieval approaches that, for a given user query, allow seeking relevant sen-

tences from scientific literature that answer the user information need. The

presented work is two-fold. First, exploratory research experiments were con-

ducted for the identification of features of informative sentences from biomed-

ical texts. A supervised machine learning method was used for this purpose.

Second, an information retrieval system for informative sentences was devel-

oped. It supports free text and concept-based queries, search results are en-

riched with relevant concept annotations and sentences can be ranked using

multiple configurable strategies.
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Chapter One

Introduction

1.1 Motivation
During the past decades we have witnessed an overwhelming growth of publicly available data and
information, prompted by the evolution and fast-paced adoption of the Internet. These data are
presented in various digital formats, both structured and unstructured, with the vast majority of it
being published in the form of natural language texts.

The life sciences, comprising the fields of science that involve the study of living organisms, such
as biomedicine, molecular biology and genetics, is one of the areas experiencing the most accentuated
increase in the amount of scholarly knowledge. This was mainly prompted by modern advances of high-
throughput technology that produce sizable amounts of biological data, making it very challenging for
healthcare professionals and the research community to keep up with the latest advances in the field.

In response, a myriad of databases and automated tools have been developed in a effort to help
users quickly and efficiently find and retrieve relevant information and publications regarding biomedi-
cal concepts and their relationships. However, considerable fragmentation of those knowledge resources
still exists and their integration is a current challenge, as is also the development of better tools to
find and present information buried in those resources.

Traditional information retrieval systems return entire documents, which may require considerable
time of subsequent reading to find the specific information that users seek, frequently contained in a
small passage of a few sentences. Additionally, IR often fails to find the most relevant documents to
answer a certain information need, because the words used by users to express their needs are lexically
different, despite semantically aligned, from the words used in relevant sources.

Everyday we take one step forward towards the utopian world where we can easily find all available
knowledge about a given topic and then navigate the web of relationships leading to other topics. In
this utopian world, we’ll have tools that not only facilitate access to knowledge resources, but also
automatically discover new relationships between known concepts, requiring only human confirmation
to validate those relations.

1.2 Objectives
The purpose of this thesis is the research and development of information extraction and retrieval
methodologies that can leverage the wealth of available knowledge in the biomedical domain and
facilitate access to unstructured information from scientific publications. This research was partly
conducted at the Bioinformatics Group of the University and Aveiro and the resulting techniques and
methods will augment the local Text Mining (TM) framework. Thus, whenever possible, tools from
this framework will be used and extended. Research will be focused on the following goals:

• To explore and study literature on text mining applied to the life sciences domain, aiming to
understand past and current areas of research in the field;
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• Study existing solutions for sentence-based information retrieval systems, with focus on identi-
fying the features of an informative sentence;

• Investigate and develop methods to classify and rank sentences according to their semantic
richness and information content;

• Implement a modular information retrieval system that allows concept-based queries and facil-
itates ranking of sentences from the literature according to different user information needs.

These goals will be addressed in chapter 3, where we present the developed system and methods.

1.3 Thesis outline
This thesis is divided in 4 chapters. The remaining chapters are organized according to the following:

• Chapter 2 introduces background topics on which this thesis builds upon, such as information
retrieval, information extraction, their techniques and applications, and related systems for
sentence retrieval;

• Chapter 3 presents the developed methods and system, from the classifiers used to identify
and rank informative sentences to the complete information retrieval system;

• Chapter 4 discusses our findings, presents overall conclusions and directions for future work.
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Chapter Two

Background

“Knowledge has to be improved, challenged, and increased constantly, or it
vanishes.”

— Peter Drucker

A 2004 study performed by the Pew Research Center reported that 92 percent of Internet users
say the Internet is a good place to search for everyday information [1]. The same study declares that
88 percent of online users consider the Internet plays a role in their daily lives. Since modern search
engines considerably accelerate access to publicly available information and knowledge resources, it is
understandable that people choose to satisfy immediate information needs online, instead of looking
for offline resources. Recent studies from Pew Research (2011) also report that search and email are
the top online tasks for adults with Internet.

The ever-increasing use of the Internet by people all over the world facilitates sharing of new
discoveries, especially in the form of research papers and studies. However, the amount of new
information made available everyday is overwhelming and makes it challenging both to find the most
relevant results to our information needs and to keep up with progress in any given field. This problem
is known as information overload, and represents the difficulties a person can have in understanding
a given topic and making decisions in the presence of too much information.

This issue is of particular importance in the biomedical field, where the dissemination of research
results is crucial. The past decades have witnessed an exponential increase of data, made available
by new high-throughput methods. Hence, when the need for information systems capable of storing
and providing access to this tremendous amount of data emerged, new biomedical databases have
been created and are continuously populated with new discoveries and study results. For instance
the Medical Literature Analysis and Retrieval System Online (MEDLINE) contains over 19 million
references to journal articles in life sciences with a concentration on biomedicine. If we consider
PubMed, which contains MEDLINE, the number of citations surpasses 22 million. Over the past 20
years, PubMed has been growing at a rate of approximately 4 percent per year [2].

It is estimated that more than 85 percent of existing information is available as unstructured data
[3], making it very challenging for automated systems to make sense of it. For that kind of information,
specific approaches involving techniques such as Natural Language Processing (NLP) are required.
Those approaches are collectively known as Text Mining (TM), which is defined by Hearst as the
automatic discovery of new, previously unknown information from unstructured textual data [4].

TM is often seen as encompassing three major tasks: Information Retrieval (IR), which deals with
gathering relevant documents for a given information need; Information Extraction (IE), responsible
for extracting information of interest from these documents; and Data Mining (DM), which is the task
of discovering new associations among the extracted pieces of information.
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2.1 Information Extraction

“I was brought up to believe that the only thing worth doing was to add to the sum
of accurate information in the world.”

— Margaret Mead

Information Extraction (IE) is the task of automatically extracting structured information, such
as entities, relationships between entities, and attributes describing entities, from unstructured doc-
uments. In the majority of the cases, especially in the bioinformatics domain, it involves processing
human language texts by using Natural Language Processing (NLP) techniques. Structured informa-
tion resulting from IE can be used to populate databases, enrich documents with annotations and
external references, build relationship networks between concepts, among others. Figure 2.1 illustrates
a typical IE system.

Unstructured
Documents

IE System

Structured
Information

OntologiesDictionaries ML Models

Figure 2.1: Overview of a typical IE system. Starting with unstructured documents, an
IE system can use a combination of different methods to identify and extract structured
information that is made available as the system output.

Depending on the type and purpose of the information being extracted, an IE application can
use various auxiliary resources to assist in the extraction process. For example, systems specialized
in identifying known entities in text often use dictionaries or ontologies to aid in their identification.
More advanced systems may try to learn language models from manually annotated documents and
later use those models to extract information from previously unseen text. Humans are very good at
recognizing entities, concepts, facts and relationships in text, however, given the inherent complexity
of human language, it is very challenging to build automated systems that are able to correctly perform
those seemingly simple tasks.

This section will briefly introduce some of the most common tasks of IE from unstructured text
documents, with a focus on scholarly documents – like research papers and reports – in the life sciences
domain.
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2.1.1 Natural Language Processing
Natural Language Processing (NLP) is a field of computer science, artificial intelligence and linguistics
that deals with automated understanding of human language by computers. It is one of the most
difficult problems in computer science, since human language evolved to be so complex that the task
of completely understanding it is considered “AI-complete” [5], i.e., is equivalent to that of solving
the central artificial intelligence problem – making computers as intelligent as people.

Although work on the area can be found from earlier periods, the first relevant developments of
NLP started around 1950. However, until the 1980s, most NLP systems resorted only to complex
sets of manually crafted rules. Then, the advent and explosion of Artificial Intelligence (AI) ignited
a revolution in the area with the introduction of Machine Learning (ML) algorithms for language
processing, partly due to the increase in computing power necessary for such approaches. While the
first developments of language processing using ML used decision trees that produced sets of rules
similar to the hand-written ones, research in the area quickly shifted towards statistic and probabilistic
models that have the advantage of being able to express the relative certainty of many different possible
answers rather than only one, leading to more reliable results when included as components of a larger
system. Nowadays, research has increasingly focused on unsupervised and semi-supervised learning
algorithms that, while often producing lower quality results, have the advantage of being able to learn
from non-annotated data.

NLP encompasses a myriad of tasks, with some high-level tasks that can be directly translated to
real-world problems solutions and lower-level tasks that can be seen as subtasks that help in solving
larger tasks. The area has received a lot of attention from the research community and there are
numerous challenges and competitions aimed at solving specific tasks. The most commonly researched
tasks in the biomedical field include:

• Automatic summarization, aiming at producing readable summaries containing the main
ideas from larger texts;

• Co-reference resolution, finds words in text mentioning the same entities;

• Named Entity Recognition (NER) , identifies mentions of known entities in text, such as
proper names or concepts;

• Part-of-speech (POS) tagging focuses on determining the part of speech of each word in
a phrase, i.e., tagging words as nouns, verbs or adjectives;

• Parsing performs grammatical analysis of sentences in order to generate parse trees with
dependencies between terms;

• Question Answering (QA) is one the most difficult tasks that tries to give concrete answers
to open-ended questions expressed in natural language;

• Relation Extraction (RE) , along with Event Extraction try to identify relationships
between entities mentioned in text and occurrences of specific bio-events, respectively;

• Word Sense Disambiguation (WSD) , typically tries to use context to infer the specific
meaning of a word in a specific sentence. This is also an hard task, given that words can have
multiple meanings;

• Zone Analysis (ZA) , is a task usually applied to research papers with the intent of identifying
different sections and rhetorical zones, like introduction, problem statement, methods, results
and conclusion.

The following sections detail the NLP tasks more relevant for the work proposed and developed
in the context of this thesis.

2.1.2 Named Entity Recognition
Named Entity Recognition (NER) is the sub-task of IE that focuses on identifying known entity names
in structured and unstructured documents. A NER module starts by isolating atomic elements in text
and then classifies them as belonging to one or more predefined categories. Figure 2.2 illustrates a
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Figure 2.2: Text fragment annotated with known biomedical concepts. Colours are
used to facilitate visual discrimination of different entity types. Screen capture from
BeCAS online tool [6].

fragment of text where known biomedical entities have been recognized and highlighted using a colour-
coded scheme.

NER systems can recognize generic entities such as names of persons, organizations, locations,
quantities and expressions of time or focus on a given domain and identify specific entity types. For
instance, a biomedical NER tool usually specializes in the identification of biological entities, such as
species, disorders, metabolic pathways, chemicals, enzymes, genes and proteins, among others.

Multiple techniques have been shown to be effective in the implementation of automatic NER
systems, ranging from rule-based (usually using grammatical features) to dictionary-based (resorting
to large collections of known names), and statistical methods that use machine learning algorithms
[7]–[9]. Systems that try to leverage the advantages of each individual method by combining them are
called hybrid systems.

Rule-based methods rely on a set of linguistic rules that can combine orthographic, syntactic,
grammatical and semantic properties of human language to identify mentions of entities in text.
These systems require comprehensive knowledge of natural language structure and normally lead to
very specific rules that may not generalize well on different kinds of text [10].

Dictionary-based approaches require a large collection of known entities, usually including several
names by which each entity is known (synonyms). Then, strict or partial matching techniques can be
used to find occurrences of those names in text. The performance of this type of approach depends
highly on the quality and comprehensiveness of the dictionaries used, as well as the string matching
techniques employed [11].

Finally, machine-learning techniques use statistical methods to learn how to recognize certain
entity names. This usually requires large datasets of texts where known entities have been manually
annotated in order to produce a model capable of automatically identifying entities in unseen text.

After the identification of a textual entity it is usual desirable to link it to a concept, possibly
with references to resources – like public knowledge bases – where one can read more about it. This
process is called entity linking, or named entity normalization, and typically requires some kind of
dictionaries to map the matched entities to the corresponding database identifiers.

2.1.3 Relationship and Event Extraction
After named entities have been recognized, normalized and tagged in text, we can extract relationships
between them. Plenty of work has been conducted in biomedical relationship extraction and several
different approaches have been tried with different degrees of success. From all types of relationships
exploited so far, protein-protein interactions are arguably the ones that received more attention from
the research community, and several methods to extract them have been proposed [12]–[18]. Attempts
have also been made in the automatic recognition and extraction of relationships between protein-gene,
genotype-phenotype, genotype-drug, phenotype-drug, gene-phenotype-drug, drug-drug and disease-
treatment entities [19]–[23].
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More complex relationships concerning the detailed behaviour of bio-molecules are known as bio-
molecular events (bio-events). They usually establish a relationship between various named entities
and are connected by a verb that is considered the event trigger. Community evaluation challenges
like BioNLP have promoted research on extraction of several types of bio-molecular events, such as
gene expression, transcription, protein catabolism, phosphorylation, localization, binding, positive
and negative regulation [24], [25]. Figure 2.3 illustrates two sentences annotated with bio-events.

Figure 2.3: Text fragment annotated with relationships between concepts and biomed-
ical events. Arrows are used to connect related concepts while certain verbs specify
relation/event types. Image produced using brat tool [26].
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2.2 Information Retrieval

“It is a very sad thing that nowadays there is so little useless information.”

— Oscar Wilde

Information retrieval is the task of finding the most relevant documents that satisfy a particular
information need from a collection of information resources. Those documents can be of any type,
ranging from unstructured data, such as research papers and webpages, to structured documents, like
database records or strictly defined XML documents.

Typical IR systems accept an user query, that can be based on metadata (inherently structured),
full-text (unstructured) or a combination of both, retrieve a set of documents that are in some way
related to the user query, rank those documents using a specific algorithm and return the ranked
results back to the user. Three of the most widely used general-purpose IR systems are the web-based
search engines Google, Yahoo and Bing. Figure 2.4 illustrates the workflow of a typical IR system.

Documents

Results
Query

IR System

Figure 2.4: Overview of a typical IR system. Documents are indexed beforehand.
When a user submits a query the system selects relevant documents from its index,
ranks them and returns them to the user.

In order to provide search results to users, search engines need to build an index of documents,
which is a data structure containing all the indexed documents, document surrogates or relevant
metadata. Depending on the application, those documents can be text documents, images, audio,
videos or structured objects of some type. General-purpose search engines that index the web perform
an additional step before indexing, called crawling, which is the process of following references from
one document to another in order to find all documents that may be relevant for indexing.

2.2.1 Model Types
The goal of any IR system is the correct retrieval of the most relevant documents for a given user query
from a large collection of documents. Moreover, since each user query – representing an information
need – does not usually map to a single result, it is important that, from all the documents matching
a query, the ones more likely to be aligned with the user information need appear first in the result
list. For this, IR systems need a way to measure the similarity between each document and the initial
query.
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Various models exist to address the similarity issue and they vary in the manner documents are
represented and in the techniques used to calculate the relatedness of each document to a given query.
Figure 2.1 categorizes multiple IR models according to their mathematical basis and the properties of
each model. The mathematical basis of a model defines how documents are formally represented and
the operations used to measure similarity. Typically, an IR system can fall in one of four types:

• Algebraic: documents and queries are usually represented as vectors, matrices, or tuples, and
the similarity of the query vector and document vector is represented as a scalar value;

• Set-theoretic: represent documents as sets of words or sentences, and similarities are derived
from set-theoretic operations on those sets;

• Probabilistic: the process of document retrieval is treated as a probabilistic inference, and
similarities are calculated as the probabilities of a document being relevant for a given query;

• Feature-based: documents are viewed as vectors of values of feature functions and the model
tries to find the best way to combine these features into a single relevance score, typically by
learning to rank methods. Other retrieval models can be incorporated as new feature functions.

Depending on the types of documents being searched and the specific goals of the system, a model
can make several assumptions about the interdependence of terms both in the query and in documents.

Models without term-interdependencies treat different terms/words as independent. This require-
ment can be represented in vector space models by assuming term vectors are orthogonal and in
probabilistic models by an independency assumption for term variables.

Models considering interdependencies between terms can make it in an immanent or transcendent
manner. A model considering immanent term interdependencies needs to represent those dependencies
internally while defining the degree of interdependency between two terms. It is usually directly or
indirectly derived from the co-occurrence of those terms in the whole set of documents. Models with
transcendent term interdependencies allow a representation of interdependencies between terms, but
they do not allege how the interdependency between two terms is defined. They rely on external
sources for the degree of interdependency between two terms, like a trained human or sophisticated
algorithms.

The models illustrated in Table 2.1 are comprehensively detailed and compared in the literature
[27], [28].
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Table 2.1: Information Retrieval Models (based on [29]).

                              Model 

                               Proper*es 

 

  Mathema*cal 

          Basis 

Without 

Term‐interdependencies 

With Term‐interdependencies 

immanent  transcendent 

Algebraic 

Set‐theore*c 

Probabilis*c 

Standard 

Boolean 

Extended 

Boolean 

Vector 

Space 

Generalized 

Vector 

Space 

Latent 

Seman*c 

Spread. Act. 

Neuronal 

Net. 

Fuzzy 

Set 

Logical 

Imaging 

Binary 

Interdepen

dence 

Language 

Inference 

Net. 

Belief 

Net. 

Topic‐based 

Vector 

Space 
Balanced 

Topic‐based 

Vector 

Space 

Backpropag. 

Neuronal 

Net. 

2.2.2 Evaluating Performance
Many different measures for evaluating the performance of IR systems have been proposed. All
measures require a collection of documents – the corpus – and a query. A ground truth notion
of relevance is assumed – every document in the corpus is either relevant or non-relevant for the
query. Figure 2.5 shows a Venn diagram illustrating the different sets of documents involved in the
performance evaluation of a given system.

The portion of documents that are correctly selected for a query are called the true positives (TP),
and is visible in the diagram as the intersection between the two ellipsis. True negatives (TN) are
the documents that are correctly left out of the retrieved set, and are represented in the diagram by
everything except the union of the two ellipses. Documents that are incorrectly retrieved are called
false positives (FP) and can be seen as the “Retrieved Documents” ellipse minus the intersection.
False negatives (FN) are documents that should have been retrieved but were not, and are visible in
the diagram as the “Relevant Documents” ellipse minus the intersection.

These sets are the basis for all metrics required to evaluate an IR system [30]. A very important
metric is accuracy, which is defined as the ratio of true measures (TP +TN) in relation to the corpus.
The proportion of selected documents that were correctly selected is called precision, and is calculated
by Formula 2.1.

Precision =
TP

TP + FP
(2.1)

Recall is the proportion of correct items that were selected from the corpus, and is formulated as
Formula 2.2.

Recall =
TP

TP + FN
(2.2)

Precision and recall usually represent a trade-off, such that an IR system that always returns
all documents in the corpus achieves maximum recall at the expense of very low precision. Hence,
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Figure 2.5: Venn diagram illustrating the outcome of an information retrieval sys-
tem. The correctly retrieved documents are at the intersection of the set of relevant
documents for the query and the set of retrieved documents.

another metric is commonly used to combine precision and recall using a weighted harmonic mean,
the F1-measure. Formula 2.3 show the equation used to calculate this measure.

F1 = 2 ×

Precision × Recall

Precision + Recall
(2.3)

The proportion of non-relevant documents that are retrieved, out of all non-relevant documents
in the corpus is named fall-out. Fall-out is sometimes used as a measure of how hard it is to build a
system that produces few false positives, and is calculated with Formula 2.4.

Fall-out =
FP

TN + FP
(2.4)

Since IR systems usually return a ranked list of documents, it is desirable to measure performance
while considering the order in which the documents are presented. However, precision and recall are
scalar values based on the complete result set returned by the system, disregarding results order. By
calculating precision and recall at every point in the ranked list of documents, we can plot a precision-
recall curve, seeing precision p(r) as a function of recall. If we then compute the average value of p(r)
over the interval from r = 0 to r = 1 we get the area under the precision-recall curve. This area is
called average precision and is formulated by the integral in Formula 2.5.

AveP =

∫
1

0

p(r) dr (2.5)

In practice, to do an objective evaluation of an IR system we need a corpus, a set of queries and
the lists of correct results that should be retrieved for each query. We can then calculate a well-known
metric used to assess the overall performance of the system, the mean average precision. For a set of
Q queries, the mean average precision of a system is the mean of the average precision scores for each
query, as formulated by Formula 2.6.

MAP =

∑Q

q=1
AveP (q)

Q
(2.6)

In the absence of a test collection to evaluate an IR system, we can perform an empiric analysis
of retrieved results and try to determine if they answer information needs for certain queries. This
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does not provide an objective, measurable evaluation of system performance, but is sometimes the
only way to estimate retrieval and ranking effectiveness.

2.2.3 Indexing and Searching
To efficiently retrieve documents relevant for a user query an IR system must build and maintain
an index of documents optimized for fast searching. When dealing with large document collections
(called corpus, in the context of IR) it is impractical to simply inspect every document at query time
and try to match its contents to the query. For this reason documents must be parsed at index time
in order to extract their contents into data structures suitable for quick matching.

One of the most common data structures used by IR applications are inverted indexes [28]. An
inverted index is a list of all words present in a corpus along with references to every document in
which they occur. The set of references of a given word is called its posting list. To support better
ranking algorithms, posting lists can include occurrence counts for each word in each document. If
postings also include term positions, an IR system is capable of performing proximity matches for
user queries. Figure 2.6 illustrates a simple inverted index with occurrence counts.

and

bacon is

great

brown

lazyfox

jumps

1:1

1:1

1:1 2:1

2:1

1:2

1:2 2:1 4:3

... ...

2:1

3:2

Figure 2.6: Inverted index with occurrence counts. Maps each term occurring in the
corpus to the documents in which it occurs, including the occurrence count.

Other data structures commonly used by search engines are Binary Search Trees (BSTs) (illus-
trated in Figure 2.7), which have the advantage of supporting partial matching; and signature files –
or hash tables – which have very fast lookup times (O(1), faster than trees) but have the drawback
of only supporting exact matches (Figure 2.8).

The process of building an index can be very computationally intensive, both in terms of memory
consumption, processor load and input/output operations. When building large indexes (e.g. indexing
the whole web, like Google does) it is crucial that the indexing workflow is parallel and distributed
over multiple machines. There are several algorithms that can help parallelize and distribute tasks
and load between various nodes, being MapReduce one of the most widely used [31].

Techniques used for index traversal, necessary to perform searches, depend on the structure used
for indexing documents [28]. Thus, a different procedure is applied to retrieve documents for each
index structure. Additionally, if index structures are compressed in order to reduce their memory
footprint, both in persistent storage and in volatile memory, the search process needs to be adapted
[27].
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Figure 2.7: Sample BST. Can have as many branches as necessary. More branches
provide more fine-grained partial matching.

and

bacon

brown

fox

000

001

104

"and"; {1: 1, 3: 2}

307

...

Words Buckets Entries

...

...

308

...

o

x

x

x

x

"brown"; {1: 3}

"bacon"; {2: 1}

"fox"; {1: 1}

...

o

o

o

o

Figure 2.8: Sample search hash table. Each word is hashed to an integer value and
mapped to an entry containing the posting list. The hashing algorithm should be
strong enough to avoid collisions.
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2.2.4 Query Expansion
Query expansion is the process of reformulating an initial user query (the seed query) with the intent
of improving retrieval performance. Most of the times, the seed query is augmented with more terms
that match additional documents. This leads to an improvement in recall performance at the expense
of reducing precision.

Several techniques can be used standalone or be combined in order to improve query expansion
results. The most widely used ones include:

• Expanding the seed query with synonyms of the words present in it;

• Stemming all terms in the initial query to allow finding all morphological forms of the words
in the indexed documents;

• Mapping terms to concepts and expanding the initial query with related concepts. An
ontology or concept network is usually used for this purpose;

• Automatically correct spelling errors in the seed query and search for the correct form, or
suggest a corrected version;

• Re-weight the terms/concepts in the initial query to alter the ranking of results and pro-
mote better matches at the top of the result list.

2.2.5 Text Classification
Text Classification (TC) , also called text categorization, is the task of classifying documents into
predefined classes. An algorithm that implements classification is known as a classifier. Typical
applications of TC are e-mail spam filtering, automatic categorization of newspaper articles into
topics and language identification.

Text classification can be performed manually, by humans, or automatically, using computer
algorithms. There are two approaches to perform automatic TC. We can use rule-based or automatic
methods, based on ML techniques.

Rule-based classification methods are usually very accurate when rules are written by experts.
However, creating such classification systems requires human labour, is extremely time consuming and
demands both linguistic and domain-specific knowledge of the text being classified [32]. Moreover, if
the target domain changes, rules have to be reconstructed, which sometimes causes conflicts between
rules and makes classifier maintenance costly.

Machine learning based approaches have the advantage of being domain independent and usually
achieve high predictive performance [33]. Nonetheless, the generation of automatic classification
models requires labelled data, called training data, which maps samples to categories and allows a
learning algorithm to use statistical methods to automatically induce a classification model from that
data [34].

Previous studies that compared the effectiveness of various text classification algorithms on differ-
ent tasks concluded that there is not one single classification method that can consistently outperform
others on all possible classification tasks [35], [36]. The key question when dealing with ML classifica-
tion is not whether a learning algorithm is superior to others, but under which conditions a particular
method can significantly outperform others on a given application problem.

The evaluation metrics presented in section 2.2.2 are also used to evaluate the performance of
classification methods. In this case, the true positives (TP ) and true negatives (TN) sets are composed
by the instances that have been correctly classified as either belonging or not belonging to a given
class, respectively. Accordingly, the false positives (FP ) and false negatives (FN) are the instances
that have been incorrectly classified.

2.2.6 Sentence Retrieval Applications
The most popular biomedical information retrieval system, PubMed, combines the Medical Subject
Headings (MeSH) based indexing provided by the MEDLINE literature database with Boolean and
vector space models for document retrieval [37], giving researchers access to over 22 million citations.
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Even though PubMed provides an extensive, up-to-date and efficient search interface, it has be-
come increasingly challenging for researchers to quickly identify information relevant to their individual
needs, owing mainly to the ever-growing biomedical literature [2]. Additionally, PubMed results are
abstracts (with links to full texts in PubMed Central (PMC) ), which can be of considerable size and
do not allow immediate identification of key sentences.

Over the past years, a range of systems have been developed to help users quickly and efficiently
search and retrieve relevant publications from the MEDLINE collection indexed by PubMed. This
was facilitated and promoted by the free availability of MEDLINE data and Entrez Programming
Utilities [38], which make it possible for external entities – from either academia or industry – to
create web-based tools that provide alternative ways to search over PubMed.

Lu presented a comprehensive review of tools complementary to PubMed [2], albeit only consid-
ering tools that do not search beyond the abstract level, are web based, and capable of searching any
arbitrary topic in the biomedical literature as opposed to some limited areas.

Most of the existing information retrieval and extraction tools based on the MEDLINE literature
database take advantage of the domain knowledge available in databases and resources such as Entrez
Gene, UniProt, Gene Ontology (GO) or Unified Medical Language System (UMLS) to process the
titles and abstracts of texts and present the extracted information in different forms, such as relevant
sentences describing biological processes, relationships extracted between various biological entities,
or in terms of co-occurrence statistics between domain terms. Since our focus is on the development
of classification models for ranking of informative sentences in an information retrieval system, we
only compared existing tools that return results at the sentence level.

iHOP1 [39], an acronym for Information Hyperlinked over Proteins, uses genes and proteins as
links between sentences, allowing the navigation through sentences and abstracts in PubMed using a
network metaphor.

Chilibot2 [40] retrieves sentences from PubMed abstracts relating to a pair or a list of proteins or
genes, and applies shallow parsing to classify these sentences as interactive, non-interactive or simple
co-occurrence.

MEDIE3 [41] uses a deep-parser and a term recognizer to index PubMed abstracts based on
pre-computed semantic annotations, allowing for real-time retrieval of sentences containing biological
concepts that are related to the user query terms.

Textpresso4 [42] uses ontologies to allow filtering of results using categories, presenting results as
sentences clustered at the abstract level.

BioIE5 [43] is a rule-based system that uses templates to extract informative sentences from
MEDLINE or a user-defined corpus.

Table A.1 compares several aspects of these systems. The characteristics of PhraseRank, the
system detailed in the next chapter, are also shown for comparison.

1http://www.ihop-net.org/UniPub/iHOP/
2http://www.chilibot.net/
3http://www.nactem.ac.uk/medie/
4http://www.textpresso.org/neuroscience/
5http://www.bioinf.man.ac.uk/dbbrowser/bioie/
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Chapter Three

Model Proposal and
Implementation

“Knowledge is of two kinds. We know a subject ourselves, or we know where we
can find information upon it.”

— Samuel Johnson

The previous chapter introduced important topics of research on which this thesis builds upon,
related to the fields of text mining, information retrieval and information extraction. The current
chapter, comprised of two parts, proposes a model and describes a prototype implementation of a
system for fast retrieval of informative sentences from textual documents in the biomedical domain.

The proposed solution is two-fold. First, exploratory work was conducted for the identification of
characteristics of an informative sentence – the linguistic and conceptual features that make a given
sentence interesting, in the sense that it conveys information. Second, we implemented automated
methods to classify sentences as being informative or not, while quantifying the “information content”
present in those sentences. Then, using the proposed classification methods as building blocks, we
propose a concept-based information retrieval system that, for a given user query, retrieves the most
relevant sentences from the literature and presents them in an interactive user interface that facilitates
refinement of the retrieved results. Figure 3.1 presents a top-level overview of the proposed system.

For the development, testing and evaluation of the classification methods we used freely available
datasets that are adequate for the overall goal of the system. However, the software components
developed should be modular enough to be reused on different and larger datasets. The source code
of all components is open-source and freely available for non-commercial use. Every component is
well tested and the evaluations presented in the following sections are automated and reproducible in
a suitable research environment.

The next section presents the proposed sentence classification methods, detailing the model con-
struction, learning resources used, informative features selected, and evaluation results using various
strategies and metrics. Section 3.2 details the overall information retrieval system, including the
indexing model, ranking algorithms, the search interface and its supporting API.
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Figure 3.1: Overview of the proposed system. First, textual documents are pre-
processed, features are extracted and sentences are classified and assigned relevance
scores. Second, the IR system indexes the sentences along with their features, scores
and related metadata. Third, at runtime, users perform queries on the system, while
being able to use an assisted query protocol that allows concept-based and free-text
queries. Fourth, the system retrieves and ranks the most relevant sentences and
presents them to the user, along with hyperlinks to the original documents from where
the sentences were extracted. Last, the user can re-rank results by selecting different
classification methods and augment the original query with more concepts present in
the result sentences.
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3.1 Sentence Classification
This section describes the exploratory work that was conducted for the identification and evaluation
of features present in informative sentences from biomedical research articles. The use of various
learning resources focused on different types of informative sentences allowed us to construct multiple
classification models that were later integrated in the information retrieval system described in section
3.2.

3.1.1 Methods
Classifying an arbitrary sentence from a given scientific paper as being informative or not is an ab-
stract task, highly dependent on the information need of the reader. Consider the case of a molecular
biologist and a physician reading the same article about the correlation of caffeine consumption and
the development of Alzheimer’s Disease. While the biologist might be interested in which chemical
reactions occur within cells, the metabolic pathways involved and gene expression products, the physi-
cian will most likely want to know if caffeine can prevent or cause Alzheimer Disease in patients. The
definition of a key sentence in that specific article differs between them and a sentence that one finds
informative will not necessarily be relevant to the other.

This subjective notion of what is an informative sentence makes it difficult to develop a general-
purpose system, or even a domain-specific one, that correctly selects key sentences from unstructured
text. Summarization techniques that rely on linguistic features can be used to construct a semantically
correct, human readable summary of an article, but if we consider the seemingly simple task of just
classifying a single sentence as being informative or not, there is no one true answer.

Classifiers relying on large sets of complex, handcrafted rules have been shown to yield good
results in the identification of key sentences from specific types of text, like web pages, news articles,
clinical records, narrative admission reports, and radiology reports [44]–[48]. However, creating such
classification systems requires human labour, is extremely time consuming and demands both linguistic
and domain-specific knowledge of the text being classified. For this reason, an automatic approach
for the identification and extraction of features that make a sentence informative in a given domain
presents multiple benefits. First, being an automatic system, once developed it can be easily and
quickly applied to different types of informative sentences. Second, it can be constantly improved
whenever new, larger sets of annotated data are available.

Results of various community evaluation challenges, such as BioCreative I [8], II [9] and III [49],
and the BioNLP shared tasks [24], [25], suggest that supervised systems usually excel over other types
of techniques. These systems, relying on supervised machine learning methods, infer a model from
training samples, where each sample consists of a collection of features and an output value, the label
[34]. Such trained model is then used to classify new unseen instances. In order to train and then
apply the model to textual sentences, text has to be pre-processed and predefined features need to be
extracted in the same exact manner, initially from the training examples and later from the unseen
sentences.

We propose the use of supervised machine learning techniques to automatically generate custom
models of informative sentences that reflect certain information needs. Considering the same source
documents, we can tag different sets of sentences as being informative or not and train multiple
classifiers on this data, in order to produce models that are more finely tuned and appropriate for
particular tasks. Recalling the molecular biologist and physician user story mentioned above, the
proposed system allows customization of results to satisfy the needs of both users. As long as we have
modelled the requirements of these users and trained classifiers using the different concepts of what
is a key sentence, we can produce two sets of results that will serve their necessities. This concept is
illustrated in Figure 3.2.

Construction of an automatic classification model using supervised machine learning methods
is an iterative process that can be continually improved. The diagram in Figure 3.3 describes the
methodology we employed. First, original source documents are pre-processed. Second, features are
extracted from the pre-processed data. Third, features and labels are used to train a classifier and
generate the classification model. Fourth, the classifier is tested on unseen data and classification
performance is measured. Fifth, performance is assessed and changes are made to the features used
and/or classifier parameters in order to tune the model and improve performance. Last, the model is
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Figure 3.2: Selecting different key sentences from the same source documents allows
training of models that identify distinct types of informative sentences.

trained again with the new feature set and parameters to check if results are better. This train-test-
tune process is repeated until the best possible performance is achieved.

Pre-processing

Feature 

extraction

Training

Testing

Tuning

Figure 3.3: Classification model develmopment process.

3.1.1.1 Classification Framework

A plethora of tools for text processing, transformation, parsing, analysis and classification are readily
available in various programming languages. For the pre-processing and feature extraction steps
we require tools capable of performing tasks such as sentence splitting, tokenization, part-of-speech
tagging, dependency parsing and named entity recognition. Neji [50] is a modular framework for
biomedical concept recognition developed at the University of Aveiro Bioinformatics Group. It was
implemented in Java and it integrates various third-party tools to perform natural language processing
tasks. Since it supports all the aforementioned features and is already part of the local text mining
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framework, it was the obvious choice for integration in our classification pipeline. For the purpose
of this thesis, the standard version of Neji was extended and customized to support export of pre-
processed documents in multiple formats simultaneously.

In order to perform exploratory work on text classification we could benefit from a complete frame-
work or comprehensive suite of supervised machine learning algorithms. Various software solutions
were considered and briefly tested, such as Apache Mahout 1, Orange 2, Weka3, scikit-learn 4, NLTK5,
Mlpy 6, PyBrain 7, Pyml 8, RapidMiner 9 and Knime 10. The chosen tool was scikit-learn, an open
source machine learning library for the Python programming language, given its flexible, consistent
and extendable API for feature extraction, classification, cross-validation and performance evaluation,
and its support for a multitude of text classification techniques [51]. Some Natural Language Toolkit
(NLTK) [52] modules for parsing of syntactic dependency trees were also extended and used in our
custom modules.

The Python programming language is extensively used by the TM community, given its scriptable
nature, powerful text manipulation features, ease of use, portability, and broad collection of both
standard and third party libraries. The Python shell features a Read-Eval-Print Loop (REPL) that
promotes exploratory programming and facilitates experimentation of different techniques to analyse
text, extract features, perform classification and then evaluate performance.

To support the classification and indexing methods developed for the purpose of this thesis we
built a set of Python modules and scripts that we collectively named PhraseRank (Phrank) . Figure
3.4 represents the overall software package architecture, illustrating dependencies between modules.

The contents and purpose of each package and module are the following:

• benchmark: module implementing classification benchmarking methods, facilitating evalua-
tion of multiple classifiers on various datasets using multiple configurable evaluation strategies;

• bin: package containing executable scripts for multiple purposes, such as dataset pre-
processing, classifier training, classification benchmarking, grid-searching of classifier parame-
ters and sentence indexing;

• features: module containing feature extractors;

• index: module implementing interfaces for sentence indexing on a Solr server;

• parse: module implementing parsing and in-memory representation of standoff annotation
files (A1, A2), dependency graphs (CoNLL files) and PubMed XML files enriched with IeXML
concept annotations;

• pipeline: module containing multiple classification pipelines using various feature extractor
combinations;

• preprocess: module implementing dataset pre-processing functionalities, such as an interface
to Neji and algorithms for informative sentences identification and tagging;

• resources: module encapsulating resource management and loading, like datasets and various
lexicons;

• util: module aggregating diverse utility functions, classes and decorators.

The phrank software components are packaged according to Python best practices and can be
easily installed and tested along with all their dependencies using standard Python methods.

1http://mahout.apache.org/
2http://orange.biolab.si/
3http://www.cs.waikato.ac.nz/~ml/weka/
4http://scikit-learn.org/
5http://nltk.org/
6http://mlpy.sourceforge.net/
7http://pybrain.org/
8http://pyml.sourceforge.net/
9http://sourceforge.net/projects/rapidminer/

10http://www.knime.org/
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Figure 3.4: Python modules architecture.

3.1.2 Learning Resources
The performance of supervised machine learning techniques is highly dependent on the quality of
training data. In order to generate a suitable model that achieves good results we ideally need
annotated corpora of superior quality – what is usually called a gold standard. There have been
multiple community challenges and shared tasks over the past years focused on text mining problems
in the biomedical domain. These initiatives usually result in the development of carefully curated
resources that are then publicly released and promote advances in the field. Notable examples include
the TREC Genomics track [53], JNLPBA [7], LLL [19], BioCreative [8], [9], [49] and BioNLP [24], [25].
While the first two addressed information retrieval and named entity recognition in the biomedical
field, the last three focused on information extraction, specifically bio-events extraction, co-references
and relation extraction.

In spite of these community efforts that generated valuable resources, there is still no manually
annotated gold standard corpus concerning biomedical facts. We can, however, try to adapt some
high quality corpora produced for these tasks and use them for our intended purposes. The main tasks
of the BioNLP 2011 Shared Task (BioNLP-ST hereafter), which built upon and extended the tasks
from the 2009 edition, focused on event extraction from biomedical texts, extending the annotated
resources with full-texts on top of the previously available abstracts. Several bio-molecular events were
considered, such as gene expression, transcription, protein catabolism, phosphorylation, localization,
binding, positive and negative regulation. These are some of the event types that have been attracting
more attention from the research community over the last years. We can assume that a sentence that
mentions a bio-event is informative in some way. Furthermore, if the sentence describes the bio-event,
stating its arguments and the event trigger, which is often the case, it will most likely be a key sentence
in the scientific article.

A series of related bio-events can often describe a high-level biological process (bioprocess here-
after). Bioprocesses occur in living organisms and their regulation is essential in the control of the
organisms’ life cycles. Wang et al. investigated methods for automatically finding bioprocess terms
and events in text and, to facilitate the study, they built a manually annotated gold standard corpus
with terms and bio-events related to angiogenesis [54].

This section describes the corpora that we pre-processed and adapted in order to generate training
data suitable for the implementation of our proposed classification methods.

3.1.2.1 BioNLP-ST 2011 Datasets

The main tasks of BioNLP-ST 2011 were GENIA (GE), Epigenetics and Post-translational Modifi-
cations (EPI) and Infectious Diseases (ID). There was also a bacteria track, with two tasks, Bacteria
Biotopes (BB) and Bacteria Interactions (BI); however, the supporting resources for this track focus
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specifically on bacteria localization events from textbook documents found on relevant public web-
sites and on genetic processes mentioned in scientific texts concerning the bacterium Bacillus subtilis.
For this reason, we consider that these corpora from the bacteria track are not appropriate for the
development of classification methods that should be general enough to be usable on other types of
text.

The GE task focuses on extraction of bio-events related to genes or gene products, without distin-
guishing between genes and proteins [55]. The dataset supporting this task is based on the publicly
available portion of the GENIA corpus [56]. This dataset consists of full-text papers and abstracts in
plain text with annotations of named entities and bio-events provided in a standoff format. Figure
3.5 illustrates a sentence annotated with bio-events from the GE task.

Figure 3.5: Sentence annotated with bio-events from the GE dataset. Image produced
using brat tool [26].

The EPI task is centred on events relating to epigenetic change, including DNA methylation
and histone modification, as well as other common post-translational protein modifications [57]. The
supporting dataset was built from PubMed abstracts without subdomain restrictions and manually
annotated with genes, gene products and 14 different event types, such as protein post-translational
modification (PTM) events, DNA methylation events, and their reverse reactions. An annotated
sentence from the EPI corpus is shown is Figure 3.6.

Figure 3.6: Sentence annotated with bio-events from the EPI dataset. Image produced
using brat tool [26].

The ID task is an event extraction task focusing on the bio-molecular mechanisms of infectious dis-
eases [57]. Domain experts selected representative publications on two-component regulatory systems,
a prominent class of signalling system ubiquitous in bacteria. The dataset consists of full-text PMC
open access documents. Those publications were manually annotated with genes and gene products,
two-component systems, chemicals, organisms, regulons/operons and 10 types of bio-events involved
in bioprocesses related to infectious diseases. Figure 3.7 displays a sentence annotated with named
entities and bio-events from the ID task.
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Figure 3.7: Sentence annotated with bio-events from the ID dataset. Image produced
using brat tool [26].

3.1.2.2 Angiogenesis Corpus

The angiogenesis gold standard corpus was constructed from MEDLINE abstracts randomly selected
from a pool of documents mentioning angiogenesis events. Documents were then manually annotated
by domain experts with terms and bio-events related to angiogenesis [54]. A sample annotated sentence
from this corpus is illustrated in Figure 3.8.

The angiogenesis corpus is freely available in a format similar to the BioNLP-ST 2011 datasets,
with abstracts delivered in plain text files and annotations provided separately as standoff files, facil-
itating its use as another good training and testing resource for the proposed classification methods.

Figure 3.8: Sentence annotated with bio-events from the Angiogenesis dataset. Image
produced using brat tool [26].

3.1.2.3 Original Data Format

All datasets are provided in plain text files with standoff annotations available in two separate files
per document. Named entities are identified in tab-separated A1 files, containing one annotation per
line. Each line consists of the entity identifier, entity type, offsets of the entities in the corresponding
source text file and the text that was annotated (Figure 3.9). Bio-events annotations are delivered in
A2 files, following a tab-separated format similar to the previously mentioned A1. Each line of an A2
file contains the event ID, annotation type and possibly event arguments, offsets and the marked text
(Figure 3.10).

For each BioNLP-ST 2001 main task, datasets are distributed in three separate collections aimed at
development of automatic event extraction methods, training and then testing. Both the development
and training dataset subsets of each task contain named entities and bio-events annotations (A1 and
A2 standoff files), yet the test subsets come only with named entities annotations (A1 files), given
that the purpose of the tasks was the automatic extraction of bio-events, resulting in the generation
of the A2 files. For this reason, we used only the development and training subsets of these datasets
in the development of our classification methods.
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Figure 3.9: Illustration of A1 file format for named entities annotations.
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Figure 3.10: Illustration of A2 file format for bio-events annotations.
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3.1.2.4 Data Preparation

The datasets presented above are rich collections of scientific articles and abstracts, manually curated
by domain experts with gold standard annotations of biologically relevant named entities, bio-events
and bioprocesses. Potential key sentences in those texts are not explicitly marked as being informative,
however, considering that a sentence describing any bio-event conveys information, we can process
these resources and automatically tag sentences mentioning bio-events as being informative. This
technique allows us to produce datasets usable for training of supervised learning methods.

While we can safely assume that, using this method, all sentences tagged as being informative
will in fact be informative in some way, it is possible that some of the sentences where no bio-events
are mentioned also express some type of information.

The four datasets were pre-processed using Neji [50]. Results of sentence splitting and concept
identification were exported and saved to JSON [58] files, while part-of-speech tagging and dependency
parsing data were stored in CoNLL [59] files.

After applying sentence splitting to extract individual sentences from the 3,256 abstracts and 87
full-text documents, a total of 25,235 sentences were identified. Table 3.1 contains statistics about
each separate dataset. Documents were then processed using the algorithm described in Listing 1 in
order to identify and tag informative sentences. The simple algorithm considers a sentence informative
if it mentions a bio-event and contains all its arguments, which usually include the trigger and any
related concepts. If an event is scattered through more than one sentence then it is not considered
for tagging. Sentence labels were saved to standoff tab-separated files containing a sentence identifier
and the label (0 or 1) per line.

Pre-processing and identification of informative sentences where bio-events are mentioned resulted
in the tagging of 8,665 sentences as being informative, corresponding to 34.34% of the complete
sentence collection. Detailed statistics about the informative sentences marked in each dataset are
presented in Table 3.2.

Even though the labelled datasets collection generated from the aforementioned corpora can not be
considered of gold standard quality, given that it was produced automatically and no manual curation
by domain experts was performed, it is the best resource available for the proposed task and should
aid in the development of classification methods that can later be trained on gold standard datasets,
when they are available. The next section describes the features that were extracted from these “silver
standard” datasets to build a classification model for informative sentences in the biomedical domain.

Table 3.1: Datasets statistics after sentence splitting.

Dataset Full-texts Abstracts Sentences

GE 10 950 11579
EPI 0 800 7688
ID 77 0 3184
Angiogenesis 0 280 2784

Total 87 3256 25235
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for document in dataset:

for event in document.annotated_events:

# find the sentence where the event was annotated

sentence = get_sentence_annotated_with(event, document)

# check if all event arguments (trigger, related concepts,

# etc.) are mentioned in the same sentence

try:

for event_argument in event.arguments:

if not is_mentioned_in(event_argument, sentence):

raise EventSpreadThroughMultipleSentences

# tag this sentence as informative because it mentions

# a bio-event

sentence.informative = True

except EventSpreadThroughMultipleSentences:

# skip and ignore this event, since it is spread

# across multiple sentences

pass

Listing 1: Algorithm used to identify and tag informative sentences.

Table 3.2: Datasets statistics after pre-processing and tagging of informative sentences.

Dataset Sentences Informative Non-Informative

GE 11579 4785 41.32% 6794 58.68%
EPI 7688 1394 18.13% 6294 81.87%
ID 3184 1226 38.51% 1958 61.49%
Angiogenesis 2784 1260 45.30% 1524 54.70%

Total 25235 8665 34.34% 16570 65.66%

3.1.3 Features
Language models for text classification can be based on various types of features. Typical language
features can range from lexical to syntactic, grammatical, and semantic characteristics of text. The
nature of each feature allows us to characterize natural language at different levels and model the
information contained in a piece of text, extracting its meaning.

In an attempt to identify linguistic characteristics of informative sentences, multiple features were
extracted and tested, both individually and in various combinations, in order to assess the ones that
worked best for our specific test cases. This section describes the features that were considered, and
results are analysed and discussed in section 3.1.6.

3.1.3.1 Bags-of-words

One of the most simple and commonly used models for text classification tasks is the bag-of-words. It
is a simplifying representation of text in which a sentence or a document is represented as an unordered
collection of words, disregarding grammar and word order [27]. Binary bags-of-words simply account
for the presence of words in text. Frequency based models count the occurrences of each word in each
document (a sentence, in our case) and use those as features for a classifier.

In the feature extraction step, words are isolated and a dictionary is constructed mapping each
unique word to an integer value. Each sentence is then represented as a vector with size equal to the
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dictionary size, where each position of the vector contains the frequency of the word associated with
that position.

Consider the following two sentences as documents of an example corpus:

• “Alzheimer disease is the most common type of dementia.”

• “Most studies exclude the undiagnosed dementia sufferers in the population.”

A basic bag-of-words model of our corpus would construct a dictionary with 15 unique words
(Listing 2) and represent the sentences as the 15-entry vectors illustrated in Listing 3. We can then
improve this basic model by removing words that occur in too many documents (stop words11) and
words that occur only in a few documents, since they don’t aid in the classification process. We used
the recommended list of stop words from PubMed [60] and also filtered words occurring in only one
sentence.

Bag-of-words models allow capturing specific vocabulary commonly used in certain types of sen-
tences. However, it has the drawback of being easy to over-fit a model to a particular lexicon if
training data centres around certain type of language.

{

’alzheimer’: 0,

’common’: 1,

’dementia’: 2,

’disease’: 3,

’exclude’: 4,

’in’: 5,

’is’: 6,

’most’: 7,

’of’: 8,

’population’: 9,

’studies’: 10,

’sufferers’: 11,

’the’: 12,

’type’: 13,

’undiagnosed’: 14

}

Listing 2: Bag-of-words dictionary.

[1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0]

[0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 2, 0, 1]

Listing 3: Bag-of-words sentences representation.

3.1.3.2 N-grams

N-grams can be seen as an extension of the simple bag-of-words model. An n-gram is a contiguous
sequence of n items from a given sequence of text. The items can be phonemes, syllables, letters
or words, depending on the purpose and application. These types of models are extensively used in
statistical natural language processing tasks, given their ability to easily model and predict, to some
extent, natural language construction [27].

11Stop words are very common words that occur in many documents and are not relevant for
document discrimination, so we filter them prior to further text processing.
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Recalling the example corpus of two sentences mentioned in section 3.1.3.1, an n-gram model
considering word n-grams from single words (n = 1) to trigrams (n = 3) would build a dictionary
similar to the one presented in Listing 2 containing also bigrams and trigrams, as illustrated in Table
3.3.

Choosing the right n for the n-gram is one of the main challenges of using this type of model,
since this controls the trade-off between appropriateness of the model and the possibility of bias
against a specific corpus (over-fitting the model). We evaluated n-grams from single words (merely
bag-of-words) to 4-grams and found trigrams to be the best option for our data. Detailed results are
presented in section 3.1.6.2.

Table 3.3: N-grams vocabulary model

1-grams (words) 2-grams (bigrams) 3-grams (trigrams)

alzheimer alzheimer disease alzheimer disease is
common common type common type of
dementia dementia sufferers dementia sufferers in
disease disease is disease is the
exclude exclude the exclude the undiagnosed
in in the in the population
is is the is the most
most most common; most studies most common type; most studies exclude
of of dementia -
population - -
studies studies exclude studies exclude the
sufferers sufferers in sufferers in the
the the most; the population; the undiagnosed the most common; the undiagnosed dementia
type type of type of dementia
undiagnosed undiagnosed dementia undiagnosed dementia sufferers

3.1.3.3 TF-IDF Vectors of N-grams

Term Frequency-Inverse Document Frequency (TF-IDF) is a measure that reflects how important a
word or n-gram is to a document in a collection or corpus and is frequently used as a weighting factor
in information retrieval and text mining applications [61]. The TF-IDF value increases proportionally
to the number of times a term (a word or n-gram) appears in the document, but is offset by the
frequency of the term in the corpus, which helps to control for the fact that some words are generally
more common than others.

The term frequency value (TF) is the number of times a word (or n-gram) appears in a document
(a sentence in our case). The inverse document frequency (IDF) is calculated by dividing the total
number of documents by the number of document containing the term and then taking the logarithm
of that quotient. The resulting TF-IDF value can then be scaled and/or normalized using various
strategies. We tested multiple combinations of different methods of calculating TF-IDF, such as no
normalization, L1 (manhattan distance) and L2 (euclidean distance) norms, simple TF versus sub-
linear TF12, and found sub-linear TF plus L2 norms to yield the best results for trigrams.

3.1.3.4 TF-IDF Vectors of POS tags

Part-of-speech tagging (POS tagging), also known as grammatical tagging or word-category disam-
biguation, is the process of labelling a word as corresponding to a particular part of speech, considering
both its definition and the grammatical context in which it appears. It can be simply seen as the
identification of words as nouns, verbs, adjectives, adverbs, pronouns, and so on.

In addition to TF-IDF vectors of n-grams we also tested using POS tags instead of words as
features for informative sentences classification.

12Sub-linear TF is a scaling technique that replaces the raw TF value with 1 + log(TF ).
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3.1.3.5 TF-IDF Vectors of POS, Chunk tags Pairs

Chunking, also called shallow parsing, performs an analysis of a sentence with the intent of identifying
its constituent parts, such as noun groups, verbs, verb groups, and other grammatical structures
without specifying the overall internal sentence structure, nor the role of the parts in the main sentence
[62].

By pairing POS and chunk tags for each sentence token, we hope to be able to model the grammat-
ical structure of a sentence without tying the model to specific lexical characteristics of the sentence.
We tested the use of TF-IDF vectors of POS, chunk tags n-grams for sentence classification.

3.1.3.6 Biologically Relevant Verbs

Sentences that describe some type of biological interaction or event often use a specific trigger verb to
connect biological concepts. For this reason, the presence of biologically relevant verbs in a sentence
can indicate a sentence conveys important information. BioLexicon is a terminology resource tailored
for the biological domain that contains, among other terms, a set of terminological verbs and their
derived forms [63]. We used 3,044 verbs and derivations from this lexicon as features to identify
mentions of biologically relevant verbs in sentences. Each feature considered is binary, representing
the occurrence of a given verb in a sentence.

3.1.3.7 Biological Concepts

An informative sentence always describes, mentions, defines or explains a given biological concept or
the interaction between various concepts. Hence, the mere presence of a relevant named entity in a
sentence can help assert the informative value of a sentence.

As previously mentioned, we pre-processed all datasets using Neji, which provides automatic
identification of biological named entities that are used as features for the classification model. Each
recognized entity is labelled with its corresponding entity type. Figure 3.11 illustrates a sentence
annotated by Neji with multiple concepts.

Even though we could have used the unique identifiers of each concept as features, that would
most likely bias the model towards the identification of informative sentences mentioning only the
concepts present in the training datasets. For this reason, we chose to use three different types of
binary features – a measure of the number of concepts mentioned in a sentence, a measure representing
the different types of concepts present in a sentence and the presence of concepts of a given type. Table
3.4 describes the binary features used in the model construction.

Figure 3.11: Sentence annotated with biological concepts.
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Table 3.4: Biological concepts features used for sentence classification

Feature Description

concept_count(1) Sentence mentions one biological concept
concept_count(2) Sentence mentions two biological concepts
concept_count(3) Sentence mentions three biological concepts
concept_count(4+) Sentence mentions four or more biological concepts
concept_types_count(1) Sentence mentions only one type of biological concepts
concept_types_count(2) Sentence mentions two types of different biological concepts
concept_types_count(3) Sentence mentions three types of different biological concepts
concept_types_count(4+) Sentence mentions four or more types of different biological concepts
has_concept(SPEC) Sentence mentions at least one species
has_concept(ANAT) Sentence mentions at least one anatomy part
has_concept(DISO) Sentence mentions at least one disorder
has_concept(PATH) Sentence mentions at least one metabolic pathway
has_concept(CHED) Sentence mentions at least one chemical or drug
has_concept(ENZY) Sentence mentions at least one enzyme
has_concept(MRNA) Sentence mentions at least one microRNA entity
has_concept(PRGE) Sentence mentions at least one gene or protein
has_concept(COMP) Sentence mentions at least one cellular component
has_concept(FUNC) Sentence mentions at least one molecular function
has_concept(PROC) Sentence mentions at least one biological process

3.1.3.8 Syntactic Arcs

Sentences from the development datasets were pre-processed using Neji in order to generate depen-
dency graphs representing syntactic dependencies between terms. Neji uses an external tool to perform
dependency parsing, a customized version of GDep, which is a dependency parser for biomedical text
based on LR models and parser ensembles [64].

There are a multitude of features from dependency parses we could consider for inclusion in our
model. For the purpose of this thesis, we experimented with using the number of arcs of a certain
distance (in number of hops) between recognized concepts and biologically relevant verbs.

Figure 3.12 shows a graphical representation of a syntactic dependency tree generated by GDep
for the sentence “Promoter methylation of CpG target sites or direct deletions/insertions of genes are
mechanisms of a reversible or permanent silencing of gene expression, respectively.”. “Methylation”
was annotated by Neji as a biological process and “silencing” is a biologically relevant verb present
in BioLexicon. For this sentence, the arc of 4 hops distance between “methylation” and “silencing”
would be considered a discrete feature named syntactic_arcs(4) with value equal to 1.
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Figure 3.12: Syntactic dependency tree illustrating number of hops between recognized
concept and biologically relevant verb.

3.1.3.9 Feature Representation

Supervised classifiers are mathematical instruments based on probabilistic models that analyse input
values in order to produce an output value – the class that best represents the input data. Therefore,
we need to represent our sentences as vectors of feature values in which classification algorithms
can operate. The length of each vector is equal to the total number of features considered by the
classification model and the absence of a feature from a sentence is represented by the value 0 in
that specific vector position. Depending on the type of each feature, its value can be binary (0 or 1),
integer or real.

Considering the case of using the four aggregated datasets as training data and a set of features
before applying any feature selection consisting of TF-IDF vectors of n-grams (1-3), TF-IDF vectors of
POS, Chunk n-gram tags pairs (1-3), biologically relevant verbs, biological concepts and syntactic arcs,
the input data for our learning functions would be a matrix of approximately 25,000 rows (samples)
by 120,000 columns (features), resulting in a total of 3 × 109 elements. In Python, a double precision
floating point number occupies 8 bytes of memory, so holding a standard matrix of 3 × 109 floating
point numbers in memory using a typical representation would require more than 22 gigabytes of
RAM, more than what it usually available in modern personal computers.

Given the iterative and repetitive nature of the exploratory process of experimenting with dif-
ferent feature combinations, normalization techniques, classifier regulation parameters and evaluation
strategies, demanding the load of such amount of data to memory on a regular basis can affect devel-
opment agility. Hence, less resource intensive data representations present various advantages when
working with large datasets. Matrices can be represented using sparse data structures that are less
memory hungry, due to the fact that only values different from zero are stored, along with metadata
used to identify their positions.

NumPy 13 is a Python library providing multi-dimensional array objects with sparse implemen-
tations that are ideal for highly dimensional feature matrices representation. We used these data
structures to represent our feature matrices and tackle the memory issues at the cost of not being
able to use some implementation of feature selection, normalization and classification techniques that
require dense data representations.

13http://www.numpy.org/
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3.1.3.10 Feature Standardization

The range of raw feature values collected after the feature extraction step can vary widely, depending
on the datasets and features considered for classification. If one of the features has a broad range of
values, this particular feature can dominate the feature space, which can cause a classifier to be unable
to correctly learn from other relevant features, hence negatively affecting classification performance.
Consequently, if can be beneficial to normalize the range of all features so that each feature contributes
correctly classification.

Standardization of a dataset is a common necessity for some ML algorithms, since they might
behave badly if individual features do not look more or less like standard normally distributed data.
Two common operations usually performed on feature values prior to classification model induction
are scaling and normalization. Scaling is the process of standardizing features (matrix columns) by
removing the mean (centering) and scaling to unit variance. Normalization deals with rescaling each
training sample (a row of the data matrix) independently of other samples so that its norm (e.g. L1
or L2) equals one.

We compared the use of raw feature values versus unit variance scaled and L2-norm normalized
data for evaluating the performance of various classifiers. Results are presented in section 3.1.5.

3.1.3.11 Feature Selection

Feature Selection (FS) is the process of reducing the dimensionality of feature sets by selecting a
subset of relevant features for use in model construction. This can both decrease the time it takes
to train and apply a classifier, and, in some cases, improve the classification accuracy. Common
FS techniques include univariate feature selection, multivariate feature selection, Recursive Feature
Elimination (RFE) , tree-based FS, Mutual Information (MI) and Information Gain (IG). For TF-IDF
feature vectors, minimum and maximum DF thresholds, and limiting the number of top terms used
can also be applied for reducing vocabulary size [65].

Univariate feature selection works by selecting the best features based on univariate statistical
tests. A commonly used technique for univariate feature selection is the chi-square (X2) test [66].
Statistics from chi-square tests for each feature/class combination can then be used to select the
features with higher test scores. We tried to use chi-square based FS to reduce the dimensionality
of our datasets, but all attempts resulted in significantly reduced classification scores, leading us to
abandon this approach.

Given a classifier that assigns weights to features (e.g., the coefficients of a linear model), RFE
selects features by recursively considering smaller sets of features. Initially the classifier is trained
on the complete set of features and weights are assigned to each one of them. Then, features with
the smallest absolute weights are pruned from the current feature set. This procedure is recursively
repeated on the pruned set until the desired number of features is eventually reached. We tried using a
linear Supervised Vector Machine (SVM) on a cross-validation pipeline for RFE, however, we believe
that the high number of features of our data caused this method to be inefficient for successful feature
elimination.

Tree-based classifier ensembles, also called randomized forests can also be used for feature selection
because decision tree classifiers calculate feature importance values. Unfortunately, the implementa-
tion of decision trees of sklearn requires dense data (demanding huge amounts of memory) to construct
a model, making them unusable in our tests.

Minimum and maximum document frequency thresholds combined with limiting the maximum
number of features used in TF-IDF vectors were the only FS techniques that allowed us to considerably
reduce the dimensionality of our sample sets without significant performance losses. We performed a
grid-search to find the best combination of parameters for the TF-IDF feature extractor and found
the best compromise between classification performance and feature vectors dimensionality reduction
to be when using the top 25,000 n-grams after using a minimum DF threshold of 2 sentences and a
maximum threshold of 90%, meaning that only terms that occur in at least 2 sentences and at most
in 90% of training instances are considered.

3.1.4 Evaluation Strategy
Various methods have been proposed and widely used for the evaluation of classifiers, such as the
holdout method, k-fold cross-validation, leave-one-out and bootstrap.
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The holdout method, also called test sample estimation, partitions the data randomly into two
mutually exclusive subsets called a training set and a test set (or holdout set, hence the name). It
is typical to choose 2/3 of the data as the training set and the remaining 1/3 as the test set. A
classification model is then induced on the training set data and the generated classifier is tested on
the test set. The holdout method is a pessimistic estimator due to the fact that only a fraction of
the data is given to the model inducer for training. A common variation of the holdout strategy is
random subsampling, where the holdout method is repeated k times and accuracy is then averaged
from all the accuracies obtained.

In k-fold cross-validation, sometimes called rotation estimation, the complete dataset is randomly
split into k mutually exclusive subsets of approximately equal size, the folds. The classification model
is then trained k times, each time on k − 1 folds and tested on the other. The performance measure
reported by k-fold cross-validation is then the average of the measures calculated for each individual
test. In stratified k-fold cross-validation the folds are stratified so that they contain approximately
same proportion of entities in each class as in the complete dataset. Previous studies have show that
stratification is generally a better scheme both in terms of bias and variance when compared to regular
cross-validation [67].

The leave-one-out method is a specific type of cross-validation where k is equal to the number of
samples in the dataset. The model is then induced on all samples except one, which is used for testing.
This method is commonly used on the presence of very small datasets, however, while leave-one-out
strategies are almost unbiased, they present high variance that can lead to unreliable estimates [68].

Bootstrapping is a general statistical technique that iterates the computation of an estimator
on a resampled dataset. Given a dataset of size n, a bootstrap sample is created by sampling n in-
stances uniformly from the data (with replacement) [69]. Contrary to other cross-validation strategies,
bootstrapping will allow some samples to occur several times in each data split.

Stratified k-fold cross-validation with k = 10 has been shown to be one of the most reliable
classifier evaluation strategies, usually yielding low variation and bias [67]. For this reason, we chose
to use this type of cross-validation to evaluate the performance of our classification methods on our
complete dataset, except for the initial comparison of multiple classification algorithms, in which we
used stratified k-fold cross-validation with k = 5, to reduce the time required to test the various
classifiers.

Since our complete aggregated dataset is composed by four datasets containing different types
of informative sentences, we also performed stratified k-fold cross-validation (k = 10) individually
on each of the datasets. These additional evaluations give us insight into the appropriateness of our
classification methods on more specific types of text and can help us identify types of features that
do not yield good results for certain types of data.

Even though we are evaluating the performance of our classification model using our development
datasets, the developed methods should be general enough to work on different types of biomedical
sentences. One way to test if our classifier can produce good results on different types of sentences is to
train it on datasets containing types of sentences (and possibly features) different from the ones used
to test its performance. This strategy can be described as a type of leave-one-out cross-validation,
where instead of leaving one sample out, we leave a whole dataset out in each of the evaluations and
then average results across all runs.

The results presented in the next sections are labelled with the type of evaluation that was
performed on the induced classifier and should be interpreted as following:

• CV[BioNLP+Angio]: Stratified 10-fold cross-validation on the complete aggregated dataset,
composed by the three BioNLP datasets (GE, EPI and ID) and the Angiogenesis dataset;

• CV[GE]: Stratified 10-fold cross-validation on the BioNLP GE dataset;

• CV[EPI]: Stratified 10-fold cross-validation on the BioNLP EPI dataset;

• CV[ID]: Stratified 10-fold cross-validation on the BioNLP ID dataset;

• CV[Angio]: Stratified 10-fold cross-validation on the Angiogenesis dataset;

• TT[BioNLP/Angio]: Classification model trained on the three BioNLP datasets (GE, EPI
and ID) and tested on the Angiogenesis dataset;
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• TT[GE+EPI+Angio/ID]: Classification model trained on the GE, EPI and Angiogenesis
datasets and tested on the ID dataset;

• TT[GE+ID+Angio/EPI]: Classification model trained on the GE, ID and Angiogenesis
datasets and tested on the EPI dataset;

• TT[EPI+ID+Angio/GE]: Classification model trained on the EPI, ID and Angiogenesis
datasets and tested on the GE dataset;

• TT[Average]: Average of the four previous evaluations (TT[BioNLP/Angio],
TT[GE+EPI+Angio/ID], TT[GE+ID+Angio/EPI] and TT[EPI+ID+Angio/GE]).

For each evaluation run we calculated multiple performance metrics, such as the F1-measure (F-
score), precision (Prec.), recall, average precision (Av.Pr.), the Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) and accuracy.

3.1.5 Classification Algorithms Evaluation
Estimating the performance of a classifier induced by supervised learning algorithms is important not
only to predict its future accuracy but also for choosing a classification algorithm from a given set
(model selection) or for combining various classifiers [70]. Various supervised learning algorithms are
commonly used for text classification tasks with different degrees of success, but no single algorithm
can uniformly outperform other algorithms over all datasets.

The nature of the text being classified, the features extracted and the purpose of the classification
application influence the classifier choice and only practical tests and evaluation of various algorithms
on the feature set that induces the prediction model can guide the choice of the best algorithm for
a given problem. The key question when dealing with ML classification is not whether a learning
algorithm is superior to others, but under which conditions a particular method can significantly
outperform others on a given application problem [36]. When faced with the question of which learning
algorithm will perform best on our classification problem, the simplest approach is to estimate the
accuracy of several candidate algorithms on the problem and select the one that appears to be most
accurate.

We selected various candidate algorithms for our classification task, which were all implemented by
our machine learning framework of choice, scikit-learn. Since classifier parameters affect the behaviour
of the model inducer, we also experimented with a few parameter variations, such as regularization
parameters of linear models and kernel choices for SVMs. Table B.1 enumerates the classifiers we
tested and the chosen configuration parameters. It should be noted that even though decision tree
based classifiers are often used for text classification tasks, we were not able to apply those to our
problem due to the use of sparse matrices for feature representation and the requirement of dense
data by the scikit-learn implementations of decision tree model inducers.

An initial baseline feature set consisting of a simple bag-of-words model of our data was established
and was iteratively extended with more features while evaluating the impact of each additional feature
on the performance of 16 candidate classifiers listed in Table B.1. In this section we present final results
for the evaluation of those classifiers on the extended feature set that we selected for our classification
task. Results for the evaluation of the elected classifier using multiple validation strategies on various
subsets of features are later presented in section 3.1.6.

The 16 classifiers were tested on the extended feature set of TF-IDF vectors of 1, 2, and 3-grams
TF-IDF vectors of POS tags trigrams, TF-IDF vectors of POS-Chunk tag pairs trigrams, biologically
relevant verbs, biological concepts and syntactic arcs after applying feature selection through TF-IDF
thresholds. Stratified 5-fold cross-validation on the complete dataset (BioNLP+Angio) was used for
the evaluation, which resulted in training sets of 20,193 sentences and testing sets of 5,049 sentences.
The feature set consisted of approximately 44,000 features per evaluation run.

We first induced classification models from the raw feature values and then tested inducing the
same models after applying scaling and normalization, since some models based on distances are quite
sensitive to feature range variations. Table 3.5 presents results for evaluation using raw feature values
and results for scaled and normalized feature values are shown in Table 3.6. The last two columns of
each table present training and testing times averages for each evaluation run, in seconds. The best
value achieved for each performance metric is highlighted in yellow.
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Table 3.5: Classifiers comparison using large feature set with raw feature values using
CV[BioNLP+Angio] evaluation.

Table 3.6: Classifiers comparison using large feature set with scaled and normalized
feature values using CV[BioNLP+Angio] evaluation.

Five of the classifiers tested – all the SVMs with non-linear kernels (#C12-16) – tried to separate
the feature space and induce a classification model for considerable longer time than the other linear
models, but apparently failed to do so. Analysis of confusion matrices for those cases revealed that
the generated models classified all instances as non-informative. This resulted in zero precision, recall
and consequently f-measure scores. The remaining performance metrics are then irrelevant and their
values simply reflect the ratio of non-informative sentences in the testing sets.

It is noted in the scikit-learn documentation that when the number of features is much greater
than the number of samples, SVMs with non-linear kernels are likely to give poor performances14.
Their implementation of non-linear kernels is based on libsvm15, hence the fit time complexity is more
than quadratic with the number of samples, making it hard to scale for datasets with more than a
couple of 10,000 samples, which is the case of our data. Linear kernel implementations in the scikit are
based on liblinear16, a much more efficient implementation than libsvm that can scale almost linearly
to millions of samples and/or features17.

14http://scikit-learn.org/0.12/modules/svm.html#support-vector-machines
15http://www.csie.ntu.edu.tw/~cjlin/libsvm/
16http://www.csie.ntu.edu.tw/~cjlin/liblinear/
17http://scikit-learn.org/0.12/modules/svm.html#complexity
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We tried to validate the hypothesis that the failure of these SVMs in our data was due to its high
dimensionality and discard possible implementation issues in our code or its supporting libraries. For
this, we evaluated the same classifiers on a smaller feature set of only biological concepts, biologically
relevant verbs and syntactic arcs using stratified 5-fold cross-validation on our smallest dataset, the
angiogenesis collection. This resulted in training/testing splits of 2,228 and 556 sentences, respectively,
and approximately 670 features considered for classification. Results for classification using non-scaled
nor normalized feature values are presented in Table B.2.

Using a number of features lower than the number of samples and a reduced number of samples,
the first and second degree polynomial kernels and the RBF kernel were able to find a hyper-plane to
separate the data, albeit with poor performance. However, the third degree polynomial and sigmoid
kernels continued to fail to classify any instance as positive. Possible causes might be the algorithms
complexity, libsvm based implementation limitations or the fact that we did not experiment with
thorough variations of configuration parameters18, especially the tolerance for the stopping criterion
and the size of the kernel cache.

On Figure 3.13, which compares F1-measure results for each classifier using both raw and
scaled/normalized features, we can clearly observe that all classifiers with the exception of the Nearest
Centroid (Rocchio) achieved higher or similar scores when feature values were not scaled and normal-
ized. This is also true for recall (Figure B.2), average precision (with the additional exception of
K-Nearest Neighbors (kNN) , the worst performing classifier, Figure B.3) and Area Under the ROC
Curve (AUC) (Figure B.4) scores. Classification accuracy was not considerably affected by scaling
and normalization (Figure B.5), but all algorithms, with the exception of linear SVMs and Naïve
Bayes, achieved significantly higher precision when features were scaled and normalized (Figure B.1),
at the expense of recall.

Figure 3.13: F1-measure scores comparison for multiple classifiers on large feature set
using CV[BioNLP+Angio] evaluation.

18http://scikit-learn.org/0.12/modules/generated/sklearn.svm.SVC.html#

sklearn.svm.SVC
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In order to determine how feature scaling and normalization affected the trade-off between pre-
cision and recall of the various candidate algorithms, we plotted precision and recall values for each
classifier and observed three different trends (Figure 3.14). Online learning algorithms like the Per-
ceptron and Stochastic Gradient Descent (SGD) based methods were the only ones in which scaling
and normalization inverted the relationship between precision and recall, causing precision to increase
more than 20% at the expense of recall dropping more than 40% in the case of some SGDs. Linear
SVMs, kNN and Naïve Bayes with multinomial event model achieved higher precision than recall with
both raw features and normalized values, while the Rocchio and Naïve Bayes considering Bernoulli
distribution showed higher recall than precision in both cases.

Linear SVMs proved to perform consistently better than other classification algorithms using
raw feature values, presenting only lower recall than SGD methods. When models were induced after
scaling and normalization, SVMs also achieved the best F1-measure, accuracy, AUC score and average
precision, being only surpassed in precision by SGDs and in recall by the Rocchio classifier.

Since our classification method will be used to rank sentences in an information retrieval system,
one important metric we aim to optimize is the AUC value, which estimates the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one
[71]. After assessing the performance of all classifiers evaluated and considering the purpose of our
application, we selected the Linear SVM with L1-norm based penalization (#C3) as our classification
algorithm.

Figure 3.14: Precision and recall comparison for multiple classifiers on large feature set
using CV[BioNLP+Angio] evaluation.

Analysis of the effects of scaling and normalization on the performance of our chosen classifier
revealed that feature normalization increases precision by 2.1% while decreasing recall by 4.5%. This
is reflected on the F-measure and AUC scores by losses of 1.6% and 1.3%, respectively (Figure 3.15).
Since we value AUC more than precision and the two percentual points gain are not sufficient to
compensate the 4.5% recall loss, we chose to not apply scaling and normalization to feature values.

Linear SVMs performance is highly dependent on the chosen operational parameters, specifically
the C penalization parameter of the error term. We tried to optimize the AUC score of the elected
SVM by testing multiple values for the C parameter, spaced exponentially far apart from 0.000,001
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to 1,000,000. Results showed that the default value of 1.0 provided best performance for the AUC
metric (Figure B.6).

Figure 3.15: Performance of Linear SVM classifier with L1 penalty (#C3) on large
feature set using CV[BioNLP+Angio] evaluation.

3.1.6 Results
The previous section (3.1.5) described experiments conducted to choose the best classification algo-
rithm for our data and feature set, which turned out to be a Linear SVM with L1 penalization. This
section presents results we obtained for the selected classifier on various sets of features using the
multiple evaluation strategies described in section 3.1.4.

3.1.6.1 Baseline

In order to set a starting point for feature exploration and reference values to try to improve the
classification model, we established a baseline consisting of one of the simplest possible models for
text classification, the bag-of-words (described in section 3.1.3.1). Our goal is to try to identify features
of informative sentences that improve this basic model, which can easily cause over-fitting to training
data.

Classification results for the Linear SVM trained on bag-of-words features are presented in Table
3.7. Cross-validation results on the whole dataset showed reasonable performance, achieving accuracy
of almost 80%, f-measure of 70%, average precision of 75.5% and AUC score of 77.4%. Separate
cross-validation evaluations on each dataset suggest the classification method is relatively stable, with
performance variances bellow 10%. Best results were attained on the ID dataset, with accuracy,
average precision and AUC around 82%, f-measure of 77.3% and precision and recall of 78.9% and
75.8%, respectively.

Leave-one-dataset-out evaluations (labelled TT – different Train/Test collections – in the results
table) showed poor overall performance of the bag-of-words model when training and testing on
distinct types of sentences that mention different kinds of biological events. Variance of accuracy,
f-score, average precision and AUC score are relatively low (around 10%), but precision suffers a
variance of almost 40% using this type of evaluation of the bag-of-words model. The main reason for
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this variance is the TT[GE+ID+Angio/EPI] evaluation, where the model is evaluated on sentences
from the EPI dataset. Even though it was the evaluation that showed lowest precision, it achieved
significantly higher recall than the other TT evaluations and exhibited the best AUC, accuracy and
f-score of the leave-one-dataset-out runs.

The results obtained using the different evaluation strategies we adopted clearly reflect the main
limitation of bag-of-words models. Since BoW features are the words mentioned in sentences, this
model is highly dependent on the vocabulary used for inducing the classifier. For this reason, it
was expected that the performance demonstrated by leave-one-dataset-out evaluations, where the
classifiers were tested on text from a different biomedical sub-domain than the ones used for training,
would be significantly lower than the cross-validation results measured on more homogeneous data.

Table 3.7: Classification performance results for the baseline (simple bag-of-words).

3.1.6.2 N-Grams

The first step we performed to improve our feature set was extending the basic bag-of-words model
with n-grams (detailed in section 3.1.3.2). We tested the use of bigrams (plus words) (Table B.3),
trigrams (plus words and bigrams) (Table B.4) and 4-grams (plus words, bigrams and trigrams) (Table
B.5). Icons in tables are visual indicators to help compare performance values to the baseline results.
A green upward arrow indicates a performance measure of a given evaluation yielded results better
than the corresponding baseline value, shown on Table 3.7. A red downward arrow indicates that
value is lower than the baseline.

Cross-validation evaluation results displayed improvements across all measures, with the exception
of recall reductions between 1 and 3% for cross-validation runs on the EPI and ID datasets. Figure 3.16
compares the performance of the various n-grams combinations using cross-validation on the whole
dataset. Trigrams proved to be the best n-gram combination, showing results consistently better
than the baseline (BoW on the figure) and other tested n-gram combinations, with the exception of
bigrams, which present better recall at the expense of precision. The use of trigrams provided a 6%
precision boost, 2% AUC increase and improvement of 2.5% on both accuracy and f-measure.

Leave-one-dataset-out evaluation results (Figure 3.17) show that the use of n-grams significantly
increases prediction precision, average precision and accuracy at the expense of recall loss, resulting
in reduced F1 and AUC scores.
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Figure 3.16: Classification performance comparison for n-grams using stratified 10-fold
cross-validation on the complete dataset (CV[BioNLP+Angio]).

Figure 3.17: Classification performance comparison for n-grams using leave-one-
dataset-out evaluation averages (TT[Average]).
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3.1.6.3 TF-IDF Vectors of Trigrams

TF-IDF is a form of normalization of absolute term counts such as the ones used in bag-of-words or
n-grams models, which takes into account the relative occurrence of certain terms across all documents
of a corpus. If is commonly used in IR and text classification applications to improve both retrieval
and classification results.

We tested normalizing our trigrams classification model using TF-IDF values to try to improve
prediction results. Detailed results for TF-IDF vectors of simple bags-of-words and bags-of-trigrams
are displayed in Tables B.6 and B.7, respectively.

Prediction performance of our Linear SVM classifier for simple bag-of-words (BoW) versus TF-
IDF normalized BoW, bag-of-trigrams and TF-IDF normalized bag-of-trigrams is plotted in Figure
3.18. Scores were calculated using 10-fold cross-validation on the complete dataset. Results for the
leave-one-dataset-out evaluation strategy are presented in Figure 3.19.

The use of TF-IDF scores, both for the simple BoW and bag-of-trigrams models, significantly
improved precision of the estimators using both evaluation strategies, with increases over the BoW
baseline of 7% for the CV evaluation and 8% for the TT evaluation. Cross-validation results showed
consistent improvements in all evaluation metrics, with increases over the previous trigram model
in term of precision and AUC (+1.2%), recall (+1.8%) and f-score (1.5%). Leave-one-dataset-out
performance estimations suffered on recalling relevant sentences, causing the f-measure and AUC
scores to decrease slightly (-0.8% recall, -0.4% AUC and -1.3% F1).

Figure 3.18: Classification performance comparison for TF-IDF vectors of n-grams
using stratified 10-fold cross-validation on the complete dataset (CV[BioNLP+Angio]).
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Figure 3.19: Classification performance comparison for TF-IDF vectors of n-grams
using leave-one-dataset-out evaluation averages (TT[Average]).

3.1.6.4 TF-IDF Vectors of Trigrams, POS and Chunk Tags Combinations

In addition to TF-IDF vectors of word trigrams, we tested the value of also using TF-IDF scaled
vectors of trigrams of POS and chunk tags (see sections 3.1.3.4 and 3.1.3.5). These types of linguistic
features model sentence structure at the grammatical level without tying the model to specific lexicons
and should improve generalization to different kinds of sentences.

Classification results for TF-IDF vectors of trigrams of POS tags are presented in Table B.8.
Table B.9 contains results for a model considering TF-IDF trigrams pairing POS and chunk tags. We
also tested the combination of these two features (Table B.10) and their addition to the previously
evaluated feature set of TF-IDF vectors of word trigrams (Table B.11). Since we’re trying to improve
performance over the current best model – the TF-IDF trigrams model – these results are shown in
comparison to the results achieved with that model.

Both the POS, the POS-Chunk pairs and the combination of both models perform considerably
worst than the TF-IDF trigrams model when evaluated using our cross-validation strategies (Figure
3.20), suggesting that when training and testing on datasets dominated by the same lexicon, a trigram
model of words can better classify text. The addition of these grammatical features to the TF-IDF tri-
gram model also caused a slight decrease in performance, since these features augment dimensionality
considerably and can add redundancy and noise to the lexical feature set.

Leave-one-dataset-out evaluations (Figure 3.21) showed that even though these models are less
precise than lexical models, like the bag-of-words and word trigrams, they are better at recalling
positive instances and classify them higher than negative ones, as proved by increased recall, AUC
and F-score.

We can also conclude that pairing POS tags with chunk tags yields a better classification model
than using only POS tags. Combining trigrams of POS tags with trigrams of POS-Chunk tags pairs
seems to generate less precise classification models but with higher recall.
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Figure 3.20: Classification performance comparison for various combinations of TF-
IDF vectors of features using stratified 10-fold cross-validation on the complete dataset
(CV[BioNLP+Angio]).
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Figure 3.21: Classification performance comparison for various combinations of TF-
IDF vectors of features using leave-one-dataset-out evaluation averages (TT[Average]).
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3.1.6.5 Verbs, Concepts and Syntactic Arcs

After verifying that trigrams of POS and chunk tags pairs can be helpful in recalling and ranking
informative sentences relatively different from the ones the model was trained on, albeit with a minor
precision loss, we extended the TF-IDF vectors model with more lexical features, such as the presence
of biologically relevant verbs in sentences (previously mentioned in section 3.1.3.6), semantic features
related to biological concepts (described in section 3.1.3.7) and syntactic features related to the number
of arcs of a certain distance (in number of hops) between recognized concepts and biologically relevant
verbs (section 3.1.3.8).

Comprehensive results using our considered evaluation strategies for verbs, concepts and syntactic
arcs are presented in Tables B.12, B.13 and B.14, respectively. Table B.15 shows results for the
combination of these three types of features and Table B.16 details results from the combination of
the previously evaluated TF-IDF vectors model with these new features.

As we can visualize in Figure 3.22, none of these new features were able to outperform the previous
TF-IDF classification model when evaluating performance using our cross-validation strategy. The
features related to syntactic arcs presented the poorest performance, classifying less than half of
instances correctly and failing to recall more than 5% of informative sentences. Biological concepts
alone also proved to be insufficient for proper sentence discrimination, followed by biologically relevant
verbs, which were the best of these new three sets of features but also achieved considerably lower
results than our baseline. Combining these feature sets improved performance across all metrics, but
was still not sufficient to surpass the previous models.

Model evaluation using the leave-one-dataset-out strategies revealed the interesting finding that
while none of the features alone achieved brilliant results, the combination of these three sets of
features outperformed previous strategies in terms of f-measure, recall, accuracy and AUC score with
only marginal precision loss (Figure 3.23). We can conclude that this combination of features has good
potential at correctly recalling and ranking informative sentences from sentences lexically different
from the ones used in the training data. Additionally, even though the extension of the combined
TF-IDF model considered before with these features did not improve prediction performance, the
SVM classifier was not significantly affected by the feature set expansion.

TF-IDF models present a considerably higher dimensionality than using the verbs, concepts and
syntactic arcs combined. Feature values are also of different types and ranges. TF-IDF scores are real,
verbs and concept features are represented as binary values and syntactic arcs present discrete feature
values. For this reasons, it was challenging to combine all the features together without decreasing
prediction accuracy. We tried applying scaling and normalization (individually and combined) aiming
to improve classification performance, but our efforts proved unsuccessful. Attempts to reduce data
dimensionality through feature selection techniques such as pca! (pca!) and chi-squared analysis
also failed to produce satisfactory results.
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Figure 3.22: Classification performance comparison for verbs, concepts and syn-
tactic arcs features using stratified 10-fold cross-validation on the complete dataset
(CV[BioNLP+Angio]).
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Figure 3.23: Classification performance comparison for verbs, concepts and syntactic
arcs features using leave-one-dataset-out evaluation averages (TT[Average]).
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3.1.6.6 Overall Features Comparison

The previous sections presented results for various classification models considering different sets of
features, both in isolation and used in multiple combinations. Here we compare all the models that
were evaluated and analyse their performance in regard to each of the evaluation strategies.

Results for the stratified 10-fold cross-validation strategy on the complete aggregated dataset
collection are plotted as a bar graph similar to the ones used previously for feature sets comparison
in Figure B.7. To facilitate visual comparison of each model we plotted the same data as a line graph
(Figure 3.24), where we can clearly observe that only four of the proposed models achieved higher
performance results than our baseline model (the bag-of-words model, Table 3.7) when considering
the cross-validated evaluation.

TF-IDF trigrams (Table B.7) achieved best performance across all metrics, followed closely by
the TF-IDF bag-of-words (Table B.6); the combined model of TF-IDF trigrams, TF-IDF vectors of
POS tags trigrams and TF-IDF vectors of POS-Chunk tag pairs trigrams (Table B.11); and finally
the complete model combining all the features considered, TF-IDF normalized trigrams, TF-IDF
vectors of POS tags trigrams, TF-IDF vectors of POS-Chunk tag pairs trigrams, verbs, concepts and
distance of syntactic arcs between verbs and concepts in the same sentence (Table B.16). Performance
differences between these top performing methods are marginal, with variance under 3%. The top
performing classifier achieved improvements over the baseline of 7% precision and 2% recall, reflected
in the f-measure by an increase of 4.4%. AUC was improved by 3.2%, average precision by 4.2% and
overall accuracy by 3.5%.

When considering the leave-one-dataset-out evaluations averages (bar plot in Figure B.8 and line
graph in Figure 3.25), none of the classification models was consistently better over all performance
measures. The TF-IDF trigrams model that proved to be the best using the cross-validation evaluation
achieved best precision using the TT strategy, followed closely by the complete TF-IDF vectors model
and the model using the whole feature set.

The model induced on our complete feature set achieved higher recall (+2.6%), f-score (+2.6%) and
AUC (+0.7%) than the TF-IDF trigram model when considering the leave-one-dataset-out evaluation,
only suffering a 2% precision hit. Since the classification method will be used to identify and rank
informative sentences on an information retrieval system, the use of the extended feature set can be
beneficial for the correct discrimination and ranking of sentences lexically different from the sample
data used to induce the classification model. For this reason, we chose the model aggregating TF-IDF
vectors of trigrams, TF-IDF vectors of POS tags trigrams, TF-IDF vectors of POS-Chunk tag pairs
trigrams, biologically relevant verbs, biological concepts and distance of syntactic arcs between verbs
and concepts in the same sentence for integration in our sentence retrieval solution.
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Figure 3.24: Classification performance results for different types of features using
stratified 10-fold cross-validation on the complete dataset (CV[BioNLP+Angio]).
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Figure 3.25: Classification performance results for different types of features using
leave-one-dataset-out evaluation averages (TT[Average]) plotted.
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3.1.7 Summary
In the first part of this chapter we presented the work conducted for the development of a classification
model for informative sentences in the biomedical domain.

We used supervised learning techniques (section 3.1.1) to induce prediction models from a set of
resources where key sentences were tagged as being informative. Since no gold standard corpora exist
for biomedical key sentence extraction, we gathered four freely available datasets where sentences were
annotated with relevant bio-events and tagged sentences mentioning or describing the events as being
informative, in order to produce training data (section 3.1.2).

A set of lexical, grammatical, syntactic and semantic features were considered for model con-
struction, such as simple bags-of-words, n-grams, POS and chunking tags, the presence of biologically
relevant verbs in sentences, as well as mentions of biological concepts, and existence of syntactic
dependencies between relevant verbs and concepts (section 3.1.3). We performed experiments with
various techniques for feature selection and normalization, but only the use of TF-IDF vectorization
parameters showed beneficial results for our data and methods.

Multiple evaluation strategies were adopted to guide the development of our classification model
(section 3.1.4). After estimating the performance of several classification algorithms in our data and
feature set, we selected a linear SVM for model induction, since it proved to be the best classifier of
all the methods we tested (section 3.1.5).

We established a baseline feature set of a simple bag-of-words model that was iteratively extended
with additional features. Exploratory work was then conducted to evaluate the impact that each addi-
tional feature had on our classification model considering various methods of performance evaluation
(section 3.1.6). Our results suggest that bag-of-words and n-grams models are capable of accurately
identifying informative sentences from biomedical texts and the use of TF-IDF weighting techniques
proved to be beneficial in increasing precision of those models.

Constructing a classification model that combines all the features we considered for informative
sentence discrimination posed challenges that were not easily tackled by common feature selection and
data normalization techniques. Leave-one-dataset-out evaluation strategies suggest that the features
we used to extend the basic BoW model can aid in better recalling and ranking informative sentences
from sub-domains distinct from the ones the model was trained on.

A possible interesting approach for future work regarding the improvement of the developed
classification model could focus on the use of ensemble methods that combine various classifiers induced
from different feature sets.
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3.2 Sentence Retrieval
The first part of this chapter detailed the methodology we used to build and evaluate classification
models that can be applied for the identification and ranking of informative sentences in the biomedical
domain. In this section we describe an information retrieval approach that integrates these models
and facilitates fast retrieval and ranking of informative sentences.

Classical information retrieval systems return entire documents, which can be long and require
considerable reading time to find the specific information that users seek, frequently present in a
small passage of text. Moreover, IR can fail to find the most relevant documents to answer a certain
information need, because the words used to express a query are lexically different from the words
used in relevant sources.

We propose a sentence-based indexing and retrieval method that, for a given user query, allows
seeking relevant sentences from the scientific literature that answer the user information need. The
proposed system – named PhraseRank (Phrank) – supports free-text and concept-based queries, en-
riches search results with relevant concept annotations and ranks sentences using various customizable
strategies.

Human users can interact with the system using a web-based User Interface (UI) . This UI is
powered by an HTTP Representational State Transfer (REST) API that enables easy integration of
the application search, ranking and concept discovery features by third-party tools.

3.2.1 Architecture
Web-based systems lower the adoption barrier faced by users in regard to initial setup, on-going system
maintenance and minimum computational system requirements, as they live in the cloud and, from a
user point of view, require no installation, no maintenance, and place the toll of resource consumption
on machines owned and managed by service providers. Moreover, these types of applications allow
service providers to perform system upgrades, like bug fixes, addition of new features and data in a
seamless way to end-users.

Information retrieval systems have the intrinsic necessity of requiring access to indexed data
collections, which are usually very large and would need plenty of time to download. Additionally,
it is not always in the best interest of service providers to distribute these data collections in their
complete form, as there might be both licensing issues and requirements for protection of intellectual
property. For these reasons, contemporary applications, especially IR systems, are usually made
available in the form of web applications powered by a set of web services that users can access using
a web browser.

PhraseRank architecture, illustrated in Figure 3.26, is based on the widely used client-server model
[72]. First, a user user contacts the Phrank application server through a browser and requests the
download of the client-side components of the system, comprised of HyperText Markup Language
(HTML) , Cascading Style Sheets (CSS) and JavaScript (JS) resources. Second, the web browser
renders the web application and waits till the user begins typing in a query. Third, the browser executes
asynchronous HTTP requests using Asynchronous JavaScript and XML (AJAX) technologies to
communicate with web services in Phrank application server for multiple purposes, such as obtaining
query auto-complete suggestions, submitting search requests and re-ranking results. These requests
prompt the application server to retrieve query suggestions or query results from the sentences index
server. Whenever metadata about biological concepts is required, the application server contacts a
concept data store to acquire the required information before, at last, sending a response back to the
user web browser. The document-oriented nature of index servers (described later in section 3.2.4)
and our requirement to store additional structured data about biological concepts, such as preferred
names and external database references, triggered the need to use a second data store, in addition to
the sentences index.

All application state is managed client-side and the server provides a pure stateless web services
layer, which only serves static resources and exposes the system API. The application client is struc-
tured around the Model-View-Presenter (MVP) pattern [73] and uses an event-driven messaging
architecture to achieve decoupled communication across modules.
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Figure 3.26: PhraseRank System Architecture Overview.

3.2.2 Technology Stack
The choice of technologies used for the development of the proposed system, driven by our architectural
requirements, led to the use of the heterogeneous software stack illustrated in Figure 3.27.

The client user interface application, with which users interact, was built using JavaScript (JS)
and makes use of a collection of supporting libraries that provide common functionality required by
most web applications; and frameworks that aid in code modularization, while offering boilerplate
structures for common architectural patterns. The most relevant client dependencies are:

• Require.js19: JavaScript file and module loader. Allows asynchronous loading of applica-
tion modules during development and facilitates “compilation” and minification of the whole
application code into a single file, for use in production;

• Backbone.js20: Minimal set of data-structuring (models and collections) and user interface
(views and URLs) primitives that are generally useful when building web applications with
JavaScript;

• Backbone.Marionette21: Application framework for Backbone.js that offers a collection of
common design and implementation patterns inspired by composite application architectures,
event-driven architectures, messaging architectures, and more;

• Underscore.js22: Utility-belt library for JavaScript that provides functional programming
support methods, such as map, reduce, filter, forEach, invoke, bind, and others;

• Handlebars23: Dynamic semantic templates library for JavaScript;

• jQuery24: Library for cross-browser HTML Document Object Model (DOM) manipulation,
event handling, animation and AJAX;

• Flatstrap25: HTML and CSS framework based on Bootstrap26 for consistent and responsive
application layout construction.

19http://requirejs.org/
20http://backbonejs.org/
21http://marionettejs.com/
22http://underscorejs.org/
23http://handlebarsjs.com/
24http://jquery.com/
25http://flatstrap.org/
26http://getbootstrap.com/
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Figure 3.27: PhraseRank System Technology Stack.

As mentioned when describing the system client-server architecture, the server-side is composed
by three main top-level components – an HTTP application server that implements the system API,
a search server that provides full-text and field-based search capabilities, and a data repository used
to store metadata about biological concepts. We selected node.js27 as our application server, Apache
Solr28 as the search server solution and MongoDB29 for the concepts repository. The remainder of
this section discusses these technology choices.

There are a multitude of options to choose from when considering open-source and freely available
HTTP application servers and the programming languages supported by them. Among the list of
popular choices are Apache Tomcat30, Jetty31, GlassFish32 and WildFly (formerly JBoss)33 for Java
applications; the Apache34 and nginx35 web servers that support various programming languages,
such as Python, PHP, Perl and Ruby; and the previously mentioned node.js platform for JavaScript
applications.

Since the application client, targeted at web browsers’ JS run-times, was programmed in
JavaScript, we choose to use the same language in the server-side, with the intent of reducing code-
duplication and redundancy between the client and server layers. This way we were able to easily
share some data structures, such as ranking strategies configuration, URL query parameters and index
field names between client and server code.

Phrank server-side API modules run on top of the node.js platform. Node.js is a platform built
on Google Chrome’s V8 JavaScript engine36 for developing fast and scalable network applications. It
uses an event-driven, non-blocking I/O model that allows handling thousands of concurrent requests
more efficiently than with the more common concurrency model where OS threads are employed [74].
For this reason, we consider it a suitable platform to implement a thin service layer with the main
purpose of interacting with external servers. Server modules make use of the following third-party
libraries:

• Express37: A minimal web application framework for node.js;

• node-solr38: Node.js client for the Apache Solr server;

• node-mongodb-native39: Native node.js client for the MongoDB data store;

27http://nodejs.org/
28https://lucene.apache.org/solr/
29http://www.mongodb.org/
30https://tomcat.apache.org/
31http://www.eclipse.org/jetty/
32https://glassfish.java.net/
33http://www.wildfly.org/
34https://httpd.apache.org/
35http://nginx.org/
36https://code.google.com/p/v8/
37http://expressjs.com/
38https://github.com/gsf/node-solr
39https://github.com/mongodb/node-mongodb-native
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Search server and concept repository choices were driven by the University of Aveiro Bioinformatics
Group strategy and current text mining framework. Past and on-going research projects at the group
already make fruitful use of Apache Solr for full-text indexing and search and MongoDB for flexible
storage of structured concepts metadata. Thus, aiming to align the Phrank application with the
existing ecosystem, these platforms were the evident choices for the implementation of our system.

Apache Solr is an open-source search platform based on Apache Lucene 40, a text search engine
library written in Java. It supports and extends all Lucene features, such as full-text search, ranked
searching, pluggable ranking models and configurable text analysis; and exposes search capabilities
through an HTTP REST-like API. It also supports index schema configuration using XML files,
allowing fine-grained customization of text analysis methods used on a field-by-field basis.

MongoDB is an open-source document-oriented non-relational database and arguably the leading
NoSQL [75] database41. It stores JSON-style documents with dynamic schemas, facilitating agile
application development, where data structures evolve quickly over consecutive iterations. Indexing
is supported on any attribute, allowing fast queries by any indexed field. Additionaly, it supports
map/reduce methods for result aggregation and data processing and auto-sharding for seamless hori-
zontal scaling.

Potential alternatives for the search component could be Elasticsearch42, which is, like Solr, also
based on Apache Lucene; or Sphinx43, another open-source search server, written in C++. Any
open-source relational database, like MySQL44, MariaDB45 (a MySQL fork) or PostgreSQL46; or
popular NoSQL document-oriented databases like CouchDB47, RethinkDB48 or RavenDB49 could be
considered to hold the concepts repository. However, for the purpose of this thesis, we did not consider
nor compared any of those systems.

3.2.3 Validation Corpus
The proposed system architecture is intended to support indexing and searching of large corpora of
sentences from biomedical research articles. In the future, we plan to classify, index and provide
searching and ranking facilities over the complete MEDLINE collection, which already contains over
22 million citations and is growing at a rate of approximately 4% per year [2]. However, pre-processing,
classifying and indexing a great amount of text is an extremely time-consuming task and it would be
impractical to embark in such an endeavour without first testing and tuning our proposed approach
on a smaller dataset. Therefore, for the purpose of testing and validating the methods developed in
this thesis, we selected a small subset of the whole MEDLINE abstracts collection.

Since one of the current areas of interest and active research of the University of Aveiro Bioin-
formatics Group is neurodegeneration, including the study of neurodegenerative processes that pro-
voke diseases such as Alzheimer’s, Parkinson’s and Huntigton’s, we compiled a corpus comprised
of MEDLINE abstracts tagged with MeSH terms related to neurodegenerative diseases. Using the
PubMed API – Entrez Programming Utilities [76] – we fetched all the English citations with abstract
that are identified with neurodegeneration MeSH terms. Listing 4 describes the query used to ob-
tain the publications. This resulted in a corpus of 136,985 abstracts with corresponding metadata
formatted according to the MEDLINE XML format. After applying sentence splitting, we extracted
1,207,952 sentences from the abstracts, including sentences from publication titles.

"Neurodegenerative Diseases"[MeSH Terms] OR

"Heredodegenerative Disorders, Nervous System"[MeSH Terms]) AND

40https://lucene.apache.org/core/
41http://www.mongodb.com/leading-nosql-database
42http://www.elasticsearch.org/
43http://sphinxsearch.com/
44https://www.mysql.com/
45https://mariadb.org/
46http://www.postgresql.org/
47https://couchdb.apache.org/
48http://www.rethinkdb.com/
49http://ravendb.net/
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English[Language] AND hasabstract[text]

Listing 4: PubMed query used to fetch neurodegenerative diseases corpus.

3.2.4 Indexing Model
The indexing model we devised for PhraseRank was conditioned by the overall goal of the system and
its intended capabilities. It was built to address the following requirements, which were translated
into system features:

1. full-text search;

2. concept-based search;

3. ranking of sentences according to various customizable strategies, including classification scores
(information content predictions) and estimated semantic richness (based on concept diversity);

4. query suggestions for concepts (also known as automatic completion of query terms);

5. visual identification of recognized concepts in search results;

6. referencing to source publications (including journal and publication date) from where sentences
were extracted;

7. linking to external reference databases for biological concepts identified in the texts.

Figure 3.28 illustrates the overall indexing workflow. First, publications are pre-processed using
Neji [50], which uses dictionaries of concept names and gene/protein recognition models to annotate
source MEDLINE XML files. Annotated files are saved in IeXML format [77] and dependency parses
of sentences are saved to CoNLL files [59]. Second, annotated XML and CoNLL files are parsed
and features are extracted from sentences, along with metadata present in the XML files, such as
publication identifiers (PMIDs), journal name and publication date details. Third, sentences are
classified using several customizable classification models and confidence scores for each model are
calculated. Last, sentences are indexed, along with classification scores, recognized concepts and
relevant metadata.

It should be noted that, even though for the purpose of this thesis we classified and indexed
sentences from MEDLINE publications in XML format, our workflow is applicable to text in any
format, as long as a parser is implemented to read the source files.

Sentence data are indexed and stored in our index server – Apache Solr – according to the simplified
schema described in Table 3.8. Field names are shown in the Field column; the Type column designates
field data types (influencing the type of analysis performed on data, if any); the Indexed and Stored
columns indicate whether fields are indexed and stored, respectively; the Multi-valued column specifies
if multiple field values are allowed for each document; and finally, the Dynamic column denotes fields
that are not statically configured, but can instead be defined dynamically at index time.

In Solr, indexed fields are available for searching and, if additionally, they are not multi-valued
nor tokenized (or are tokenized into a single token), we can also sort results based on their value.
Tokenization is configured by the type of analysis performed on each field, which is determined by its
type. Stored fields can be retrieved in result sets. If a field is indexed, but not stored, we can perform
searches and result ranking based on its value, but cannot recover or present the value.

The purpose of each field and its relation to the system requirements mentioned previously are
the following:

• The id field is the unique identifier for each sentence and results from the concatenation of
the publication PMID and the sentence position in the publication title and abstract (e.g.
“16437381-3”);

• The pmid field holds the identifier of the publication from which the sentence was extracted
(e.g. “16437381”). It is used to satisfy requirement 6;
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Figure 3.28: Sentence indexing workflow.

Table 3.8: Solr index schema for sentences.

• The text field contains the sentence text. It allows the use of full-text queries, in line with
requirement 1. It is the only field that is analysed, by the text_en analyser defined in
Solr. This analyser performs tokenization, removes stop words, changes all text to lower case,
and finally applies Porter’s stemming, the de facto stemming algorithm for English text [78].
Tokenization treats whitespace and punctuation as delimiters, discarding delimiter characters;

• The journal and pub_date fields store the name of the journal where the article was published
and its publication date, respectively. Both these fields address requirement 6;

• The multi-valued entities field stores all the named entities with which the sentence was anno-
tated. For each entity, it saves the entity term(s), associated concept identifier(s) and the posi-
tion in the sentence where the entity occurs. This field serves two purposes, hence, it is indexed
to satisfy requirement 4 and stored to serve requirement 5. First, in line with requirement 4, it
is used to provide query suggestions for concepts (using the Solr Terms Component50). Since it
holds named entities annotated with concept identifiers, we can use it to auto-complete queries
with concept names. Suggestions are sorted by document frequency, meaning that concepts
that occur in more sentences will appear first in the suggestions list. Second, it is used to satisfy

50https://cwiki.apache.org/confluence/display/solr/The+Terms+Component
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requirement 5 by encoding the position of entities identified in sentences, along with concept
identifiers. Entities are structured as “entity terms|ENTITY_ID1;ENTITY_ID2|pos”
(e.g. “Parkinson disease|UMLS:C0030567:T047:DISO|51”);

• The multi-valued concept_ids field indexes the unique concept identifiers of named en-
tities tagged in each sentence. It supports requirement 2, allowing concept-based search.
Each identifier encodes the data source from which the concept was collected, the concept
identifier on that data source, the concept semantic sub-group, and semantic group (e.g.
“UMLS:C0030567:T047:DISO”);

• The concept_types_count field contains the number of different concept types present in
each sentence. It used to satisfy requirement 3, by facilitating sentence ranking by concept
diversity;

• The clf_score_* field is a dynamic field51 that can be expanded into multiple fields at index
time. Using this meta-field definition, we can index and store results of multiple classification
models for each sentence, without hard-coding all of them in the schema beforehand. This
way, in line with requirement 3, we gain flexibility to rank sentences using various strategies,
implemented by each of the classification models we decide to integrate in the system.

Document indexing servers like Apache Solr are, as the name implies, document-oriented and
geared towards efficient retrieval of documents based on field values. Our requirement 7 is intended to
facilitate concept exploration, by providing users with reference information about biological concepts
in external databases. This prompted the use of an additional repository to store concept metadata
in a structured way.

We had previously compiled a database of concepts for use in another text mining project at the
University of Aveiro Bioinformatics Group – BeCAS [6]. We used multiple meta-sources, including
UMLS [79], LexEBI [63], Jochem [80], and NCBI BioSystems [81]. Data from these meta-sources
was also used to generate the concept synonyms dictionaries employed for concept annotation in our
indexing pipeline.

For this thesis, we reused the database of concepts compiled for the BeCAS application [6],
stored in a MongoDB server. This database was compiled from multiple meta-sources, including
UMLS [79], LexEBI [63], Jochem [80], and NCBI BioSystems [81]. Data from these meta-sources
was also used to generate the concept synonyms dictionaries employed for concept annotation in our
indexing pipeline. MongoDB is a schema-less database, which means that it does not enforce a strict
pre-defined structure on documents, as relational databases do. Nonetheless, it stores records (in
JSON-like document format) in a structured way. Figure 3.29 describes the schema according to
which concept metadata is stored.

cid [string]
name [string]
references [array]

Concept

dbid [string]
link_prefix [string]

LinkoutPrefix

Figure 3.29: MongoDB data store schema for concepts and references.

Concepts are stored in a concepts collection, which contains the concept identifier for each con-
cept, cid (e.g. “UMLS:C0030567:T047:DISO”), its preferred name (e.g. “Parkinson’s Disease”)
and a list of references to external sources (e.g. [“NCI:C26845”, “SNOMEDCT:49049000”,

...]). In order to provide hyperlinks to external sources, linkout prefixes are available
in a linkouts collection. Each linkout prefix maps a reference source identifier, dbid (e.g.
“NCI”), to the corresponding prefix used to construct hyperlinks to external databases (e.g.

51https://cwiki.apache.org/confluence/display/solr/Dynamic+Fields
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http://ncit.nci.nih.gov/ncitbrowser/...&code=). This strategy facilitates updating the
hyperlinks in case of changes introduced by the external sources. Collection indexes were defined on
the cid and dbid fields to allow fast retrieval of records based on these unique identifiers.

Requirement 7 is not yet implemented in the current version of the PhraseRank application user
interface. However, the system API already supports this requirement, providing metadata about
biological concepts in a programmatic way.

3.2.5 Ranking Methods
The indexing model adopted for the proposed system was designed with the intent of integrating
various sentence-ranking models, while facilitating flexible addition of new ones in a pluggable way.
PhraseRank allows ranking of search results according to either one of various sentence classification
scores, or based on feature values, such as measures of concept diversity.

Results ranking is enabled by Apache Solr’s sorting functionality52. It allows ordering of result sets
according to either values of indexed fields or custom functions, known as function queries53. Function
queries based ranking can make use of a variety of mathematical, relevance and logical functions that
operate on indexed values to compute sorting scores.

3.2.5.1 Classification Scores based Ranking

In section 3.1.2 we described various datasets of biomedical texts that we adapted to induce multiple
classification models of informative sentences. This allowed us to train models that are more tailored
to the discrimination and ranking of different types of informative sentences, based on distinct sub-
domains of biomedicine or associated to particular biological events or processes.

The datasets considered were:

• BioNLP GE: focused on biological events occurring upon genes and gene products;

• BioNLP EPI: targeting events relating to epigenetic change and post-translational protein
modification (PTM) events;

• BioNLP ID: focused on the bio-molecular mechanisms of infectious diseases;

• Angiogenesis: focused on biological processes related to angiogenesis.

Since we indexed a corpus of sentences related to neurodegenerative diseases, not all of the training
datasets, when used individually, can be considered suitable to produce classification models applicable
to our corpus. For instance, our corpus does not include sentences related to infectious diseases, so
we did not use that data alone to induce a classification model usable as a ranking strategy.

After selecting the features we considered more appropriate for our task (discussed in section
3.1.6), we trained the elected classifier – a Linear SVM – on various datasets using that feature set. A
model was trained on the whole aggregated data – the four datasets – and used as the default ranking
strategy of the system. We then induced three additional models on each of the datasets (with the
exception of ID), and integrated them in the system as separate ranking strategies. The default
ranking approach – which we labelled as “automatic ranking” – should be the more appropriate for
general-purpose ordering of informative sentences, without focusing on any specific type of sentences.
The three additional ranking methods allow users interested in particular types of bio-events to re-rank
the sentences retrieved for their query. For example, a researcher studying post-translational protein
modifications could use the PTM ranking strategy (induced on the EPI dataset) to cause sentences
mentioning PTM events to rank higher, thus appearing first on the results list.

We take the classification scores as measures of the informative value of each sentence, according
to each model, and use them for ranking the sentences. In practice, they are the predicted confidence
scores assigned to each sentence. A confidence score for a sentence is the signed distance of the sample
representing the features of that sentence to the hyperplane drawn by the SVM classifier to separate
sentence classes (informative vs. non-informative). This causes sentences considered informative to

52https://wiki.apache.org/solr/CommonQueryParameters#sort
53https://wiki.apache.org/solr/FunctionQuery
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present positive scores, while other sentences have negative score values. The higher the absolute value
of the classification score, the higher the probability of a sentence being correctly classified.

Classification scores assigned by the various models to each sentence are indexed and stored by
Solr using the dynamic clf_score_* field definition, mentioned in Table 3.8. In the current version
of the system, this dynamic field is materialized into 4 fields – clf_score_all, clf_score_genes,
clf_score_ptm and clf_score_angio, corresponding to each of the previously mentioned clas-
sification models induced on different datasets. However, the dynamic nature of the indexing model
allows addition of new ranking methods in a flexible way, without the need to update the index schema.

3.2.5.2 Feature Values based Ranking

We can argue that the semantic richness of a sentence can be considered a good measure of its
informative value. Moreover, if we consider concepts to add semantic value to a sentence, one way
to quantify this semantic richness is by counting the number of concepts of different types that are
mentioned in the same sentence.

Typical user information needs are related to either the lack of knowledge about a certain concept,
or the correlation between two or more concepts. Thus, ranking sentences that mention different types
of concepts higher can possibly aid in the discovery of previously unknown relations between concepts.

These hypotheses prompted us to support ranking strategies based on feature values, such as
the number of concepts of different types mentioned in the same sentence. The current version of
PhraseRank uses the value of the concept_types_count field mentioned in Table 3.8 to rank
sentences by a method we labelled “concept diversity”.

For this thesis we only contemplated the use of the mentioned concept diversity measure as a
feature value based ranking strategy. In the future, we might consider testing different feature values
as ranking strategies. To facilitate this, it could be beneficial to adapt the indexing schema to use more
dynamic fields of different types, instead of explicitly defining feature values. A possible approach
could be the removal of the concept_types_count field and the addition of more dynamic fields,
such as feature_int_*, feature_double_*, and maybe others. This would allow definition of
several feature values of different types at index time, without the need for schema changes.

3.2.6 Search Interface
Users can interact with the PhraseRank (Phrank) system through a web-based interface, illustrated in
Figure 3.30. It supports both concept-based and full-text based queries, auto-completion for concept
names, multiple result ranking strategies, selective highlighting/muting of concepts per concept type,
addition of concepts mentioned in result sentences to the initial query, and incremental continuous
loading of results (removing the need for typical pagination strategies).
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Figure 3.30: Search interface overview.

3.2.6.1 Query Protocol

The system supports a query protocol that allows a combination of concept-based and free-text queries
(Figure 3.31). To assist users in typing queries, suggestions are offered for multiple concepts that
match a given term prefix (Figure 3.32). Suggestions are sorted by the frequency of occurrence of
each matching concept in the indexed corpus, hence, more “popular” concepts are featured first in the
suggested concepts list.

Figure 3.31: Query protocol supporting a combination of concept-based and free-text
queries.
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Figure 3.32: Suggestion-assisted query completion for biological concepts.

3.2.6.2 Results Ranking

Sentences retrieved for a given query can be ordered according to the various ranking strategies
described in section 3.2.5. Users can select one of the available ranking methods by using a dropdown
list (Figure 3.33) and results are immediately reordered.

Figure 3.33: Result ranking method selection list.

3.2.6.3 Concept Highlighting

To facilitate visual discrimination of different concepts, annotated entities are highlighted with distinct
colours, according to their type (as shown in Figure 3.30). Using a set of checkboxes, users can
selectively highlight and mute certain types of concepts, facilitating focusing only on concepts of a
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certain type (Figure 3.34). Muted concepts are underlined with a subtle dotted line, to provide a
visual indication of other identified concepts. Clicking on any annotated concept allows addition of
that concept to the initial query, which facilitates iterative filtering of search results by augmenting
the query with more concepts.

Figure 3.34: Selective concept highlighting and muting per concept type.

3.2.6.4 References to Source Publications

All sentences presented in search results include a reference to the journal in which the corresponding
article was published, along with the publication year, if available. By clicking on that reference,
the user is redirected to a web application (BeCAS54) where he can read the whole abstract, also
annotated with biological concepts (Figure 3.35).

Figure 3.35: References to source publications in search results.

54http://bioinformatics.ua.pt/becas/pmid/21907331
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3.2.7 Search API
As mentioned when describing the overall system architecture (section 3.2.1), the system features are
exposed through an HTTP REST API, facilitating integration in third-party tools. The API offers
methods to perform queries (with integrated ranking), request concept suggestions and resolve concept
references. All the API endpoints described in the following sections respond to the HTTP GET verb,
with parameters specified as URL arguments.

3.2.7.1 Querying Sentences

In order to perform queries, API clients, such as the application user interface, execute HTTP GET
requests to the search endpoint, exposed at the address http://phrank/api/query/sentences.

Table 3.9 describes the parameters accepted by the search endpoint. The query string is specified
using the q parameter as a comma delimited list of query tokens. Each token is composed by a
prefix, followed by a colon and finally the search terms, which can be either concept identifiers or
words. Free-text tokens take the form “text:query terms”. Concept-based tokens follow the
format “id:CONCEPT_IDENTIFIER”. Multiple tokens of either type can be combined in the same
query, using commas as delimiters.

The optional parameters start and limit are used to provide pagination over query results.
The ranking strategy used to sort sentences is specified using the optional s parameter. Its value
should be one of “auto”, “genes”, “ptm”, “angio” or “cdiversity”, depending on the desired
ranking method (described in section 3.2.5).

Search results are returned in JSON format. The results are based on the response returned by
the Apache Solr server and augmented with additional parameters, such as concepts metadata and
details about the request. A sample response for a concept query about Alzheimer’s disease is included
in Listing 5 (Appendix C).

Table 3.9: Search API Parameters

Parameter Type Default Description

q string - Query string
limit int 10 Maximum number of sentences to retrieve
start int 0 Offset from the first result
s string auto Results ranking strategy

3.2.7.2 Concept Suggestions

The query auto-complete feature implemented in the user interface is assisted by an
API method for concept suggestions. It is available at an endpoint of the form
http://phrank/api/suggest/concepts. API clients specify a concept prefix with a min-
imum of two characters using the q parameter and a list of matching concepts is returned (sample
in Listing 6, Appendix C). The maximum number of suggestions can be limited using the limit

parameter.

Table 3.10: Concept Suggestions API Parameters

Parameter Type Default Description

q string - Query string
limit int 20 Maximum number of suggestions to retrieve
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3.2.7.3 Resolving Concept References

Search results returned by the API can contain external references (described in
section 3.2.4) for known biomedical concepts identified in sentences. These ref-
erences can be resolved by executing an HTTP GET request to the address
http://phrank/api/concept-reference/redirect/REF, where REF is the concept ref-
erence. This API method then responds with an HTTP redirect with status code 303, containing the
resolved address of the concept external reference in the Location header of the HTTP response.

3.2.8 Summary
In the second part of this chapter we described how the sentence classification methods proposed in
section 3.1 were used for sentence ranking in an information retrieval system for biomedical sentences.

The use of a flexible sentence-indexing model (section 3.2.4) allows us to integrate various ranking
strategies for query results, based on information content predictions made by pluggable text classi-
fication methods. This permits tailoring of result sets to match expectations of users with different
information needs.

Five different ranking strategies were integrated in the sentence-based information retrieval sys-
tem (section 3.2.5). Two general-purpose methods, aiming to discriminate informative sentences from
biomedical research articles regardless of sub-domain, and three focused strategies, which target spe-
cific types of informative sentences. One of the general-purpose strategies and the three focused ones
result from automatic text classification methods. The other general-purpose ranking approach is
based on the notion of concept diversity.

The proposed information retrieval system leverages the use of state-of-the-art concept identifica-
tion tools to semantically index sentences with associated metadata about biological concepts. This
allows concept-based queries – assisted by auto-complete suggestions – and visual tagging of named
entities in the search interface (section 3.2.6).

Sentence retrieval and ranking functionalities, as well as concept suggestions and external refer-
encing features, are exposed programmatically as an HTTP API (section 3.2.7).

Empiric system evaluation showed that the different ranking methods seem to produce expected
results at correctly discriminating different types of informative sentences. However, it would be
desirable to submit the system to thorough validation by domain experts, to accurately assess the
quality of the proposed retrieval and ranking methods.
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Chapter Four

Conclusions

“If we knew what we were doing it wouldn’t be called research, would it?”

— Albert Einstein

The main targets of research for this thesis were the identification of features of informative
sentences in the biomedical domain, and the development of an information retrieval approach that
allows seeking relevant sentences from the literature, while facilitating results ranking based on user
information needs.

We first conducted exploratory work for the identification and evaluation of various lexical, syn-
tactic, grammatical and semantic features of text that could potentially be used for discrimination
of informative sentences. We concluded that one of the simplest models for text classification – the
bag-of-words – can be used to identify informative sentences with satisfactory results. Since this model
is based on lexical features of sentences (words), it works best when training data has a vocabulary
aligned with the target data for classification. Our results suggest that the use of n-grams yields better
results than plain bags-of-words. We found trigrams to produce best results for our data. The use of
TF-IDF weighting techniques on top of bag-of-words and n-grams improves classification precision,
but can have a negative effect on recall.

Grammatical features such as part-of-speech (POS) and chunk tags seem to be good at producing
classification models that better generalize to types of text distinct from the text used to induce the
models. Namely, they improve recall and AUC scores, meaning they are good choices for use in ranking
models, which value correct classification of positive instances higher than negative instances. How-
ever, these models present lower precision than pure lexical models, such as the previously mentioned
bags-of-words and n-grams models.

Other types of features considered, like presence of biologically relevant verbs; presence of bi-
ological concepts and concept diversity; and syntactic features related to existence of dependencies
between verbs and concepts, failed to produce satisfactory results when used in isolation, but showed
performance similar or better than bags-of-words for model generalization.

One of the challenges we had to tackle was the inexistence of a gold-standard corpus for key
sentence or fact extraction in the biomedical domain. For this, we adapted annotated corpora produced
for event-extraction tasks in order to support the use of supervised learning techniques. Even though
this data cannot be considered of excellent quality, it allowed us to conduct our task and is now
available for use in future research. Curation of this automatically produced resource by domain
experts would certainly improve its quality and consequently our results.

We developed an automated framework for the evaluation of multiple classification models on
arbitrary corpora that respects a certain data format. Hence, future availability of higher quality
annotated resources could immediately allow us to produce better models with minimal work.

From several algorithms tested for text classification, we found that SVMs with linear kernels
produced better results for our task, followed closely by SGD based methods. Feature standardization
techniques like scaling and normalization reduced training times for all classifiers. Additionally, they
significantly improved precision of all methods, except linear SVMs and Naïve Bayes algorithms,
albeit at the expense of considerable recall losses. Since the effectiveness of the elected linear SVM
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was negatively affected by feature standardization we opted to not apply scaling nor normalization to
feature values.

Users with different backgrounds and distinct research interests seek different types of information
and have disparate notions of what they consider an informative sentence. The use of a flexible sentence
indexing model allowed us to implement an information retrieval approach that supports ranking of
sentences according to custom user requirements. We adapted various collections of text focusing on
different sub-domains of biomedicine and molecular biology and produced several classification models
that try to address different information needs. Additionally, we used the aggregated corpora to infer
a general-purpose ranking method with the intent of classifying any sentence from a biomedical article
as being informative or not, while attempting to quantify its information content.

Sentences that mention different types of concepts usually describe some known or suspected
relationship between these concepts. By leveraging methods for the automatic identification of bio-
logical concepts in text, we can find sentences that are semantically rich, in the sense that they imply
correlations among concepts.

The sentence classification models and indexing workflow devised for our proposed system resulted
in a final application capable of assisting users in biomedical fact discovery and concept exploration.
Empiric system evaluation suggests that top-ranking sentences for various exemplary queries are
indeed informative and can serve as a starting point for deeper literature reviewing. Concept-based
queries usually produce results that can act as summaries of information about the related concepts.
However, the system was not evaluated by domain experts, and so it would be desirable to conduct
thorough user tests by specialists for proper system validation.

We used several freely available open-source libraries to support the research methods presented in
this thesis. Since we found software bugs and improved the performance of a third-party component,
we shared our contributions with the community, namely to the scikit-learn machine learning library12.

4.1 Future Directions
It was challenging to combine multiple features of different natures in a single classification model
with improved performance, but some features proved to work better than others for generalization
purposes. For this reason, a possible interesting approach for future work could be the use of en-
semble methods that combine various classifiers induced on different feature sets. Each individual
classification score could then be weighted into a final combined score.

Given that we developed an automated pipeline for evaluation of multiple classification models
using different feature sets, whenever gold-standard annotated corpora for biomedical fact extraction
is available we can test our methods on new data, and try to generate more accurate models.

The semantic indexing model adopted indexes sentences along with concept metadata. This
characteristic could be exploited to permit clustering of query results by concepts, or concept types.

Regarding the identification and evaluation of features of informative sentences, several new fea-
tures could be tested in different combinations. There are also a multitude of syntactic features that
could be derived from dependency parses of sentences. For instance, we could extend our syntac-
tic arcs approach with features that model arcs between two concepts, possibly with a biologically
relevant verb between them.

Some requirements were not met during the development of the application and should be the
main target of attention when continuing its construction. The main requirement that lacks in the final
result is the ability to visualize information about concepts annotated in sentences, such as preferred
names and external references. This would allow users to perform concept exploration more easily, by
providing direct ways to obtain more information about concepts from external reference databases.

The query protocol implemented in the current version of the system performs logical conjunction
of query terms. This way only sentences that contain all the query terms (either as annotated concepts
or text) are returned in result sets. It would be desirable to augment this query protocol with the
possibility to perform full Boolean queries, allowing conjunction, disjunction and negation of composite
query expressions.

1https://github.com/scikit-learn/scikit-learn/pull/1428
2https://github.com/scikit-learn/scikit-learn/pull/1429
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For the purpose of this thesis we indexed a small corpus of neurodegenerative diseases, suitable
for empiric evaluation of system performance. However, we intend to classify and index the whole
MEDLINE collection, in order to provide searching capabilities over the largest collection of biomedical
articles publicly available.

Finally, we intend to publish the outcomes of our research that resulted in the sentence classifica-
tion and indexing models presented here.

69





Appendix A

Sentence Retrieval Systems
Comparison

This appendix contains a comparison of information retrieval systems for the biomedical domain that
return results at the sentence level.
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Appendix B

Classification Model Results

This appendix contains additional results from the classification model evaluation not included in
section 3.1, but referenced there.

Icons in tables are visual indicators to help compare performance values to the baseline results
(Table 3.7), unless explicitly noted that the comparison is against other reference scores. A green
upward arrow indicates a performance measure of a given evaluation yielded results better than
the corresponding baseline value. A red downward arrow indicates that value is lower than the
corresponding baseline value. Cells highlighted in yellow mark that value as the best of its column.
Depending on the metric of each column, the best result can be either the highest or lowest value.

B.1 Classifiers Comparison
These results are discussed in section 3.1.5.

Figure B.1: Precision scores comparison for multiple classifiers on large feature set
using CV[BioNLP+Angio] evaluation.
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Table B.1: Candidate classifiers evaluated. Details about each parameter can
be consulted online in the scikit-learn class and function reference (http://
scikit-learn.org/0.12/modules/classes.html).
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Figure B.2: Recall scores comparison for multiple classifiers on large feature set using
CV[BioNLP+Angio] evaluation.

Figure B.3: Average Precision scores comparison for multiple classifiers on large feature
set using CV[BioNLP+Angio] evaluation.
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Figure B.4: AUC scores comparison for multiple classifiers on large feature set using
CV[BioNLP+Angio] evaluation.

Figure B.5: Accuracy scores comparison for multiple classifiers on large feature set
using CV[BioNLP+Angio] evaluation.
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Table B.2: Classifiers comparison using reduced feature set of only biological concepts,
relevant verbs and syntactic arcs using CV[Angio] evaluation.

Figure B.6: Effect of C parameter on AUC score of Linear SVM with L1 penalization
using CV[BioNLP+Angio] evaluation.

B.2 N-Grams
These results are discussed in section 3.1.6.2.
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Table B.3: Classification performance results for bags of bigrams.

Table B.4: Classification performance results for bags of trigrams.

Table B.5: Classification performance results for bags of 4-grams.
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B.3 TF-IDF Vectors of Trigrams
These results are discussed in section 3.1.6.3.

Table B.6: Classification performance results for TF-IDF vectors of bags-of-words.

Table B.7: Classification performance results for TF-IDF vectors of bags-of-trigrams.

B.4 TF-IDF Vectors of Trigrams, POS and Chunk

Tags Combinations
These results are discussed in section 3.1.6.4. Comparison icons in tables in this section consider the
results for TF-IDF vectors of bags-of-trigrams (Table B.7) as the baseline.
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Table B.8: Classification performance results for TF-IDF vectors of POS tags trigrams.

Table B.9: Classification performance results for TF-IDF vectors of POS-Chunk tag
pairs trigrams.

Table B.10: Classification performance results for the combination of TF-IDF vectors
of POS tags trigrams and TF-IDF vectors of POS-Chunk tag pairs trigrams.
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Table B.11: Classification performance results for the combination of TF-IDF vectors
of bags-of-trigrams, TF-IDF vectors of POS tags trigrams and TF-IDF vectors of POS-
Chunk tag pairs trigrams.

B.5 Verbs, Concepts and Syntactic Arcs
These results are discussed in section 3.1.6.5.

Table B.12: Classification performance results for biologically relevant verbs.
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Table B.13: Classification performance results for biological concepts.

Table B.14: Classification performance results for syntactic arcs.

Table B.15: Classification performance results for the combination of biologically rele-
vant verbs, biological concepts and syntactic arcs.
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Table B.16: Classification performance results for the combination of TF-IDF vectors
of bags-of-trigrams, TF-IDF vectors of POS tags trigrams, TF-IDF vectors of POS-
Chunk tag pairs trigrams, biologically relevant verbs, biological concepts and syntactic
arcs.

B.6 Overall Features Comparison
These results are discussed in section 3.1.6.6.
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Figure B.7: Classification performance results for different types of features using strat-
ified 10-fold cross-validation on the complete dataset (CV[BioNLP+Angio]).
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Figure B.8: Classification performance results for different types of features using leave-
one-dataset-out evaluation averages (TT[Average]).
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Appendix C

Sentence Retrieval API Response
Samples

This appendix contains sample responses from the sentence retrieval API implemented for the purpose
of this thesis. The API is described in section 3.2.7.

{

"responseHeader": {

"status": 0,

"QTime": 6

},

"response": {

"numFound": 138089,

"start": 0,

"docs": [

{

"id": "16702786-5",

"text": "Leukocytes obtained from AD patients had increased

spontaneous TNF-alpha release ...",

"journal": "Aging Clin Exp Res",

"pub_date": "2006 Apr",

"pmid": "16702786",

"entities": [

"IL-10 production|GO:0032613::PROC|107",

"IL-8 production|GO:0032637::PROC|198",

...

],

"rank": 1,

"clf_score_all": 2.96038761499,

"clf_score_ptm": -1.55149714025,

"clf_score_genes": 3.87705171144,

"clf_score_angio": -0.19408579026,

"concept_types_count": 7

},

...

],

"concepts": {

"GO:0032613::PROC": {

"name": "interleukin-10 production"

"refs": [

"GO:0032613",
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"NCIm:C1819437"

],

},

...

},

},

"request": {

"query": "id:\"UMLS:C1521724:T046:DISO\"",

"tokens": [

{

"id": "UMLS:C1521724:T046:DISO",

"name": "Alzheimer’s Disease"

}

],

"sort": "auto"

}

Listing 5: Search API response sample (redacted for brevity)

[

{

"id": "UMLS:C0018787:T023:ANAT",

"name": "Cardiac"

},

{

"id": "CHEBI:22984:T103:CHED",

"name": "Calcium"

},

{

"id": "UMLS:C0007226:T022:ANAT",

"name": "Cardiovascular"

},

...

]

Listing 6: Concept suggestions API response sample (redacted for brevity)
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