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Abstract

Bioinformatics is a research field that uses computer‐based tools to investigate life
sciences questions employing “big data” results from large‐scale DNA sequencing,
whole genomes, transcriptomes, metabolomes, populations, and biological systems,
which can only be comprehensively viewed in silico. The epidermis was among the
earliest targets of bioinformatics studies because it represents one of the most accessi‐
ble targets for research. An additional advantage of working with the epidermis is that
the sample can even be recovered using tape stripping, an easy, noninvasive protocol.
Consequently, bioinformatics methods in the fields of skin biology and dermatology
generated a fairly large volume of bioinformatics data, which led us to originate the
term  “skinomics.”  Skinomics  data  are  directed  toward  epidermal  differentiation,
malignancies, inflammation, allergens, and irritants, the effects of ultraviolet (UV) light,
wound healing,  the  microbiome,  stem cells,  etc.  Cultures  of  cutaneous  cell  types,
keratinocytes, fibroblasts, melanocytes, etc., as well as skin from human volunteers and
from animal models, have been extensively experimented on. Here, we review the
development  of  the  skinomics,  its  methodology,  current  achievements,  and future
potentials.
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1. Introduction: both wide angle and focused view of skin biology

Bioinformatics is an umbrella term for a wide range of methodologies, studies that generate
large datasets [1]. The term refers to the methodology, rather than a subject matter (akin to
“microscopy”). Omics techniques, rather than focusing on a single protein, gene, metabolite,
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microorganism, etc., comprehensively deal with the entire collection of all proteins, the whole
genome, the complete metabolic array, or the full microbiome of a given biological system.
“Omics” methodology has reached nowadays full maturity and recognition of the research
community. The methodology comprises very large datasets that require sophisticated in silico
analyses. Accordingly, it uses, on the one hand, large central databanks, repositories of raw
and “pre‐processed” data, and complex suites of analysis programs developed by multidis‐
ciplinary teams that include statisticians, graphic designers, etc., and on the other hand, many
individual laboratories and groups providing discrete pieces of the large “omics” puzzles and
applying the algorithms to their specific objectives [2].

Bioinformatics approaches received a major impetus with the development of “omics”
techniques. Arguably, DNA microarrays are the most widely used omics technology [3]. In
microarrays, the DNA probes are immobilized on solid supports, and the samples, such as
total bulk DNA or RNA from the specimen, are labeled and then hybridized to the arrays in
order to measure individual genes. Requiring only minute amounts of input DNA or RNA,
such microarrays probe simultaneously, in hugely parallel experiments, many genes, for
example, all the genes in the human genome. These experiments create very large volumes of
data. Strangely enough, microarrays allow not only a very broad but also a very detailed insight
into the biological function, mechanisms, and diseases of interest to dermatology. Microarrays
empower us to see both the “forest and the trees.”

Bioinformatics is a very rapidly developing science that constantly improves its methodology,
microarrays, sequencing aparati, data repositories, hardware, and software. To keep up with
the field, we have found very useful the special database issue of the Nucleic Acids Research [4],
which is published every January. In these issues, we find description of the functions and
roles of various data repositories. Another invaluable resource is the Bioconductor [5] an ever‐
expanding collection of bioinformatics algorithms developed by computer scientists and
programmers from all over the world. The Bioconductor analysis packages are freely available
to all. They are well described and annotated, and usually the program developers are helpful
in troubleshooting and even extensive hand‐holding.

Directly accessible, skin was among the first organs analyzed using omics approaches. As a
result, dermatology was one of the first medical disciplines to welcome and support omics
results. Name “skinomics” has been proposed to designate specifically the bioinformatics
studies in dermatology and skin biology [6]. The objectives of skinomics are to provide,
enlarge, and buildup our knowledge of skin biology, to improve function of the healthy skin,
and to assist in treating pathological skin conditions.

Skinomics studies focused to a significant extent, understandably, on skin cancers [6, 7]. For
example, melanoma has been arguably the most studied skin disease. Microarray analyses
identified markers of melanoma progression and of its metastatic potential. Similar studies
targeted basal and squamous cell carcinomas. Specific for dermatology, noninvasive method
using simple tape stripping can provide adequate material for transcriptional profiling of
melanoma, psoriasis, and other skin diseases. The molecular changes in psoriatic plaques, that
is, differences between uninvolved and involved skin and interestingly, the healed lesions of
psoriatics, have also been defined using very large cohorts of patients. The psoriatic patients
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analyzed using this technology by now number in several hundreds [8]. Cutting‐edge state‐
of‐the‐art international skinomics studies, involving almost 20 different countries, have
characterized many of the psoriasis susceptibility loci in the human genome, and identified
the genes with putative roles on the pathology of this disease. These genes represent potential
targets for intervention [8, 9]. DNA microarrays have been used to follow the course of
psoriasis treatment and to predict responses or resistance to specific treatment modalities. The
characteristic changes in the microbiomes of psoriasis and of atopic dermatitis patients have
been correlated with the progression of each disease.

Arguably the most frequent and continual methodology in skinomics is the use of DNA
microarrays, such as those from Affymetrix and Illumina. The DNA microarrays are a perfect
medium because they simultaneously measure the expression of the entire genome [10].
Printed cDNA arrays, originated by Brown at Stanford [11], are often homemade, inexpensive,
and two color, that is, compare two samples on the same chip. They are easy to customize in‐
house for specific applications. The commercial synthetic oligonucleotide microarrays are
pricier, but tend to be more reliable. The microarray community has established a set of
guidelines known as “MIAMI” rules (minimal information about microarrays) to allow
comparisons of data obtained using different microarrays, sample handling techniques,
quality of data, etc.

In the field of skin biology, DNA microarrays have been used to identify the genes specific for
epidermal stem cells. Moreover, the transcriptional changes occurring during the process of
epidermal differentiation have been characterized. The consequences of epidermal and barrier
disruption have been defined. Importantly, cultures of epidermal keratinocytes in vitro have
been used by our group as well as many others in many studies because these cells respond
to ultraviolet (UV) light, hormones and vitamins, inflammatory and immunomodulating
cytokines, chemokines and growth factors, environmental toxins, microbes, physical injury,
etc.

As the medical field presses forward in the direction of personalized medicine, we can
anticipate that the skinomics approaches will be shortly applied at the bedside, directly to the
personalized dermatology practice of the future.

2. Historical perspective

The first microarrays were developed at Stanford University by Dr. Pat Brown and his group
[11]. Soon thereafter, they applied this methodology to skin biology [12]. Specifically, using
the well‐known model to achieve cell cycle synchronization by serum deprivation and then
re‐introduction of serum to the culture medium, Iyer et al. [12] characterized the timing and
choreography of cell cycle gene regulation in synchronized cultures. Unexpectedly, Iyer et al.
[12] also found that dermal fibroblasts respond to signals from serum by inducing specifically
the wound‐healing responses. In retrospect, this result makes perfect sense because dermal
fibroblasts are not exposed to serum, except right after wounding, when they are required to
mount an appropriate response.
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Another Stanford team, the group of Dr. Paul Khavari, was the first to use microarrays in
dermatology [13, 14]. They used microarrays to follow the outcomes of gene therapy for
junctional epidermolysis bullosa, a lethal genetic skin disorder. The microarray analysis
showed that the normal gene expression has not been completely reestablished, although the
replacement of the affected gene restored cell growth and adhesion.

Subsequently, melanomas and skin carcinomas have been investigated using microarrays, as
have certain inflammatory diseases, such as psoriasis and eczema, as well as responses to
allergens and irritants, effects of UV light, skin aging, wound healing, keloid formation, etc.
The large body of skinomics data was used in meta‐analyses. For example, Dr. Noh and his
team were the first to use meta‐analysis of microarray data in dermatology [15]. Such meta‐
analyses include our own work as well [16, 17].

3. Noninvasive sample acquisition

A very important advantage of skin‐oriented research is that the samples can be acquired from
skin completely noninvasively and almost painlessly. Based on the work of Drs. Morhenn,
Benson, and others, it was demonstrated that simple tape stripping provides sufficient quantity
and quality of RNA for use in microarrays [18]. The methodology has been useful in studies
of psoriasis, melanoma, etc. [19, 20]. Because of the noninvasive access to tissue, dermatology
can be expected to lead further advance toward “omics” techniques. These will be directly
applicable to the personalized medicine in the future.

4. Epidermal differentiation

Epidermal keratinocytes are “multifunctional” cells: on the one hand, they must differentiate
through a tightly choreographed, multistage process in order to create cornified envelopes,
unique three‐dimensional structures in the stratum corneum (Figure 1); on the other hand,
keratinocytes must respond to very many extracellular environmental stimuli, ranging from
UV light and chemical irritants to bacteria and viruses. Keratinocytes also must communicate
with nearby cells including other keratinocytes, melanocytes, dendritic cells, and others, both
sending signals to these cells and receiving signals from them. As a result, keratinocytes have
a large transcriptome, and they express relatively many genes. To determine which of the
expressed genes are inherent to all keratinocytes, specific for the layers of epidermal differen‐
tiation and induced extracellularly, we compared the transcriptomes of harvested skin from
human subjects in artificially and three‐dimensionally cultured, differentiated, and recon‐
structed epidermis in vitro as well as in keratinocytes cultured as monolayers, and in nonker‐
atinocyte cell types.

Under all conditions, the keratinocytes express many proteases and protease inhibitors. Skin
and the three‐dimensional constructs, but not keratinocyte monolayers, express epidermal
differentiation markers, including filaggrin, involucrin, loricrin, and other cornified envelope
components. Skin specifically expresses a large number of transcription factors, cell surface
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receptors, and secreted proteins. Surprisingly, the mitochondrial genes were significantly
suppressed in skin, which suggests a low metabolic rate. In culture, keratinocytes amply
express the cell cycle and DNA replication machinery, and also integrins and extracellular
matrix proteins. These results define the expressed and regulated genes in epidermal kerati‐
nocytes [21].

Figure 1. Cross‐section through skin. Only the top portion of the dermis is shown, the rest of the dermis extends far
below. The layers of the epidermis are marked on the left.

The regulatory circuits that control epidermal differentiation have been a focus of significant
research efforts. Inhibition of Jun N‐terminal kinase, JNK, in keratinocytes in vitro stimulates
virtually all aspects of in vivo epidermal differentiation, including withdrawal from the cell
cycle, cessation of motility, stratification, and production of cornified envelopes [22]. Inhibiting
JNK also induces the expression of genes responsible for lipid and steroid metabolism,
mitochondrial proteins, and histones. Simultaneously, the transcripts for basal cell markers
are suppressed, including those for integrins, hemidesmosomes, and ECM components. We
found that in the promoter sequences of JNK‐regulated genes, the forkhead family binding
sites and the c‐Fos binding sites are overrepresented [22].

Vitamin D and calcium promote epidermal differentiation [23]. Specifically, kallikreins,
serpins, and c‐Fos were found to be vitamin D‐responsive genes with roles in epidermal
differentiation. Seo et al. [24] identified a subset of calcium‐regulated genes in human kerati‐
nocytes [24]. Conversely, retinoic acid and its analogs inhibit differentiation of epidermal
keratinocytes [25]. Microarray analysis identified Rho as another signaling molecule that
suppresses differentiation‐associated genes [26]. The papillomavirus type 16, HPV‐16, E6
oncoprotein inhibits keratinocyte differentiation and suppresses transglutaminase, involucrin,
elafin, and keratins [27]. Different classes of HPVs have different effects on cellular transcrip‐
tion patterns [28].
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TGFβ promotes the basal, undifferentiated phenotype in keratinocytes via the SMAD4
transcription factor [29]. Interestingly, TGFβ‐induced cell cycle arrest and migration genes via
SMAD4, but not the epithelial–mesenchymal transition associated genes; these were not
SMAD4‐dependent, which suggest that a loss of SMAD4 in human carcinomas may interfere
with the tumor‐suppression, while maintaining the tumor‐promoting responses to TGFβ.

To study epidermal differentiation transcriptome in vivo, we have separated the basal and
suprabasal layers of skin and compared the transcriptomes of the two cell populations [28].
The human skin samples otherwise discarded after reduction mammoplasty are obtained
usually within 2–6 h after surgery. The adipocytes and most of the dermis are physically
removed leaving ∼0.2 mm of mostly the epidermis. After enzymatic treatment, the epidermis
is gently separated and single cell suspension derived using trypsin [16, 30, 31]. Magnetic beads
attached to integrin β4 antibody are used to collect basal keratinocytes while the non‐adherent,
β4‐cells represent the suprabasal cell populations. We disrupted the epidermal cells and
isolated the RNA by using Trizol reagent. Next we use Qiashredders to homogenize cell
extracts, remove DNA using on‐column DNAse digestion RNeasy prepare the RNA using kits
from Qiagen. As quality control, we visualize 28S and 18S ribosomal bands and check that the
OD260/280 spectrophotometric ratio is at least 1.8. In the next step, ∼5 µg of RNA is labeled
according to the Affymetrix‐suggested protocols.

5. The skin microbiome

Skin, our outermost layer, represents the first line of defense against pathogenic microbes. The
intimate contact between the skin and the infectious microbial world has been known since
the biblical days, was already discussed by Hippocrates, and has been studied for a very long
time [32–34]. Microbes were perceived primarily as pathogens, which, fulfilling the Koch's
postulates, can cause acne, impetigo, folliculitis, etc. As a result, skin microbes have been
treated with disinfectants and antibiotics [35–37]. Knowledge of skin microorganisms was
deficient because this knowledge was based on in vitro culturing of these microbes. While a
few cutaneous bacteria and fungi could be grown in laboratories, the vast majority of micro‐
organisms known to reside on human skin was, and still is, uncultivatable [38]. Recent
advances in large‐scale DNA sequencing led to major breakthroughs in defining the cutaneous
microbiome. Specifically, the 16S small subunit ribosomal RNA in prokaryotes and 18S in
eukaryotes are encoded in genomes of all living organisms; genes encoding these RNAs are
closely related so that a set of PCR primers can be used for multi‐taxa amplification, providing
unambiguous identification of individual species [39].

The major breakthrough in defining the cutaneous microbiome occurred in 2007 when Dr. M.
Blaser's laboratory at the New York University, USA, published the molecular analysis of
superficial skin bacterial biota of human forearm [40]. In this work, Gao et al. found that the
cutaneous microbiome consists predominantly of six bacterial genera, Propionibacterium,
Corynebacterium, Staphylococcus, Streptococcus, Acinetobacter, and Finegoldia were present in all
subjects and represented 63% of all DNA clones analyzed. Approximately 8% of clones
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represented previously unknown organisms. Some 300 different bacteria inhabit our skin,
although we humans demonstrate remarkable interpersonal variation in our cutaneous
microbiota. Different body sites harbor specific microbial patterns that characteristically
change in skin diseases [40]. Four phyla, Actinobacteria, Firmicutes, Proteobacteria, and Bacteroi‐
detes, constitute vast majority of skin bacteria, while Malassezia dominates the skin fungi
(Figure 2). The somewhat more complex fungal 18S RNA genes can be used to identify fungi,
yeasts and other eukaryotes, and they have been used to confirm the abundance of Malasse‐
zia species on human skin [41, 42]. Current understanding of the cutaneous microbes has
shown that they are, for the most part, commensal and beneficial, useful and protective, and
only rarely dysbiosis and infection of pathogens occur.

Figure 2. Bacterial populations in the cutaneous microbiota. Note the predominance of Actinobacteria, Firmicutes, and
Proteobacteria. The numbers refer to different species, or “operational taxonomic units” detected.

Different body sites harbor different bacterial complexes. In a very significant microbiome
analysis, Dr. Segre and her collaborators described microbiomes from 20 different body sites
from 10 healthy individuals [43]. From such data, the authors were able to make several
important conclusions regarding our cutaneous microbiome. Intrapersonal variation between
symmetrical sites, that is, left vs. right forearms was much less than the interpersonal variation.
Perhaps unexpectedly, the protected sites, such as inguinal and alar creases, were more related
than were the freely exposed sites, such as forearms. Re‐sampling resulted in higher intraper‐
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sonal similarity, suggesting a fairly high consistency of the microbiome during the 4–6 months
duration of the study.

The types of the microbiota were classified according to the type of skin as sebaceous, moist,
or dry [43]. These sites had different proportions of Actinobacteria, Firmicytes, Proteobacteria,
and Bacteroidetes. In addition to sebaceous/moist/dry, it is possible to construct additional
classifications of the skin microbiota: while overall Corynebacteria and Propionibacteria are the
most common genera, Actinobacteria are especially common on the UV‐exposed sites, glabella,
nares, and occiput; these genera are not as common on sun‐protected skin. Moreover, the
Proteobacteria are particularly common on human arms, that is, on axillae, forearm, palms, and
the interdigital space. Skin sites that are commonly subject to stretching and flexing, including
fingers, toe webs, popliteal and antecubital fossa, inguinal crease, and occiput are particularly
rich in Staphylococci. The gluteal crease and the toe webs are particularly rich in Micrococci. As
suggested by Segre et al. [43], the human skin contains multiple and varied niches that are host
to multiple and varied microbiota.

6. UV damage

UV light is a major environmental carcinogen. Photodamage of skin results in thinning,
wrinkling, keratosis, and ultimately malignancy. Several groups, including ours, have
analyzed the transcriptional responses to UV light in human epidermal keratinocytes [44–48].
Keratinocytes respond to UV by inducing a cell repair program to self‐repair autonomously.
However, the keratinocytes also must protect the underlying organism (Figure 3). The early
transcriptional changes, that is, in the first two hours after UV illumination, contain expression
of transcription factors, signal transducing, and cytoskeletal proteins resulting in a “paused”
phenotype. This allows keratinocytes to assess the damage and commence repair functions.
After 4–8 h post‐irradiation, keratinocytes secrete signaling peptides, growth factors, cyto‐
kines, and chemokines; these serve to alert the underlying tissue to the UV damage. Subse‐
quently, 16–24 h after treatment, the cornified envelope proteins are produced, as keratinocytes
terminally differentiate. This has two beneficial effects: it boosts the stratum corneum, the
protective inert layer of the epidermis, and also removes the cells containing potentially UV‐
damaged DNA, a carcinogenic threat [44]. The results from several laboratories were quite
congruent, especially considering the differences in experimental approaches, countries of
origin, and the time frames of the experiments [44–48].

These in vitro studies have been followed up by studies of UV‐irradiated skin in human
volunteers in vivo [49, 50]. In vivo in skin, markers of keratinocyte activation, such as keratin
K6 and S100A proteins, were prominently induced by UV, as were the DNA repair proteins.
Interestingly, keratinocytes exposed to gamma or X‐rays irradiation produce similar tran‐
scriptional changes to those in the UV‐treated cells [51, 52], specifically, inducing the genes
involved in cell energy metabolism. An interesting study compared samples of lentigines with
adjacent sun‐exposed skin and with matched samples of sun‐protected buttocks skin [53];
genes specifically upregulated in solar lentigo included melanocyte‐related genes, genes
related to fatty acid metabolism and genes related to inflammation.
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Figure 3. Transcriptional effects of UV light on epidermal keratinocytes. The time course was followed for the first 24 h
post‐illumination. The UV‐treated keratinocytes repair the damage they suffered, as well as alert the underlying tissue
that injury has occurred.

7. Skin aging

Skin is the most obvious yardstick of aging. Molecular comparisons of transcriptional profiles
of young vs. aged and of sun‐protected vs. sun‐exposed skin indicate that photoaging and
chronical aging, although partly overlapping, have different, characteristic features [54]. Genes
associated with skin aging were identified by comparing foreskin keratinocytes from young,
3–4 years of age, old, 68–72 years, subjects [55]. A total 105 genes changed; for example,
epidermal differentiation and keratinocyte activation markers were overexpressed in the aged
skin, while the immune response, cell cycle, and extracellular matrix associated genes were
overexpressed in keratinocytes from young skin. Proteomic profiling using two‐dimensional
gel electrophoresis to compare young and old foreskin samples identified additional markers
of intrinsic aging, including aging‐related posttranslational protein modification [56].

One of the hallmarks of aging skin is impaired wound healing. Using microarrays to compare
gene expression in wounds of elderly vs. young humans, it was found that the differences
seem to be related to regulation by estrogen [57]. These results suggest that estrogen has a
profound influence on skin aging in general, and particularly in the context of wound healing.
Another hallmark of aging is the graying of hair; analysis of differential gene expressions
between pigmented, gray, and white scalp hair follicles identified close to 200 upregulated and
as many downregulated genes in human gray hair. As expected, the melanogenesis and
structural genes of the melanosome are overrepresented among the regulated genes [58].
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8. Skinomics genome‐wide association studies

Genome‐wide association studies, GWAS, comprise examination of many common DNA
polymorphisms in a large population cohort to detect association of polymorphisms with a
given disease. Such polymorphisms can point to the genes where disease‐causing mutations
may map. GWAS are particularly useful in the analysis of diseases, such as psoriasis, which
are common and with a strong genetic component. Psoriasis is a hyperproliferative autoim‐
mune skin disease and involves keratinocytes and T cells [9]. A successful GWAS analysis of
the psoriasis susceptibility loci in the human genome has been accomplished by an extensive
multinational effort (Figure 4) and reported in a set of manuscripts [59–66]. A total to 36 loci
have been associated with psoriasis in European populations, with additional ones detected
in the Chinese population [67, 68]. Other skin diseases, for example, eczema, have also been
studied using GWAS; eczema was associated several genetic loci, including major histocom‐
patibility complex (MHC) on chromosome 6 and the epidermal differentiation complex, EDC,
on chromosome 1. The human filaggrin gene, known to be associated with eczema, is encoded
within the EDC.

Figure 4. Genome‐wide association studies of psoriasis. While many loci have been identified, and additional ones
keep being reported, the most prominent ones on chromosomes 1, 6, and 21 are marked with arrows.

Carcinomas and melanoma were also analyzed using GWAS. Basal cell and squamous cell
carcinomas have both joint and specific susceptibility loci [69]. Carcinoma GWAS loci are not
associated with melanoma risks. GWAS also identified the loci important for human skin
pigmentation [70].
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9. Transcriptional studies of melanoma

Melanoma is one of the most aggressive human cancers, which is why it was among the earliest
cancers studied using microarrays, already 1 year after the first report of cDNA microarrays
[11, 71]. Great amount of attention has been devoted to melanoma diagnosis and the natural
history of its progression. Multiple studies compared healthy melanocytes to melanoma tumor
cells, other studies examined the differences between melanoma lines that differ in their
metastatic potential [71–82]. Some of the differentially expressed genes are, as expected,
encoded in the chromosomal regions identified by GWAS as commonly altered in melanomas.
Osteopontin, for example, was identified as an overexpressed marker of invasive melanoma.

Microarrays have also been used to compare the transcriptomes of benign moles and mela‐
nomas. The metastatic samples exhibited two distinct patterns of gene expression, and these
were similar to the microdissected nodular vs. flat components of large primary melanomas
[74]. The epigenetic characteristics of melanomas, such as differences in the genome, its
methylation, and the expression of miRNAs have also received significant attention. The
abundance of primary, raw skinomics data enabled meta‐analysis approaches, which consoli‐
dated the findings from many studies and established a specific “melanoma signature” gene
sets; these could become potentially useful in detection, classification, and outcome prediction
for melanomas [83].

10. Wound healing studies

A very active area of skinomics research relates to wound healing, a multi‐step process
involving coordinated and interacting regulatory pathways [84–86]. For example, we have
demonstrated that microarrays can be utilized at the bedside to guide surgical debridement
of non‐healing wounds [87]. Specifically, the healing edges of ulcers express keratinocyte
markers, whereas the non‐healing ones express the dermal and inflammatory markers [88].
Diabetic foot ulcers and chronic venous ulcers have distinct transcriptional profiles [88, 89].
The microbiomes of chronic wounds and wound healing have also received attention [90].

11. Inflammation, cytokines, and chemokines

Psoriasis has been linked with multiple cytokines and chemokines, including IL‐1, IL‐12, IL‐
17, tumor necrosis factor (TNF)α, interferon (INF)‐γ, and oncostatin M. Therefore, the
transcriptional effects of these signaling proteins on epidermal keratinocytes in culture have
been studied extensively [91–97]. The transcriptional profiling studies of the effects of corti‐
costeroids, anti‐inflammatory agents, demonstrated their inhibition of the TNFα, IFN‐γ, and
IL‐1 pathways [98]. However, the anti‐inflammatory effects of corticosteroids have character‐
istic choreography and phasing: the earliest are the anti‐TNFα effects, clear already in the first
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hour. These are followed by the anti‐IL‐1 effects, peaking between 24 and 48 h. Finally, the
anti‐IFN‐γ effects occur later, at 72 h.

In separate studies, comparisons of eczema and psoriasis showed that the expression of many
antimicrobial proteins of the innate immune response genes are relatively decreased in eczema,
which could explain the increased susceptibility to infection in eczema than in psoriasis [99–
103].

12. Psoriasis transcriptome

The studies of psoriasis, a paradigmatic skin inflammatory disease, have provided several
hundreds of patient samples from several laboratories [8, 9]. This provided data for meta‐
analysis of the psoriatic transcriptome [16]. Microarray data can be obtained from annotated
and curated repositories. The two main data repositories that collect and annotate transcription
profiling using microarrays are NIH‐GEO [104] and ArrayExpress [105]. The two largely
overlap, but have a few differences, that is, studies present in one but not the other collection.
Additional datasets exist in proprietary databases, but we found that searching these is time
consuming and usually unproductive.

Figure 5. Quality control features of RMAExpress. Before removing a “bad” chip, left and after right.

We searched GEO Datasets for the key term “Psoriasis” and selecting “Homo sapiens” as the
organism; from the results, we selected nine studies that met our criteria, namely comparing
lesional and nonlesional psoriatic skin. These nine studies included seven Affymetrix‐based
and one each Sentrix and Illumina microarrays, with a combined total of 645 samples. The
Affymetrix .CEL or .TXT files from these studies were downloaded and unzipped, then log2
transformed. Datasets obtained were combined and analyzed using RMAExpress for quality
control [106]. RMAExpress is a program that can compute gene expression values from
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Affymetrix chips using the Robust Multichip Average protocol; it is available [107]. RMA can
also perform chip quality assessments.

We cannot overemphasize the importance of data normalization and selection, when con‐
ducting meta‐analyses. One of the most is important, but often overlooked task is to perform
quality control on the microarrays deposited in the databanks. The quality control graphs can
be viewed in the RMAExpress program, the best routine being the normalized unscaled
standard error (NUSE). The gene chips with NUSE medians more than 5% different from other
chips should be ignored (Figure 5) [31]. These microarrays chips usually stem from poor
quality input RNA.

In the case of non‐Affymetrix studies, the simplest approach is to download the TXT data files
directly from PubMed [108]. Conveniently, downloading all compressed files into same
directory allows batch uncompressing of TXT files, which can be opened using Excel for further
analysis. We often use AddIns DataLoader [109] in order to assign gene annotations to the
expression data. A considerable stumbling block for meta‐analysis is the merging of data from
different microarray platforms. The difficulties include different number of genes on different
platforms, different levels of redundancies in probing the genes, and inappropriate differences
in identifying genes.

To harmonize gene IDs for various platforms we find useful BioMart [110], the downloaded
files can be opened using Excel. We also find very useful the AddIns DataLoader [109] for
combining similar data from different spreadsheets. Where the smaller arrays do not value for
a given gene, we simply added 1. This does not affect the subsequent steps of analysis.

To select differentially expressed genes, we use RankProd, a nonparametric method [30]. The
RankProd method combines different datasets thus increasing the number of differentially
expressed genes identified. Here we present a simple simulated RankProd set of commands
an imaginary analysis of three datasets with 5 + 5, 6 + 24, and 2 + 2 microarrays (psoriatic
lesional + nonlesional [14]):

memory.size(max = FALSE) 1

memory.limit(size = 24000)

library (RankProd)

data (Your_txt_file)

n1 <‐ 5

n2 <‐ 5

n3 <‐ 6

n4 <‐ 24

n5 <‐ 2

n6 <‐ 2

cl <‐ rep(c(0,1,0,1,0,1), c(n1,n2,n3,n4,n5,n6)) 2
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cl

rownames(Your_txt_file)= Your_txt_file [,1] 3

Your_txt_file = Your_txt_file [,‐1]

origin <‐ c(rep(1,10), rep(2,30), rep(3,4)) 4

origin

RP.adv.out <‐ RPadvance(Your_txt_file, cl, origin, rand = 100) 5

plotRP(RP.adv.out, cutoff = 0.01) 6

topGene(RP.adv.out, cutoff = 0.01)

write.table(topGene(RP.adv.out, num.gene = 1000), row.names = TRUE, col.names = NA,
file = “Your_txt_file.txt”) 7.

To annotate the differentially expressed genes, we find extremely useful and convenient the
program Database for Annotation Visualization and Integrated Discovery (DAVID) [31, 32,
111]. Starting with the uploaded list, DAVID make available “tables” containing details known
about the genes, “charts” which contain over‐represented pathways, ontological categories,
etc., as well as “clusters” of such categories, eliminating some of the redundancies and
overlaps. The transcription factor binding sites in the listed genes can also be evaluated using
DAVID, although the oPOSSUM programs are much more comprehensive, sophisticated, and
convenient [39, 40, 112]. Many microarray data clustering programs are available; our favorite
is MEV [113]. Generally, we did not find them informative for the analysis of data of psoriasis
patients.

13. Conclusions

One clear advantage in dermatology over other medical specialties is that in the clinic, the
noninvasive, painless sampling using the tape stripping methods can provide high‐quality
samples for skinomics analysis. Already proven useful in diagnosis of certain diseases, the
tape stripping will be also used in the microbiome analyses to provide samples of the cutaneous
viruses, bacteria, and fungi, alerting to the presence of pathogens. Similar approaches can
detect also cutaneous microbial imbalances. Moreover, disease treatments using microbes may
be in our future! We cannot even imagine today the future developments in skinomics. In
summary, great strides have been already achieved in skinomics, the omics technology applied
in dermatology, and skin biology. Skinomics techniques will eventually provide individual‐
ized personalized treatments to dermatology patients. Exciting and wonderful times are
ahead.
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