PIE Universidade de Aveiro Departamento de Electronica, Telecomunicagoes e

2013 Informatica

Paulo Alexandre MyDroid: Teaching my Robot with Android

Paiva da Fonseca

MyDroid: Ensinar o meu robé com o Android






PIE Universidade de Aveiro Departamento de Electronica, Telecomunicagoes e

2013 Informatica

Paulo Alexandre MyDroid: Teaching my Robot with Android

Paiva da Fonseca

MyDroid: Ensinar o meu rob6é com o Android

Dissertacdo apresentada a Universidade de Aveiro para cumprimento dos
requisitos necessarios a obtencdo do grau de Mestre em Engenharia de
Computadores e Telematica, realizada sob a orientacdo cientifica do Doutor
José Maria Amaral Fernandes, Professor auxiliar do Departamento de
Electrénica, Telecomunicagdes e Informatica da Universidade de Aveiro, e do
Doutor Luis Seabra Lopes, Professor associado do Departamento de

Electronica, Telecomunicagdes e Informética da Universidade de Aveiro.






Este trabalho é dedicado a minha familia que me forneceu todas as

possibilidades de aqui chegar.






o juari

presidente

vogal — arguente principal

vogal - orientador

Professor Doutor Joaquim Joao Estrela Ribeiro Silvestre Madeira

Professor Aukxiliar, Universidade de Aveiro

Professor Doutor Pedro Lopes da Silva Mariano
Professora Auxiliar Convidado, Departamento de Informatica da Faculdade de Ciéncias da
Universidade de Lisboa

Professor Doutor José Maria Amaral Fernandes

Professor Aukxiliar, Universidade de Aveiro






agradecimentos

Um agradecimento muito especial a minha familia, por me ter proporcionado

alcancar esta etapa.

Aos meus amigos que me acompanharam e ajudaram nestes ultimos anos.

Sem eles também n&o seria possivel.

Ao grupo de robédtica da Universidade de Aveiro, em particular ao Aneesh
Chauhan, que me proporcionaram um ambiente agradavel e ajuda no

desenrolar da componente pratica deste projeto.

Um dltimo agradecimento aos professores que me acompanharam ao longo
desta vida académica e que me transmitiram o seu conhecimento. Em
particular aos professores José Maria Fernandes e Luis Seabra Lopes que

abriram uma porta para que este projeto se pudesse concretizar.






palavras-chave

resumo

Smartphone, interagéo, robd, aprendizagem, sensores.

Os robds comecaram a ser usados em diversas areas. Os principais objectivos
sdo a optimizacdo de trabalho e reducdo de custos. No entanto o0 modo de
interaccdo com estes equipamentos parece ndo acompanhar esta evolugao.
Com o surgimento dos smartphones chega uma nova oportunidade. Estes
pequenos dispositivos tém uma elevada capacidade de processamento e estao
equipamentos com um conjunto de recursos que podem ser usados na
interaccdo homem-maquina. Esta dissertacdo propde um conjunto de solugbes
para interagdo com robds, onde o smartphone € o meio usado para interagir
(a0 nivel de controlo e ensino). Pretende-se assim avaliar se o smartphone é

uma alternativa viavel para a interacao.






keywords

resumo

Smartphone, interaction, robot, learning, sensors.

Robots started to be used in several areas. The main objectives are work
optimization and cost reduction. However, an interaction method with these
devices does not seem to follow this evolution. With the rise of smartphones
comes a new opportunity. These small devices have a high processing
capacity and are equipped with a set of resources that can be used for man-
machine interaction. This thesis proposes a set of solutions for interaction with
robots, where a smartphone is the instrument used to interact (both
commanding and teaching). It is intended to assess whether the smartphone is

a viable alternative for interaction.






TaTe 1= TP PP PPPPRPRR: i
T (WL T T Yo 1 iii
Yol o) 01V 3 1 T3 =1 o] =TSSR PUURSPPR %
O [ o1 o Yo [0 A oY o WO PP PPU PP PPPPRPTOS 7
1.1 IMIOBIVATION oottt 7
R @ 1 ] =T ot 4 VYU PRR 8
1.3, TRESIS SEIUCTUIE ..ei ittt ettt a e e e bt e e bt e e e it e e bt e e eab e et eeeeabeeeeaee 9

2. Relevant technologies and [ItErature SUIVEY ........ccooio ittt e e e e e e e re e e e e e e e e e e e e enaneens 11
2.1. Robot Operating SYstem (ROS) ......ooiiiiiiiiieiiiiee e e e e e et e e et e e e aaeee s 11
2.1.1.  ROS PUBIISN/ SUDSCIIDET ettt e e e e e s e s e s eeeeeeeeeaeeeaeesananes 12
2.1.2.  ROS SBIVICES .uuiiiiiiiiiiiiei ettt e e e e e e e e e s s a et e et e e e e e e s e e e e s 12
% S TR £ (0 =T o o Y g = o] a T Y V=TSP UUU 13

R o[- ¥ O S e[ o PSP 13
0 T 1 0 F= T o] o T T I =YY o TU ol Y PSPPI 15
2.3. 1. SMaArtPhoNe tOUCNSCIEEN.......uitiiiiiiie et e e e e e e e e e st a e e e eeaaeeeseeenarearesaeeeas 15
2.3.2.  SMartphone INEIrtial SENSOIS ....uiuiiiiiiiei ettt e e e e e e e s a e e e e e e e e e e e e e eaabeaaaeaeeeas 17
2 T T 0 =T o o] a Vol o Yol 0 Y (ol e ] a Lo o 1< TP U UU 19
e B S o =T o o] s Vol e Tl o= 1 V=] = PSSP URR S 20

2.4. Interacting with robots USINg SMartPhONES .........ccciiiiiiiii e 21
2.4.1.  INteraction Via tOUCNSCIEEN ...ccicuiiiiiiie ittt ettt sttt e e s bte e e bt e s baeeesaree s 21
2.4.2.  INTEraction Via SPEECN ...coo e e e a e e e e e e et raraaaeas 21
2.4.3. Interaction USING INEItial SEBNSOIS.....cciiiiiiiiiiiiiieeee et e e e e e e e e e e e e e e e e e e aarearaeaeeeas 22

3. Smartphone-based interaction With @ PR2 ..........uiiiiiiiiiiii et e e e e e e e 23
I8 P A o o 11 £ 1ot { U IO PO P PP UPRIPPPPTPP 23
3.2.  The smartphone as Mmain iNteraction UNit...........coooiiiiiiiiiiiii e 24
3.2.1.  INteraction Via tOUCNSCIEEN ...cciuiiiiiiieitiee ettt ettt ettt et e s bt e e b esbaeeesaree s 24
3.2.2.  Interaction USING INEItial SEBNSOIS ....cccciiiiiiiiiiiieiee et e e e e e e e e e e e e e e e e e e aabeareeaeeeas 25

3.3, Use €aSeS OF INTEIACTION . ..iiiiiiiiiiiie ettt e e 26
3.3 L. ACNI BV et b e b et e b bt e e bt e bt e e s bbe e e ahbeeebbeeeanree s 28
3.3.2. TEACKH TASK ittt ettt ettt e et s e e bt e e b e e e bte e e br e e e bbeeennree s 29
I T8 TR K=Y Tl o 1@ ] o] =Yt AU URR S 30
3314 ASK OBJECT .ttt e e bt e bt e e s bbe e e hr e e e bbeeennree s 30



4.1, Interaction USING tOUCNSCIEEN ...oc.uviiiiiiiii ittt e e e et e e e e et e e e e nneeas 31
4.2, INTEraction USING SENSOIS ... ..ttt e e e e e e e e e e e e e e e eeeeeeeeeeteeeeebebebebenenaaaas 34
4.3.  INteraction USING CAMEBIQA ... ..t e e e e e e e e e e e e e e e e e eeeeeeeeteeeaebeeebentnbaaaaas 35
5. CoNClUSIONS @Nd fULUIE WOTK ....eeiiiiiiiiiii ettt ettt e e st e bt e e sabe e e bt e e e nneeeeaees 37
B.1t 0 FUBUIRE WOTK ettt ettt e eb e et e et e e as 38
B, REFEIENCES ..ttt ettt e e b bt e e s a bt e e b bt e e sab e e e bt e e e eab et e anb e e e anbeeenares 39
S - o Y=1 o Vo 1 U UUPUPPPUPPPNt 43
7.0, RACE data MOGEL.. .ottt ettt et ea et e e e e 43



FIGURES INDEX

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14
Figure 15:
Figure 16:

Y Yo T ol T Yot U = ] [ 14
o0 292 o o To | PSPPSR 14
Sample RACE scenario plan for counterl, tablel, robot Trixi (R), mugl (M) and guestl (G) [3] ..... 15
BrailleTouch on @ smMartphone [13] ...t e e e e e st r e e e e e e e e e e e anraaraeeeeeas 16
F AN Yo [ o] e IR =L =T U1 Y UUURU 17
Coordinate system used by the SENSOI APl......ueeii i r e e e e e e e 18
REfErENCE GESTUIES [16] ... iiiiiiiiiiiiiieeieeeeeee e e e e e e et et et et e e e e e e e e e e e e eeeeseaesba bbb eeeeeseens 18
LCT YT = Y ol Y Yot { U =TT PP R PPRR 24
O O T =T L= = = 1S UUU 27
Yol oY1 PR PPR 31
F Yol (TN I =Y o U UUUP 32
Achieve — SYMBOl AraWing..........uuiiiiiieiiie e e e e e e e e e et re e e eeeaeeeesesanbessaaeeeeas 33
=T Tol T I T PRSP 33
Call Robot (real NVIFONMENT) ..uiiiii ittt e e e e e e s e e e e e e e e e e e e snnbbraaeaeeaaaeeeaaas 34
(01| I 3¥e] o Yo X df { o) or- | d ToT o Y =] [=Tot o) o) IS U PPPPRRR 35
=T T T O L o T= ox U UU RPN 36






ACRONYMS TABLE

Term Description

AP Access Point

AR Augmented Reality

HMI Human Machine Interaction

HMMs Hidden Markov Models

0S Operating System

RACE Robustness by Autonomous Competence
Enhancement

ROS Robot Operating System

SDK Software Development Kit

SR Speech Recognition

STT Speech to Text

TTS Text to Speech

WLAN Wireless Local Area Network







1. Introduction

Technology has been evolving greatly in recent years. New electronic devices are
constantly emerging in order to assist humans in their tasks. Smartphones are a great
example of these devices. As they have larger processing capacities than regular cell phones,
its cost-benefit ratio makes them the day-by-day user gadget of choice. The main motivation
for acquiring smartphones is to access a wide range of features and services through them.
Currently smartphones can be compared with small mobile computers.

Low cost electronics has also led the way to the rise of new autonomous machines
intended to perform tasks normally performed by humans. These machines vary from
industrial machinery to simple domestic robots that help people in their daily lives. The
adoption of this type of equipment’s is majorly supported by their lower operational costs
and better performance, especially when compared with human workers.

The level and types of human machine interaction has evolved, however the most
techniques still underperform. Most of these robotic systems often cannot be configured to
do heterogeneous tasks. Moreover when they do, the configuration procedure often boils
down to reprogramming using buttons or other unintuitive ways. Keep in mind that more
complex forms of reprogramming are not easily performed by most ordinary users, which

reduces its utility.

1.1. Motivation

Robots have already started to be used in several areas. However interacting with them
still remains unchanged. In most cases, it still relies on a procedural nature where the robot
receives and complies with specific and objective orders. There are not wide spread
examples of robots with high interaction levels. There clearly is the need for more simple
and intuitive interactions that enable robots to a larger number of users.

Smartphones present a new opportunity for more natural interaction between humans
and robots. Besides being almost ubiquitous, the general population is accustomed to
interact with smartphones (to make calls, take pictures, email) and their resources.
Moreover, these devices provide flexible connectivity solutions (e.g. Bluetooth and Wi-Fi)

and have multiple sensors that can be used to achieve higher levels of interaction (e.g.



accelerometer, cameras). Using the Software Development Kit (SDK), the implementation of
new customized applications capable of accessing all the smartphone’s resources is even
easier. Some of these resources may be used to interact with robots.

Therefore it is natural to investigate if smartphones can support solutions to interact
more efficiently with robots. Either by using standard command-based approaches or other
non-conventional approaches, mainly based on implicit communication (e.g. move the hand

towards a direction).

1.2. Objectives

This thesis aims to explore interfaces for interacting with robots through smartphones.
Smartphones are equipped with a set of resources that allow interaction in several ways
(e.g. speech and motion). We aim to explore them as accessible communication interfaces in
order to improve human interaction with robots.

We will explore three specific interaction scenarios:

* Command specific instructions
* Inquire about robot’s abilities
* Teach the robot (new abilities and objects)

In order to command robots to perform certain tasks, we will explore not only the
conventional interaction options, through menus or command line, but also more advanced
ways by using smartphone resources, such as accelerometers and gyroscopes. These
methods are potentially more intuitive to the user, especially if simple and natural
movements are used to interact with a robot, similar to sign language (e.g. wave the
smartphone to call the robot).

Inquire about robot’s abilities is necessary to implement a flexible smartphone-based
application. Thus, the application can be adaptable to multiple contexts as opposed to a
fixed set of predefined robot abilities and usage scenarios. These abilities will likely be
commanded, in instruction format, in order to make the robot perform different tasks.

We will address two teaching/learning related interactions:

1. Teach new tasks, to learn based on its competences;
2. Teach new objects with photos taken by smartphone and tagged by a smartphone
user, with the hope that the robot can learn to recognize these objects later.

In conclusion, the interaction with robots, through smartphones, can provide a favorable
experience for the two sides, the user and the robot. In the user point of view, the

smartphone-based interaction is easier and more intuitive, as the user is already



familiarized with smartphone features. On the other hand, the smartphone provides agile
methodologies for communication with robot, minimizing the communication gap between
user and robot.

On a technical point of view, this thesis has provided the following contributions:

* Implementation of a communication channel between smartphone and robot (back-
end).

* Implementation of an interface application for smartphone. It allows users to
command the robot (front-end). Moreover it contains the necessary tools to
control and teach tasks;

* Design and implement more intuitive input methods, like motion;

* Design and implement a system that uses smartphone camera for teaching objects
(vision);

We assume that the robot’s software system provides a communication interface to

interact with it, namely to access its services and relevant robot internal information. Our
focus is not on the development of robot learning capabilities. We also assume the robot

already has them.

1.3. Thesis structure

The first chapter consists of a short introduction of the thesis. It provides a general
problem description, as well as major goals for this project.

The second part is an analysis of the relevant work in this research field. A critical
commentary is also provided in order to realize whether the techniques adopted bring good
results or not. Some of these references have been used as the basis for this thesis.

Having performed a literature review, this information will be used for defining
requirements associated with our goal. The architecture of our proposal is presented. The
information detailed in this chapter was essential for developing this project.

Upon the completion of our project, we have performed some tests and analyzed results
in order to verify the robustness and usability of our methods. In this chapter, these results
are examined, which will also serve to point to further contributions. In the final chapter,

some conclusions are drawn from the project.






2. Relevant technologies and literature survey

This chapter presents a survey of the state of the art related to interaction with robots,
using smartphones. It presents the background needed to contextualize, i.e. methodologies
used for communication with robots and the workflow itself, but also understand the
existing constrains that conditioned several decisions along this work, namely those related
with interaction mechanisms. Some relevant smartphone resources, which may be used in

interaction, are also analyzed.

2.1. Robot Operating System (ROS)

The Robot Operating System (ROS!) is an operating system for robots that is widely used
in robotics, with growing acceptance [1]. It provides libraries and tools to help developers
create new robot applications. ROS frees the programmer from all low-level issues, namely
hardware, libraries, message-passing and package management [2].

ROS is based on a graph architecture, where processes occur in nodes that can have
multiple functions like receive and post messages, multiplex sensors, control hardware,
preserve state, perform planning activities among others.

In ROS there are five main concepts:

* Nodes: Nodes are processes that perform computation. In a robot, multiple nodes
can be running. For example, one node controls a laser range-finder and another
node performs localization.

* Master: The ROS Master provides name registration and lookup to the rest of the
nodes in a graph. Without the Master, nodes would not be able to find each other,
exchange messages, or invoke services.

* Messages: The data exchanged between nodes is called messages. A message is a
well-defined data structure. Standard primitive types (integer, floating point,
boolean, etc.) are supported, as are arrays of primitive types. It is possible to build

more complex data types based on primitive types.

! http://wiki.ros.org/

11



* Topics: A topic is a place where information is exchanged. Messages are routed via a
transport system with publish/subscribe semantics.

* Services: Client/server system in ROS.

2.1.1. ROS Publish/Subscriber

The publisher/subscriber? pattern is one of the simplest methods to exchange data
between two, or more, nodes in ROS. It is necessary the existence of a common topic, or
channel. Topics are a place where information is read and placed. Each topic is strongly
typed by the ROS message type, used to publish, and nodes can only receive messages with a
matching type. In topics, communications are unidirectional.

To exchange data, the publisher publishes a message in a given topic, and subscribers
listen to new data updates (messages published) on this topic. In this way, multiple
publishers and subscribers are allowed in a same topic. Subscribers will not establish
message transport unless the types are consistent with the topic. Nodes that subscribe a
topic will request connections from nodes that publish to that topic.

The master is used only to aid the entities establishing connection, allowing the
registration and search topics by publisher and subscriber, respectively. The master node

does not verify the type consistency of messages.

2.1.2. ROS Services

The publish/subscribe model is a very flexible communication paradigm, but it is not
very suitable for request/reply interactions, commonly used in a distributed system. In ROS,
request/reply patterns are known as services3. In this model, a server node provides
services, and client nodes can perform requests, similar to client/server architecture.

ROS services server is defined by a string name, and a client uses this name to call the
service. A client can make a persistent connection to a service, which enables higher
performance at cost of less robustness to service provider changes. The client will have to
implement a callback, to receive asynchronously replies. Services are defined by a file,

where the input arguments and response type are specified.

2 http://wiki.ros.org/roscpp/Overview/Publishers%20and%20Subscribers

3 http://wiki.ros.org/roscpp/Overview/Services

12



2.1.3. ROS and Smartphones

ROS provides libraries for implementing robotic applications in mobile devices that allow
accessing the robots execution environment, resources and internal information. Such
solution exists already for smartphone devices using the Android OS.

ROS in Android consists of a set of libraries, here called android_core*, to help write ROS
applications for Android smartphones. It is possible to create new interaction methods
favorable to both sides: the user that is familiarized with smartphones; and the robot, that
perceives the smartphone language because both have the same execution environment
(ROS environment). It is still possible to apply all the concepts mentioned above on a
smartphone. Due to its agile connectivity tools (such Wi-Fi), the smartphone can be easily
integrated into a ROS graph, where it can interact with other nodes at several levels

(publisher and / or subscriber or client and / or server).

2.2. The RACE Project

The Robustness by Autonomous Competence (RACE) project is formed by a consortium of
several universities, including the University of Aveiro. RACE develops methodologies for
robots to learn through task execution, expanding their knowledge and adapting to new
environments [3]. There are other factors and learning domains beyond task
execution/learning.

Object recognition is an important factor for task execution. In this sense, RACE
implements mechanisms for recognition and learning objects by the robot. This being one of
the secondary objectives of this project.

RACE rests on a well-defined architecture (Figure 1) consisting of several modules,
where each module has different functions. This architecture is implemented in the RACE
robot in order to coordinate their resources (head, arms) and allow interaction with him.

The PR2 robot is used (Figure 2).

4 http://www.ros.org/wiki/android_core

13



ROS

owL Plan Execution | actions ROBOT
concepts >
owL HTN Planner Manager -
Ontology I Scheduler | action | C_ capabilities
results |
OwWL new initial state, plan plan, occurrences,
concepts concepts goal goal schedule continuous
data
Conceptualizer Symbolic
expe- PR— i '
riences Proprioception
Blackboard ?:;:;S
- occur-
High-level i
€ rences A — Symbo!lc
Scene Perception
Interpretation
occur- expe- ) )
rences riences instructions
DL Reasoner
Experience User
Temporal Extractor/An Interface
Reasoner notator
Spatial
Reasoner /

FIGURE 1: RACE ARCHITECTURE [3]

FIGURE 2: PR2 RoBoOT

The central block of the RACE architecture is the Blackboard. This module provides a set
of services, supported by ROS services, to access the internal robot contents, as well as
sending commands/instructions. This is the main Blackboard characteristic for interaction.
The Blackboard implements other functions, such tracking the evolution of both the internal
state of the robot and the events observed in the environment, and handles information for

other modules.



In the RACE architecture, all interactions with the robot are carried out via the User
Interface module [4]. So far, this interface is implemented in command-line style, being
inflexible, and does not provide interaction methods easy for most people.

RACE also proposes an internal data structure and well-defined services that are
described in more detail in Appendix 8.1.

To demonstrate RACE, a restaurant scenario (Figure 3), was chosen by the project, where

arobot acts as restaurant waiter [3].

North @
@ ® tablel

counterl

FIGURE 3: SAMPLE RACE SCENARIO PLAN FOR COUNTER1, TABLEL, ROBOT TRIXI (R), MUG1 (M) AND GUEST1 (G) [3]

2.3. Smartphone resources

Smartphones have become the devices of excellence for daily use by the users. The sell of
smartphones grew since its introduction in the market. Currently, these devices can be
compared to ultraportable computers [5].

Smartphones are equipped with a set of solutions that allow interaction with the user:
microphone (allows sound recording [6]); inertial sensors (support gestures and activity
recognition [7]); video/camera (allow acquisition of images/video [8]) and touchscreens
that display visual information and also allow touch interaction.

This section is intended to address some of the smartphone resources that can be used to
interact with robots. Some works that use these resources will be analyzed to get an idea of

the different uses that they give.

2.3.1. Smartphone touchscreen

Interaction using touchscreen is the natural interaction way with smartphones.
Touchscreens are an increasingly common feature in personal devices, especially

smartphones and tablets, where there is an aggregation of several hardware components

15



(keyboard, mouse, keypad etc.) into a single interface. This aggregation arises primarily due
to size and the need to adapt the user interface for interaction with fingers / hand [9].

In smartphone-based development, it is necessary to follow a set of guidelines to make
an application minimally usable [10]. The SDKs provide a set of visual elements Sliable to be
used in an application (elements such as textboxes, buttons and menus).

The touchscreen is a resource that typically needs vision for interaction. However it can
even be used by people without vision, or with deficient vision. With the use of some
resources is possible to develop applications for blind people. Some studies have verify the
viability of using the touchscreen for writing Braille [11]. This system is capable of being
implemented in a smartphone, since it provides very positive results [11]. The touchscreen
can be used for learning braille [12]. For this purpose, the interface buttons are used. The

user only needs to know their location the first time using the application. Figure 4 shows an

~——

application example.

C
&

FIGURE 4: BRAILLETOUCH ON A SMARTPHONE [13]

Smartphone allows an alternative input method to the keyboard. Gestures, as used in
smartphone touchscreen context, are fingertip movements on a touchscreen [14]. With
gestures, it is possible to draw in a touchscreen, by swiping our fingertip on the touchscreen
as if it were a whiteboard. Figure 5 shows an example, where the user is using gestures to
find a contact in the phonebook. Current mobile operating systems already provide gesture
recognition (e.g. drawing letters to introduce text, or screen change using a swipe) and

allow adding new ones.

> http://developer.android.com/guide/topics/ui/index.html

16



6
FIGURE 5: ANDROID GESTURES

Gestures support random access of a smartphone’s content (applications, contacts) and
functionality (search). The user no longer needs to manually search and navigate [14]. In
application development gestures can be configured by the developer for different
purposes. Android shows the gestures in yellow for recognized gestures and a lighter yellow

for not recognized.

2.3.2. Smartphone inertial sensors

In smartphones there are typically two inertial sensors that can be used to detect
movements and orientation?, the accelerometer and gyroscope respectively. The
accelerometer is especially used to detect motions and analyzes the device acceleration, in
magnitude and direction. The gyroscope is used to measure changes in the smartphone
orientation against an inertial reference.

The acceleration is the time rate of change of velocity with respect to magnitude and
direction. There are changes in acceleration when there are variations in velocity of an
object. The acceleration of an object can be positive or negative according to the movement
direction. In smartphones, this acceleration is obtained by the accelerometer when the
smartphone is moved [7].

To detect motion direction by smartphone there is a system composed of 3-axes. When a
device is held in its default orientation (Figure 6), the X axis is horizontal and points to the
right, the Y axis is vertical and points up, and the Z axis points toward the outside of the

screen. The axes position remains unchanged whatever the smartphone position.

6 http://www.google.com/mobile/gesture-search/

/ http://developer.android.com/guide/topics/sensors/sensors_overview.html

17



\ 4

&N

FIGURE 6: COORDINATE SYSTEM USED BY THE SENSOR API

The data from the accelerometers can be presented in the form of 3D vector (x, y, z) that
represents the current acceleration of the controller in all three dimensions. Using
mathematical formulas it is possible to calculate several movement parameters, and infer
the smartphone’s displacement [15].

Before smartphones others equipments with accelerometers have been produced, for
motion recognition (some examples in Figure 7). A good example is the Wii controller that
uses accelerometers and gyroscopes to support motion recognition to play video games.
Currently, it is also being explored for other purposes. One example is in Human-Machine
Interaction (HMI) [16]. In this work, the sensor data from Wii controller is sent, via
Bluetooth, to a PC where it is analyzed. The main goal was to recognize gestures with a small

number of training samples [16].

(a) Square (b) Circle (c) Roll (d) Z (e) Tennis

FIGURE 7: REFERENCE GESTURES [16]

With the appearance of the first mobile devices with motion sensors, some tests with
these devices began to be made [17]. These devices, with low computation, send data to a
computer where they are analyzed and processed. The authors compared two recognition
patterns systems: support vector machines and Hidden Markov Models (HMMs). Both have

high success rates, above 90 percent [17].

18



With next-generation smartphones, all processing can be done on the devices. No need to
send the data to a computer. With the use of smartphone mobile characteristics, motion
sensors began to be tested in different contexts. Some tests have been developed to show
that it is possible to extract sensitive information from the user. Activities like walking,
running, jumping and holding the phone can be distinguished using only motion sensors [7].

It is also possible to extract more sensitive user information, such as emotions [18].

2.3.3. Smartphone microphone

Mobile phones are equipped with microphones to perform voice communications. Today,
these resources have been used for more noble purposes (like voice recording, sound
recognition).

Speech Recognition (SR) algorithms allow the conversion of Speech to Text (STT) and
Text to Speech (TTS) [19]. Is also possible to detect speech in several languages, with some
success [20].

The latest smartphones incorporate services that allow interaction with them as if it
were a personal assistant, like iPhone Siri8. It is possible to interact via voice and get the
response through voice too. This interaction can arise in several contexts, such as question,
or in an order, or simply a dialogue. These devices have an artificial intelligence component
allowing the interaction to be more realistic.

The SR systems are becoming available for mobile developers®. The Google provides an
STT interface that can be used for mobile applications. This interface has been used in some
projects to convert speech to text [6], or text to speech. There are other SR platforms
available for smartphones [21]. However, the Google SR is already integrated with Android
SDK facilitating access to their services.

Speech recognition systems have been widely used in smartphones. These systems can
be used in several different contexts: interaction with TVs (like change the channel, select
the channel by gender)[22], an interface for sending messages through voice (converting

speech to text)[23].

8 http://www.apple.com/ios/siri/

? http://developer.android.com/reference/android/speech/SpeechRecognizer.html

19



This interaction method may have advantages over other interaction methods, such as
touchscreen, especially if it is necessary to select multiple items to run a command that gets

resolved with just a voice command, i.e. voice commands works as shortcuts [24].

2.3.4. Smartphone camera

Smartphones are equipped with cameras?0. Initially these cameras were used to take
pictures. With the telecommunications evolution, cameras began to be used for video
conference. Modern mobile computing developers can use the camera for taking pictures,
recording video, or use them in more complex applications, such as Augmented Reality (AR).

The camera has been exploited in other ways such as authentication using biometrics
[25]. The idea is to perform implicit authentication, using for this purpose the ear of the
user, during a call. Thus, when the user raises the smartphone to the ear to perform a call, it
is verified they authenticity. Other authentication methods were explored also based in
biometrics. Authentication using a finger is another authentication strategy [26].

The use of the camera for augmented reality is a very interesting technique. Typically, an
AR application shows on the smartphone screen the content captured by the camera. Then,
there is image recognition, in real time, and is drawn content over these recognized images.
This content is also visible on the screen. One application example is the TranslatAR [27].
This application translates text that is captured by camera. In real-time the text to translate
is overlaid by an image that contains the translated text.

The camera can also be used for other purposes. Color vision deficiency is a current
problem that affects many people. The smartphone camera can be used to help these people
[28]. This feature can be used to diagnose the type of color deficiency (red / green or blue /
yellow) and help people analyze some colors that normally would not be recognizable. It is
also possible to show to the people without visual deficiency how deficient people see the
world. All this processing is done based on image processing to change the scene colors.

Due to the smartphone high processing capability and high resolution of both camera
and touchscreen, smartphones have all that is necessary for image processing, namely
methods for acquisition of 3D real objects [29] or object recognition [30].

The camera, coupled to a set of services, may be used in learning [31]. This technique

allows children to rapidly gain access to a large repository of multimedia information. For

10 http://developer.android.com/guide/topics/media/camera.html

20



this purpose, photos of specific codes attached to places or objects are taken. The photo is

then sent to a service in order to obtain access to content specific to that location / object.

2.4. Interacting with robots using smartphones

In section 2.3, some smartphone resources that can be used in interaction are analyzed.
Some of them may provide alternative interaction methods, with good results. The human-
robot interaction, using smartphone, can be supported in different ways, using several

smartphone resources. This section is intended to address some of the most used.

2.4.1. Interaction via touchscreen

The use of a smartphone touchscreen is one of the simplest and easy ways to interact.
Here, the interaction can be done in two ways: interaction by text commands or visual
elements, such as buttons [32]. This interaction method does not induce error. A user event
is automatically converted into the language understood by the robot.

Touchscreen interactions technique is typically used in remote control. The smartphone
works as a command device to control the robot. There are other interaction ways using the
smartphone keypad to move the robot [33].

The touchscreen can be used for other purposes. Due to its display features, it is possible
to show the robot vision, i.e.,, what the robot is seeing [34]. Thus, it is possible to control a
robot, based on its vision, by swiping a finger in a direction that the robot should move. The
main purpose is to guide the robot to an object to provide instructions involving this object.
A scene can have multiple objects. The multi touch feature is used to select the desired
object. The smartphone touchscreen brings very good results, compared to the use of other

tools, such as a laser or Wii remote, to point to an objects [34].

2.4.2. Interaction via speech

Voice is another way to interact, more practical and interactive. It makes the
environment more realistic, looking like interaction between two humans. This is the

natural way for communication.

21



Interactions with robots already use SR mechanisms. To use this feature, the smartphone
needs Internet connection. The use of Google’s voice recognition engine can bring good
results, for both men and women, older and younger [6].

In addition, we can address other interaction approaches. The propagation of sound may
be another interaction method. The smartphone can act directly on the robot based on

sounds that captures [32].

2.4.3. Interaction using inertial sensors

When verbal language is not possible, gestural language can be a viable alternative. Sign
language is practiced using hands and fingers to perform movements and / or shapes.

As we saw in section 2.3.1, the inertial sensors can be used to detect movements made by
the smartphone. Using this technique, it is possible to interact with robots using hand
gestures. With the smartphone, we can only interact at hands level. It is not possible to make
gestures more detailed, as with fingers, due to the device size.

These sensors also allow detecting the smartphone tilt. With this interaction, we can
have alternative methods to move a robot based on the rotation and tilt of the device [35].

Here, the smartphone acts as remote control.

22



3. Smartphone-based interaction with a PR2

This chapter describes several interaction scenarios, mapping them with a set of
smartphone-based interactions with a PR2 robot, using the RACE software architecture on
the robot’s side. It is intended to show how the smartphone resources were used for

interaction, based on functionalities and services that the robot offers.

3.1. Architecture

In the global architecture (Figure 8), there are two principal entities: the smartphone and
the PR2 robot. This architecture is based on robot characteristics. Here, the smartphone
supports a user interface to access the robot information, and the robot provides services to
support commands given by the user, via the interface.

The smartphone interacts with the PR2 using ROS services. The smartphone-robot
connections are possible if both are in the same WLAN, since communication is done via Wi-
Fi. With a ROS module in the smartphone, the smartphone is able to access the RACE
Blackboard services, enabling to migrate the former command-line interface to an interface
implemented on a mobile device.

This architecture supports multiple smartphone instances, i.e., it is possible the
simultaneous existence of various smartphones connected to the robot. However, this can
bring some constraints in task execution. The robot can only perform one task at time. While

executing a task, it discards further instructions from any source.

23



User Interface

RACE Robot

smartphone \,\
Cf Blackboard
User Interface

ROS communication

¢ )
i

i

smartphone

FIGURE 8: GENERAL ARCHITECTURE

3.2. The smartphone as main interaction unit

The smartphone is the central interaction unit between a human (e.g. operator,
guest/client) and the robot (employee), in a restaurant context. As central interaction unit,
several smartphone abilities are explored to build interaction solutions, in a set of selected
scenarios, involving the PR2.

In this approach, the smartphone is explored to support the following interaction types:

e Interaction via touchscreen;

* Interaction using inertial sensors.

3.2.1. Interaction via touchscreen

The interaction using touchscreen can be in two different ways: menus (text commands)

and symbol drawing (or gestures, in Android context).

Menu selection and text insertion

The explicit interaction with the robot is made by menu option selection (select tasks,
and its attributes) and text insertion. Since the interaction with the robot must be made
through selection of options, an interface that implements menus and text boxes is a good
choice.

These text boxes, besides the text insertion, have extra functionalities in order to help the

user when s/he selects the task, or enters text. The user does not know, nor is required to

24



know, which tasks the robot can execute. To circumvent this problem, some strategies are
used, such as autocomplete, where the user remembers part of an instruction and the
interface completes it, and option menus, where all options are presented in an alphabetical
ordered list.

These dialogs must be dynamic, because each task is associated with a variable set of
arguments. Therefore, the user must first insert the task and the application automatically
displays as many text boxes as the number of arguments. In each text box, an instance (an
object known by the robot) must be inserted. As for the tasks, the same insertion
mechanisms can be used for instances (autocomplete and list of all options). These

arguments are in the same order in which they are interpreted by the robot.

Symbol drawing

Symbol drawing on the touchscreen is another communication modality, to be used as an
alternative to inserting text. Text insertion can become tiresome, especially for tasks that
are constantly used. This alternative communication mechanism may facilitate task
insertion. The symbols can be anything.

Before its use, it is necessary to make an association symbol-task, so that it can be
recognized, and be converted to a task. Thus, when the user draws a symbol, the respective
text boxes are automatically filled, and the user only needs to confirm. So, we avoid writing,

which is often slow, and replace it with a quick insertion method.

3.2.2. Interaction using inertial sensors

Inertial sensors allow motion capture, especially some movements usually performed by
the hand. These gestures represent, implicitly, commands that can be sent using the
previous interaction method (explicit commands).

In the current implementation, there are two pre-programmed motion patterns:

* Shake sideways to catch the robot’s attention;

e Shake back-and-forth to call the robot.

These gestures are typically used between people. To catch the robot’s attention, it is
necessary to shake the smartphone sideways, similarly to saying "Hello", with hand. In the
smartphone coordinate system, this is a horizontal movement, along xx axis. This movement

is called hiCommand. To call the robot, the movement is similar to calling a person, using

25



hand. In smartphone coordinate system, this is a movement according to the z-axis. This
movement is called comeCommand.

The accelerometer values are used to measure the position, and the acceleration, of the
device. The XYZ coordinates represent the position and orientation of the device when the
acceleration occurred. So, it is measured in two consecutive points and the absolute value of
their difference is calculated. This result is greater when movement intensity is higher. A
prior check is performed to reduce noise. Note that small smartphone position variations
need to be discarded.

The hiCommand is detected when there is a horizontal movement, according to the x-
axis. This movement pattern is detected after the user makes three similar movements. The
initial motion direction is not important, because the absolute value is used. The
comeCommand is similar to hiCommand, just changing the axis. In this case, the z values are
used. It is necessary to perform this movement twice.

The comeCommand can only be recognized if the hiCommand is recognized before. The
hiCommand is not associated with a specific task to be executed by the robot. This command
only serves to make the robot aware of the user. The comeCommand is associated with
drive_robot_Task, which results in the robot moving towards the user.

The drive_robot_Task requires a location, from the locations that the robot knows. This
attribute must be entered manually, by the user, before the movement. The use of user

localization algorithms is not the focus of this thesis.

3.3. Use cases of interaction

The PR2, due to its similarities with humans (mobile robot endowed of upper limbs), can
perform most tasks as humans, including act as restaurant employee to serve guests.
The following use cases for a robot like PR2 are considered (Figure 9), which were

abstracted as high-level instructions.

26



2. Ask Object

Robot
User

4, Teach Task 5. Teach Object

FIGURE 9: USE CASES DIAGRAM

The Achieve instructions allow commands submission, to the robot. These commands
consist of tasks to be planned and executed. Using the menu interface, the user selects the
task that the robot should execute, and the respective parameters. At each time, only one
task can be selected, from all existing tasks. This use case has two main objectives: send
commands to the robot to perform a task; support the step-by-step teaching of a complex
task.

The Ask Object instruction allows asking the name of an object. For this purpose, the user
uses the smartphone camera to capture an object, and then sends it to the robot. In
response, it is expected that the robot replies with the category name of the object. To do
this, the robot must implement algorithms for objects recognition. The goal of this use case
is to check if an object has been well learned. If not, the object must be taught again.

Teach is an abstraction of two types of teaching instructions. The robot can be taught in
several ways: to perform new tasks, or learn new objects. The starting point is always the
user, which selects the option that s/he wants to teach.

The Teach Task instruction is a subtype of Teach. The purpose of this instruction is
teaching new tasks. To teach a new task, the user sends several Achieve instructions, to
attain the desired goal, and then sends the Teach Task, specifying the task name and
respective parameters. The result of Teach Task can be checked if it was learned properly
also using Achieve and observing the result.

The Teach Object instruction is another subtype of Teach. The goal of this use case is
teach new categories of objects. It is necessary to use the smartphone camera for such

purpose. A picture of an object is sent, coupled with the category name of the object. An

27



object learning service can then incorporate this new training instance to improve its object
category knowledge and finally to improve object recognition.

The research around the PR2 and RACE is focused on learning. We will only use the PR2
abilities to support the interaction with the PR2 (e.g. send instructions to the PR2 and see if

the PR2 acts accordingly).

3.3.1. Achieve

The Achieve instruction consists of sending a task to be executed. In RACE, each
instruction has a well-defined structure. The instruction is defined by its type, which in this
case is InstructorAchieve, and its name, e.g. instructorAchieve34, which ends with a unique
numeric identifier for each occurrence [4]. This name is used by the Blackboard to
distinguish experiences, or occurrences, in time. For each achieve instruction, the user
interface will create two fluents (instances) in the Blackboard, namely an instance of
InstructorAchieve and an instance of the selected task type. In the properties list, it is defined

that this instance of InstructorAchieve instruction has a specific task:

[hasTask, Task, <task_type> + <unique_identifier>]

Then, it is necessary to identify the task content. This content is defined by a fluent,
whose type is derived from the respective task type (e.g. drive_robot_Task), followed by a
unique identifier. Each task can have multiple arguments. It is necessary to create a
properties list, where each property specifies a specific argument. For example, the
drive_robot_Task has one argument, the area, which is the location where the robot should

move. Then, we would have a property similar to the following:

[hasFirstArgument, Area, preManipulationAreaSouthTable1]

Where the first element defines the argument position, the second element defines its
type and the third element defines the instance used as value for the argument.

To be able to control the robot, the smartphone needs to know the tasks that can be
performed. This is done by accessing the robot services to load this information. In the RACE
project, such querying service is supported by the Blackboard. This information is then

stored on the smartphone to avoid consecutive accesses, which may compromise the mobile

28



device battery. To update this information, it access the Blackboard services periodically, or

when the user needs. This update is necessary to load new tasks that result from teaching.

3.3.2. Teach Task

Teach Task is intended to teach new tasks. The new task name is chosen by the
instructor. However, it is only possible to teach based on contents already acquired. For
example, the robot can move itself to a given position, and also knows how to pick up a
coffee mug. However, the robot only knows how to perform these tasks independently.
Thus, it can be instructed to perform a new task based on the combination of these two.
Note that argument types and sequence are important in order to be correctly interpreted
by Blackboard and other modules.

As in Achieve, a Teach Task instruction is also described by a fluent in the Blackboard.
Such fluent will be an instance of TeachActivityCategory, with a name formed by
“teachActivityCategory”, followed by a unique identifier that identifies the specific

occurrence [4]. A properties list, which describes this instruction, is created:

* [hasConstrainedState, ConstrainedState, isNamed_ui+<unique identifier>]
* [hasRelationSubject, CoumpoundTask, CoumpoundTask_ui+<unique_identifier>]

* [hasRelationObjectName, xsd:string, <name_of task_type>]

This means that there is a relation (the constrained state) according to which a certain
task (the relation subject) is named by the given name (the relation object name). For
instance, when teaching how to serve a coffee, the relation object name could be
“serve_a_coffee”. Then, it is necessary to identify the task content. This content is defined by
another fluent, of type CoumpoundTask, with name CoumpoundTask_ui + <unique_identifier>.
This fluent is described by a properties list that establishes the task arguments, as specified

by the instructor. For a task like “serve_a_coffee”, the properties could be:

* [hasFirstArgument, Table, table1]

* [hasSecondArgument,Guest, guest4]

This way, by sending a sequence of suitable Achieve instructions, by which the robot
serves coffee to guest4 in tablel, and a Teach Task instruction, the robot can learn that the

performed activity is an instance of “serve_a_coffee” to guest4 in tablel.

29



3.3.3. Teach Object

The Teach Object instruction allows to teach the category of a real-world object. For this
purpose, the smartphone camera is used to take a picture, followed by a selection to get the
content that matters. Then, when the object is selected, it is associated with the category
name of the object and sent to the robot. To make recognition possible, the robot is
supposed have a service that receives this image and name and updates the category model.
The category models then support object recognition algorithms.

While this work was carried out, the RACE architecture didn’t include services for object
recognition. However, a publisher was created that sends a message to a topic, with the
object image and its name. For this purpose, a new ROS message type was created, with the

following nomenclature:

Image image

string image_name

This message is published in /android_image topic.

3.3.4. Ask Object

The Ask Object instruction uses the same approach as in Teach Object. The smartphone
camera is used to capture an image of the target object, and then this image is sent, in an
Image ROS object, to /ask_object service. Note that only the image is sent.

If an object recognition algorithm is implemented, it is expected that the robot will reply
with the object name, if available. When this information is received, the application asks

the user if the name is correct. If not, Teach Object can be used to teach the object again.

30



4. Results

This section is intended to show and discuss the work carried out. It aims to simply and
visually describe the work developed. This work consists of two major components: an
interface for interaction, and a ROS client to communicate with the RACE Blackboard. The
main objective was to develop interaction methods, using the smartphone resources, to

communicate with robots in several ways.

4.1. Interaction using touchscreen

The interaction, using the smartphone’s touchscreen is used in all use cases: Achieve;
Teach Object; Ask Object; and Teach Task.

The most natural and easy way to interact with robots is via verbal communication. The
current interface for communicating with the robot in RACE is a textual command-line
interface. Other interaction methods must be converted into a message format perceptible
by RACE.

Sending instructions is where almost all interaction rests. In application context, Achieve
represents the transmission of commands. In Achieve, a task is associated with a variable
number of arguments. As a result, it is necessary to have a dynamic interface. Figure 10

shows, visually, the implementation of this interface.

=[]

’ Android

Achieve
Task:

ey
i

[ " call Robot | I Android

Achieve
Task

Achieve

Teach object drive_robot_Task

Argum Arguments

Ask object
table
Teach task

Exit

tables table tablet

2 V4 kel ka 1B inl ) (<3

o

-

, 4 Portugués(PT) »
el

b)

FIGURE 10: ACHIEVE

31



Figure 10-a) shows the main interface, where all functionalities implemented are
available. Figures 10-b) and 10-c) represent Achieve. Initially, it is necessary to insert the
task (10-b) to be able to insert the arguments (10-c), since they depend on the task, in
number and type. In each text box, only a particular data type can be inserted.

In order for the user to know the tasks that the robot can perform, it is necessary to
access the robot Blackboard services to download this information. This information can be
presented to the user in two different ways: autocomplete style (Figure 11-a) and a list of all

options (Figure 11-b), to assist in their selection.

E g

i Android

Achieve
Task:
dri

drive_robot_Task

Select Task:
drive_robot_Task

task2

Z B4 icl b b)Y iml (o] €3

W i ——
1 PortliguesET) . ?
— K

FIGURE 11: ACHIEVE - HELP

The text insertion is simple, but slow. For frequent tasks, the insertion of the same
information can become tiresome. Therefore, it was created an alternative insertion

method. This alternative method is based on drawing symbols (Figure 12).

32



[ om g QT 414 [ o g 3
IW Android 1§ Android

ve
drive_robot_Task
nents: counter,

XS
I' Android

Achieve

Achieve
Task:

Hrive_robot_Task
Arguments:

counter]

T T

a) b)

FIGURE 12: ACHIEVE — SYMBOL DRAWING

Each task is associated with one symbol (Figure 12-a). In Achieve, when we draw a
symbol, anywhere on the screen (Figure 12-b), the fields are automatically filled (Figure 12-
c), facilitating the text insertion. The user only has to confirm.

To teach a new task, interaction via screen is also used. The text insertion is used again

(Figure 13). Here, there are no alternative insertion forms, since each case is different from

others.

[aa]
ry
l'l Android

Teach task

Concept name:

new_task_name
Arguments: Add Arg  Remove Arg
counterl

Argl: Press hold to see options.

Confirm

FIGURE 13: TEACH TASK

33



Note that the robot learns new tasks based on Achieve and especially Teach Task
instructions [3].
In Teach Task, it is very difficult to add new alternative interaction. In the Achieve, this is

possible. However it is necessary that they be preconfigured.

4.2. Interaction using sensors

The principle of using the keyboard, or symbol drawing, is the same: sending explicit
instructions via text commands. With the use of inertial sensors, the interactions may
become simpler and more attractive.

As we saw in section 2.3.1, the use of motion sensors has proven effective in interaction.
For this mechanism to work properly, an association motion-task is necessary, in order to
be possible to convert a motion into an appropriate RACE message.

A movement common to any scenario, including restaurant, is calling the waiter. The idea
is to shake our hand to get the employee attention and then shake our hand again to call
him. These examples have been exported to the application. Given various contexts in which
these movements can be inserted, these two types of motions have been selected for
interaction™.

Figure 13 shows the impact of smartphone movements in a real robot. Initially a motion

to call the robot is performed (Figure 14 - a) and then, the robot moves to a location chosen

by the user (Figure 14 - b).

FIGURE 14: CALL ROBOT (REAL ENVIRONMENT)

The instruction to move the robot to a given position is designated drive_Robot_Task. This

task has a type of argument that corresponds to the destination. Therefore, before one can

H http://www.youtube.com/watch?v=BVGM995ZndI

34



perform the movement, it is necessary to indicate the target position (Figure 15). After

performing the smartphone movement to call the robot, a message is automatically sent.

Select user location or cancel to
use previous location: table

counterl

table

FIGURE 15: CALL ROBOT (LOCATION SELECTION)

4.3. Interaction using camera

In any context, it is necessary that the robot has knowledge of the world. It is necessary
that robots can identify physical objects to easily adapt to different environments and
execute tasks correctly (pick a mug, serve a coffee) [3].

In the interaction context, using smartphone, learning objects can be solved using the
smartphone camera. With an image of an object, associated with its category name, it is

possible to teach new objects, using the Teach Object instruction (Figure 16).

35



Select area:

Selected object to teach:

mouse

Confirm

Confirm

FIGURE 16: TEACH OBJECT

The smartphone camera is used to capture a scene. Then, a selection is made to get the
specific object (Figure 16-a), followed by a description entered by user (Figure 16-b).

Ask Object activity is similar to Teach Object. A picture is taken and the object is selected
(Figure 16-a). With this, it is expected that the robot responds with the object name. If the

name is wrong, the object is taught again.

36



5. Conclusions and future work

In this thesis, we present some interactions methods, using smartphone resources. Two
interaction methods are used: through menus, text insertion and symbol drawing, using the
touchscreen; and through inertial sensors, to detect motion patterns corresponding to
gestures.

Menus are the easiest method to implement, since SDK provides contents for this
purpose. However, it becomes monotonous. It is constantly necessary to select or write the
commands. When we need to send multiple commands in a row, this mechanism can be
slow. Drawing symbols is intended to reduce some of this monotony, facilitating the
interaction.

The movements are an alternative to touchscreen-based interaction, but its
implementation is much more difficult. There are always associated errors, and it is
necessary to filter certain movements. However, the interaction is more intuitive and
interactive (waving the hand to call robot is more interactive than typing the command,
using a command line, or selecting in a menu). With this method, it is difficult to perform all
possible tasks, since the commands are preprogrammed. To cover all tasks that can be
performed, it would be necessary to use non intuitive movements. Not being able to cover
all tasks, it is better to focus gestures common to most contexts, since different
environments have different tasks.

ROS is quite flexible and greatly facilitates all communications and messaging. This
middleware provides an abstraction level appropriate for implementation of Android
applications. Throughout the development, and study of the state of the art, it was noted
that ROS is not widely applied in smartphones. This might mean that smartphones and
robotics have not been conjugated very often. The trend is communication between human-
robot directly, i. e. face to face. However, the smartphone can be a viable tool when the
communication cannot be directly established.

The interaction with RACE becomes somewhat limited when exported to a mobile device.
The initial interface used to send instructions is a command line style. A mobile interface
that implements menus is well suited. The same is not true for movements, because for each
instruction is it necessary a previous association movement - task. Even for common

movements, such as in movement to call the robot, there is not an interaction complete

37



without the need to choose options, such as calling the robot when it is necessary to indicate
a location. This can decrease the interactivity level.

It is possible to run the application on all Android smartphones and tablets. However,
this is not recommended. Tablets, due to the larger screen size, facilitate text insertion by
the user. However, it makes the motion execution difficult. In small smartphones, the
opposite happens. So it is advisable to use the application on a smartphone with screen size
between four and six inches. The application was tested on Samsung Galaxy S3 with a 4.8

inch screen.

5.1. Future Work

Currently we just presented a proof of concept of using motions to control robots. More
sophisticated solutions (e.g. pattern recognition techniques) for more complex motions
could be explored, namely asking for the bill, or signaling when we are done with the meal.
Allow the user to create their gestures, in order to perform custom gestures for specific
tasks.

It would be interesting to add more interaction methods, like speech, to be able to make a
more comprehensive study of interaction methods. In the state of art, we analyzed a system
that is integrated in smartphones and provides services for speech recognition.

It would be interesting to take the restaurant scenario and develop the application
accordingly. For example: include a restaurant plant in order to the user chose an internal
location (table, counter), and the robot move to that location; include a restaurant menu

(facilitates the order).

38



6. References

[1]

[10]

S. Cousins, “Exponential Growth of ROS,” Robot. Autom. Mag. IEEE, vol. 18, no. 1, pp.
19-20, 2011.

S. Cousins, “Welcome to ros topics,” Robot. Autom. Mag. IEEE, vol. 17, no. 1, pp. 13-14,
2010.

S. Rockel, B. Neumann, and ]. Zhang, “An Ontology-based Multi-level Robot
Architecture for Learning from Experiences,” in AAAI Spring Symposium on Designing

Intelligent Robots: Reintegrating Al 1I, 2013, no. Figure 1.

A. Chauhan, L. S. Lopes, and A. M. Tomé, “Towards Supervised Acquisition of Robot
Activity Experiences: an Ontology-based Approach,” in Artificial Intelligence - Local
Proceedings: EPIA2013 - XVI Portuguese Conference on Artificial Intelligence, 2013, pp.
228-239.

M. Innovation and E. Workshop, “Terms of re-use Also by VisionMobile,” Developer

Economics 2013, pp- 1-61, 2013.

D. Banisakher, T. Alexenko, M. Biondo, and M. Skubic, “Android Speech Interface to a
Home Robot.” 2012.

S. Das, L. Green, B. Perez, M. Murphy, and A. Perring, “Detecting user activities using
the accelerometer on Android smartphones,” in Team for Research in Ubiquitous

Secure Technology REU Research Program, 2010.

S.-H. Shin, J.-Y. Yeo, S.-H. Ji, and G.-M. Jeong, “An analysis of vibration sensors for

smartphone applications using camera,” in ICTC 2011, 2011, pp. 772-773.

T. Nakagawa and H. Uwano, “Usability differential in positions of software keyboard
on smartphone,” in The 1st IEEE Global Conference on Consumer Electronics 2012,

2012, pp. 304-308.

N. Mi, L. a. Cavuoto, K. Benson, T. Smith-Jackson, and M. a. Nussbaum, “A heuristic
checklist for an accessible smartphone interface design,” Univers. Access Inf. Soc., Oct.

2013.

39



M. Romero, B. Frey, C. Southern, and G. Abowd, “BrailleTouch: designing a mobile
eyes-free soft keyboard,” in Proceedings of the 13th International Conference on

Human Computer Interaction with Mobile Devices and Services, 2011, pp. 707-709.

L. R. Milne, C. L. Bennett, and R. E. Ladner, “VB G host: a Braille - Based Educational
Smartphone Game for Children,” in Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility, 2013, p. 75.

C. Southern, ]J. Clawson, B. Frey, G. Abowd, and M. Romero, “An evaluation of
BrailleTouch,” in Proceedings of the 14th international conference on Human-computer

interaction with mobile devices and services - MobileHCI’'12,2012, p. 317.

Y. Li, “Gesture Search: Random Access to Smartphone Content,” IEEE Pervasive

Comput., vol. 11, no. 1, pp. 10-13, 2012.

K. Seifert and 0. Camacho, “Implementing positioning algorithms using

accelerometers,” Free. Semicond., pp. 1-13, 2007.

T. Schlomer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition with a Wii
controller,” in Proceedings of the 2Znd international conference on Tangible and

embedded interaction - TEI'08, 2008, p. 11.

Z. Prekopcsak, “Accelerometer based real-time gesture recognition,” in Proceedings of

the 12th International Student Conference on Electrical Engineering, 2008, pp. 1-5.

H. Kim and Y. S. Choi, “Exploring emotional preference for smartphone applications,”
in 2012 IEEE Consumer Communications and Networking Conference (CCNC), 2012, pp.
245-249.

A. a. M. Abushariah, T. S. Gunawan, O. O. Khalifa, and M. a. M. Abushariah, “English
digits speech recognition system based on Hidden Markov Models,” in International

Conference on Computer and Communication Engineering (ICCCE’10), 2010, no. May,
pp. 1-5.

H. Lin, ]. Huang, F. Beaufays, B. Strope, and Y. Sung, “Recognition of multilingual
speech in mobile applications,” in 2012 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2012, pp. 4881-4884.

A. Platform, M. P. F. Orlando, C. A. E. Andrea, and F. I. D. Marcela, “Tools evaluation for
speech recognition based on domain ontologies over the,” in 2012 IEEE Colombian

Communications Conference (COLCOM), 2012, pp. 1-6.

40



[29]

G. Németh and A. Viktoriusz, “Speech-enhanced interaction with TV,” in Cognitive
Infocommunications (CoginfoCom), 2011 2nd International Conference on, 2011, pp. 1-
5.

S. Primorac and M. Russo, “Android application for sending SMS messages with
speech recognition interface,” in MIPRO, 2012 Proceedings of the 35th International
Convention, 2012, no. Dvm, pp. 1763-1767.

S. Schaffer and M. Minge, “Error-prone Voice and Graphical User Interfaces in a
Mobile Application 1 Introduction 2 Study,” in Speech Communication; 10. ITG
Symposium; Proceedings of, 2012, pp. 1-4.

P. N. Ali Fahmi, E. Kodirov, D.-]. Choi, G.-S. Lee, A. Mohd Fikri Azli, and S. Sayeed,
“Implicit authentication based on ear shape biometrics using smartphone camera
during a call,” in 2012 IEEE International Conference on Systems, Man, and Cybernetics

(SMC), 2012, pp. 2272-2276.

C. Stein, C. Nickel, and C. Busch, “Fingerphoto recognition with smartphone cameras,”

in Biometrics Special Interest Group (BIOSIG), 2012, pp. 1-12.

V. Fragoso, S. Gauglitz, S. Zamora, . Kleban, and M. Turk, “TranslatAR: A mobile
augmented reality translator,” in 2011 IEEE Workshop on Applications of Computer
Vision (WACV), 2011, pp. 497-502.

S. Schmitt, S. Stein, F. Hampe, and D. Paulus, “Mobile services supporting color vision
deficiency,” in 2012 13th International Conference on Optimization of Electrical and

Electronic Equipment (OPTIM), 2012, pp. 1413-1420.

J. H. Won, M. H. Lee, and 1. K. Park, “Active 3D shape acquisition using smartphones,”
in 2012 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops, 2012, pp. 29-34.

K. Jung, “Object recognition on mobile devices,” in 2012 IEEE Second International

Conference on Consumer Electronics - Berlin (ICCE-Berlin), 2012, pp. 258-262.

K. Mitchell and N. ]. P. Race, “uLearn: Facilitating Ubiquitous Learning through
Camera Equipped Mobile Phones,” in IEEE International Workshop on Wireless and
Mobile Technologies in Education (WMTE’05), 2005, pp. 274-281.

R. Aroca, L. Gongalves, and P. Oliveira, “Towards smarter robots with smartphones,”

in Robocontrol 2012,2012, pp. 1-6.

41



[33] H. Nasereddin and A. Abdelkarim, “Smartphone Control Robots Through Bluetooth,”
Int. J. Res. Rev. Appl. Sci., vol. 4, no. 4, pp. 399-404, 2010.

[34] P. Rouanet, P.-Y. Oudeyer, F. Danieau, and D. Filliat, “The Impact of Human-Robot
Interfaces on the Learning of Visual Objects,” IEEE Trans. Robot., vol. 29, no. 2, pp.
525-541, Apr. 2013.

[35] A. M. Walker and D. P. Miller, “Tele-operated robot control using attitude aware
smartphones,” in Proceedings of the seventh annual ACM/IEEE international

conference on Human-Robot Interaction - HRI'12, 2012, p. 269.

42



7. Appendix
7.1. RACE data model

RACE has a well-defined data structure. The services for accessing the robot’s world
model are provided by the Blackboard. These services can be accessed through ROS
command rosservices list. The message formats for each service can be accessed via
rosservice args /service_name. This analysis is an important point at the beginning of
development.

The RACE data model, which is used to represent the knowledge of the world, is
represented in OWL2 DL, extended by SWRL rules to express constraints [3]. The domain
concepts describe occurrences, which may happen as robot or guest activities.

Here is an example of an activity where the robot should move an object from one

location to another (MoveObjectFromTo task):

Class: MoveObjectFromTo

EquivalentTo: RobotActivity

AND (hasObject EXACTLY 1 PhysicalEntity)

AND (hasFromOn EXACTLY 1 On)

AND (hasToOn EXACTLY 1 On)

AND (hasEmptyHand ATLEAST 1 EmptyHand)

AND (hasGetObjectFrom EXACTLY 1 GetObjectFrom)
AND (hasMoveObjectTo EXACTLY 1 MoveObjectTo)

These concepts represent activities that can be performed by the robot. As we see in the
previous example, each task is associated with specific formatting and a particular set of
arguments. These arguments have a specific order and type, and cannot be changed, in
order to Blackboard can understand the task correctly.

The arguments differ from task to task, in number and type. Consider a simpler example.
Suppose we have a task to be performed, drive_robot_Task. This task should move the robot
to a given location. It makes sense that this task has one argument, which is the position to

which the robot should move. This parameter is associated with the type Area, and can have

43



multiple instances as preManipulationArea, Counter, Table, etc. Each argument type have a
set of instances.

To get the robot information, it is necessary access to a set of services. The information is
distributed across multiple services. As mentioned earlier, there are tasks, and each task is
associated with a set of arguments. Initially, an access to a load all available tasks is
performed.

This service has the following message format:

string owl_class
string[] subclasses

BlackboardResponse result

The tasks available are stored in subclasses array. For each task, we need to know their

properties, which have the following message format:

string owl_class
PropertyTypeDescription[] property_type_descriptions

BlackboardResponse result

The request parameter, owl _class, represents the task name. In response we have a
property_type_descriptions, where all arguments information is stored, for a particular task.

For each argument type, we must know their instances. These instances are available
through blackboard/get_fluents_by_query service. This service returns a list of Fluents, where
each fluent has an attribute that represents an instance of a specific argument type. In the
previous example, Table is an instance of type Area, which is an argument type of
drive_robot_Task. It is necessary to access this service as many as the number of arguments
types.

After accessing these services, the smartphone stores, in one organized structure, all the
tasks that the robot can perform. To maintain the information organized in the application,
two map structures are used. The first structure associates each argument type to a list of
instances for this type. The second structure associated each task to the previous structure.

The service to submit information is the same for all these types, blackboard/add_fluents,

and is defined by:

44



Fluent[] fluents

BlackboardResponse result

45



