
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322427043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 9

Survey of Meta-Heuristic Algorithms for Deep Learning
Training

Zhonghuan Tian and Simon Fong

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63785

Abstract

Deep learning (DL) is a type of machine learning that mimics the thinking patterns of
a human brain to learn the new abstract features automatically by deep and hierarchi‐
cal layers. DL is implemented by deep neural network (DNN) which has multi-
hidden layers. DNN is developed from traditional artificial neural network (ANN).
However, in the training process of DL, it has certain inefficiency due to very long
training time required. Meta-heuristic aims to find good or near-optimal solutions at a
reasonable computational cost. In this article, meta-heuristic algorithms are reviewed,
such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional
neural network’s training and parameter optimization. Thereafter the possibilities of
applying meta-heuristic algorithms on DL training and parameter optimization are
discussed.

Keywords: deep learning, meta-heuristic algorithm, neural network training, nature-
inspired computing algorithms, algorithm design

1. Introduction

Deep learning (DL) is a branch of machine learning. Based on a set of algorithms, DL attempts
to model high-level abstractions in data by using multiple processing layers with complex
structures. Developed by Professor Hinton [1] in 2006, DL now is becoming the most preva‐
lent research area in machine learning. DL is a collective concept of a series of algorithms and
models including but not limited to convolutional neural networks (CNNs), deep belief
networks (DBNs), restricted Boltzmann machines (RBMs), deep Boltzmann machines (DBM),
recursive auto encoders and deep representation respectively, regarding the problem to be

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

solved. The most famous models for machine learning are RBM and DBN and CNN for image
classification.

DL is the so-called “Deep” towards those widely used “shallow learning” algorithms such as
support vector machine (SVM), boosting and maximum entropy method. Those shallow
learning extracts feature mostly by artificial sampling or empirical sampling, thus the model
or network will learn a non layer structure feature. On the contrary, DL learns raw data layer
by layer by transforming data from raw feature space to transformed feature space. Addition‐
ally, deep structure can learn and approach nonlinear function. All these advantages are
beneficial to classification and feature visualization [2, 25].

Figure 1. Error rate of Image Net competition.

To process big data and large scale dataset, DL has been widely used in many research areas
and industrial areas including pattern recognition, image classification and natural language
processing (NLP). For instance, in Image Net large-scale visual recognition challenge (ILSVRC)
[3], DL and convolutional neural network are first implemented in image classification and
made a great success. As shown in Figure 1, the error rate declines from 25 to 15% when DL
and CNN are implemented. From then on, “DL + big data + GPU” is integrated into traditional
image classification application, and companies such as Google and Baidu have successfully
updated their image searching production by DL’s implementation [4].

Though DL outperforms those shallow learning methods and it has been widely adopted by
the R&D industry, its application and implementation still have some shortcomings. A large
deep neural network (DNN) may have millions of parameters and is mostly trained by
contrastive divergence (CD) learning algorithm which is iterative and known to be time
consuming [5]. The most significant problem is that when facing very large scaled data the
DNN will take several days or even months to learn even though the greedy search strategy
is proposed. In this case, many companies and researchers are trying to improve hardware
capabilities and applying high-processing facilities such as GPU and parallel computing.
Others are focusing on using other training algorithms to substitute traditional CD to speed
up the training process.

Optimization Algorithms- Methods and Applications196

Meta-heuristic algorithms aim to find global or near-optimal solutions at a reasonable
computational cost. In terms of meta-heuristic, the words of “meta” and “heuristic” are Greek,
where “meta” is “higher level” or “beyond” and heuristics means “to find”, “to know”, “to
guide an investigation” or “to discover”. Heuristics are methods to find good (near-) optimal
solutions in a reasonable computational cost without guaranteeing feasibility or optimality. In
other words, meta-heuristics are a set of intelligent strategies to enhance the efficiency of
heuristic procedures [6].

Meta-heuristic algorithms usually rely on different agents such as chromosome (genetic
algorithm [GA]), particles (particle swarm optimization [PSO]), and firefly (firefly algorithm),
searching iteratively to find the global optimum or near-global optimum. Many strategies such
as evolutionary strategy, social behavior and information transition are implemented to
guarantee the whole population will move towards global optimum iteratively and protect
from falling in local optimum.

Traditional artificial neural network (ANN) used to have multilayer feed-forward neural
network structure and use back-propagation (BP) to modify the weight. The mainly used
strategy is gradient descent (GD). Meta-heuristic has been successfully implemented on
traditional neural network to speed up the training process by substituting the GD strategy
with iterative evolutionary strategy or swarm intelligence strategy [5, 7–10].

Gudise and Venayagamoorthy [5] compared feed forward with PSO and feed forward with
BP, and the results show that feed forward with PSO is better than BP in terms of nonlinear
function.

Leung et al. [10] presents the tuning of the structure and parameters of a neural network using
an improved GA. It will also be shown that the improved GA performs better than the standard
GA based on some benchmark test functions.

Juang [8] proposed a new evolutionary learning algorithm based on a hybrid of GA and PSO
called HGAPSO. In each epoch, the upper-half of the GA population are defined as elites and
the rest will be discarded. Enhanced by PSO and GA, the elites will form the next generation
of GA. The hybrid method outperforms PSO and GA in recurrent or fuzzy neural network.

Meissner et al. [9] used optimized particle swarm optimization (OPSO) to accelerate the
training process of neural network. The main idea of OPSO is to optimize the free parameters
of the PSO by having swarms within a swarm. Applying the OPSO method to neural network
training with the aim to build a quantitative model, OPSO approach yields parameter
combinations improving overall optimization performance.

Zhang et al. [7] proposed a hybrid algorithm of PSO plus BP for neural network training. By
utilizing the advantage of PSO’s global searching ability as well as BP’s deep search ability,
the hybrid algorithm has a very good performance in both convergent speed and convergent
accuracy.

Structures of DL model are similar to the traditional ANN, some modifications are imple‐
mented for better learning ability. For instance, the CNN is a traditional ANN modified with
pooling procession and the structure of RBM is an undirected graph or a bidirectional neural

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

197

network. DL model shares similar model with neural network and may take different training
algorithm instead of GD strategy.

In this survey, the relevant work of applying meta-heuristic algorithms for ANN’s training is
reviewed. In addition, the structure and working process of RBM are analyzed and as the basic
structure of DL model, RBM’s training process is introduced. We survey the possibility of
implementing meta-heuristic algorithms on RBM’s parameter training process.

The rest of the sections is organized as follows: meta-heuristic algorithms including GA and
PSO are introduced in Section 2. ANN is introduced in Section 3. The implementation of meta-
heuristic on ANN is introduced in Section 4. DL and RBM are introduced in Section 5. Some
conclusion and discussion are drawn in Section 6.

2. Meta-heuristic algorithm

Meta-heuristic is a collective concept of a series of algorithms including evolutionary algo‐
rithm, the most famous one is GA [11], naturally inspired algorithm, the most prevalent one
is PSO [12], trajectory algorithm, such as Tabu search [13], and so on. The classification of meta-
heuristic is shown in Figure 2. In this paper, I mainly focus on surveying GA and PSO because
these two are the most prevalent as well as most widely implemented. GA and its working
process are introduced in Section 2.1 and PSO is introduced in Section 2.2, respectively.

Figure 2. Classification of meta-heuristic algorithm.

2.1. Genetic algorithm

Founded in 1975 by Professor Holland, GA sets up an evolution model that simulates Dar‐
winian genetic selection and the natural elimination process [11]. Chromosomes carry
information and the operation of crossover and mutation on chromosome guarantees the
whole algorithm could find the global optimum or near-global optimum iteratively. Crossover
operation keeps the whole population moving towards the global optimum through giving
better chromosome higher chance for propagation. Mutation operation keeps the whole

Optimization Algorithms- Methods and Applications198

population’s diversity and avoids population falling in local optimum easily. The main
working process could be summarized as follows:

Figure 3. Chromosome image in biology.

Step 1. Chromosomes which carry information are randomly generated.

Step 2. All chromosomes are evaluated with fitness functions to calculate fitness values of each
as fitnessi.

Step 3. Based on Russian roulette strategy, chromosomes are randomly chosen as parents for
next generation.

Step 4. Parents do crossover operations to get next generations.

Step 5. Do mutation operation on each chromosome.

Step 6. Back to Step 2 until meeting the stop criteria or exceeding pre-set iteration number.

A biological picture of chromosome is shown in Figure 3. The working flow of GA is shown
in Figure 4.

Figure 4. GA working flow.

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

199

2.1.1. Russian roulette strategy

Russian roulette strategy is designed for choosing the parents of the next generation, as shown
in Figure 5. Each chromosome has a possibility pi of being chosen as parents.

Figure 5. Russian roulette strategy.

pi is calculated as below for each chromosome i:

1

i
i n

ii

fitnessp
fitness

=

=
å

This strategy keeps the idea that the chromosome with higher fitness value will have higher
possibility of being chosen thus make sure better chromosome’s information will not be missed
or has few possibilities of missing in the next generation. In the meantime, it also allows those
chromosomes without better fitness value to transmit their information to the next generation
[11].

2.1.2. Crossover and mutation

Figure 6 shows us a typical crossover operation and mutation operation. The most common
way of applying crossover operation is selecting a site, cutting up each chromosome and
reconstructing both to get next generation. If their fitness value is better than their parents,
submit as next generation otherwise keep their parents as next generation. Furthermore,
regarding different real problem to be solved, different crossover operation such as multisite
crossover would be used and these will be discussed later.

Optimization Algorithms- Methods and Applications200

Figure 6. Crossover and mutation.

Figure 6 also shows us the typical mutation operation in GA. The most common way of
applying mutation is to randomly select some site of chromosome and randomly change it
with any possible value regardless of the fitness value will be better or not. Of course the
mutation operation may make one chromosome “worse” while mutation operation can keep
the population’s diversity and avoid falling in local optimum.

2.1.3. Fitness function and genetic coding strategy

GA is first used to optimize complex continuous functions which are not able to calculate its
mathematical global optimal location. Thus the design of chromosome itself, fitness function
and crossover operation are very easy. However, when trying implementing GA on real
problems, many types of problems such as discrete problem, time series problem and multi
objective problem are faced. In this way, how to design the chromosome itself to represent the
real problem better and how to calculate its fitness value when given chromosome need
reconsidering. To solve the above troubles, genetic coding strategy is put forward which
encodes real problem to chromosome and calculates its fitness value. When whole optimizing
is finished, the best chromosome will be decoded to real problem’s expression and then
analyzed and discussed why it is global best.

2.2. Particle swarm optimization

PSO is developed by Professor James Kennedy and Russell Eberhart [12]. The main difference
of PSO is that it takes “social behaviors” and “memory” to guarantee whole population’s
moving towards global optimum iteratively instead of evolutionary strategy.

PSO optimizes a problem by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathematical formula over the
particle's position xi and velocity vi. Each particle has memory and its movement is influenced
by its local best known position pbesti but is also guided toward the best known positions in
the search-space, which are updated as better positions found by all particles called gbest.

The iterative formulas of PSO are

() ()1 1 2* * * * *i i i i iv v w c rand pbest x c rand gbest x+ = + - + -

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

201

                Velocity constraint ()

1 1i i ix x v+ += +

               Search range constraint ()

w is called the inertia weight that controls the exploration and exploitation of the search space
because it dynamically adjusts velocity and is usually set as 0.8. c1 and c2 are called learning
factors and usually set as 2.

Figure 7. Schematic of PSO.

In the iterative formula of PSO, vi * w refers to the particle keeps its own search direction. c1 *
rand * (pbesti − xi) refers to the particle’s movement is influenced by its own personal best record.
c2 * rand * (gbest − xi) refers to the particle’s movement is influenced by whole population’s best
record. To keep whole population will not premature or overfit, when implementing iteration
process, a limitation of vmax and vmin is predefined to constraint particles’ movement. Addition‐
ally, the search space is also predefined thus for each particle’s location xi, there are upper
bound xmax and lower bound xmin to make sure each particle will not be out of range. A schematic
diagram is shown in Figure 7 and the working flow of PSO is shown in Figure 8.

Optimization Algorithms- Methods and Applications202

Figure 8. Working flow of PSO.

PSO is prevalent because of its concise evolutionary strategy as well as its concise operations.
Unlike GA’s crossover and mutation operation and complex genetic coding strategy, PSO only
needs randomly generated location x and velocity v. However, naïve PSO is designed for math
function optimization which is a continuous problem. For application, researchers still need

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

203

to design own coding strategy to make sure PSO’s iterative formulas are meaningful, especially
for discrete problems. One example is applying PSO on graph optimization to solve some NP-
hard problem such as travelling salesman problem (TSP) problem [14]. TSP asks the following
question: Given a list of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city? It is an NP-hard
problem in combinatorial optimization, important in operations research and theoretical
computer science.

With the development of meta-heuristic, researchers are beginning to try implementing meta-
heuristic on TSP in case to get a “good enough” result in a reasonable computation time. To
solve and adapt TSP to PSO, researchers innovate a concept of “swap operator” and “swap
sequence” which gives the “+” operator a new meaning [14, 15].

3. Neural network

In machine learning and cognitive science, ANNs are a family of models inspired by biological
neural networks (the central nervous systems of animals, in particular the brain) and are used
to estimate or approximate functions that can depend on a large number of inputs and are
generally unknown. ANNs are generally presented as systems of interconnected "neurons"
which exchange messages between each other. The connections have numeric weights that can
be tuned based on experience, making neural nets adaptive to inputs and capable of learning
[16]. The ANN was developed in the 1950s, there are almost three generations of neural
networks: perceptron [17], feed-forward BP neural network [18] and spiking neural network
(SNN) [19].

3.1. Perceptron

Founded in the 1950s by Professor Rosenblatt, the basic perceptron is put forward as a
probabilistic model to simulate human brain’s working process when receiving information.
Figure 9 shows us a typical structure of perceptron that only has one layer, with multi-input
neurons as (t1, t2, ⋯ , tn) in which k is the total number of neurons. Their corresponding inputs
are (x1, x2, ⋯ , xn). Each neuron has its own weight (w1j, w2j, ⋯ , wnj) in which j refers to the output
layer. The net input netj =∑n

i=1 xi * wij is processed by the activation φ. If φ(netj) > threshold θj,
then the output neuron is activated and output oj = 1, otherwise output neuron is not activated
and output oj = 0. The training process of perceptron is that suppose the desired output is od

and actual output is oa, then

()Δ *ij d a iw o o x= -

1 Δt t
ij ij ijw w w+ = +

Optimization Algorithms- Methods and Applications204

Figure 9. Structure of perceptron.

By using these training strategies, when|(od − oa)| < eps, in which eps is a predefined accuracy,
i.e., 10−5, the perceptron could be seen as mature. This training strategy is the ancestor of the
widely used BP algorithm.

Geometrically, trained perceptron could be seen as a linear function. It can correctly classi‐
fy the linear separable problem but not linear inseparable problem such as XOR problem
(Figure 10). XOR problem contains two classes A and B while the diagonal belongs to the
same class, i.e., data (0, 0) and data (1, 1) belong to class A while data (1, 0) and (0, 1)
belong to class B. This will cause no lines or linear functions can separate these two catego‐
ries correctly unless using curves or reflect the data to high-dimensional space [18].

Figure 10. XOR problem.

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

205

3.2. Feed-forward neural network

Figure 11 shows us a typical multilayer unidirectional feed-forward neural network and
Figure 12 shows us a typical recurrent neural network, Hopfield network. The most prevalent
structure of three-layer neural network with input layer, hidden layer and output layer, every
two neurons are connected with weight w.

Figure 11. Feed-forward neural network.

Figure 12. Hopfield neural network.

Optimization Algorithms- Methods and Applications206

In a typical feed-forward neural network, the information is transmitted forward from input
layer to hidden layer and then from hidden layer to output layer. It works similar to perceptron
above, for each neuron j in hidden layer, calculate

1

*
n

j i ij
i

y x w
=

=å

Then for each neuron h in output layer, calculate

1

*
n

h i jh
i

o y w
=

=å

The output layer could have one or more neurons to represent the final result, different output
layer structure may lead to different training time and prediction accuracy.

BP algorithm is the most prevalent supervised learning algorithm for neural network. BP’s
main idea is using GD algorithm to find the gradient-descent-most way to modify the weight
in neural network. The modification starts from the output layer, then to hidden layer and
input layer. Because the GD is based on the difference or error between the desired output and
actual output, BP is also called error-BP method. Suppose desired output is od and actual output
is oa, the error function is defined as:

21E ()
2 d ao o= -

Suppose the layers are input layer i, hidden layer j and output layer h, respectively, using
partial derivative,

Δ ,Δij jh
ij jh

E Ew w
w w

h h¶ ¶
= =

¶ ¶

in which η is called learning rate, usually set as 0.01 or 0.1 according to the set of weight of the
network. Weight w is usually set as a random number in [0, 1] in case the learning process is
too long. Then, update the weight between each neurons,

Δ , Δih ih ih hj hj hjw w w w w w= + = +

One epoch of training process is finished. GD will modify weight iteratively using the formula
above till the whole network is trained mature.

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

207

Unlike perceptron, multilayer network can represent complex nonlinear function with hidden
layers, thus can process XOR problems well. To some extent, multilayer network can represent
any type of nonlinear function by using hidden layers. However, when implementing BP, if
the depth of network is over 5, the error transmitted back to input layer or first hidden layer
will be decayed significantly to almost 0 thus making the modification useless, so in real
application, the depth of network is smaller than 5 [16].

3.3. Spiking neural network

SNN is recognized as the third generation of neural network. Maass [19] proved the spiking
neuron and SNN has a powerful learning ability and information processing ability than
traditional neural network. Put forward by Gerstner [20] in 1997, the SNN gives us a concise
biological neuron model processed by temporal coding called spiking neuron model (SRM).

Figure 13(A) and (B) shows us the basic structure of SNN, the network structure and infor‐
mation transition of neural network, SNN is similar to using feed-forward multilayer neural
network. However, the transition process is a little different with feed-forward neural network.
Between neurons i and j, there are multiple delays (d1, d2, ⋯ , dk) and every link has its own
weight (wij

1, wij
2, ⋯ , wij

k) corresponding to each delay. Compared to traditional NN, SNN has
more powerful learning ability and information processing ability.

Figure 13. (A) Feed-forward SNNand (B) connection of multiple delay.

For each spiking neuron j, its internal state xj(t) is

() ()
j

k k
j ij i ij

i k
x t w t t de

ÎG

= - -åå

Neuron i is its predecessor and weight wij
k and delay dij

k are the synaptic connection between
neuron i and j. ti is the ith input from presynaptic neuron. If xj(t) ≥ v, v is pre-set threshold, the
neuron is spiked and could transmit spike to other neurons. ε(t)is called spiking response
function,

Optimization Algorithms- Methods and Applications208

1
, 0()

0, 0

-ì
>ï= í

ï £î

tt e tt
t

t
e t

τ is the membrane potential decay time constant that determines the rise and decay time of
the postsynaptic potential (PSP). Figure 14 shows us how one spiking neuron begins to receive
input pulse step by step and become spiked. Each neuron could begin to transmit information
to its posterity only when this neuron is spiked. SNN implements temporal coding strategy
which means the whole network is only based on one variable t which is initially set as 0. Then
t increment 0.01 epoch by epoch until the output layer is spiked. The final output is the output
layer spiking time t.

Figure 14. Process of neuron spike when receiving input spike.

Owing to the multiple delay connection, one SNN can achieve times of computation scale and
ability than ANN in the same multilayer structure. With temporal coding, the whole network
has only one variable t, thus the iterative process is simpler than ANN.

For supervised learning algorithm of SNN, Bohte et al. [21] first time give us a proved error-
propagation supervised learning algorithm called spikeprop algorithm which is also based on
GD. Adeli [22] revised the spikeprop algorithm and put forward another supervised learning
algorithm quickprop.

3.4. Neural network encoding strategy

When dealing with different types of data for classification or prediction, encoding strategy
similar to genetic coding needs being implemented to transform real problem to neural net‐
work format. In addition, because of the longtime of neural network training, some prepro‐
cessing method needs to be taken for extracting significant information or features thus
accelerate neural network learning.

For instance, dealing with image classification, feature extraction method need being taken as
preprocessing for neural network learning and the famous one is CNN. Furthermore, when

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

209

using neural network for speech recognition, feature extraction is also a need for transforming
continuous speech data into discrete neural network input.

4. Applying meta-heuristic algorithm on neural network training

The main idea of applying meta-heuristic on neural network training is using meta-heuristic
algorithm instead of GD algorithm modifying weight training. That is from

1 1j t t t tw w GD w w Meta+ += + Þ = +

By using meta-heuristic algorithm’s global optimum searching ability, researchers are aiming
to train neural network faster than traditional GD algorithm. In the following part, Section 1
reviewed four researchers’ work on implementing meta-heuristic on neural network training
including GA on NN, PSO on NN and hybrid GA and PSO on NN.

4.1. GA on neural network

Leung et al. [10] first tried implementing GA on neural network training. Their work was
published in IEEE Transactions on Neural Network, 2003.

An improved GA is put forward by Leung. Crossover operations, mutation operations and
fitness function of GA are all redefined by Professor Leung. Firstly, when chromosomes p1 and
p2 do crossover operation, four possible offsprings will be generated and one with the biggest
fitness value will be chosen as offspring. The four possible crossover offsprings os1 to os4 are
generated as regulations listed below:

1 1 1 1 1 2
1 2, ,

2c n
p pos os os os +é ù= =ë ûL

()2 2 2 2
1 2 max 1 2, , 1 max(,)c nos os os os p w p p wé ù= = - +ë ûL

()3 3 3 3
1 2 min 1 2, , 1 min(,)c nos os os os p w p p wé ù= = - +ë ûL

()()min max 1 24 4 4 4
1 2

1 ()
, ,

2c n

p p w p p w
os os os os

+ - + +
é ù= =ë ûL

pmax = paramax
1 , paramax

1 , ⋯ , paramax
n , pmin = paramin

1 , paramin
1 , ⋯ , paramin

n are calculated respec‐
tively. For instance, Max([1,−1,4], [−3,3,2]) = [1,3,4] and Min([1,−1,4],[−3,3,2]) = [−3,−1,2].

Optimization Algorithms- Methods and Applications210

Secondly, mutation operations are redefined. The regulations are given below

() () ()1 2 3 4max(,fitness ,fitness ,fitness())c c c cos fitness os os os os=

1 1 2 2[, ,]¢ = D D D+ L n nos os b nos b nos b nos

os is the chromosome with biggest fitness value in all four possible offsprings. bi random equals
to 0 or 1 and Δnosi is a random number making sure paramin

i ≤osi + biΔnosi ≤ paramax
i . os′ is the final

generation after crossover operation and mutation operation.

Thirdly, the fitness value is defined. By adding parameters in the neural network mathematical
expression, the actual output of GA-optimized neural network yk equals to:

() () () ()2 1 1 1 2 2

1 1

()
h in n

k jk jk ij ij i j j k k
j i

y s w logsig s w x s b s logsig bd d d d
= =

é ù
= - -ê ú

ë û
å å

in which k =1, 2, ⋯, nout , sij denotes link from ith neuron in input layer to jth neuron in hidden
layer, sjk denotes link from jth neuron in hidden layer to kth neuron in output layer, wjk denotes
weight between each neuron, bk

1 and bk
2 denote bias in input layer and hidden layer respectively,

nin, nh and nout denote the number of neurons of input layer, hidden layer and output layer,
respectively.

The error of the whole network is defined as mean of all chromosomes:

1

err
out

dn
k k

k d

y y
n=

-
=å

in which nd denotes the number of chromosomes used in the experiment, yk
d denotes the

desired output of output neuron k. Given the error of the network, GA is implemented to
optimize the network, thus minimizing the error. The fitness function is defined as

1fitness
1 err

=
+

the smaller the error and the bigger the fitness value. GA is implemented to find the global
optimum of the fitness function, thus the parameter combinations of weight w are the trained
weight for the network.

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

211

4.2. PSO on neural network

Gudise and Venayagamoorthy [5] implemented PSO on neural network training in 2003.

The fitness value of each particle (member) of the swarm is the value of the error function
evaluated at the current position of the particle and position vector of the article corresponds
to the weight matrix of the network.

Zhang et al. [7] developed a hybrid algorithm of BP and PSO that could balance training speed
and accuracy.

The PSO algorithm was showed to converge rapidly during the initial stages of a global search,
but around global optimum, the search process will become very slow. On the contrary, the
gradient descending method can achieve faster convergent speed around global optimum, and
at the same time, the convergent accuracy can be higher.

When the iteration process is approaching end and current best solution is near-global
optimum, if the change of the weight in PSO is big, the result will vibrate severely. Under this
condition, Zhang supposed with the increase of iteration time, the weight in PSO should
decline with the iteration time’s increasing to narrow the search range thus paying more
attention to local search for global best. He suggests the weight decline linearly first, then
decline nonlinearly as shown in Figure 15.

Figure 15. Change of weight in PSO with number of generations.

The concrete working process is summarized below:

For all particle pi, it has a global best location pglobalbest. If the pglobalbest keep unchanged for over 10
generations, that may infer the PSO pays too much time on global search thus BP is imple‐
mented for pglobalbest to deep search for a better solution.

Similar to GA’s implementation in neural network, the fitness function defined is also based
on whole network’s error and to minimize the error as the optimization of PSO.

Optimization Algorithms- Methods and Applications212

The learning rate η of neural network is also controlled in the algorithm, as

0η epochk e h- ×= ´

where η is the learning rate, k and η0 are constants, epoch is a variable that represents iterative
times, through adjusting k and η0, the reducing speed of learning rate is controlled.

By implementing the strategy that BP focusing on deep searching and PSO focusing on global
searching, the hybrid algorithm has a very good performance.

4.3. Hybrid GA and PSO on neural network

Juang [6] hybrids GA and PSO thus optimize recurrent network’s training. The work was
published in IEEE Transactions on Systems, Man, and Cybernetics, 2004.

The hybrid algorithm called HGAPSO is put forward because the learning performance of GA
may be unsatisfactory for complex problems. In addition, for the learning of recurrent network
weights, many possible solutions exist. Two individuals with high fitness values are likely to
have dissimilar set of weights, and the recombination may result in offspring with poor
performance.

Juang put forward a conception of “elite” of the first half to enhance the next generation’s
performance. In each generation, after the fitness values of all the individuals in the same
population are calculated, the top-half best-performing ones are marked. These individuals
are regarded as elites.

Figure 16. Working flow of HGAPSO.

In every epoch, the worse half of the chromosome is discarded. The better half is chosen for
reproduction through PSO’s enhancement. All elite chromosomes are regarded as particles in

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

213

PSO. By performing PSO on the elites, we may avoid the premature convergence in elite GAs
and increase the search ability. Half of the population in the next generation is occupied by
the enhanced individuals, the others by crossover operation. The working flow of algorithm
is shown in Figure 16.

The crossover operation of HGAPSO is similar to normal GA, randomly selecting site on
chromosome and exchange the sited piece of chromosome to finish the crossover operation.
The crossover schematic diagram is shown in Figure 17. In HGAPSO, uniform mutation is
adopted, that is, the mutated gene is drawn randomly, uniformly from the corresponding
search interval.

Figure 17. Schematic diagram of crossover operation.

5. DL and RBM

When dealing with image classification or other problems, traditional method is using
preprocessing transforming data as input values for neural network learning while using DL
method for classification, raw data (pixel values) are used as input values. This will keep to
the maximum extent protecting all information regardless of useful or not from being de‐
stroyed by extraction methods. The most advantage lies that all the extraction methods are
based on expert knowledge and expert choice and thus are not extensible to other problems,
while DL algorithm can overcome these limitations by using all data with its powerful
processing ability. A CNN is shown in Figure 18.

The Boltzmann machine only has two layers (as Figure 19), the first layer is the input layer
and the second layer is the output layer, although the structure is very simple and only contains
two layers, its mathematical function in it is not simple. Herein we need to introduce the
following probability equation to know the RBM.

Optimization Algorithms- Methods and Applications214

Figure 18. Convolutional neural network.

Figure 19. Restricted Boltzmann machine.

From the equation we know there are three items in it, they are the energy of the visible layer
neural, the energy of the hidden layer neural, and the energy is consisted of the two layers.
From the energy function of the RBM, we can see there are three kinds of parameters lie in the
RBM, different from the neural network, each neuron has a parameter too, but for the neural
network only the connection of two layers has the parameters. Also, the neural network does
not carry any energy function. They use the exponential function to express the potential
function. There are also the probabilities existing in the RBM. They work exactly in the same
way as the two kind of the probabilities such as p(v|h) and p(h|v). It has a similarity with
probability graph model in details, examples are Bayesian network and Markov network. It
looks like a Bayesian network because of the conditional probability. On the other hand it does
not look like a Bayesian because of the two direction probabilities. These probabilities are lying
on the two variables that have only one direction.

Compared with the Markov network, the RBM seems to be having a little bit relation with it,
because the RBM has the energy function just as the Markov network. But it is not so much
alike because the RBM’s variable has parameter, and the Markov network does not have any
parameter. Furthermore, the Markov network does not have conditional probability because
it has no direction but just the interaction. From the graph’s perspective, variables in the

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

215

Markov network use cliques or clusters to represent the relations of close and communicated
variables. It uses the production of the potentials of the clique to express the joint probability
instead of conditional probability just like the RBM. Its input data are the kind of the Boolean
data, within the range between 0 and 1.

The training way of the RBM is to maximize the probability of the visible layer p(v), and to
generate the distribution of the input data. RBM is a kind of special Markov random function
and a special kind of Boltzmann machine. Its graphical model is corresponding to the factor
product analysis.

Different from the probability graphical model, the RBM’s joint distribution directly uses the
energy function of both visible layer v and hidden layer h to define instead of potential of it
given as

(), T T TE v h a v b h v Wh= - - -

() (),1, E v hP v h e
Z

-=

Later we will know that Z is the partition function defined as the sum of e−E(V,h) over all the
possible configurations. In other words, it is just a constant normalizing the sum over all the
possible hidden layer configurations.

() (),1 E v h

h

P v e
Z

-= å

The hidden unit activations are mutually independent given the activations. That is, for m
visible and n hidden units, the conditional probability of a configuration of the visible unit v,
given a configuration

() ()
1

| |
m

i
i

P v h P v h
=

=Õ

Conversely, the conditional probability of h given v is P(h |v)=∏n
j=1 P(h j |v). Our goal is to

infer the weights that maximize the marginal of the visible, in details we can step through the
following equation to infer and learn the RBM.

argmax log ()
w v V

E P v
Î

é ù
ê ú
ë û
å

Optimization Algorithms- Methods and Applications216

As for the training algorithm, the main idea is also applied GD idea into RBM. Hinton put
forward CD [23] as a faster learning algorithm. Firstly, the derivative of the log probability of
a training vector with respect to a weight is computed as

()
i j i jdata model

ij

logP v v h v h
w

¶
= -

¶

where the angle brackets are used to denote expectations under the distribution specified by
the subscript that follows. This leads to a very simple learning rule for performing stochastic
steepest ascent in the log probability of the training data:

()ij i j i jdata model
w v h v heD = -

where ε is a learning rate.

Because there are no direct connections between hidden units in an RBM, it is very easy to get
an unbiased sample of �vjhj�data. Given a randomly selected training image, v, the binary state, hj,
of each hidden unit, j, is set to 1 with probability

()1 ()j j i ij
i

p h v b v ws= = +å

where bj is the current state of hidden neuron j, σ(x) is the logistic sigmoid function
σ(x)=1 / (1 + exp(− x)). vjhj is then an unbiased sample. The CD is used to calculate the latter part
�vjhj�model. Details can be found in their respective publications.

Considering the complicated computation of implementing CD, the training process of RBM
is not easy. Under this condition, implementing meta-heuristic on RBM training to substitute
CD is of high possibility.

6. Conclusion and discussion

Meta-heuristic has successfully implemented in neural network training. The algorithm used
includes GA, PSO, their hybrid and many other meta-heuristic algorithms. Moreover, feed-
forward BP neural network and SNN [24] are all trained with tests on famous classification
problems.

The basic structure of DL is similar to traditional neural network. CNN is a special neural
network with different weight computation regulations and RBM is a weighted biodimen‐
sional neural network or biodimensional graph. Their training processes are also mainly

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

217

executed through iterative formula on error which is similar to traditional neural network’s
training.

Having seen the above two concluding remarks, it can be assumed that it is of high possibility
of applying meta-heuristic in DL to speed up training without declining performance.
However, relevant publications along this direction are still rare.

Lastly, there still exists a question that goes under today’s computation ability, especially the
GPU whose computation ability is several times stronger than CPU that has been widely used
in industrial area. One may ask, although elegant, is meta-heuristic still necessary? This
question is not easy to answer. However, one can be certain that when traversing all the
possible solutions is certainly highly time-consuming. Search for near-optimal results by meta-
heuristic is still useful that can provide us a reasonable searched result (instead of non optimal
or far from optimal) near a global optimum value at an acceptable computational cost.

Author details

Zhonghuan Tian and Simon Fong*

*Address all correspondence to: ccfong@umac.mo

Department of Computer and Information Science, University of Macau, Macau SAR, China

References

[1] Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning algorithm for deep belief
nets. Neural Computation. 2006;18(7):1527-1554.

[2] Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. Deep learning: yesterday, today, and
tomorrow. Journal of Computer Research and Development. 2013;50(9):1799-1804.

[3] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale Visual Recognition
Challenge. IJCV, 2015.

[4] Izadinia, Hamid, Bryan C. Russell, Ali Farhadi, Matthew D. Hoffman, and Aaron
Hertzmann. “Deep classifiers from image tags in the wild.” InProceedings of the 2015
Workshop on Community-Organized Multimodal Mining: Opportunities for Novel Solu‐
tions, pp. 13–18. ACM, 2015.

[5] Gudise, V. G. and Venayagamoorthy, G. K. Comparison of particle swarm optimization
and back propagation as training algorithms for neural networks. In: Proceedings of In
Swarm Intelligence Symposium SIS'03; 2006. p. 110-117.

Optimization Algorithms- Methods and Applications218

[6] Beheshti, Z. and Shamsuddin, S. M. H. A review of population-based meta-heuristic
algorithms. International Journal of Advances in Soft Computing & Its Applications
2013;5(1):1-35.

[7] Zhang, J. R., Zhang, J., Lok, T. M., and Lyu, M. R. A hybrid particle swarm optimization–
back-propagation algorithm for feed forward neural network training. Applied
Mathematics and Computation. 2007;185(2):1026-1037.

[8] Juang, C. F. A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions 2004;34(2):997-1006.

[9] Meissner, M., Schmuker, M., and Schneider, G. Optimized particle swarm optimization
(OPSO) and its application to artificial neural network training. BMC Bioinformatics.
2006;7(1):125.

[10] Leung, F. H., Lam, H. K., Ling, S. H., and Tam, P. K. Tuning of the structure and
parameters of a neural network using an improved genetic algorithm. IEEE Transac‐
tions on Neural Networks. 2003;14(1):79-88.

[11] Goldberg, D. E. and Holland, J. H. Genetic algorithms and machine learning. Machine
Learning. 1988;3(2):95-99.

[12] Kennedy, J. Particle Swarm Optimization; Springer, USA; 2010. p. 760-766

[13] Glover, F. Tabu search-part I. ORSA Journal on Computing. 1989;1(3):190-206.

[14] Wang, K. P., Huang, L., Zhou, C. G., and Pang, W. Particle swarm optimization for
traveling salesman problem. In: International Conference on Machine Learning and
Cybernetics; IEEE; 2003. p. 1583-1585.

[15] Clerc, M. Discrete particle swarm optimization, illustrated by the traveling salesman
problem. In: New Optimization Techniques in Engineering; Springer, Berlin Heidel‐
berg; 2004. p. 219-239.

[16] Cochocki, A. and Unbehauen, R. Neural Networks for Optimization and Signal
Processing; John Wiley & Sons, Inc., New York, NY, USA; 1993.

[17] Rosenblatt, F. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review. 1958;65(6):386.

[18] Nitta, T. Solving the XOR problem and the detection of symmetry using a single
complex-valued neuron. Neural Networks. 2003;16(8):1101-1105.

[19] Maass, W. Networks of spiking neurons: The third generation of neural network
models. Neural Networks. 1997;10(9):1659-1671.

[20] Kistler, W. M., Gerstner, W., and Hemmen, J. Reduction of the Hodgkin-Huxley
equations to a single-variable threshold model. Neural Computation. 1997;9(5):
1015-1045.

Survey of Meta-Heuristic Algorithms for Deep Learning Training
http://dx.doi.org/10.5772/63785

219

[21] Bohte, S. M., Kok, J. N., and La Poutre, H. Error-back propagation in temporally
encoded networks of spiking neurons. Neurocomputing. 2002;48(1):17-37.

[22] Ghosh-Dastidar, S. and Adeli, H. Improved spiking neural networks for EEG classifi‐
cation and epilepsy and seizure detection. Integrated Computer-Aided Engineering.
2007;14(3):187-212.

[23] Hinton, G. A practical guide to training restricted Boltzmann machines. Momentum.
2010;9(1):926.

[24] Pavlidis, N. G., Tasoulis, D. K., Plagianakos, V. P., Nikiforidis, G., and Vrahatis, M. N.
Spiking neural network training using evolutionary algorithms. In: Proceedings of
IEEE International Joint Conference on Neural Networks IJCNN'05; July 31–August
2005; IEEE; 2005. p. 2190-2194.

[25] Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks
2015;61:85-117.

Optimization Algorithms- Methods and Applications220

