
Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2013

José Miguel Martins

Lopes Mendes

Técnicas de segurança para a Internet das Coisas

Security techniques for the Internet of Things

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32242694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2013

José Miguel Martins

Lopes Mendes

Técnicas de segurança para a Internet das Coisas

Security techniques for the Internet of Things

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Doutor Rui
Luís Andrade Aguiar, Professor associado c/ agregação do Departamento
de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e
do Doutor Paulo Jorge Salvador Serra Ferreira, Professor auxiliar do Depar-
tamento de Eletrónica, Telecomunicações e Informática da Universidade de
Aveiro.

o júri / the jury

presidente / president Prof. Doutor André Ventura da Cruz Marnoto Zúquete
professor auxiliar da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Paulo Alexandre Ferreira Simões
professor auxiliar da Faculdade de Ciências e Tecnologia da Universidade de Coimbra (arguente

principal)

Prof. Doutor Rui Luís Andrade Aguiar
professor associado c/agregação da Universidade de Aveiro (orientador)

agradecimentos /

acknowledgements

Ninguém pode crescer e evoluir sem a interação e estímulo de diversas pes-
soas. No final desta etapa cabe-me atribuir o devido mérito e agradecer a
todas as pessoas que contribuíram para me mudar e me tornar quem sou
hoje e, consequentemente, ser capaz de escrever este trabalho.
Ao meu professor e orientador Rui Aguiar bem como ao professor João Paulo
Barraca pela oportunidade que me deram de me juntar ao Advanced Telecom-

munications and Networks Group (ATNoG) onde pude aprender e expandir os
meus horizontes de uma maneira que nunca teria conseguido sozinho nem
noutro local.
A todos os membros do ATNoG pelas trocas de ideias, aprendizagem ou
simplesmente conversas e perspetivas diferentes sobre a vida. Um espe-
cial obrigado ao Daniel Corujo pela colaboração, referências bibliográficas e
conselhos.
A todos os meus professores ao longo deste caminho por todo o conheci-
mento transmitido.
A toda a minha família com um destaque especial para o meu pai que, apesar
da distância que sempre nos separou, nunca deixou de estar presente e me
apoiar.
Agradeço também a todos os meus colegas e amigos pelo apoio e amizade
ao longo destes anos bem como paciência nesta última fase do percurso
académico.

Palavras Chave IoT, M2M, Segurança, Criptografia, Sistemas Embutidos

Resumo IoT assume que dispositivos limitados, tanto em capacidades computacionais
como em energia disponível, façam parte da sua infraestrutura. Dispositivos
esses que apresentam menos capacidades e mecanismos de defesa do que
as máquinas de uso geral. É imperativo aplicar segurança nesses dispositi-
vos e nas suas comunicações de maneira a prepará-los para as ameaças da
Internet e alcançar uma verdadeira e segura Internet das Coisas, em concor-
dância com as visões atuais para o futuro. Esta dissertação pretende ser um
pequeno passo nesse sentido, apresentando alternativas para proteger as co-
municações de dispositivos restritos numa perspetiva de performance assim
como avaliar o desempenho e a ocupação de recursos por parte de primiti-
vas criptográficas quando são aplicadas em dispositivos reais. Dado que a
segurança em diversas ocasiões tem de se sujeitar aos recursos deixados
após a implementação de funcionalidades, foi colocada uma implementação
de exposição de funcionalidades, recorrendo ao uso de CoAP, num disposi-
tivo fabricado com intenção de ser usado em IoT e avaliada de acordo com a
sua ocupação de recursos.

Keywords IoT, M2M, Security, Cryptography, Embedded Systems

Abstract IoT comprehends devices constrained in both computational capabilities and
available energy to be a part of its infrastructure. Devices which also present
less defense capabilities and mechanisms than general purpose machines.
It’s imperative to secure such devices and their communications in order to
prepare them for the Internet menaces and achieve a true and secure Inter-
net of Things compliant with today’s future visions. This dissertation intends
to be a small step towards such future by presenting alternatives to protect
constrained device’s communications in a performance related perspective as
well as benchmarks and evaluation of resources used by cryptographic prim-
itives when implemented on real devices. Due to security being on multiple
occasions subjected to the resources available only after functionalities im-
plementation, a minimalist implementation of functionalities exposure through
the use of CoAP was also deployed in an IoT intended device and assessed
according to resource overhead.

Contents

Contents i

List of Figures v

List of Tables vii

List of Acronyms ix

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 2

1.3 Structure . 3

2 State of the art 5

2.1 IoT is more than RFID . 5

2.2 IoT scenarios . 6

2.3 IoT horizontal architecture . 8

2.4 IoT devices’ characteristics . 9

2.5 Security problems and countermeasures . 11

2.6 IoT is fragile . 13

2.6.1 Restricted devices are vulnerable . 13

2.6.2 Code injection . 15

2.6.3 IoT: the next Android? . 16

2.6.4 Traditional malware detection applied to IoT 17

2.6.5 Possibility of IoT botnets . 18

2.6.6 A parallel between restricted devices and single-board computers . . 19

2.7 Security overhead . 19

2.8 Chapter overview . 20

3 Securing IoT 21

3.1 Trusted computing base . 21

3.2 Sufficient and rational security . 22

3.3 Symmetric Ciphers . 23

i

3.3.1 Block ciphers . 23

3.3.2 Stream ciphers . 25

3.3.3 What they provide? . 26

3.4 Message Authentication Codes . 26

3.4.1 HMAC . 27

3.5 Public-key cryptography . 28

3.5.1 Elliptic curve cryptography . 29

3.6 Routing and cryptography . 30

3.7 Operator coupled security . 31

3.7.1 Wide availability . 31

3.7.2 GSM . 32

3.7.3 UMTS and LTE . 35

3.7.4 End-to-end security . 36

3.7.5 SIM malware . 37

3.8 Chapter overview . 38

4 Evaluating cryptographic implementations in IoT devices 39

4.1 Methodology . 39

4.1.1 Devices . 39

4.1.2 Performance metrics . 41

4.1.3 Implementation properties . 44

4.1.4 Tools and compilers . 46

4.2 Block ciphers . 47

4.3 Stream ciphers . 51

4.4 HMACs . 57

4.5 Result discussion . 60

5 Security in a complete M2M solution 67

5.1 ETSI M2M . 67

5.2 CoAP . 68

5.2.1 Brief Overview . 69

5.2.2 Implementation . 69

5.2.3 CoAP overhead . 71

5.3 Functionalities vs security . 73

6 Conclusions 75

6.1 Future work . 76

References 77

Appendix A: Base code used in devices 81

Waspmote . 81

ii

DETPIC32 . 82

Raspberry Pi . 83

Appendix B: Views on obtained results 85

Cryptographic primitives sorted by performance 85

Waspmote . 85

DETPIC32 . 86

Raspberry Pi . 87

Initialized vs non-initialized stream ciphers . 88

Waspmote . 88

DETPIC32 . 88

Raspberry Pi . 89

Primitives sorted by RAM usage . 90

Primitives sorted by permanent memory usage . 91

Waspmote . 91

DETPIC32 . 92

Raspberry Pi . 93

Appendix C: Cryptographic complexity vs resources 95

Ciphers complexity . 95

Memory usage vs complexity . 96

Throughput vs complexity . 97

iii

List of Figures

2.1 Simplified representation of the IoT horizontal approach. 9

2.2 Increase in mobile malware in the latest years. [13] 16

2.3 Distribution of mobile malware in the first quarter of 2013. [14] 16

3.1 Operation scheme of block ciphers. 24

3.2 Operation scheme of stream ciphers. 25

3.3 Scheme of the HMAC operation. 27

3.4 Asymmetric encryption and decryption scheme. 28

3.5 Comparison in coverage between GSM and UMTS in Portugal. Green indicates

good signals levels, yellow acceptable, red bad and black nonexistent. 32

3.6 Very simplified scheme of the GSM infrastructure depicting entities involved in

authentication. 34

3.7 Representation of the data path using an operator’s infrastructure. Despite the

devices pictured being mobile phones, they should be interpreted as devices com-

municating using SIM cards. 36

4.1 Representation of the most relevant performers in the Waspmote device. 65

5.1 Class diagram reflecting the CoAP library changes. Methods denoted “=0” in

classes represent pure virtual methods. 70

1 Complexity provided by the deployed ciphers. 95

2 Correlation between benchmarked block ciphers’ complexity and memory usage. 96

3 Correlation between benchmarked stream ciphers’ complexity and memory usage. 96

4 Correlation between benchmarked block ciphers’ complexity and throughput. . . 97

5 Correlation between benchmarked stream ciphers’ complexity and throughput. . 97

v

List of Tables

3.1 Key sizes to provide equivalent security in different techniques.[32] 29

4.1 Comparison of the used devices . 40

4.2 Comparison of methods used to measure memory in the devices. 43

4.3 Base memory values in the devices. 43

4.4 Throughput of AES-128 . 48

4.5 Memory usage of AES-128 . 48

4.6 Throughput of AES-256 . 49

4.7 Memory usage of AES-256 . 49

4.8 Throughput of Present . 49

4.9 Memory usage of Present . 49

4.10 Throughput of RC5 . 50

4.11 Memory usage of RC5 . 50

4.12 Throughput of XTEA . 51

4.13 Memory usage of XTEA . 51

4.14 Throughput of Grain-128 . 52

4.15 Memory usage of Grain-128 . 52

4.16 Throughput of HC-128 . 53

4.17 Memory usage of HC-128 . 53

4.18 Throughput of HC-256 . 53

4.19 Memory usage of HC-256 . 54

4.20 Throughput of MICKEY 2.0 . 54

4.21 Memory usage of MICKEY 2.0 . 54

4.22 Throughput of MICKEY-128 2.0 . 54

4.23 Memory usage of MICKEY-128 2.0 . 55

4.24 Throughput of Rabbit . 55

4.25 Memory usage of Rabbit . 55

4.26 Throughput of Salsa20/12 . 56

4.27 Memory usage of Salsa20/12 . 56

4.28 Throughput of SOSEMANUK . 56

4.29 Memory usage of SOSEMANUK . 56

vii

4.30 Throughput of Trivium . 57

4.31 Memory usage of Trivium . 57

4.32 Throughput of HMAC-MD5 . 57

4.33 Memory usage of HMAC-MD5 . 58

4.34 Throughput of HMAC-RIPEMD-160 . 58

4.35 Memory usage of HMAC-RIPEMD-160 . 58

4.36 Throughput of HMAC-SHA-1 . 59

4.37 Memory usage of HMAC-SHA-1 . 59

4.38 Throughput of HMAC-SHA-256 . 59

4.39 Memory usage of HMAC-SHA-256 . 59

4.40 Top 5 performers in the Waspmote device . 61

4.41 Top 5 performers in the DETPIC32 device . 62

4.42 Top 5 performers in the Raspberry Pi device . 62

5.1 Memory measurements of the altered CoAP library as well as ZigBee communi-

cation and resources when deployed in the Waspmote device. 72

1 Sorted throughputs obtained using the Waspmote device 85

2 Sorted throughputs obtained using the DETPIC32 device 86

3 Sorted throughputs obtained using the Raspberry Pi device 87

4 Comparison of throughput values of initialized/non-initialized stream ciphers in

the Waspmote device. 88

5 Comparison of throughput values of initialized/non-initialized stream ciphers in

the DETPIC32 device. 88

6 Comparison of throughput values of initialized/non-initialized stream ciphers in

the Raspberry Pi device. 89

7 Sorted RAM usage by cryptographic algorithms in the Waspmote device. 90

8 Sorted permanent memory usage by cryptographic algorithms in the Waspmote

device. 91

9 Sorted permanent memory usage by cryptographic algorithms in the DETPIC32

device. 92

10 Sorted permanent memory usage by cryptographic algorithms in the Raspberry

Pi device. 93

viii

List of Acronyms

AES Advanced Encryption Standard

ANACOM Autoridade NAcional COMunicações
(National Communications
Authority)

AuC Authentication Center

BTS Base Transceiver Station

CBC Cipher-Block Chaining

CFB Cipher FeedBack

CoAP Constrained Application Protocol

CPU Central Processing Unit

CTR CounTeR

DES Data Encryption Standard

DoS Denial of Service

DTLS Datagram Transport Layer Security

ECB Electronic CodeBook

ECC Elliptic Curve Cryptography

EDGE Enhanced Data rates for GSM
Evolution

ETSI European Telecommunications
Standards Institute

GCC GNU Compiler Collection

GEA GPRS Encryption Algorithm

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile
communications

HMAC keyed-Hash Message Authentication
Code

HTTP HyperText Transfer Protocol

IDE Integrated Development
Environment

IETF Internet Engineering Task Force

IoT Internet of Things

IMSI International Mobile Subscriber
Identity

IP Internet Protocol

IPSec Internet Protocol Security

IV Initialization Vector

LTE Long Term Evolution

M2M Machine to Machine

MAC Message Authentication Code

MD5 Message Digest 5

MICKEY Mutual Irregular Clocking
KEYstream generator

MMU Memory Management Unit

MSC Mobile Switching Center

NIST National Institute of Standards and
Technology

OFB Output FeedBack

OS Operating System

RAM Random-Access Memory

RC5 Rivest Cipher 5

REST REpresentational State Transfer

RIPEMD RACE Integrity Primitives
Evaluation Message Digest

ROM Read-Only Memory

SCL Service Capability Layer

SD (card) Secure Digital (card)

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SRAM Static Random-Access Memory

TC Technical Committee

TCB Trusted Computing Base

TCP Transmission Control Protocol

TEA Tiny Encryption Algorithm

ix

TLS Transport Layer Security

UDP User Datagram Protocol

UMTS Universal Mobile
Telecommunications System

URI Uniform Resource Identifier

VLR Visitor Location Register

WEP Wired Equivalent Privacy

WSN Wireless Sensor Network

XTEA eXtended TEA

x

Chapter One

Introduction

Since their invention, computer usage has spread from laboratories and research environments

to slowly starting to infiltrate the common household. The advent of the Internet generated

a whole new era of communications, public interest and information. Nowadays, computers

take place in all our lives if, not for more, educating and entertaining us. Our connection to

the Internet intensified even more with the advent of the Smartphone. Now computers don’t

limit themselves to be standing at our desks: they are always with us, 24/7 and we take them

everywhere we go. The infiltration of computers could not have been more successful: they

are in our homes, our workplaces, our pockets and what we do with our computers defines

us and at a further extent, define our society and its people.

After so long and such large scale technology infiltration, it’s finally time to fulfill the long

awaited science fiction writing scenario: allow technology to interact with the real, physical

world at a large scale. Even further, connecting that same technology to the Internet, allow-

ing “smart” objects to interact with each other, exchanging information and collaborating.

However, science fiction authors despite the obvious representation of futuristic scenarios, also

seem to have a taste for tragedy and, disregarding the accuracy of the particular tragedies,

it may be realistic to depict adversities and the upcoming of several problems. One thing is

certain: the main future threats do not come from dystopian “killing machines” but instead

from human beings itself.

Technology is not exactly known for having a clean security background when introduc-

ing new technologies. From communication protocols such as WEP and GSM to operating

systems such as Android, it seems that first versions of new technologies are doomed to be

successfully exploited. May it be for fun, profit or other reason, some people will try to tam-

per the new technological world offered by IoT, the sight of daily objects communicating and

interacting through the Internet. Whereas in the computer world such behavior translates in

attacks and malware limited to the virtual world, in IoT the possibility of inferring informa-

tion and acting on reality is indeed intimidating (or it should be). Intimidating not only for

the directly affected party (the end users) but also for companies manufacturing IoT-based

solutions. Trust is a delicate property and, once lost, is very hard to regain. And while the

1

average user may find ordinary to have malware in his computer’s hard drive, he may find

containing security breaches (for example) in his home automation system or car that can

be started from a Smartphone awfully shocking, resulting in a trust loss. The same can be

applied to industrial and corporate IoT clients with the difference that there is a potential

escalation in both direct and indirect damage. With IoT, technology has, once again, the

opportunity to learn from past mistakes and to consider security with the same intensity that

is applied towards functionalities avoiding future trust losses.

1.1 Objectives

First of all, this dissertation has as its main goal to provide practical guidance for anyone

interested in implementing secure communications using restricted devices. Provide advice

both in theoretical advantages/disadvantages and also practical results. Or at least be a

good starting point for anyone concerned about diving further into one of the approached

cryptographic options. To do so, the developed work aims to:

• Enhance the importance of security in wirelessly communicating restricted devices;

• Discuss advantages and disadvantages of using different cryptographic options as well as

reinforcing the use of rational security— security adequate to security policies, scenarios

and resources;

• Create a small, as platform agnostic as possible, cryptographic library capable of run-

ning in a panoply of devices with changes limited to a single point when porting to a

different architecture:

– Extraction of performance values from the created library when executing in real

devices;

– Selection of adequate algorithms for use in different IoT situations amongst the

ones available.

• Evaluate the coexistence of functionalities and security, through the use of an applica-

tion protocol placed in a restricted device and overhead measurement.

1.2 Contributions

The presented work was elaborated under the Apollo project, a collaboration between PT

Inovação and Instituto de Telecomunicações which aims for the development of a platform ca-

pable of supporting M2M services. Allied to the possibility of developing generic applications

on top of such services, the project also contemplates the implementation of two concrete

and distinct scenarios: greenhouse monitoring and buses capable of detecting road holes.

This dissertation also originated an article entitled “Adaptative Security Measures for the

Internet of Things” which resulted in a poster presented at StudECE 2013, submitting part

of the results obtained using the developed cryptographic library (described in Chapter 4).

2

1.3 Structure

Chapter 2 starts by explaining the concept of IoT and end devices’ properties, evolving

then to a security related perspective where threats to these devices are identified. From

there, an insight on the fragilities of restricted devices is presented as well as the scenario

that IoT evolution must try to prevent at all costs: malware. After raising awareness on

a conceivable alarming future and the urgency to secure devices and communications, the

chapter concludes with the implications that secure messaging carries on the devices.

Reinforced the urgency of security in the previous chapter, chapter 3 begins by explaining

the importance of each device and device aggregates being secure as a whole. Afterwards, the

compromise between cryptographic primitives and security policies is established, progressing

to a discussion on cryptographic strategies, emphasizing advantages and disadvantages of

different approaches when applied to restricted devices.

In chapter 4 results from cryptographic algorithms when executed in real devices are pre-

sented. Firstly the methodology is described: the devices chosen and why, units of measure-

ment, reference values as well as implementation specificities. After displaying the obtained

results, the chapter finalizes with a discussion on the mentioned results.

Chapter 5 evaluates the cost of security when applied to a complete solution where

devices do not contain the single task of performing cryptographic operations but also provide

functionalities. An overview is presented on both the set of Technical Specifications produced

by ETSI for M2M communications and CoAP. A CoAP implementation is then discussed as

well as its overhead— which in some cases may reflect the amount of available resources

for cryptographic primitives. An insight on the required capabilities for both security and

functionalities is provided.

Finally, chapter 6 concludes the dissertation with considerations about the developed

work along with questions raised during its execution that can provide opportunities for

further research.

3

Chapter Two

State of the art

At the present time, IoT is an extensively used term. News about products being manufac-

tured, researched or announced is becoming increasingly common. Meanwhile, connecting

one or a few embedded systems or smartphones to the Internet is not sufficient to achieve a

true Internet of Things. Before tackling any other issues it’s necessary, first of all, to define

what exactly is this Internet of Things.

2.1 IoT is more than RFID

IoT is not a technology: it’s a vision. A vision for the future itself where daily objects, things,

can be connected and be a part of the Internet, a vision for the Future Internet. And perhaps

the reason why there is not a globally accepted, accurate definition of IoT is because it’s not

common for different individuals to share the same exact vision about the upcoming future.

From the simple phrase “objects connected and interacting with the Internet”, however,

it’s possible to elaborate a logical reasoning to extract some properties. If objects are con-

nected to the Internet, a digital world, it’s assumed they have digital capabilities. Ability to

interact digitally also assumes processing capabilities. Objects can therefore be considered

devices with processing and communication capabilities. The faculty of communication also

assumes there is some sort of technology enabling communications: one or more technologies

involved in connecting such devices to the Internet world. In fact the technologies enabling

devices to connect to the Internet are not clear. Zorzi, Gluhak, Lange, et al. [1] compare IoT

to the “wild west”, an unexplored territory where all current technologies can play a role.

In the present time there are already (and have existed for a few years) technological

concepts associated with the terms “objects communicating” and “machines interacting”:

M2M Communication and technologies allowing interaction between machines (machine-to-

machine).

RFID Radio-frequency identification is the use of radio communication as a mean to identi-

fy/track objects, persons or animals implanted with RFID tags— small wireless devices.

5

WSN Wireless sensor networks are networks consisting of autonomous nodes (devices) coop-

erating to gather/deliver information about the surrounding environment. Despite the

word “sensor” in the name, nodes can also be actuators, interacting with the physical

world based in human originated commands or other decision processes.

M2M is inherent to IoT as it is to WSNs: provides technology which enables direct

machine interaction. IoT can also be viewed as an expansion or evolution of the concept

of WSN: devices and aggregates of devices not only communicating and interacting inside

an intranet but along the much more complex Internet. RFID has also been commonly

associated with both WSNs and IoT due to the need for identification— it’s necessary to

identify objects/devices somehow— but IoT far extends the concept of simply identified

devices by introducing a vision of globally connected objects.

With a vision comes also a paradigm. In fact, the IoT paradigm is a conjunction of other

3 paradigms/visions as identified by Atzori, Iera, and Morabito[2]:

• Things oriented— focus on a world where things communicate with computers and

each other providing services

• Semantic oriented— focus on representing and exchanging gathered information, ob-

taining knowledge

• Internet oriented— focus on the global infrastructure to connect generic objects and

the evolving resultant Internet

On top of such paradigms lay applications. Applications taking advantage of provided data,

knowledge and communication being necessary a full combination of the referred three visions

to unleash the true potential of applications relying on IoT[3].

2.2 IoT scenarios

Despite futuristic scenarios incited by the idea of objects communicating, there are present

time areas of application where objects communicating and sharing information can be quite

convenient such as:

Healthcare Measuring patients’ vital signs over long periods of time and real-time moni-

toring, allowing patients to resume their daily lives while being diagnosed;

Tracking Tracking can be very useful and applied to multiple situations:

• Warehouses/Distribution centers— Companies can track their packages and find

their products faster in warehouses if all are correctly identified;

• Lost keys— The scenario of not knowing the location of personal keys is quite

common to some people. Keys transmitting their location can help mitigating

the inconvenience of such situations;

6

• Pet tracking— Currently, animal RFID tags identify them allowing it’s asso-

ciation to the rightful owners. Meanwhile there’s still room to improvement as

locating a troublesome runaway pet might be hard and real-time location could

be quite helpful;

• People tracking— Despite the controversy, the fact is that brain degenerative

disease patients such as Alzheimer patients can get lost and disoriented. Finding

the location of lost relatives suffering from such disease may be imperative and

devices providing their real-time location beneficial. Other uses of legitimate

people tracking include children tracking, troublesome teenagers tracking and

even paroled prisoners tracking.

City quality improvement IoT can help increasing the quality of life in urban centers by

assessing:

• Road monitoring— Vehicles equipped with sensors can report road holes and

imperfections. Reporting of such data in real-time or periodic intervals helps

maintaining roads in adequate conditions;

• Pollution levels— Monitoring pollution levels in different city areas in order to

investigate areas of action and increase population health is crucial in large urban

centers ravaged by smog;

• Waste management— Currently, garbage containers are disposed at a given fre-

quency (usually once per day at a specific time), resulting in containers being

handled despite their load. Smart containers, could help reducing unnecessary

trips (and costs) by informing waste management companies of their load. In-

forming about container load can also help companies managing the frequency of

their disposals at specific areas.

Smart agriculture 1 Efficient agriculture, reducing production costs by monitoring pa-

rameters such as soil humidity, temperature and light conditions, respective remote

monitoring and watering according to climate conditions;

Smart grids Intelligent distribution of energy according to consumer needs, creating a more

sustainable and economic distribution. It may also help increasing the reliability of

the service by balancing energy between clients being both beneficial to suppliers and

clients;

Other energy saving scenarios There are many additional scenarios, besides smart grids,

where IoT can help reducing energy costs:

• Smart lighting— Light is adjusted to the presence/absence of nearby humans

and environment lighting;

1The word smart is inherent to multiple IoT scenarios, specially where decisions are based on
environmental or past knowledge. The process of automated decisions is the reason for these scenarios
being classified with such word.

7

• Smart air conditioning— Adjust temperature in rooms where humans are present

or are likely to move to instead of heating the entire space;

• Smart power-off of devices— As much as people forget, standby devices consume

energy. Televisions, routers, extension sockets and essentially every domestic

equipment featuring a small light to indicate its activity consumes energy. In

multiple cases there is no need for such devices to be in standby mode when the

owner goes to sleep. Powering off such devices automatically during sleep periods

may be beneficial for energy saving.

The myriad of other possible scenarios including but not limited to accurate weather

prediction, larger distributed sensors networks for disaster prediction, road traffic monitoring,

driver warnings and respective redirection and many more, provide IoT the potential of

infiltrating itself in the quotidian human life bringing a digital revolution in connecting the

physical and virtual worlds.

Meanwhile it should be noted that each scenario is unique in requirements whether they

are reliability, security or power constrains. In healthcare and people tracking scenarios,

security and reliability are priorities. Meanwhile, devices intending to save energy cannot

consume more energy that the amount they save in order to fulfill their objective. At the

same time, disaster prediction and real-time decisions have real-time constrains. In contrast,

scenarios such as smart agriculture may or may not pose such tight constrains regarding real-

time (environmental measures do not need to reach their destination immediately), reliability

(there may exist periods where communication is not possible) and security (if an attacker

intercepts sensor data, it will only collect information that he can obtain using its own

sensors).

In fact, such heterogeneity of scenarios incites the pursue of a long-term architecture

development. IoT scenarios and applications are only truly limited by a mix of imagina-

tion, usefulness and business opportunities, requiring an infrastructure prepared to deal with

different scenario requirements and paradigm shift.

2.3 IoT horizontal architecture

In order to develop sustainable, long term IoT solutions there is the need and pursue for

both horizontal architecture and standardization. Such is the vision of ETSI and other

international standardization organisms resulting in a horizontal architecture where devices

are at the bottom and services are exposed through a top layer. Applications can then be

built using the services provided by the M2M infrastructure. Such horizontal approach is

depicted in figure 2.1.

8

Figure 2.1: Simplified representation of the IoT horizontal approach.

2.4 IoT devices’ characteristics

At the lower end of the IoT architecture lay devices— the actuators/sensors intended to

gather information from or apply actions to the physical world. There is no consensus in

what exactly defines an IoT device. Being IoT a vision instead of a technology or a set of

specific technologies and, therefore, being classified by a mix of sociological and technological

factors, a device may be classified accordingly to its intended use or through the specific role

that it takes in a specific time interval. Smartphones and computers are, without a doubt,

things and, in addition, they are considered daily objects. Meanwhile they are already a

part of the current Internet not presenting a role in the IoT vision. If, however, they were

to be equipped with sensors/actuators and the capability of acting on the real world they

could be considered IoT devices. In fact, smartphones are already supplied with a variety

of sensors, inferring information about the physical world. While a smartphone can infer

information on the external world, it was not build with an IoT purpose in mind. There is a

clear distinction from a smartphone that is showing its sensor’s data to an user through its

screen and a smartphone that is collaboratively working with other entities to provide a set of

services available outside its own scope. It can be affirmed that a smartphone can or cannot

be considered an IoT device considering the role it takes at specific time intervals and the

same applies to all machines classified as general purpose machines (they can be considered

IoT devices if they take such role).

IoT also comprehends the possibility of devices not built with a general purpose in mind

9

to be a part of its infrastructure. Due to the absence of general purpose characteristics, such

devices can be classified as embedded systems. And, as embedded systems that they are,

they may lack the same raw processing capabilities2 and flexibility [4] as general purpose

systems. Devices may be resource constrained in both:

• CPU— May be equipped with 8 or 16 bit microprocessors;

• RAM— It may not exceed the embedded RAM in the microprocessor;

• Permanent storage— as with RAM, may also be integrated into the microprocessor;

• Power— possibly running using batteries, without a continuous power source;

• Communications— Wireless communications only due to the impossibility of deploying

cables scattered around the world. Radio communication may also be limited to a

certain amount of maximum power, further narrowing the number of possible wireless

protocols and range.

Such set of characteristics introduces further properties on the devices. Due to the low

resources available, operating systems may or may not be available. Also, in addition to

being possible or not, operating systems use both memory resources and CPU cycles— time

which the CPU could spend being in idle mode and saving energy— bringing the question if

it is or not desirable.

The lower boundary for devices can then be established at devices contain an 8 bit

microprocessor with RAM and Flash/ROM integrated into the microprocessor, running on

batteries, requiring periods of idle mode, without an operating system and including only a

low-power radio interface. It’s important to notice that the existence of a lower boundary does

not, by all means, forbid the existence of devices with a much higher set of specifications and

even the use of general purpose machines as IoT devices, as mentioned previously. However,

in order to avoid constant repetitions of this fact, in the future (except when explicitly

mentioned), devices will be considered embedded and constrained devices— the “worst case”

scenario.

Still at the device level, there is another class of devices which are supposed to have a

higher set of specifications than regular devices: gateways. Gateways are devices responsible

for interlinking devices (which are not capable by themselves) with traditional communication

networks[5]. As a bridge between what are basically WSNs and the Internet, the gateway is

responsible to address:

• The heterogeneity of devices and respective different communication mechanisms;

2Embedded devices may contain ASICs (Application-Specific Integrated Circuits), integrated cir-
cuits designed for a specific use instead of general purpose. Such circuits may be extremely fast at
performing the specialized task for which they were designed but lack the ability to run general tasks.
Examples of such circuits would be circuits intended for sound or image processing.

10

• Data transmission and forwarding;

• Protocol conversion;

• Management and control of nodes (processing commands received from remote servers).

As such, due to the additional complexity as well as the need to communicate and process

data from, possibly, a large number of nodes, gateway specifications as well as communication

capabilities are set higher than devices specifications. In fact, it’s not uncommon to use single

board computers as the central units for gateways[5][6][7], setting a typical gateway as a device

containing processing capabilities equivalent of multiple devices, with an operating system

and a diversity of communication capabilities.

2.5 Security problems and countermeasures

Security problems and attacks are nothing new in the technological world as excessively

boasted bulletproof systems have prove countless times that security is nothing to brag about

as being impossible to bypass or break. IoT and WSNs, however, are still very far away to

be secure enough to the point of inciting bragging due to a number of characteristics:

• Communications can be performed wirelessly: anyone can listen to them and commu-

nicate using the same medium;

• Physical access to the devices may be possible: devices can be placed in public places;

• Features devices with limited resources: range of security measures may be restricted.

Several possible attacks in WSNs and transposable to IoT have already being enumerated

and described in the past. Kalita and Kar[8] identified no less than 37 possible attacks on

such scenarios including but not limited to:

• Denial of service (DoS) attacks;

• Devices taking multiple identities (Sybil attack);

• Wormholes— tunneling of messages through a low latency link and replaying them in

a different network location disrupting routing;

• Sinkhole— make a compromised node look attractive from a routing perspective, luring

traffic to particular areas;

• Impersonation— attacker replicates the identification of a legitimate device;

• Eavesdropping— simply listening on the shared medium to discover communication

contents;

11

• Traffic analysis— traffic patterns analysis can identify node roles and reveal activity of

nodes[9];

• Attacks carried out by compromised devices inside the network;

• Invasive attacks (physical tampering) with the intent of reverse engineering, extracting

keys or modifying code;

• Attacks performed by external devices with more capabilities than the nodes in the

network.

There are not solutions for all these attacks. DoS attacks can only be minimized or

prevented in specific situations such as, for example, not processing messages originating in

devices who send a number of messages greater than a defined threshold (eventually using

node resources). However, a strong willed attacker can always invest money in devices with

more resources and therefore ability to create more collisions or simply devices dedicated

to jam the entire wireless medium. This is an inherent problem of wireless communications

which cannot be avoided: only measures to discourage weak-minded attackers can be taken.

One important measure to consider is the prevention of physical tampering. Physical

tampering can go beyond the destruction/vandalization of the nodes to actually allow reverse

engineering, obtainment of cryptographic keys and node reprogramming. Non-existence of

physical protection may allow cryptographically trusted devices to perform malicious actions

raising the question if cryptography should be applied when the secret keys can be obtained

and there may be no point in discussing highly advanced and secure protocols which impact

device resources if those same measures can be bypassed. The best analogy for this situation

is the use of top-notch security locks in doors when a backup key is hidden under the doorway

rug or similar. In scenarios where security importance overcomes the device importance, even

destructive measures to the devices when attempted tampering should be considered. Except

when explicitly stated, all future references to securing devices will assume that physical

protection is well placed.

Use of secure messaging (messages secured using cryptographic measures), including at

the routing layer, also reduce both data privacy questions and the number of successful

attacks:

• Eavesdropping— if encryption is performed, attackers cannot discover the message

contents without the decryption key.

• Impersonation— correctly authenticated messages cannot be forged.

• Sybil attack— as in impersonation, foreign devices cannot forge identities when au-

thentication is required.

• Sinkhole— without being a part of the network (authenticated), attackers cannot send

forged messages and therefore cannot lure traffic.

12

However, despite the use of cryptography, careful protocol design also plays a significant

role (in fact a conclusion expressed by Kalita and Kar). A protocol intending to prevent

attacks besides assuring communication, should also, for instance, only allow trusted parties

to participate in routing decisions. A combination of cryptography and secure protocol

design may also minimize traffic analysis where cryptography assures that the contents are

not discovered and the protocol willingly tampers flow analysis such as assuring that all

messages have the same size (tampering inference on the content) and the sending of bogus

messages between devices (interfering with context inferences). In reactive systems, however,

it may not be so simple as sudden changes in the surrounding environment may reveal a

pattern of messages allowing inference on the message’s purpose.

Wormhole attacks are very difficult to defend against since despite cryptography, replayed

messages will still be valid. Higher level approaches— behavior approaches— can help de-

tecting such attacks by detecting replicated nodes in different network locations. Routing

protocols should be designed carefully in a way that vanquishes this attack scenario.

Despite the means of perpetration to compromise and subvert a node— physical tamper-

ing or one of other ways described further ahead— this situation should also be considered as

possible. Detecting such situation is no trivial matter as the device can still function perfectly

from the network’s point of view but being compromised waiting for a trigger condition or

communicating with a third-party outside the network’s knowledge. One alarming scenario

is the successfulness in compromising nodes responsible for alarms where the malfunction-

ing is discovered only after the alarm not fulfilling its role (being the alarm the trigger for

non-intended/malicious behavior).

2.6 IoT is fragile

Even without considering physical tampering and wireless communications, restricted de-

vices with limited resources and therefore lacking security features may be more vulnerable

than regular general purpose machines. Networks of such nodes, designed to operate in an

autonomous way may have trouble detecting compromised nodes or attacks. Exposing such

devices and networks to the Internet world— where computers with multiple security features

are successfully attacked and compromised— without a security plan and without considering

the consequences can have catastrophic results.

2.6.1 Restricted devices are vulnerable

Memory protection.

25 years have passed since the widespread of the Morris Internet worm 3, the first com-

puter worm that gained significant media attention. The fact is, however, that one of the

3Morris worm appeared in 1988 created by a student at MIT. Exploiting the possibility of buffer
overflow in the fingerd daemon, it infected at least one twentieth of the existing computers at the
time. Besides generating controversy, it also showed how insecure the Internet really was (and is) and
the importance of security.[10]

13

security holes that allowed the Morris worm to be successful is still a reality today as it was

25 years ago: buffer overflows. After more than 2 decades of research and computational

advances, classic buffer overflows are still ranked third on the CWE/SANS TOP 25 Most

Dangerous Software Errors [11]. If memory errors have been a reality for so long it would be

wise to assume that they will be present in the future. Memory errors exist, are currently

being exploited for malicious purposes and will continue to be exploited as long as they exist

[12]. To relinquish or minimize the threat that buffer overflows present, several techniques

are present in nowadays computers:

ASLR ASLR randomizes locations in memory preventing injected code of successfully jump-

ing to known addresses. Locations include libraries, stack, heap and the process itself.

Canaries Consists of placing random values at the beginning of a function and asserting

that the value is still the same at the end of the function with the purpose of detecting

stack-smashing. It can either be implemented by the compiler or manually during

programming.

NX bit (Never eXecute) A technology implemented in some CPU families that allows

portions of memory to be marked as non-executable. Data can safely be stored in

these sections with the guarantee that will never be executed, rendering buffer overflows

(with the purpose of code injection) on structures located in these regions meaningless.

Other MMU based techniques By dividing the memory in segments and accessing logi-

cal addresses instead of real memory addresses, an address translation is performed by

a hardware unit known as MMU. Besides address translation, permissions can be de-

fined over segments, not allowing one process without permissions to address segments

not reserved for it.

From the techniques presented, almost every one relies on the existence of hardware capa-

bilities and/or a residing operating system. Considering IoT devices, only one of the presented

techniques could be applied in all the devices: canaries. Even so, depending on the compiler

(if it introduces canaries or not), such capability may require additional programming effort.

Restricted devices without hardware units dedicated to memory protection and without an

operating system have very little defenses against buffer overflows.

CPU execution levels.

Nowadays in general purpose machines, CPUs contain multiple execution levels. These

privilege levels, implemented in hardware, determine a set of possible actions that can be

performed at each level and below. Most modern operating systems take advantage of such

execution levels, clearly distinguishing the actions that regular users and the system can

perform, forcing programs to invoke system components in order to perform privileged ac-

tions. This approach has the advantage of moderating access to resources, allowing access

14

to them only in a restricted, predefined way in which direct access to the resources is made

with system code and not user code. The implementation of such model is performed with

system calls. When an interruption is generated, it is handled by the operating system code

(interruption handlers) which run at a privileged level, restoring the execution level back to

normal on returning.

This, however, may not apply to IoT. Devices without an operating system may not

have a set of predefined interruption handlers to moderate the access to resources. Even if

they did, the enforcement of different execution levels in hardware would still be required.

Otherwise, direct access to resources and even replacement of the interruption handlers in

memory would still be possible. Different execution levels is a feature not available in many

CPUs designed with embedded purpose in mind, effectively invalidating the resource access

moderation meaning that successful injected code has access to all the device’s resources.

2.6.2 Code injection

From the possible security problems that may affect IoT devices, one is particularly wor-

risome: code injection. Code injection goes beyond the point of disrupting the device’s

functioning (although it can also achieve this) to actually alter the device functioning in

benefit of the attacker— the device will dedicate processing time and resources in order to

fulfill the attacker’s purpose.

Not considering physical access, there are at least 3 methods from which an attacker can

induce code injection.

Buffer overflow. Impersonating a trusted entity or simply sending messages to the device

an attacker can feed more data than the device is expecting, corrupting the memory with

foreign code if a vulnerability is present. A very basic example of such vulnerability is present

below:

char b u f f e r [1 0 0] ;

uint8_t pos = 0 ;

do{

b u f f e r [pos] = readChar () ;

}while (b u f f e r [pos++] != ’\0’)

Without verifying array boundaries, a possible exploit that allows code injection may be

introduced. By simply checking if the number of bytes read already reached the size of the

array, the vulnerability would be removed from the example.

Faulty update mechanisms. Systems may consider the need or at least provide to future

use, techniques that allow remote programming such as OTA 4. If the techniques or imple-

4OTA or Over-the-air programming refers to techniques where reprogramming can be performed
in end devices through wireless communication.

15

mentations are defected in a way that allows impersonation of a trusted entity responsible

for updates, this can result in device programming by a third party and, therefore, code

injection.

Compromised gateway. A gateway that has the ability of updating devices, controlled to

a certain extent by an attacker can be used to introduce foreign code in the devices. This

differs from the previous point since no impersonation is required and it doesn’t require that

vulnerabilities in the update protocol exist.

2.6.3 IoT: the next Android?

IoT growth predictions are astonishing regarding both future Internet traffic generated and

number of manufactured devices. This situation is indeed akin to another: the booming

of smartphones. Due to consumer interest, smartphones market penetration have been hu-

mongous and recent news can be found estimating the percentage of smartphone ownership

around 60% in the United States5.

Sadly, interest in mobile platforms did not only arouse from the average consumer but

also from another unwanted audience: malware developers. Recent threat reports released by

McAfee in the fourth quarter of 2012 and in the first quarter of 2013 show alarming numbers:

besides an almost exponential spurt in mobile malware in the latest years [13], more than

1400 new unique malware families and variants for Android appeared in just one quarter[14],

being this the most affected platform and revealing a tendency for an even greater increase

in threats. Figures 2.2 and 2.3 represent the increase of mobile malware as well as the target

platforms.

Figure 2.2: Increase in mobile malware in the latest
years. [13]

Figure 2.3: Distribution of
mobile malware in the first
quarter of 2013. [14]

5Number obtained through news released by the Nielsen company: http://www.nielsen.com/us/

en/newswire/2013/mobile-majority--u-s--smartphone-ownership-tops-60-.html (last visited
on 27-10-2013)

16

http://www.nielsen.com/us/en/newswire/2013/mobile-majority--u-s--smartphone-ownership-tops-60-.html
http://www.nielsen.com/us/en/newswire/2013/mobile-majority--u-s--smartphone-ownership-tops-60-.html

From the moment that a platform reaches mass consumption it becomes a desirable target

for malware due to the large number of potential victims. In addition, mobile platforms

present a unique set of sensitive information (contacts, GPS, passwords,...) making them

an enticing target. Examining the current malware trend and the amount of data being

threatened is enough to incite fear. And so, a major question arises: Why not IoT? If a

device holding contacts and personal information (smartphone) raises so much interest from

malware developers, a device that can be used, for instance, for home automation can also

generate a significant amount of interest.

There is a very high probability that IoT devices will have vulnerabilities. It is also safe to

assume that some people will find those same vulnerabilities and exploit them. If (or when)

that happens, there will occur the need to counterattack and eliminate those threats.

2.6.4 Traditional malware detection applied to IoT

Prevention is always the best practice to embrace when designing secure systems. Nonethe-

less, the vision of prevention naturally also comprehends the possibility of the prevention itself

failing arising the need to have a second strategy in place. In this context, this means that

besides all safe programming rules and caution, systems can have security breaches leading

to the inevitable question of which malware detection (and afterwards cleanse) techniques

could be applied to IoT devices.

Regarding restricted devices without an operating system, the answer is very clear: the

traditional approach of running tools for malware analysis does not work. Remembering

that a single piece of code is executed (firmware), the code that would perform malware

analysis would be included in that very same piece of code. However if the device were to

be infected, it also would mean that the infected firmware would perform malware detection.

This paradox may not be a very satisfying situation due to the level of trust and effectiveness

that could be attributed to such detection.

More complex devices with more resources such as single board computers, however, allow

this approach due to the ability of executing multiple processes, meaning that the code to

analyze and the analyzer would be separated. Meanwhile there is the question of which

malware detection technique would prove to be more efficient.

Static analysis.

Static malware analysis refers to techniques that infer if a given piece of code is malicious

or not without actually executing it. Most tools use semantic signatures to identify well known

pieces of malicious code (malware samples). Apart from the common problems associated

with static analysis 6, when applied to IoT, this technique may present a disadvantage:

malware samples have to be known. IoT devices may serve very different purposes. Malware

can also be very diversified if developed with the device’s functionality in mind possibly

6In the latest years several techniques of code obfuscation have appeared hindering the use of static
analysis. This does not mean that this method does not serve its purpose: it does and it’s widely
used at the present time. However it does not work when the malware code is correctly obfuscated.

17

leading to a preference over the detection of zero day malware. The detection of this type of

malware cannot be performed solely using static analysis: if the patterns to detect a piece of

malware are not known it will not be detected.

Dynamic analysis.

Dynamic analysis or behavior analysis complements static analysis by monitoring events

in the execution of a program and inferring its behavior. This has the advantage of being

able to detect obfuscated malware— it’s the execution that is being monitored, not the

code— and even detecting zero day infections through detection of non-intended behaviors.

However, two criteria should be taken in consideration when using this solution: the detection

rate and the computational costs. Computational costs can be important since single board

computers, despite the word “computer” in the name are more restricted than commonly

used general purpose machines resulting in the need to evaluate the performance of several

dynamic analysis techniques and detection models on such devices while still maintaining an

adequate trade-off between detection rate and performance.

In summary, traditional malware detection does not function across all IoT devices, par-

ticularly restricted devices. Future solutions for this problem may lie somewhere between

creating an energy profile for each equipment (executing malware plus the original code

equals to executing more instructions and thus increasing power consumption), to the use of

dedicated hardware units inferring the behavior of the code being executed or others. Mean-

while these topics are outside the scope of this work which has the intent of reinforcing that

counterattacking threats is not a trivial issue and introduces new problems when applied to

IoT.

At the same time it is also necessary to profile which gains could be obtained in infecting

IoT devices in order to better understand the magnitude of the threat.

2.6.5 Possibility of IoT botnets

In a ecosystem like IoT, similarly to what happen nowadays in the computer world, the main

menace may not come from script kiddies trying to jam the wireless signals neither from

people trying to compromise devices just for fun or to test their skills. What is alarming is

the possibility of automatic widespread of infections with financial gain as a goal. Currently,

malware is heavily supported by an organized underground economy[15]. Such economy al-

lows, among other things, people willing to commit cybercrimes paying for access to a set

of infected machines— zombies— as well as tools and services designed to compromise more

nodes. Revealing an expansion from computers to mobile devices, Android botnets are a

reality at the present time— they are no more than a “business opportunity” foreseen by

groups of individuals— leaving the question of how this economy will perceive the rise of

IoT.

Possible services provided by IoT devices for the malware “industry” don’t necessarily

conflict with the ones offered by a computer or mobile device: there may not exist personal

18

information about individuals neither a SIM card easily used to obtain money,... Instead,

the services a IoT device bids are dependent on the device itself since no particular use is

imposed. Some devices, however, may be very attractive to certain groups such as industrial

devices. The Stuxnet worm 7 and related malware proved to the world that cyber espionage

and sabotage are desirable for some individuals, reinforcing once again the importance of

designing secure systems.

Several examples could be provided considering different types of services and their lo-

cation from hacktivism and cyberterrorism to examples of cyber espionage and sabotage.

However, the greater advantage that the proliferation of malware may offer to its economy

is the number of possibilities to explore. As for the counterattacking counterpart, one major

issue arises: not knowing for sure what malware may target, difficulting the act of taking

defensive measures.

2.6.6 A parallel between restricted devices and single-board computers

There is a clear differentiation between restricted devices and single board computers re-

garding not only capabilities but also in proposition to contain vulnerabilities, those same

vulnerabilities being explored, detected and cleanse of non-intended behaviors.

While restricted devices usually don’t have an operating system, single board computers

have causing them to execute multiple programs/processes concurrently. Since the complexity

level is higher, there is a greater chance of containing vulnerabilities. A single one of the

running applications, containing vulnerabilities, may be exploited in order to compromise

the device. On the other hand, malware detection can follow traditional approaches followed

in computers.

In contrast, restricted devices with limited resources and without an operating system

only execute a single piece of code, effectively limiting the possible location for vulnerabilities

to a single “program”. As a disadvantage, traditional malware detection is not adequate.

2.7 Security overhead

It’s undeniable that securing the devices and its communications is imperative in order to

guarantee something as basic as that the communications are being held with the device and

not with an entity impersonating the device. This ability to trust in the device’s messages is

not, however, devoid of disadvantages. Executing additional cryptographic code in order to

secure the communications uses:

Additional CPU time— Time that the CPU dedicates to the execution of cryptographic

primitives instead of executing another piece of code;

7Stuxnet is a worm discovered in July of 2010 whose samples can be traced back from more
than a year before (June 2009) which intended to sabotage industrial control systems. For that it
spread through machines running Windows operating system until the final target were to be achieved:
Programmable Logic Controllers (PLCs). This attempt of sabotage besides requiring real hardware
to be tested -implying resources of some sort-, explored 4 zero day vulnerabilities, compromised 2
digital certificates, was capable of injecting code into a PLC and hiding itself after doing so[16].

19

Energy— Energy used to keep the device active and not in an inferior energy consump-

tion mode plus energy used to operate the respective CPU units during algorithm’s

execution;

RAM— Temporary (or permanent if state is required) increased RAM usage;

Permanent memory— The size of the code increases with the addition of cryptographic

primitives.

Adding security requires an adequate choice in both devices and primitives to use in order

to assure the fulfillment of the device’s purpose without being crippled by addition of security.

Failing to do so has consequences such as:

• Inability of complying with real-time requirements;

• Requiring more power than has been dimensioned;

• Decrease of functionalities.

Irrefutably, security poses an overhead which manufacturers may or may not be willing

to embrace, reinforcing the importance of choosing adequate cryptographic primitives to the

importance of data and device capabilities.

2.8 Chapter overview

Security is not assured by the simple use of cryptographic methods but instead a combination

of factors. Safe programming, physical protection, protocol design and cryptography must

work together before the mentioning or assumption of security. The number of possible

attacks and security threats to these tiny and fragile devices will continue to grow along with

their interest in similarity of what has happened when introducing new technologies in the

past such as Android.

From the set of fundamental principles needed for their security one issue will be further

studied from a performance and requirements based perspective: what different cryptographic

techniques and cryptography based solutions offer and their respective costs and requirements.

20

Chapter Three

Securing IoT

“Securing” might be a very deceptive word since it implies the existence of security. And

security, as many other related properties, is a very delicate state. A state which can only be

provided by assessing all the possible situations and scenarios and, in the end, might become

impossible to prove. Security, as a chain, is only as strong as its weakest link consisting of

a series of components which, when erroneous, will not verify this property. Nevertheless,

its implementation has to germinate somewhere and starting by discussing communications

security is a valid place to begin as any other and, in IoT, securing such communications

might be more important than it appears initially.

3.1 Trusted computing base

References to the expression “Trusted Computing Base” can be traced back to 1979 [17] where

it is described as the access control mechanisms for operating systems, referring only hardware

and software mechanisms. Meanwhile, more recent definitions [18] evolved to consider also

firmware defining TCB as:

The totality of protection mechanisms within a computer (i.e., hardware,

firmware, and software) responsible for enforcing security.(...)

When applied to IoT and WSNs, however, this definition could perhaps be extended

accordingly to the point of view: if the set of devices/gateways that comprise the scenario

is considered a tightly coupled system in the same way that peripherals inside a computer

are, the TCB corresponds to the totality of protection mechanisms within the scenario itself.

Such analogy might be reinforced arguing that a gateway receives data and sends control

commands to the devices in a oddly resemblant way that a CPU/CPUs inside a computer do

to peripherals. The major difference between this extended definition and the cited is that

the resulting scenario of multiple small components interacting is not a computer, however it

can still be considered as an entity to protect as a whole due to the risk that compromising

a single entity might cause to the system as an all.

21

Protection of such entity must consider protecting also the interaction between its com-

ponents which may be physically separated and communicating over a shared medium. Such

can be performed through the use of cryptography which aids in providing a number of

properties[19]:

• Authentication— verification of the message origin. Messages are originated at a known

source and not at an external party;

• Authorization— the process of verifying access privileges[20]. Cryptography itself does

not provide authorization, however, authentication is essential for implementing au-

thorization mechanisms and authentication can be provided through it;

• Data confidentiality— act of hiding a message contents;

• Integrity— guarantee that communications were not altered while in transit. This is

not exclusively applied to attacks but to all situations where messages, upon reaching

the destination, deviate from the original content;

• Non-repudiation— the inability of a message sender latter denying sending it.

3.2 Sufficient and rational security

As mentioned previously, the act of securing the devices communications introduces an ad-

ditional overhead. What would be desirable are fast, low memory, cryptographically strong

algorithms that perform similarly across heterogeneous architectures. This does not, however,

comply with the real world where:

• Cryptographically stronger algorithms are often associated with a lower throughput;

• A given implementation may favor execution time by neglecting memory (e.g. use of

lookup tables, loop unrolling, ...) but there is always an obvious trade off;

• Performance of the same exact code can vary according to architecture characteristics

such as the number and size of CPU registers or specific instructions.

However, it’s important to realize that security mechanisms are no more than tools to

enforce security policies. The recognition of this fact leads to the conclusion that a given

cryptographic technique may be considered strong in one scenario while being considered

weak in another and vice-versa: it simply depends on the level of security required by the se-

curity policy. This “sufficient security” can reveal itself to be a double-edged sword between

resources required to apply cryptographic techniques and the security of those same tech-

niques. Nonetheless, it implies that multiple methods should be considered when discussing

the act of implementing security. Disadvantages in one scenario may not seem so in another

22

and advantages may prove to be irrelevant: only the security requirements may define it by

setting the adequate security level— including communications security level.

Besides setting an adequate “cryptographic level”, it’s essential to choose wisely exactly

what security properties should be verified. For instance, IoT shows a small nuance regarding

data privacy that is worthy pointing out. In a computer the data consists in data fluxes trig-

gered by humans— either by starting a program or performing another action— containing

data related to a particular human action which ultimately are related with the human him-

self and obtaining/intercepting the data equals to obtaining information about such human.

That’s where data privacy should be applied assuring that the transmitted information and

the knowledge of the action that led to such flux of information can only be obtained through

the mentioned human. Meanwhile, in IoT sensors such action can be worthless under one

circumstance: when sensors are deployed in a public access area. If data can be obtained

through other (even perhaps easier) means than requesting it from the device, there is no

data privacy despite the use of techniques to do so. Such paradox indicates that in likewise

situations it should be clear if data is worth hiding in each and every scenario— and in public

access scenarios this answer might be negative. This does not argue with the importance of

data privacy in many if not most of situations but simply states that there is no point in ap-

plying cryptographic techniques to enforce it where it cannot be enforced by them indicating

that deciding which security properties should be a rational process in order to apply rational

security measures— cryptographic actions that effectively enforce security properties.

3.3 Symmetric Ciphers

Symmetric ciphers refer to ciphers which use the same key to perform encryption and decryp-

tion of, respectively, plaintext and ciphertext. Despite the existence of asymmetric cryptog-

raphy, symmetric ciphers have been extensively used due to requiring less computing power

and, consequently, being faster.

Such ciphers only require that a secret has been shared amongst parties— the encryp-

tion/decryption key.

3.3.1 Block ciphers

Block ciphers are algorithms that operate through fixed-length sets of bytes (blocks) mapping

n-byte size blocks of plaintext into n-byte blocks of ciphertext where the algorithm mapping

between plaintext and ciphertext is specified by a secret key K. Such situation is depicted in

figure 3.1.

23

Figure 3.1: Operation scheme of block ciphers.

When simply mapping between plaintext and ciphertext, however, one situation occurs:

equal plaintext block will originate the same ciphertext blocks. This simple transformation

of text, without additional complexity, is called Electronic Codebook mode (ECB)— one

of the block ciphers mode of operation— and it should be avoided specially in the context

of IoT. Given that some of the original plaintext is known— perfectly reasonable knowing

the message format/envelope used to transmit data— cryptanalysis to obtain the secret key

may be possible. This problem had been identified long before IoT, however, it can provide

an additional risk in such scenario: in devices providing sensor data, more correlations of

plaintext-ciphertext can be inferred by both varying and sensing the surrounding environment

(e.g. changing temperature near a temperature sensor). Besides the risk of cryptanalysis,

using ECB mode also allows for replay attacks.

Operation Modes

Meanwhile there are several other modes for block ciphers that not the ECB mode which

prevent such situation relying on the use of more factors than the mere shared key such as[21]:

• CBC (Cipher Block Chaining)— The first block of plaintext is xored with an Ini-

tialization Vector (IV) 1 before being ciphered. Consecutive blocks are xored with

the previously obtained block of ciphertext before being ciphered. Decryption mirrors

those operations in order to obtain the original plaintext.

• OFB (Output Feedback)— This mode transforms a block cipher into a stream cipher by

the use of feedback. In the first block, the IV is ciphered, originating a keystream2. The

resulting keystream is then xored with the plaintext in order to obtain the ciphertext.

Meanwhile, n-bits of the keystream are reused as the IV for the next block, generating

a new keystream.

1An IV is a fixed-size input to a cryptographic primitive used in order to increase the entropy
level. Such values are typically required to be random or pseudorandom and non-repeatable (at least
during a reasonable amount of time).

2Stream of random or pseudorandom values.

24

• CFB (Cipher Feedback)— Similarly to OFB, this mode also transforms a block cipher

into a stream cipher. The difference between the two modes is that in CFB mode

instead of the keystream, n-bits of the resulting cryptogram are reused as IV for the

next block.

• CTR (Counter)— CTR mode distinguishes itself from the previously presented modes

by not using resultant parts of the cryptographic primitive as IV bits for the next block.

Instead, starting with a negotiated value ctr, each i-th block to cipher is xored with

the resulting keystream of ctr + i. Although this mode converts a block cipher into a

stream cipher, random block access is possible as in ECB since it’s only necessary to

know the block number and the initial ctr (besides the shared secret, obviously).

All presented modes, independently of transforming block ciphers into stream ciphers or

not, assume state. This strongly implies that stream ciphers should also be considered and

not discarded due to the need of keeping state: block cipher operation modes that do not

reveal patterns also require state and considering them for use brings stream ciphers into the

equation.

3.3.2 Stream ciphers

Stream ciphers are a practical approximation of a One-time pad3. Stream ciphers produce

a continuous, pseudorandom keystream which can then be used combined (usually using the

Xor operation) with the plaintext, producing ciphertext[23]. The shared secret, K, defines

the behavior of the pseudorandom generator by altering its internal state. Representation of

this behavior is depicted in figure 3.2.

Figure 3.2: Operation scheme of stream ciphers.

It’s important to note that for the same key and plaintext, without a previous state (new

initializations), the resulting ciphertext will be the same. Therefore, if a stream cipher’s

3One-time pad is a perfect, theoretical cipher presented by G. Vernam in 1926 where a truly
random key whose length is equal or greater than the data is used to encrypt it. Since the key is
completely random and at least of plaintext length, there is nothing that differentiates the ciphertext
from truly random bits.[22]

25

internal state is restarted/reset multiple times, it is a good practice to combine the key with

an IV in order to avoid replay attacks.

Since stream ciphers do not operate through block of data, one advantage is obvious: not

requiring padding in order to cipher a given amount of plaintext as it may be necessary with

block ciphers. Such property, in practice, means that less bytes may need to be processed by

these ciphers.

3.3.3 What they provide?

Symmetric encryption, as well as all the encryption techniques, nullify eavesdropping assur-

ing data privacy. If there is guarantee that the secret is only shared among parties, only the

intended entities will be able to interpret the information exchanged. Simply encrypting mes-

sages, however, does not prove that the message has not been altered (no integrity checking)

and does not prove that the message originated in the intended source (no non-repudiation).

In order to provide both data privacy, message integrity and/or non-repudiation, encryption

must be combined with additional cryptographic techniques.

This type of encryption can be applicable to scenarios with the most restricted devices.

Assuming that keys are placed in devices (have been pre-distributed during manufacturing

or other techniques), devices can then apply privacy to their communications using a single

key. Symmetric cryptography is also known for being faster than alternatives being adequate

to environments where throughput or power constrains apply (due to faster encryptions/de-

cryptions, devices can dedicate more time to be in a low power mode). Meanwhile there is

a clear scenario distinction between block and stream ciphers. Stream ciphers are known

for being faster than block ciphers however this usually translates in more memory usage.

Some stream ciphers are also known for being extremely lightweight however offering low

data rates. Block ciphers, on the other hand, are more balanced.

3.4 Message Authentication Codes

Message authentication codes (MACs) are pieces of information resultant of an operation over

a given message and a secret key with the intent of assuring integrity and authenticity. A MAC

intent is the same as a checksum— prove that the message did not suffer changes— with the

particularity that only entities with knowledge over the secret key can verify such condition.

It does not provide non-repudiation since any subject knowing the key and the message

could be the source not tying the message to a specific source, however, it authenticates the

message— the message originated in a valid source (even if being replayed later, the message

was in fact created by a valid source).

Due to the intent of providing integrity checking, one property of good MACs can imme-

diately be extracted: small changes in the original text should be translated into significant

MAC changes (same as in good checksums). Another important characteristic is that a MAC

must resist existential forgery. That is, even if an attacker would have access to an oracle

(containing the key used in the process) capable of generating MACs for given plaintexts, the

26

attacker still would not be able to extract the secret key[24]. The number of captured pairs

of plaintext/MACs should not provide inference about the used key.

There are several strategies to produce such codes including[25]:

• Using a cipher in CBC mode— since CBC block encryption depend on the previous

block, changes in blocks are propagated until the last block (used as MAC) being

possible to verify the correctness of the message;

• Hash function based constructions— using a construction based on a shared key and the

message, a hash is generated. Since hash function properties include[26]: (i) resistance

to discovery of original text; (ii) resistance to discovery of a second text with the same

hash; (iii) collision resistance, an attacker cannot recover the key neither can forge new

messages;

• Using pseudorandom functions (XOR MACs)[27]— Using a pseudorandom function,

the internal state is initialized by the secret key. The message, divided into blocks, is

then processed by the pseudorandom function, generating a series of keystream blocks.

Those blocks are then xored in order to obtain the MAC.

3.4.1 HMAC

HMACs or Hash-based message authentication codes deserve a special place along the hash

based techniques to generate MACs due to the fact that it is extensively used including in both

IPSec and TLS. First proposed by Bellare, Canetti, and Krawczyk[28] in 1996, the HMAC

construction is based in two passes of a generic hash function, a secret key and padding as

depicted in figure 3.3.

Figure 3.3: Scheme of the HMAC operation.

Construction strength depends on the underlying hash strength, however, besides increas-

ing the time necessary to create rainbow tables, weak collision resistance may be masqueraded

27

due to padding addition and two hash passes4. For example, while the MD5 hash use is not

recommended where collision-resistance is important, the HMAC construction using MD5

has yet to reveal a practical vulnerability[29].

Since calculating a hash usually requires more instructions (and therefore more time) than

performing xor operations between the key and padding (and those can be precomputed),

HMAC performance can be correlated with the underlying hash function performance, being

the performance as varied as in the possible hash functions universe.

Similarly to the advantages provided by symmetric ciphers, MACs are the best choice for

very constrained devices (again, assuming that keys have been pre-distributed). Symmetric

cryptography is, in general, faster than the asymmetric counterpart and can be deployed

in a larger number of devices. MACs should be used whenever the devices are restricted

however their communications require data integrity and/or authentication and the property

of non-repudiation is not relevant.

3.5 Public-key cryptography

Public-key cryptography or asymmetric cryptography, in contrast to symmetric, is not based

on the existence of a shared key. Instead, a pair of distinct, mathematically correlated keys

is used: a public key and a private key. The private key is inherent to a single entity (e.g.

device) while public keys can be freely distributed since the mathematical correlation between

keys cannot be solved in polynomial time not incurring in risk of derivation of the private key

if the keys used are large enough. Data sent from a device to another can use the destination

device public key to encrypt data with the guarantee that only the target device will be able

to decrypt it. Such situation is depicted in figure 3.4.

Figure 3.4: Asymmetric encryption and decryption scheme.

4Warning: this may also not happen. Careful planning is required when dealing with hash func-
tions where collisions can be found by performing appropriate research about the possibility of colli-
sions using HMAC with each particular considered function.

28

The illustrated situation seems to have an apparent problem. If Bob receives a message

encrypted with his public key he can decrypt it using its private key. However, apparently

he cannot be sure that the message originated in a valid source— Bob’s public key is public

and available to everyone including eavesdroppers. Meanwhile, this is not quite true. If the

message origin decided to create (for example) an hash for the message and then encrypt it

with its own private key, both authenticity and integrity of the message would be assured.

Even more, the message origin could be pinpointed exactly, providing the property of non-

repudiation. This is what is called a digital signature. Digital signatures are no more than

pieces of information that, besides assuring integrity of a larger piece of information, allow

the recognition of the entity that produced it.

As mentioned before, security in asymmetric techniques relies on the knowledge of the

private key only by the proper entity. It’s then crucial to ensure that the private key cannot

be derived from the public key in polynomial time using an adequate key size and algorithms

based on either: (i) Integer factorization problem; (ii) Discrete logarithms; (iii) Elliptic curves.

3.5.1 Elliptic curve cryptography

The use of public-key cryptography presents a crucial disadvantage over symmetric tech-

niques: is several orders of magnitude slower[30]. Besides, while in symmetric algorithms as

the key grows linearly with the processing speed, the same does not apply to asymmetric

methods. That is, if not considering techniques based on elliptic curves (ECC). Such algo-

rithms have already been described as ideal for embedded applications due to a decrease in

both processing speed and memory requirements compared to integer factorization/discrete

logarithms techniques due to a smaller key size to offer equivalent security. While solving

other asymmetric techniques has an sub-exponential complexity, ECC mathematical prob-

lems solving is considered totally exponential[31]. Relations among key sizes (in bits) can be

observed in table 3.1.

Symmetric ECC RSA/DH/DSA5

80 163 1024
128 283 3072
192 409 7680
256 571 15360

Table 3.1: Key sizes to provide equivalent security in different techniques.[32]

ECC is the de facto choice when considering the use of asymmetric techniques to secure

restricted devices. Implementations consume less memory and perform much faster (and

with difference increasing as key length increases) including on constrained 8 bit micropro-

cessors[33]. Still it is slower than many available symmetric key techniques. This does not,

by all means, intends to say that public-key cryptography should be discarded: simply that

advantages and disadvantages should be considered when deciding between the two.

5Discrete logarithms/integer factorization based algorithms

29

As in the computer world, hybrid cryptosystems can be used. Public-key cryptography

can be used, for instance, for key distribution (and afterwards being used symmetric algo-

rithms) in order to avoid key overuse and solving the key distribution problem. After the

initial key exchange devices would be able to execute simply symmetric algorithms being

subjected to their power/throughput/memory requirements. Besides the hybrid approach

solving key distribution while having the symmetric ciphers advantages afterwards, a larger

amount of permanent memory is required. It should be noted that even in the computer world

whenever periodic or peak and sporadic data transmission occurs, the sole use of asymmetric

methods is exceedingly rare. In constrained or even powerful IoT devices (but with less ca-

pabilities than a regular computer) there is no reason for it to happen unless no-repudiation

is a must.

3.6 Routing and cryptography

There are two distinct situations that may arise: when communication is performed directly

between a device and a gateway (or simply between two devices) and when it’s performed

through the use of other nodes. As mentioned previously, only using cryptography is not

enough to eliminate threats: careful protocol design also contributes to this. And any protocol

designed with the intent of security as well as including routing will only consider messages

that have a valid source (authenticated) implying that devices participating in the routing

process must have a way to validate messages in order to decide if they are accepted or

discarded. In practice this means that using symmetric cryptography at least one shared

secret will be used and in asymmetric cryptography a pair of public/private keys per device

(it wouldn’t make sense to have a private key shared amongst devices since they wouldn’t be

considered private anymore).

Further expanding this logic means that situations can be comprehended somewhere

between a single symmetric key shared by all the devices to a unique key/pair for each pair of

nodes in the routing path. The first has an immediate disadvantage: success in compromising

a single node and obtainment of its secret key equals to obtainment of the secret key used by

all the remaining nodes in the routing process. The latter leads to a differentiated situation

among symmetric and asymmetric cryptography:

• When using symmetric cryptography, if there is a single key shared among pairs, only

the next hop in the routing path is able to verify the messages’ authenticity. Therefore,

it is necessary to create a new authentication tag for each hop in the path. This

eventually uses more resources and introduces a greater delay than simply verifying

the message’s authenticity. The same can be applied to more than a single pair of

devices (groups of devices) except that tags are newly generated when communicating

among different groups.

• Using asymmetric cryptography, all nodes in the path can verify the messages’ authen-

ticity. Authenticity can be verified since only the public key is necessary. However, it

30

implies that each device contains other devices public keys, using memory resources.

Either way, secure routing is not an easy task and cannot be addressed trivially. How to

address routing should also be suited to the security policies and the scenario, defining how

serious it is for the routing structure to be compromised.

3.7 Operator coupled security

In some scenarios, there may exist the need for devices to communicate using a cellular

mobile operator. By doing so, and using the operator’s infrastructure, the device’s commu-

nications will be subjected to the security provided by those same infrastructures using, for

that purpose, a SIM card.

Securing devices using SIM cards implies a completely specified transport and security

solution on its own since all negotiation, primitives to use, infrastructure and entity roles

are predefined. Manufacturers can integrate GSM/UMTS/LTE modules into their devices

and simply communicate using the operator already built infrastructure to transport data

and operators wishing to infiltrate the M2M business can simply rely on their own and their

partners infrastructure (for which use, contracts have already been previously established).

3.7.1 Wide availability

Along with the existing transport infrastructure, another great advantage appears: wide

geographical availability provided by mobile technologies. The infrastructure is available in

many remote areas. Oddly enough, this is where possible drawbacks begin to appear: GSM

coverage is still wider than UMTS or LTE counterparts. Choosing to use a SIM card to secure

devices is not a terminal choice— it’s still necessary to choose which mobile technology will

be used— and this may be conditioned specially in remote areas.

Using Portugal as a case study, a report from ANACOM 6 shows that mobile coverage

is not evenly distributed amongst GSM and UMTS [34]. Figures 3.5a and 3.5b show the

signal levels observed in the mentioned report for the Vodafone operator (the operator which

presented less coverage).

6ANACOM or Autoridade Nacional Comunicações (National Communications Authority) is the
entity legally responsible for regulation and supervision of both postal and electronic communications
in Portugal.

31

(a) GSM coverage in Portugal[34] (b) UMTS coverage in Portugal[34]

Figure 3.5: Comparison in coverage between GSM and UMTS in Portugal. Green

indicates good signals levels, yellow acceptable, red bad and black nonexistent.

It’s visible that there are multiple spots where UMTS signal is poor or inexistent. GSM

however, despite containing areas with low signal levels, does not show spots with inexistent

coverage. Also important to refer is that the study focused only on the main urban areas and

highways: disparity in coverage may be even greater in more secluded areas. Despite LTE

not being studied it’s safe to assume that coverage is more restricted since it’s a more recent

technology and deployment began later.

The possible fallback to GSM use requires then a further study of this technology and its

evolutions in a security perspective.

3.7.2 GSM

GSM or Global System for Mobile Communications is a standard accepted by ETSI in

1989 as the de facto standard for the second generation of mobile communications (2G),

surpassing 2 billion users in 2006 [35]. Meanwhile, besides live, breathing users, GSM (and

consequently GPRS 7) have also been associated with M2M and IoT projects from industrial

7GPRS or General Packet Radio Service added packet capabilities to the original GSM, increasing
possible throughput and expanding network capabilities.

32

data acquisition[36] to microbots[37] and others[38] with an expected almost exponential

increase in subscriptions in the short-term future[39].

GSM security is granted by the SIM card present in a mobile terminal. Such card con-

tains an IMSI (International Mobile Subscriber Identity)— a 64 bit number which identifies

the equipment— and a secret 128 bit number, Ki (Authentication Key) along with hardware

implementation of cryptographic primitives. The assumption that only the SIM card and

another GSM system component inside the operators’ infrastructure— the Auc or Authen-

tication Center— know these numbers is the basis for GSM security, despite the fact that

the IMSI is extracted from the card to identify the terminal every time it enters for the first

time in a different geographical area (location area). There are also two additional compo-

nents called the MSC or Mobile Switching Center and the VLR or Visitor Location Register

which are responsible for negotiating security and storing credentials respectively. Whenever

a mobile terminal intends to be authenticated before the network:

1. Without considering additional communication, messages eventually reach the AuC

indicating the mobile terminal intention of being authenticated;

2. AuC generates a random number (RAND), calculates 2 additional numbers— SRES

and Kc— using the mobile terminal Ki and algorithms known as A3 and A8 and sends

them to the VLR;

3. The VLR sends only the RAND to the mobile station;

4. The mobile terminal calculates SRES and Kc since it also possesses the Ki and the A3

and A8 implementations;

5. SRES is sent to the VLR by the terminal;

6. If the SRES sent by the device equals to the SRES contained in the VLR, the authen-

tication process is successful.

a) Optionally, if encryption is desired, the Kc is passed to the BTS and used to

encrypt future messages using the negotiated algorithm— A5/1 or A5/2.

For a clearer understanding of this process, entities involved in the GSM negotiation are

depicted in figure 3.6.

33

Figure 3.6: Very simplified scheme of the GSM infrastructure depicting entities involved

in authentication.

Not depicted is the exchange of the IMSI for another number designated TMSI (Tempo-

rary Mobile Subscriber Identity). Instead of identifying the mobile using the IMSI, a TMSI

is randomly assigned by the VLR to the mobile device with the purpose of anonymity.

From the described process, one of the first things to notice is that authentication is

not mutual: only the terminal is authenticated. This, along with other problems have been

identified in the GSM system since its conception. Toorani and Beheshti[40] did a great job

at enumerating the 12 most important vulnerabilities in GSM, some of which are illustrated

here:

Unilateral authentication. Already tackled in this work related to other issues, it allows

man-in-the-middle attacks as long as the attacker possesses the equipment (fake BTS);

A3 and A8. Despite liberty to choose the algorithms, many operators used COMP128.

Flaws discovered in this algorithm allow the exposure of the Ki;

Weak cryptographic algorithms. Both A5/1 and A5/2 allow the extraction of the en-

cryption key in real-time;

Loss of anonymity. Despite the use of a TMSI instead of the IMSI, BTS impersonation

can be used to reveal it;

SIM cloning. Obtaining the IMSI and the Ki is the only requirement to clone a SIM card—

and both are possible to obtain;

Lack of end-to-end security. Encryption of data is only performed between the mobile

station and the BTS.

Given these problems, the difficulty of an attack may reside mostly in obtaining equipment

capable of BTS impersonation. Deploying physically unprotected devices is also increasingly

threatening: while obtaining the Ki using the air interface takes hours, physical access to the

SIM reduces that time to about one minute (not that it matters much if the devices will stay

unprotected for days or more— any method will work).

34

It’s also important to note that not all the presented problems are always true. Due to

the exposure of GSM weaknesses, manufacturers deployed new authentication/key generation

and encryption algorithms in more recent SIM cards even if intended to be used in GSM-only

networks: A5/3 instead of A5/1 and A5/2 and COMP128-2/COMP128-3 instead of previ-

ously used COMP128. However relying in such updates may be a gamble— SIM cards can or

cannot have updated cryptographic primitives, the only way to know for sure being testing

each one of the SIM cards which may not always be viable. Meanwhile, the authentication

process continues to be unilateral, allowing BTS impersonation.

While the previous presented encryption algorithms hold true for almost all data trans-

mitted using GSM (including voice, SMS traffic and consequently WAP messages), there

is one exception: GPRS. While the key obtainment for GPRS is exactly the same as in

GSM (where only entity names change), GPRS uses a version of GEA (GPRS Encryption

Algorithm) to encrypt all data. To this date, there have been not many significant stud-

ies regarding GPRS (and consequently, its enhanced version EDGE) security. However, one

presentation at Chaos Communication Camp 2011 8 shows that not all operators choose to

encrypt their data. There is a probability of all data being transmitted in plaintext, being

dependent on the operators’ policies regarding GPRS security.

Even when GEA is used to encrypt messages one additional problem arises: the first two

version of this algorithm hadn’t been disclosed to this day. However, the first version of this

algorithm (GEA/1), proved to be highly susceptible to attacks as it was possible to infer

the internal state in minutes despite its obscurity at the previously mentioned presentation.

Relying on security through obscurity has not proved successful in the past and GPRS may

no longer have claims of security if the GEA family of algorithms looses its secrecy.

3.7.3 UMTS and LTE

In contrast with GSM, pure use of UMTS and LTE have not been exploited in a way that

can compromise the mobile terminal. Starting with 3G (UMTS), new features include[41]:

• Mutual authentication: both the network and the mobile are authenticated before each

other, eliminating the possibility of impersonation;

• Message integrity: not just encryption as in GSM;

• Use of stronger cryptographic primitives both for encryption and authentication/key

generation.

Practically speaking, devices communicating using 3G and 4G cellular networks have a

chance of being secure. There are, however, some nuances that must be taken in consideration:

8http://events.ccc.de/camp/2011/Fahrplan/attachments/1868_110810.

SRLabs-Camp-GRPS_Intercept.pdf

35

http://events.ccc.de/camp/2011/Fahrplan/attachments/1868_110810.SRLabs-Camp-GRPS_Intercept.pdf
http://events.ccc.de/camp/2011/Fahrplan/attachments/1868_110810.SRLabs-Camp-GRPS_Intercept.pdf

• For devices capable of operating in dual mode (UMTS and GSM), a man-in-the-middle

attack has been described. It’s possible to impersonate a GSM BTS and force the hybrid

device to communicate using the GSM scenario[42].

• More attacks based in GSM/UMTS interoperability are possible including eavesdrop-

ping (obtaining the encryption key) and device impersonation [43]— assuming that

there can exist two subscribers with the same identity in the network.

• KASUMI, the encryption primitive used in UMTS and updated GSM SIM cards, de-

spite using 128 bit keys, has cryptographic weaknesses. An attack described by Dunkel-

man, Keller, and Shamir[44] allows the obtainment of the key used with time complexity

of 232. Despite this attack requiring known plaintext and related keys, not being practi-

cal in a UMTS scenario without flawed implementations, a decrease in complexity from

2128(exhaustive search) to 232 raises questions about the longevity of this cipher[45].

Despite those flaws, using pure UMTS or LTE communication eliminates the vulnerabili-

ties presented by multi-mode operation and possible fallbacks to GSM authentication and the

concerns about UMTS cipher longevity are only applied to the future. However, despite an

increase in security in more recent mobile technologies than GSM, an additional issue needs

to be addressed: where exactly data protection ends using operator coupled security.

3.7.4 End-to-end security

A very important security aspect is to identify exactly where secure messaging must exist in

order to select the appropriate techniques. SIM card security can effectively secure commu-

nications between devices and the operator to which it is connected. However, when secure

communication between devices and a server/machine located somewhere on the Internet is

required, solely using SIM cards is not enough. Independently of the used cellular technology,

eventually messages/data have to leave the operator’s infrastructure and be routed through

the Internet in order to reach their destination. Such situation is depicted in Figure 3.7.

Figure 3.7: Representation of the data path using an operator’s infrastructure. De-

spite the devices pictured being mobile phones, they should be interpreted as devices

communicating using SIM cards.

36

Ultimately there are two questions to consider: how secure is the operator’s infrastructure

and how secure is the path between the infrastructure and the messages’ destination. If an

operator intends to provide M2M services, it can answer these questions since it knows its

own infrastructure and will define the services it provides. Others may have difficulties

answering such questions, requiring pondering on how important and sensitive is the data.

When availability is important, however, the use of SIM cards may be nothing more than

the mean to transport data, delegating security to other techniques which provide end-to-end

secure messaging. This also does not consider scenarios where the operator provides security

services (the operator decides the set of services it provides to end costumers) but a generic

scenario where operators are no more than data pipes.

3.7.5 SIM malware

All operator provided security ultimately relies on the existence and integrity of the SIM

card: the entity responsible for holding the shared secret which constitutes the base for

secure communications. Meanwhile it happens that, despite all cellular protocol evolutions

and security features, it may be possible to compromise the SIM independently of the cellular

technology generation. The communication protocol is not the only requirement for security

and the SIM functions as a safe anchor providing the devices a trusted module. Jeopardizing

such role would invalidate the security provided by the SIM card.

However, at Black Hat USA 2013, a method for injection of malware into a SIM card was

presented and was demonstrated through a proof of concept[46] by Karsten Nohl, resulting

in the abolition of the concept of SIM as an impenetrable secure module.

Already mentioned previously, faulty or careless OTA implementations may lead to code

injection. And it happens that SIM cards are one good example of such situation. OTA

updates are performed through the use of a specially crafted SMS using, commonly, the DES

56-bit key cipher for protection. At the same time, it may be possible to send an OTA

message with an invalid cryptographic checksum and still obtain a response containing a

valid checksum created by the SIM card. Due to the relatively small9 key space, it’s possible

to infer the OTA key, being of particular relevance the use of precomputed values (rainbow

tables) to decrease the time complexity. From the moment that an attacker has the OTA key,

it can deploy Java applications on the SIM card. Even further, it may be possible to bypass

the “traditional” operations permitted by the Java environment being executed in the SIM

in order to extract the Ki, alter the OS, etc. At least to perform simple operations (without

Java environment bypassing) such as abusing payment schemes, only 3 requirements are to

be met:

• The crafted SMS reaches the SIM card (it will not be handled by the device but by

the SIM card itself);

9Specially considering the nowadays widespread use of, at least, 128-bit key primitives such as
AES-128 to secure sensitive information.

37

• SIM card allows the issue of OTA commands protected using DES or a defected 3DES

implementation (for instance using the same key for multiple DES operations);

• The SIM card replies to the SMS with a valid cryptographic checksum.

It’s important to note that not all SIM cards are vulnerable to this attack (where one of

the presented conditions is not met). However, such as the inclusion of resilient cryptographic

primitives for use in GSM, it’s a gamble. For geographical stationary IoT devices, operator

filtering of OTA messages not originated in intended sources is enough to nullify this situation

as long as BTS impersonation is not possible. Operators may also have patched this exploit

through cryptographic primitive updating or assuring that the SIM card will not reply with

a valid checksum. In fact, before disclosure of this attack several operators were notified in

order to have time to mend it. Still, the ultimate question of which operators took effective

measures remains. As with GSM cryptographic primitives, the only way to know for sure

may be testing SIM cards individually, including in different network locations (OTA message

filtering may only apply when devices are connected to the operator’s and not one of the

partners’ infrastructure), which is not always viable.

3.8 Chapter overview

In this chapter an overview of cryptographic techniques and their properties have been dis-

cussed. A complete deployment scenario (use of SIM cards) also have been described an-

nouncing their advantages and disadvantages. The goal was not to completely describe all

cryptographic options (for that it would require a book or more) but instead offer a perspec-

tive on how the most common cryptographic methods would apply to IoT. Secure routing

was also mentioned as it is still a vast field for optimizations and presents a quite delicate

balance between security and requirements.

After this general overview, it’s time to observe exactly how these “constrained devices”

behave while subjected to cryptographic algorithms to establish their impact using real values.

38

Chapter Four

Evaluating cryptographic

implementations in IoT devices

In order to search for suitable algorithms for use in both restricted devices and heterogeneous

environments, a small cryptographic library was created featuring three classes of algorithms:

block ciphers, stream ciphers and HMACs. Such algorithms were then executed in multiple

devices and evaluated according to several criteria.

4.1 Methodology

Results, by themselves and without providing sufficient context information, can prove to

be utterly meaningless. Results as well as their conclusions are based on the idea that they

will hold true in one or more situations. From the moment that this property is not verified,

results become no more than mere abstract numbers. That is, if an experiment cannot be

replicated under the same conditions or if consequent realizations of it are not consistent with

the original data, the initial results and their respective conclusions are only applicable to

the scope of the first experiment realization. Even without considering that computers and

processing devices are mathematical tools, repeatability and reproducibility are essential for

any experiment, in any field of study, intending to provide real data.

The methodology emerges as a key to ensure that the results are reproducible. Indicating

all the conditions in which the experiment was conducted allows others to validate the results.

Even more, by explaining why certain conditions were selected, it allows a more incisive

discussion and others, with different goals/intents, can mold the conditions in order to satisfy

their own agenda and compare to the initial results accordingly. A detailed methodology is

essential since even with the same exact code, different results can be yield depending on the

hardware, tools and their version.

4.1.1 Devices

Given the possible heterogeneity of IoT scenarios, cryptographic primitives were executed in

multiple devices containing different CPU architectures.

39

The most restricted device used was a libelium Waspmote v1.1. Featuring an 8 bit

ATmega1281 running at 8 MHz, 8 KB of SRAM and 128 KB of flash memory [47], this

device has been advertised as adequate for WSN and IoT scenarios and is currently being

used in several projects1. Besides the embedded flash memory this device also contains a slot

intended for an SD card. However, such card is only used for storing data and files and not

to contain code to be executed in the Waspmote. It is also important to state that this board

is somewhat similar to some Arduino boards in terms of characteristics.

A DETPIC32 board was also used. This board was designed at University of Aveiro and

features a 32 bit Microchip PIC32MX795 running at 40 MHz which includes 128 KB of SRAM

and 512 KB of flash memory. Besides the difference in clock frequency and manufacturer,

the fact that the microprocessor is classified as 32 bit can produce results that vary greatly

from results obtained in the Waspmote.

Another device used was a Raspberry Pi Model B. This device almost doesn’t require

introductions: this single board computer high popularity made it the subject of several

magazine articles, blog talks and open source projects. This popularity wages the Raspberry

Pi as an interesting device to analyze performance due to the fact that it can be used in several

enthusiast projects or even by companies intending to use the device’s popularity as a mean to

increase a given project popularity. The Raspberry Pi Model B features an ARM1176JZF-S

CPU running at 700 MHz. With 512 MB of RAM and the permanent storage being in form

of a SD card, this device has a much higher set of capabilities than the Waspmote or the

DETPIC32 board, being perfectly reasonable its use as a gateway node.

In order to ease comparisons between devices, a parallel among them is presented at table

4.1.

Waspmote DETPIC32 Raspberry Pi
CPU ATmega1281 PIC32MX795 ARM1176JZF-S

CPU Frequency 8 MHz 40 MHz 700 MHZ
Architecture type RISC RISC RISC

Instruction Set 8 bit AVR 32 bit MIPS32 32 bit ARMv6
RAM 8 KB 128 KB 512 MB

Permanent memory
128 KB Flash +
SD card

512 KB Flash SD card

OS None None
Raspbian wheezy (De-
bian based)

Table 4.1: Comparison of the used devices

Choices in the devices tried to reflect the multiplicity of IoT nodes. 8 and 32 bit mi-

1libelium’s web page includes a section entitled “50 Sensor Applications for a Smarter World” in
which it describes 12 areas and more than 50 use cases to take advantage of data provided by sensors.
For each area of application there are also a series of related articles some of which point to projects
currently being developed. The mentioned website can be found at: http://www.libelium.com/

top_50_iot_sensor_applications_ranking/ (last visited on 27-10-2013).

40

http://www.libelium.com/top_50_iot_sensor_applications_ranking/
http://www.libelium.com/top_50_iot_sensor_applications_ranking/

croprocessors may yield different results specially if primitives were designed to operate (for

example) between 32 bits of data at a time (being more adequate for this type of microproces-

sors). Besides differences in the clock frequency, changes in the manufacturer and instruction

set are also reproduced in the resultant assembly code introducing variations in the code

executed by the microprocessor.

4.1.2 Performance metrics

Throughput

In this context, throughput can simply be defined as the amount of data processed by a

specific algorithm per unit of time. In other words, throughput can be expressed in any

unit that correlates amount of data and time. To allow a broader range of possible future

comparisons, 3 units will be indicated per algorithm:

Operations per second. The raw amount of operations that a device performs per second.

This unit does not take in consideration the block size of block ciphers neither the

amount of data to process passed to each call of a cryptographic function: it only

indicates the number of successful returned calls from a cryptographic function.

Bytes per second The volume of bytes that are processed by a cryptographic algorithm

per unit of time. For this reason, this is the value that should be taken in considera-

tion when assessing if an algorithm is adequate for a given situation (when there are

minimum data throughputs to comply with). It can be obtained merely by multiplying

the operations per second with the amount of data passed to perform each operation.

Cycles per byte This efficiency measure indicates the number of clock cycles required by

a device microprocessor to process each byte of data using a given algorithm. This

is particularly useful when comparing different implementations of the same crypto-

graphic primitive on the same device: if an implementation requires less cycles per byte

than another, the implementation can provide a greater throughput (and vice versa).

It also provides a view on the efficiency of the given algorithms on different devices and

architectures. These values can easily be obtained by dividing the CPU frequency by

the amount of bytes per second.

Throughput as an energy consumption metric

No actual measurements of real power consumption were held. While it is true that real

measurements are the best way to determine power consumption, it is also true that time

that a device has to spend being in active state to execute a cryptographic primitive is

time that the device will not be in idle mode. Given the disparities in power consumption

between active and idle states, it is possible to state with a certain degree of confidence that

slower algorithms may consume more power (with the confidence level increasing along with

execution time disparity), therefore making throughput a valid energy consumption measure.

41

There is also another variable to assess: if peripherals are active while data is being processed

(e.g. a communications module while performing cryptographic operations on data before

constructing a message). Peripherals active while waiting for a primitive to complete and in

a power-saving state otherwise, increase the confidence level of throughput as a consumption

measure.

Memory

Regardless of throughput and all its implications being a useful measurement, there are

additional parameters that should be taken in consideration when selecting an adequate

algorithm. One of such criteria is the amount of memory that it will require. Despite the fact

that RAM has a smaller magnitude than permanent memory, both volatile and non-volatile

memory usage should be taken into consideration since the depletion of either can bring forth

undesired consequences.

The amount of permanent memory used by a cryptographic primitive is easy to quantify:

it merely corresponds to the size of the binary file that will be written in the device’s perma-

nent memory or to the size of the executable file in devices with operating systems— being

constant. The exact load in a device’s RAM memory, however, is not so linear: different

stages of an algorithm use different amounts of non-volatile memory. As so, the approach

followed was to quantify the amount of RAM used as being the maximum amount of memory

that a given algorithm uses which corresponds to the memory requirements to execute the

primitive.

It’s important to refer that comparisons cannot be established rashly both in permanent

and volatile memory between devices with and without an operating system and even between

different devices due to a multiplicity of factors:

• An executable file in an operating system contains an header specific to that OS, using

more permanent memory space than it would without an header;

• Binary files to be written into devices may or may not contain different headers;

• Devices without an operating system do not use processes;

• Devices with operating system use processes and there is code, state and control data

associated with each process, resulting in an increase of RAM usage;

• If a MMU is present, pages will be allocated instead of the “real”, byte-exact memory

required to run the primitive.

As such, even if the compiled code (assembly) to execute were to be exactly equal in

both OS/non-OS devices (assuming same architecture), the amount of both permanent and

volatile memory used would still differ.

Permanent memory could also vary in similar devices due to changes/existence of an

header in the binary file. As for RAM, the existence/non-existence (and its use) of an MMU

42

can generate disparities as large as page size - 1, due to the need to reserve a memory page

to store a single byte of information.

Differences between devices led to a disparity in RAM measurement. In the Raspberry

Pi (device with operating system), a system tool was used to measure the total RAM used by

the processes— pmap. In the Waspmote, since no tools to profile memory were available, the

execution point where the call depth and memory allocation was superior was found and the

amount of free RAM was measured using manufacturer’s libraries. The DETPIC32, however,

does not has, at the present time, libraries that quantify and handle memory usage like the

Waspmote, being impossible to measure used memory without an implementation. Due to

this, RAM was not quantified regarding this device.

A summary of the methods used to quantify memory usage is provided at table 4.2.

Memory type Waspmote DETPIC32 Raspberry Pi
Volatile Manufacturer library N/A Process information

Permanent Binary size Binary size Executable file size

Table 4.2: Comparison of methods used to measure memory in the devices.

It’s also important to discriminate between base memory and cryptographic primitives

memory. Any program, even if including only function prototypes, require a base amount of

both permanent and RAM memory. The total memory used corresponds then to:

Total memory = Base memory + Cryptographic primitive memory (4.1)

The base memory used during benchmarking doesn’t correspond only to function proto-

types but corresponds to the memory required by an init and loop functions— initialization

and execution phases typically found in embedded systems— plus the code required to print

debug information— corresponding to printing memory usage or information about the num-

ber of performed operations. Such code as used in the different devices can be observed in

Appendix A and base memory values obtained can be observed in table 4.3. During exhi-

bition of the memory results, both total and cryptographic primitive memory are presented

since one corresponds to an increase in requirements by adding the primitive while the other

the total memory requirements for executing and printing information about it.

Memory type Waspmote DETPIC32 Raspberry Pi
Volatile 688 N/A 1536 KB

Permanent 2670 4272 5610

Table 4.3: Base memory values in the devices.

In order to better comprehend the results, it also should be taken in consideration that,

in the Raspberry Pi a complete operating system is running. RAM usage corresponds to the

amount of memory required by a process to execute successfully and, as mentioned previously,

43

this also contains code resident in RAM. That resident code will be the primary source for

RAM usage variations amongst primitives. This can be affirmed since no static variables

neither dynamic memory were used leading to memory being reserved in the stack. However,

in Linux, by default, 128 KB of stack space are allocated for each process (independently

of being or not used). If the stack memory used does not exceed that value, no variations

among data used by cryptographic primitives will be observed (and no implementations using

amounts of RAM 16 times superior to the Waspmote’s memory were selected).

Lastly but not less important, it should be noted that all the memory measures are

presented in bytes, except when is specifically stated otherwise by indicating the unit.

4.1.3 Implementation properties

Obviously, any practical implementation contains a particular set of key characteristics and

sometimes restrictions. This point explains the main features/properties of the implemented

cryptographic algorithms.

Programming language. The chosen implementation language was C. Despite assembly

languages being popular in optimized algorithm implementations, C code is somewhat

portable among different platforms which does not happen using assembly code. Due to

the intent of testing the exact same code against different architectures (given the hetero-

geneity of IoT devices), the use of assembly was discarded. Besides, this approach can be

more approximate to the industry where a developed library may not be used in a single

microprocessor/device but instead on a multiplicity of them.

Existing implementations. Instead of implementing each algorithm from scratch, existing

implementations were modified to be platform agnostic. The immediate advantage of this

approach is that a larger set of cryptographic primitives were tested. Implementing an al-

gorithm from the specification can require a significant amount of time and is error prone.

To maximize the number of implementations per unit of time this seems the more adequate

course of action. Besides such implementation would be used only in this specific test sce-

nario. Using modified existing implementations equals to benchmark implementations that

are being used in practical scenarios, adding an increased level of practical applicability to

the obtained results. Obviously, all the implementations were subjected to test vectors before

and after the modifications to ensure correctness.

Platform agnostic. As mentioned previously, implementations were modified to be plat-

form agnostic. This is quite possible starting by following one important MISRA C 2 advisory

rule regarding types:

2Since C code is error prone and some embedded systems require stability and reliability over
anything else, MISRA (Motor Industry Software Reliability Association), a collaboration between
industrial partners, started seeking the best practices for developing such systems. As a result, MISRA
C emerged as being both a subset and guidelines of the C language in order to comply with safety
in embedded systems. Initially intended for use in automotive systems (as the name indicates) it has
long expanded that use to being commonly associated with all types of critical systems.

44

6.3 (adv): ’typedefs’ that indicate size and signedness should be used in place of

the basic types.

Achieving this implies the discard of the common platform dependent integer types and

instead using integer types where the size in bits is well known and does not vary among

different compilers and architectures (called exact-width integer types in the C99 standard).

This was implemented by the inclusion of a header file containing the definition of the types

to use. Meaning that, to export the tested primitives for a different environment than the

ones used, it is only necessary to modify the definition of the integer types in that header file.

Additionally, any eventual dependencies on external libraries or external components

were also removed or replaced such as operations among blocks of memory (e.g. memset,

memcpy,...) which became supported by an additional implementation instead of relying on

system libraries. Following this approach led to platform agnostic implementations and the

cryptographic code used in all of the devices is equal with the exception of the header file

that defines the integer types size.

Data divided into blocks. Ideally data would be passed seamlessly to a given primitive and,

at each predefined interval, it would be possible to obtain the exact quantity of processed data.

In reality this does not happen: data must be passed in finite amounts— chunks of bytes—

and the total processed bytes equals to the number of successful calls to the cryptographic

function multiplied by the size of the byte chunks. While for block ciphers the pieces of data

passed correspond to the block size of the cipher, the same could not possibly occur with

stream ciphers and other cryptographic primitives (no concept of block). However, even with

primitives that don’t explicitly handle blocks of data, the data is actually processed in blocks.

Varying the chosen block size could vary the obtained results slightly due to the overhead

of multiple function calls/returns but this was not performed due to the belief that it would

require large variations in block size (and therefore number of function calls) to alter the

obtained results in a perceptible way.

For stream ciphers the data was passed into pieces of 80 bytes3. This value is significantly

higher than the typical blocks of block ciphers, however, stream ciphers would be in disad-

vantage over these ciphers if a small size were to be chosen since their otherwise continuous

operation would be constantly interrupted.

Meanwhile HMACs were benchmarked using 447-bit pieces of data. This may not seem

logical at first glance, however, all underlying hash functions were Merkle–Damgård construc-

tions. Such constructions operate on fixed size blocks and always add padding to accomplish

a multiple of the block size, even when the data to process can already be divided into blocks

(case in which a complete padding block is concatenated). At the same time, the chosen key

3This value was not choose at random. It actually corresponds to the sum of the minimum size of
an IPv6 header (40 bytes), the minimum size of an UDP header (8 bytes), the minimum size of a CoAP
header (4 bytes) and the size of the resource coap://test/.well-known/core (28 bytes) constituting a
total of 80 bytes.

45

size for HMAC was 128 bits and, by chance, all the underlying hash functions operated in

512-bit blocks. This means that the chosen value of 447 bits equals to the maximum amount

of data to perform an HMAC operation with a single underlying hash operation (only over

one block) while having the minimum amount of padding possible (merely 1 bit).

4.1.4 Tools and compilers

Whenever available, manufacturer/device creator provided tools were used. The reason for

doing so was to increase the level of realism in the approach and reproducibility in production

scenarios. In most occasions, when tools to assist programming are available, programmers

(including developers who work at companies) will use them. Even more, they might be

encouraged to do so, as by using tools different than the ones provided by the devices manu-

facturers they might not have support or assistance from the manufacturer’s side. If, by some

reason, the code does not function as expected, accountability will lay upon programmers

and project managers instead of manufacturers. 4

Waspmote was the only device used for which a dedicated IDE was provided by the manu-

facturer in order to assist programming. Based on the Arduino IDE (asserting once more their

similarities), this IDE is accountable for compiling code and uploading it to the Waspmote’s

flash memory. A more detailed look[48] identifies this tool as using the compiler AVR-GCC.

Whether any optimization flags are used or not is (unfortunately) unknown. Compiler ver-

sion, meanwhile, equals to the version installed in the system and, during benchmarking,

the AVR-GCC version installed in the system corresponded to the version 4.7.2. It’s also

important to refer that the version 0.2 of the IDE was used along with the version 0.29 of

the Waspmote’s API5.

DETPIC32 creators offer a tool in order to assist compiling for such device: pcompile.

Further analysis reveals that this tool is not more than a Linux bash script which underneath

resorts to using the PIC32-GCC compiler with the optimization flag -O2. Removal of such

optimization flag was not performed. That would imply changing a script that the device

creators implemented differing from the previously stated intended approach. It could be

4The libelium Waspmote is actually a good example of this behavior. In order to provide support
for developers, libelium hosts an Internet forum where its representatives aid external developers
in using both Waspmote and other libelium products. In such place, a topic was created by an
user intending to use Makefiles and AVR-GCC directly instead of the provided IDE. Besides other
responses it was specially stated by a libelium representative “However, your issues are out of our
support (...)”. Despite later helping users intending to discard the provided tools, it’s visible that the
first industry response is to differentiate between supported and unsupported situations.
Complete conversation is available at: http://www.libelium.com/forum/viewtopic.php?f=16&t=

8389 (last visited on 27-10-2013)
5The Waspmote API provided by libelium provides an abstraction layer when programming this

device. It includes functions and data structures to interact with communication modules, expansion
boards, Waspmote’s integrated sensors and SD card and a number of other utilities including ab-
stractions for communicating with a connected computer through a USB-Serial interface and a basic
implementation of memory management. In this context, both communication (to report results) and
memory management (for RAM measurement) from this API were used, hence the need to indicate
the specific API version to assure that the results are reproducible.

46

http://www.libelium.com/forum/viewtopic.php?f=16&t=8389
http://www.libelium.com/forum/viewtopic.php?f=16&t=8389

argued that modifying an optimization flag would cause no harm. However, such approach

would surely intend to leverage results obtained with optimization flags used and since it’s

unknown if the libelium Waspmote uses any optimization flags, there is no possible leverage.

Such would only be possible if instead of using the Waspmote IDE, AVR-GCC were to be

used directly and the optimization flags set manually (and therefore known, meaning that

leverage would be possible). Since such approach is contradictory to the principle of using

manufacturer tools, it was not performed. The compiler version used was the version 3.4.4.

Remembering that the Raspberry Pi features a entire Linux distribution, any choice of

IDE’s and compilers would be possible: there are no impositions from manufacturer tools.

Therefore, the approach followed was to use the GCC compiler (version 4.6.3) without op-

timization flags. The use of no optimization flags might be controversial (specially after

observing that the DETPIC32 code is indeed compiled with optimizations), however, this

was done for a reason: this way it’s possible to affirm that the obtained throughput is at

least as fast as the results presented. Establishing a minimum boundary means that there

is possibly plenty of room for optimizations in both throughput and binary size (GCC also

features an optimization flag intending to reduce the generated code size) without even per-

forming changes to the code but simply by altering compilation flags.

4.2 Block ciphers

Four block ciphers consisting of six variants were selected for benchmarking. The following

pages present a brief description of such ciphers as well as the reasons for their choice, the

best known attack and obtained results.

AES-128

No cryptographic library could be considered complete without featuring AES. Following a

5 year selection process, the block cipher Rijndael became known as AES (Advanced En-

cryption Standard) in 2001 with approval and standardization by NIST, being approved to

provide data confidentiality to sensitive information in the US Federal Government (but not

restricted for other uses)[49]. Since then, AES has been commonly deployed in hardware and

software due to its unique combination of performance, security and flexibility. It’s use was

so widespread that nowadays, in regular computers, CPU manufacturers include extensions

in their instruction set to perform AES operations, offering hardware implementations to

increase throughput and mitigate side-channel attacks[50].

Accepting keys of 128, 192 and 256 bits and featuring 10, 12 and 14 rounds respectively,

AES operates on 128 bit data blocks. The best published attacks revolved around side-channel

attacks which do not compromise the cipher itself but instead, specific implementations. Still,

cryptanalysis breaks for the total number of rounds in less attempts than brute force have

been published, being the best authored by Bogdanov, Khovratovich, and Rechberger[51].

This attack, however, does not provide any real threat against deployment of full versions of

AES-128 featuring a complexity of 2126.1, only slightly better than exhaustive search.

47

This particular implementation of AES-128 was based on an implementation by Texas

Instruments6 being adequate for embedded systems.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 620 7013 26400
Bytes/sec 9920 112208 422400
Cycles/byte 806 356 1657

Table 4.4: Throughput of AES-128

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1199 511 N/A N/A 1548 KB 12 KB
Permanent 5392 2722 20552 16280 18881 13271

Table 4.5: Memory usage of AES-128

AES-256

Ironically, a better cryptanalysis for the 256 bit version of AES than for the 128 bit has been

published with a data and time complexity of 299.5. This attack, however, is a related-key

attack 7 and, depending whether relations between keys can be uncovered or not, this attack

may not apply. In situations where non-related keys are used, the best attack continues to

be the one published by Bogdanov, Khovratovich, and Rechberger[51] (the same attack as in

the 128 bit version) with a computational complexity of 2254.4 being only slightly better than

exhaustive search.

Although neither of the attacks are computationally viable, when intending to use related

keys, it should be preferable to use the 128 bit version of AES since it is certain to provide a

greater throughput while offering better security (the related-key attack is not extensible to

the 128 bit version).

AES-256 deployed version was based on a byte-oriented implementation by the Literate-

code company8. Since AES-256 and AES-128 implementations differ greatly, comparisons

shouldn’t be established rashly amongst their results. The difference in requirements among

implementations serves to illustrate the flexibility of AES.

6http://www.ti.com/lit/an/slaa397a/slaa397a.pdf
7Related-key attacks are a class of attacks where an attacker can observe the behavior of the cipher

under different unknown cryptographic keys where a mathematical relation between keys is known to
the attacker. Despite allowing for establishment of great cryptographic analyses and uncovering flaws,
it may not be so trivial for the attacker to know such relation amongst keys (although in WEP this
happened and led to practical exploitation).

8http://www.literatecode.com/aes256

48

http://www.ti.com/lit/an/slaa397a/slaa397a.pdf
http://www.literatecode.com/aes256

Waspmote DETPIC32 Raspberry Pi
Operations/sec 401 3593 16812
Bytes/sec 6416 57488 268992
Cycles/byte 1247 696 2602

Table 4.6: Throughput of AES-256

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1113 425 N/A N/A 1540 KB 4 KB
Permanent 4030 1360 13080 8808 12385 6775

Table 4.7: Memory usage of AES-256

Present

The Present cipher was chosen due to claims of being ultra-lightweight and suitable for RFID

tags and sensor networks[52]. Featuring 64-bit blocks, 80 or 128-bit keys and a recommended

number of rounds of 31, this cipher was benchmarked under 80-bit keys. To this date, only

attacks for reduced versions of this cipher were presented.

It’s also important to refer that the benchmarked version of Present, besides being in-

tended for 8-bit microprocessors9, uses a total of 1040 bytes of lookup tables. Different

implementations, which wouldn’t do so, would obtain lower RAM usages. Nevertheless, re-

sults for throughput and memory usage for this particular implementation can be observed,

respectively, at tables 4.8 and 4.9.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 311 2602 23432
Bytes/sec 2488 20816 187456
Cycles/byte 3215 1922 3734

Table 4.8: Throughput of Present

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1783 1095 N/A N/A 1540 KB 4 KB
Permanent 5714 3044 18244 13972 11341 5731

Table 4.9: Memory usage of Present

9Based on code found in: http://cis.sjtu.edu.cn/index.php/Software_Implementation_

of_Block_Cipher_PRESENT_for_8-Bit_Platforms

49

http://cis.sjtu.edu.cn/index.php/Software_Implementation_of_Block_Cipher_PRESENT_for_8-Bit_Platforms
http://cis.sjtu.edu.cn/index.php/Software_Implementation_of_Block_Cipher_PRESENT_for_8-Bit_Platforms

RC5

RC5 or Rivest Cipher 5 is a cipher designed in 1994 whose block and key size as well as the

number of rounds is variable. The choice of benchmarking RC5 laid upon its simplicity which

is sure to reflect in low memory usage.

Parameter choice during benchmarking followed the original recommendation: 64-bit

block size, 128-bit keys and 12 rounds. Due to RC5 operating on words which are half of the

block size, the benchmarked version can also be referred to as RC5-32 and the best known

attack for such mode (also considering the same number of rounds and key size) requires 244

chosen plaintexts[53]. Such low complexity may be troublesome, delegating the responsibility

of not allowing such attack to careful protocol design.

This particular implementation of RC5 is based on an implementation included in AVR-

Crypto-Lib10, being intended for embedded devices.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 1116,7 119759 357855
Bytes/sec 8933,6 958072 2862840
Cycles/byte 896 42 245

Table 4.10: Throughput of RC5

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 864 176 N/A N/A 1540 KB 4 KB
Permanent 3724 1054 7056 2784 9040 3430

Table 4.11: Memory usage of RC5

XTEA

As in RC5, the choice of XTEA laid upon its simplicity. First described in 1997, this cipher

features a 64-bit block size, 128-bit keys and the suggested number of rounds is 64. However,

due to the non-existence of a cryptanalysis exploring the recommended number of rounds,

XTEA was benchmarked using a total of 32 rounds (the nearest lower potency of two).

Without assuming weak keys, the best know cryptanalysis presents a complexity of 2126.44

XTEA encryptions and is valid to a number of 36 rounds[54]. Meanwhile, the existence of

weak keys shortens the cipher lifespan with the best attack requiring 262 plaintexts and 231.94

XTEA encryptions and is valid to a number of 34 rounds[55]. It’s also important to note that

according to the same authors, the number of weak keys for XTEA is 2108.21, requiring careful

planning on which keys to use to take advantage of the security provided by this cipher.

10http://www.das-labor.org/wiki/AVR-Crypto-Lib/en

50

http://www.das-labor.org/wiki/AVR-Crypto-Lib/en

XTEA implementation was based on an implementation provided by the PolarSSL li-

brary11. Due to the compact code size offered by this primitive in its original version, its

code was expanded through the use of loop unrolling resulting in a second, optimized ver-

sion which was also benchmarked. Results presented in tables 4.12 and 4.13 refer to values

obtained using the non-optimized, original version of XTEA as well as the values for the

optimized variant.

Waspmote DETPIC32 Raspberry Pi

X
T

E
A Operations/sec 770,25 35810 333310

Bytes/sec 6162 286480 2666480
Cycles/byte 1298 140 263

X
T

E
A

O
p
t.

Operations/sec 1210,2 71300,5 270540
Bytes/sec 9681,6 570404 2164320

Cycles/byte 826 70 323

Table 4.12: Throughput of XTEA

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

X
T

E
A Volatile 766 78 N/A N/A 1536 KB 0 KB

Permanent 3786 1116 6864 2592 7632 2022

X
T

E
A

O
p
t.

Volatile 766 78 N/A N/A 1548 KB 12 KB

Permanent 14594 11924 17144 12872 19680 14070

Table 4.13: Memory usage of XTEA

4.3 Stream ciphers

Benchmarked stream ciphers featured the entire portfolio of the eSTREAM project with an

additional two variants also submitted to this project. Emerging in the ECRYPT12 project,

eSTREAM objectives included the research of state-of-the-art stream ciphers featuring either

high-speed or low resource consumption in hardware from a period comprehended between

2004 and 2008[56]. Currently 7 primitives have been selected: 4 software and 3 hardware

profile ciphers. The choice of benchmarking such recent ciphers was due to the fact that

benchmarking eSTREAM portfolio ciphers equals to benchmarking the current state of the

art in stream ciphers[57] developed in Europe. Despite not being used at large scale nowadays,

11https://polarssl.org/
12ECRYPT or European Network of Excellence in Cryptology was a research effort funded by

the European Commission in order to, among other things, provide state of the art advances in
cryptography.

51

https://polarssl.org/

in the future their adoption whereas stream ciphers are intended may overthrow the use of

more matured stream ciphers being of relevance to study how they behave when applied to

IoT devices.

It’s worth noting that all the benchmarked versions had as base code the C sources

available at eSTREAM project’s web page13.

Stream ciphers act in the same way than a pseudorandom number generated defined by

an internal state. Due to need of initializing such internal state, stream cipher initialization

does not occur instantly. Results presented in this main section are results benchmarked

after the initialization of stream ciphers. Meanwhile, benchmarking was also performed

assuming repeated cycles of initialization/ciphering. Such results and correlation among the

ones presented here can be observed at Appendix B.

Grain-128

Stream cipher Grain has underwent several versions since its conception. Due to the initial

version being compromised, the original Grain suffered changes, leading to the Grain v1

specification. This specification consists of two ciphers: a version featuring 80-bit keys and

64-bit IVs and another accepting 128-bit keys and 96-bit IVs.

The choice of benchmarking the 128-bit version laid upon the fact that ciphers using 128-

bit keys are (usually) more popular than ciphers using 80-bit. Meanwhile, this version, in

contrast to the smaller version, contains known vulnerabilities which inspired a cryptanalysis

better than brute-force by Dinur and Shamir[58] where a set of weak keys was found to reduce

exhaustive search by a factor of 215 (leading to the complexity being reduced from 2128 to

2113). Still, even considering such attack, Grain-128 continues to offer more security than the

80-bit version where the key space is limited to 280 keys.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 2,4 49,25 163
Bytes/sec 192 3940 13040
Cycles/byte 41667 10152 53681

Table 4.14: Throughput of Grain-128

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1174 486 N/A N/A 1536 KB 0 KB
Permanent 4084 1414 8280 4008 8812 3202

Table 4.15: Memory usage of Grain-128

13http://www.ecrypt.eu.org/stream/

52

http://www.ecrypt.eu.org/stream/

HC-128

This software efficient stream cipher operates using 128-bit keys and IVs and, at the present

time, no critical flaws were uncovered with best cryptanalyses requiring more effort to perform

distinguishing attacks14 than to brute-force the key[59].

Waspmote DETPIC32 Raspberry Pi
Operations/sec 349,25 37313 125738
Bytes/sec 27940 2985040 10059040
Cycles/byte 286 13,4 70

Table 4.16: Throughput of HC-128

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 5354 4666 N/A N/A 1552 KB 16 KB
Permanent 27562 24892 24016 19744 25313 19703

Table 4.17: Memory usage of HC-128

HC-256

Stream cipher HC-256 does not constitute part of the eSTREAM final portfolio. Nonetheless

and despite HC-128 not known critical flaws, it offers a more secure alternative to it using

256-bit keys and IVs. Since some environments may impose the use of 256-bit keys, this

cipher (also not presenting menacing cryptanalyses) is worth benchmarking.

It’s important to note that execution of this cipher proved impossible in the libelium

Waspmote due to the lack of RAM memory. Despite this, indication of permanent memory

required could still be presented since it corresponds to the binary file size. The capability

of uploading the code to the device is different from the device’s ability of executing it and

such value may serve as a guideline for use on similar devices (obviously with more RAM).

Waspmote DETPIC32 Raspberry Pi

Operations/sec N/A 25773 81640

Bytes/sec N/A 2061840 6531200

Cycles/byte N/A 19,4 107

Table 4.18: Throughput of HC-256

14Distinguish between encrypted data and purely random data

53

Waspmote DETPIC32 Raspberry Pi

Total Real Total Real Total Real

Volatile N/A N/A N/A N/A 1560 KB 24 KB

Permanent 31678 29008 27580 23308 29985 24375

Table 4.19: Memory usage of HC-256

MICKEY 2.0

This hardware profile stream cipher operates using 80-bit keys and IVs up to 80 bits. As

claimed by the eSTREAM committee, no attacks other than side-channels attacks are known

at the present day.15

Waspmote DETPIC32 Raspberry Pi
Operations/sec 9,25 333 1641
Bytes/sec 740 26640 131280
Cycles/byte 10811 1502 5332

Table 4.20: Throughput of MICKEY 2.0

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1088 400 N/A N/A 1540 KB 4 KB
Permanent 5992 3322 9708 5436 9389 3779

Table 4.21: Memory usage of MICKEY 2.0

MICKEY-128 2.0

MICKEY-128 2.0 does not constitute part of the final eSTREAM portfolio. Nonetheless, this

cipher is a more security robust implementation of MICKEY 2.0 accepting 128-bit keys and

IVs up to 128 bits hence the reason for benchmarking it. As with “regular” MICKEY 2.0, no

attacks with less complexity than brute-force (except implementation related) are available.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 6,5 287 1392
Bytes/sec 520 22960 111360
Cycles/byte 15385 1742 6286

Table 4.22: Throughput of MICKEY-128 2.0

15http://www.ecrypt.eu.org/stream/e2-mickey.html

54

http://www.ecrypt.eu.org/stream/e2-mickey.html

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1146 458 N/A N/A 1540 KB 4 KB
Permanent 6584 3914 40392 36120 9759 4149

Table 4.23: Memory usage of MICKEY-128 2.0

Rabbit

The software profile cipher Rabbit features 128-bit keys and 64-bit IVs and to the date, no

real attacks have emerged in the performed cryptanalyses16.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 242,7 18578,5 82067
Bytes/sec 19416 1486280 6565360
Cycles/byte 412 27 107

Table 4.24: Throughput of Rabbit

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1170 482 N/A N/A 1540 KB 4 KB
Permanent 6376 3706 11324 7052 10350 4740

Table 4.25: Memory usage of Rabbit

Salsa20/12

Software efficient Salsa20/r is an adaptable stream cipher where r defines the number of

internal iterations, being possible to achieve a compromise between security and performance.

The decision of benchmarking the 12 iteration version (Salsa20/12) was due to being suggested

by the eSTREAM committee as being the version offering the best balance17. Besides the

number of iterations, Salsa20 also accepts keys of 128 or 256 bits as well as an IV of 64 bits,

being the benchmark results obtained with 256-bit keys. It’s also important to refer that at

the present time no attack with less complexity than brute-force is available for Salsa20/12.

16A key-recovery attack has been described by Lu, Wang, and Ling[60] however it assumes that
relations between internal states are known being just a theoretical attack.

17http://www.ecrypt.eu.org/stream/e2-salsa20.html

55

http://www.ecrypt.eu.org/stream/e2-salsa20.html

Waspmote DETPIC32 Raspberry Pi
Operations/sec 71,14 12886,5 66352
Bytes/sec 5691,2 1030920 5308160
Cycles/byte 1406 38,8 132

Table 4.26: Throughput of Salsa20/12

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1234 546 N/A N/A 1536 KB 0 KB
Permanent 8086 5416 8728 4456 8915 3305

Table 4.27: Memory usage of Salsa20/12

SOSEMANUK

SOSEMANUK is a software profile cipher accepting keys in any range between 128 and 256

bits and IVs with 128 bits with the particularity of, contrarily to many other ciphers who

also accept multiple key sizes, only proclaiming 128-bit security. Due to such claim, this

cipher was benchmarked under the use of 128-bit keys. Despite being subjected to several

cryptanalyses, currently there are no attacks with complexity inferior to the claimed security

and, therefore, for the benchmarked key value, the least attack complexity is obtained through

the use of brute-force.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 593,8 20366,3 80316
Bytes/sec 47504 1629304 6425280
Cycles/byte 168 24,55 109

Table 4.28: Throughput of SOSEMANUK

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 3660 2972 N/A N/A 1560 KB 24 KB
Permanent 49106 46436 58448 54176 35843 30233

Table 4.29: Memory usage of SOSEMANUK

Trivium

Featuring 80-bit keys and IVs, the hardware efficient cipher Trivium, at the present time,

does not contain known flaws that allow its exploitation.

56

Waspmote DETPIC32 Raspberry Pi
Operations/sec 59 10532 97641
Bytes/sec 4720 842560 7811280
Cycles/byte 1695 47,5 90

Table 4.30: Throughput of Trivium

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1089 401 N/A N/A 1544 KB 8 KB
Permanent 18254 15584 25476 21204 15038 9428

Table 4.31: Memory usage of Trivium

4.4 HMACs

After benchmarking techniques providing data privacy, it’s time to benchmark HMACs which

in contrast allow enforcement of data integrity and authentication. For that purpose a total

of 4 HMACs and 5 variants were evaluated.

Before presenting results it’s important to recall that the HMAC construction compen-

sates for some weakly collision-resistance hashes. In fact, none of the benchmarked HMACs

has an associated cryptanalysis allowing key recovery neither other practical attack for finding

collisions. However, despite the current existence of attacks, as cryptanalyses tends to im-

prove instead of devolving, HMACs constructed over hashes containing vulnerabilities 18 may

have a smaller longevity. Therefore, security considerations will be assessed to the underlying

hash function instead of the specific HMAC.

MD5

MD5 was selected as an underlying hash function for one very simple reason: speed. Despite

several recommendations against its use and being possible to obtain collisions with a time

complexity of 220.96[61], MD5 continues to be widely deployed due to its superior throughput.

Meanwhile, as previously stated, the HMAC-MD5 construction is not subjected to the same

vulnerabilities as MD5. Despite it, the small digest size (128 bits) may be preoccupying when

long-term implementations are required.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 106,85 7262 33461
Bytes/sec 5970 405764 1869633
Cycles/byte 1340 99 374

Table 4.32: Throughput of HMAC-MD5

18More precisely, hashes who do not behave like pseudorandom functions.

57

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1148 460 N/A N/A 1540 KB 4 KB
Permanent 11606 8936 15432 11160 11629 6019

Table 4.33: Memory usage of HMAC-MD5

RIPEMD-160

RIPEMD-160 deserves a highlight among hash functions. Appearing in 1996 as a strength-

ened version of the original RIPEMD, there aren’t, after 17 years, cryptanalyses exploring its

full version (although several exist for reduced versions) and it’s unlikely that such will appear

in the near future[62]. This long longevity was the reason behind this hash function being

selected for benchmarking. As the name indicates, RIPEMD-160 produces 160-bit digests.

The benchmarked version of RIPEMD-160 was deployed based on an implementation

included in the Cryptokit library19.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 23,6 3413 17304
Bytes/sec 1318,7 190701 966861
Cycles/byte 6061 210 724

Table 4.34: Throughput of HMAC-RIPEMD-160

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1318 630 N/A N/A 1544 KB 8 KB
Permanent 32674 30004 26540 22268 15681 10071

Table 4.35: Memory usage of HMAC-RIPEMD-160

SHA-1

SHA-1 is a hash function developed by NIST in 1995 featuring a digest size of 160 bits. Since

its inception it has been widely deployed hence the reason for its benchmarking. Meanwhile,

cryptanalysis reveals that collisions can be found with complexity 261[63].

Due to its relevance and role in nowadays computers, two versions of SHA-1 were deployed

being the first an implementation based on the one presented by AVR-Crypto-Lib and the

second a throughput optimized version based on the PolarSSL implementation.

19http://forge.ocamlcore.org/projects/cryptokit/

58

http://forge.ocamlcore.org/projects/cryptokit/

Waspmote DETPIC32 Raspberry Pi

H
M

A
C

S
H

A
-1 Operations/sec 24,5 573,6 2296

Bytes/sec 1369 32050 128289
Cycles/byte 5844 1248 5456

H
M

A
C

S
H

A
-1

O
p
t.

Operations/sec 40,5 5303 20985
Bytes/sec 2263 296305 1172537

Cycles/byte 3535 135 597

Table 4.36: Throughput of HMAC-SHA-1

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

H
M

A
C

S
H

A
-1 Volatile 1166 478 N/A N/A 1540 KB 4 KB

Permanent 5304 2634 11704 7432 10515 4905

H
M

A
C

S
H

A
-1

O
p
t.

Volatile 1308 620 N/A N/A 1548 KB 12 KB

Permanent 25780 23110 22816 18544 19774 14164

Table 4.37: Memory usage of HMAC-SHA-1

SHA-256

Being part of the SHA-2 set, SHA-256 produces digests of 256-bit size. Since its inception,

this successor to SHA-1 has been extensively deployed in multiple scenarios justifying its

choice as worthy of benchmarking. It’s also important to state that, at the present time, no

attacks were published for its full version but merely for reduced versions.

Adapted (and benchmarked) code for this primitive had as base code a SHA-256 imple-

mentation included in the AVR-Crypto-Lib.

Waspmote DETPIC32 Raspberry Pi
Operations/sec 10,9 482,5 1744
Bytes/sec 609 26960 97446
Cycles/byte 13136 1484 7183

Table 4.38: Throughput of HMAC-SHA-256

Waspmote DETPIC32 Raspberry Pi
Total Real Total Real Total Real

Volatile 1566 878 N/A N/A 1540 KB 4 KB
Permanent 6242 3572 12136 7864 10866 5256

Table 4.39: Memory usage of HMAC-SHA-256

59

4.5 Result discussion

Results show first and foremost attainable cryptographic security in IoT. Waspmote, the

more constrained device, can cipher data at almost 50 thousand bytes per second and it’s

also possible to provide data confidentiality with an impact of less than 1% in both RAM

and permanent memory.

DETPIC32 and the Raspberry Pi, on the other hand, are capable of obtaining values

surpassing 2,5 MB/s and almost reaching 10 MB/s, respectively, in ciphering. Again, re-

membering that such values represent a lower boundary for the Raspberry Pi.

An additional comparison between the complexity provided by the benchmarked ciphers

and respective resource usage can be observed in Appendix C, granting an additional per-

spective about the benchmarked ciphers being discussed in this section.

Raspberry Pi considerations

As expected, RAM usage in the Raspberry is directly correlated with the executable file size.

Primitives containing more code use more volatile memory due to the situation predicted in

the beginning, regarding processes containing code to execute. Variations in RAM values, at

most, are in the orders of 24 KB considering an initial base value of 1536 KB representing an

increase of 1.6%. Practically speaking, this device includes 512 MB making such fluctuation

less than 0,005% of the device’s memory usage.

Permanent memory, at a base value of 5610 bytes, increases between 2022 and 30233 bytes

representing a maximum increase of over 6 times in the executable size. However, speaking

in absolute values, this represents a maximum file size of about 30KB including base code.

Such value is of little relevance since the Raspberry features an SD card and SD cards are

sold in sizes of gigabyte orders.

Given the obtained values, is of little to no practical relevance to discuss both memory

impacts on this device. This would be different if results caused a visible impact in memory

(which they don’t).

Throughput values, however, are relevant since (assuming there are no limitations in the

communication rates) define the data capabilities and, if in use in form of a gateway, exactly

how many nodes it can serve simultaneously.

As expected, differences among both manufacturers and CPU architectures, yields differ-

ent throughput and memory magnitudes for algorithms among different devices. Meanwhile

there are algorithms that, despite their ranking number offer some consistent results when

transposed to different devices.

Starting with the Waspmote, SOSEMANUK and HC-128 perform exceedingly well in

throughput while performing at bottom in both RAM and permanent memory. Meanwhile,

there are other contestants worthy indicating as presented in table 4.40.

Rabbit reveals itself as a well-balanced cipher in terms of requirements: offers high

throughput at medium requirements in volatile and permanent memory. AES reveals its

60

Throughput RAM Permanent Mem.
1 SOSEMANUK 47,5k XTEA 0,95% RC5 0,80%
2 HC-128 27,9k XTEA (opt.) 0,95% XTEA 0,85%
3 Rabbit 19,4k RC5 2,15% AES-256 1,04%
4 AES-128 9,9k MICKEY 2.0 4,88% Grain-128 1,08%
5 XTEA (opt.) 9,7k Trivium 4,895% HMAC-SHA-1 2,01%

Table 4.40: Top 5 performers in the Waspmote device

known adaptability to different scenarios with the 128 bit version being the block cipher

offering best throughput and the 256 bit version deserving the third place in the permanent

memory ranking (but lower throughput than the 128 counterpart). It’s important to note

that differences amongst different AES versions are not only due to the key/construction size

but also related to being two distinct implementations. AES is well recognized for the ability

to originate different implementation favoring throughput or memory accordingly to demand

for either.

The, not widely adopted in the current Internet, block cipher XTEA proves to be highly

flexible in constrained memory environments offering at least half memory usage than re-

maining contestants and nearly the same use of permanent memory. It’s also worth noting

that the optimized version of this cipher was obtained by loop unrolling and different levels

of loop unrolling could be used to offer a balance between throughput and storage (since the

RAM memory usage will continue to be equal).

Also interesting are the results scored by RC5. Featuring first place in storage use and

second place in volatile memory among different cryptographic primitives, despite not ap-

pearing in the top 5, features the 6th place in throughput in contrast with the non optimized

version of XTEA which features 8th.

It should also be noted that HMAC-SHA-1 was the only non-cipher to appear on the top

5 due to low permanent memory usage. However, it loses to HMAC-MD5 in throughput (by

a factor above 4) and RAM use. When selecting between primitives this may prove to be a

disadvantage towards the more preventive use of SHA-1 constructions instead of MD5 based.

MICKEY 2.0 and Trivium analogous to Grain-128, also appearing in the top 5 due to

RAM and storage respectively, have a common problem: least throughput than the remaining

options.

The DETPIC32 continues the Waspmote’s legacy by also featuring both the HC family,

SOSEMANUK and Rabbit as top throughput performers and also including XTEA, RC5

and GRAIN-128 in its top 5. Such situation is demonstrated in table 4.41.

In the meantime a new contestant steps forward: Salsa20/12. Such algorithm is present

in the top 5 for both throughput and storage and also, deserving a spotlight due to being the

only primitive to do so in the DETPIC32.

MICKEY 2.0 appears in the top 5 not due to RAM usage as in the Waspmote but

61

Throughput Permanent Mem.
1 HC-128 298,5k XTEA 0,49%
2 HC-256 206,1k RC5 0,53%
3 SOSEMANUK 162,9k Grain-128 0,76%
4 Rabbit 148,6k Salsa20/12 0,85%
5 Salsa20/12 103k MICKEY 2.0 1,04%

Table 4.41: Top 5 performers in the DETPIC32 device

due to storage use. Remembering that the DETPIC32 does not allow for volatile memory

measurements, it would be interesting to see how this primitive behaves in RAM usage in this

device. However, it also presents a problem: it’s one of the slowest primitives (4th slowest)

in this device.

Previously noted primitive RC5, despite not appearing in the top 5, maintains its position

according to throughput appearing in the 6th place. This is relevant due to maintaining its

appearance in the top regarding memory. Again, benchmarking RAM would be valuable

since this primitive also deserved a significant place among RAM usage in the Waspmote.

XTEA, in contrast, features the 11th throughput place being below average. Meanwhile,

XTEA optimized version offers greater throughput (being at 8th place) but presenting one

of the largest permanent memory usage (5th largest).

AES, in this device, loses its place as the fastest block cipher with AES-128 appearing

quite below as how it appeared in the Waspmote: 13th in contrast with previous 4th. The

spot it deserved regarding permanent memory usage also disappears with both versions being

of average usage. These average results, associated with the high flexibility of this cipher,

leaves room to imagine that it would be possible to increase either throughput/storage ranking

compromising the other component.

Raspberry Pi top 5 performers are merely a recombination of the DETPIC32 performers

with only one change: Salsa20/12 has disappeared from the top throughputs (moving to

6th place) and Trivium (which was placed 7th regarding throughput in the previous device)

is included. Meanwhile, permanent memory usage top 5 is merely a permutation of the

DETPIC32 top 5 results. Such situation is demonstrated in table 4.42.

Throughput Permanent Mem.

1 HC-128 10059k XTEA 2022 bytes

2 Trivium 7811k Grain-128 3202 bytes

3 Rabbit 6565k Salsa20/12 3305 bytes

4 HC-256 6531k RC5 3430 bytes

5 SOSEMANUK 6425k MICKEY 2.0 3779 bytes

Table 4.42: Top 5 performers in the Raspberry Pi device

62

Worth noting is that RC5 and XTEA, despite the usual appearance in memory usage

top, also appear at 7th and 8th place regarding throughput with oddly, the optimized version

of XTEA appearing lower than the non-optimized version but still above AES. Again, no

attempt was made to optimize the code against a particular architecture and an architecture-

optimized version of AES could possibly perform with much higher throughput.

HMAC limitations

From the primitives discussed so far, only a single HMAC has been mentioned. This happens

because evaluated HMACs do not perform at the same rank as the other contestants except

for HMAC-SHA-1 for permanent memory and running on the Waspmote. This poses a

real limitation since while ciphers provide a security property (data confidentiality), HMACs

indeed provide two— authentication and integrity. While the benefits of data concealing are

clear, so are the benefits provided by HMAC and, in some situations, may even be the only

relevant properties.

Meanwhile, as expected, HMAC-MD5 is the HMAC construction offering best results both

in throughput and RAM usage in all the devices. As already mentioned, HMAC performance

depends on the underlying hash construction and device’s results validate what happens in

the general computing world where MD5 continues to be widely deployed, against several

recommendations, due to its high performance (although, as also mentioned, HMAC-MD5

does not present the same flaws). At the same time, implementations of HMAC-SHA-1

(non-optimized) and HMAC-SHA-256 offered less permanent storage usage in all the devices.

Despite HMAC-MD5 being the best performer regarding throughput, it is still much

slower than top cipher performance in all the devices. In the Waspmote, the faster cipher

(SOSEMANUK) performs about 8 times faster than HMAC-MD5 while in the DETPIC32

and Raspberry Pi the ratio is of 7,36 and 5,38 respectively. At the same time RAM usage is

also higher with a ratio of 6 between the primitive that uses least RAM and HMAC-MD5 in

the Waspmote.

Primitive selection

Results also allow the inference of other conclusions such as the best primitives for use in

specific scenarios taking in consideration the most restricted device: the Waspmote. DET-

PIC32, despite being an embedded system, provides a much higher set of requirements than

the Waspmote offering a ratio of 16 and 4 between volatile and permanent memory re-

spectively and the results confirm its much higher CPU capabilities: comparing the faster

cryptographic primitives in each device, the DETPIC32 offers a throughput almost 63 times

superior to the Waspmote. These results, as previously stated, are obtained using the default

tools and, since the optimization flags used by the Waspmote IDE are unknown, it may be

unfair to do such direct comparison between throughputs however, by default, that is the

ratio obtained. Likewise, the Raspberry Pi is a much more resourceful device than both

Waspmote and DETPIC32 and the concept of embedded system does not even apply to this

device.

63

In a heterogeneous environment such as IoT may be necessary for devices with higher

sets of capabilities (in this case DETPIC32 and Raspberry Pi) to perform some self-sacrifices

and not use the primitives where they obtain best results but the primitives where more

constrained devices perform better leading to an equilibrium of the system. The system will

not perform better if communication capability between regular and constrained devices in-

creases while decreasing in the reverse direction, being preferred a balanced strategy between

parts to benefit the system. For this reasons, results obtained in the Waspmote are more

significant for primitive selection and best performers should be worthy of study over the

best performers for the other used devices.

Both SOSEMANUK and HC-128 performed remarkably well regarding throughput in the

Waspmote (in fact in all the devices). Such algorithms, however, use respectively around 36%

and 57% of RAM and 35% and 19% of storage. This is an huge drawback to their applicability

in generic scenarios whereas in situations where high throughput or low power consumption

is required and there is plenty of both memories available there is no inconvenience in using

them.

Rabbit and AES fall into a middle category where the memory/throughput trade-off is not

so accentuated. Meanwhile, it should be noted that Rabbit offers around twice throughput

than AES-128, but also uses more storage than both AES versions. Such difference might

just be symbolic since it represents an increase in permanent memory from 1,04% in AES-256

to 2,83% in Rabbit (with AES-128 in the middle featuring 2,08%) in the Waspmote. Rabbit

also offers a higher throughput in remaining devices possibly placing it ahead of an AES

choice except when the little storage increase is problematic.

Lastly, there are algorithms that offer very little impact in memory while still maintaining

a medium throughput: RC5 and XTEA. These are algorithms that should be used when

memory footprint affects functionalities or when resources reserved for security are sparse

(sadly not uncommon). While the optimized version of XTEA uses a significant amount of

storage, its “regular” version uses less than 1% of the Waspmote’s storage and the same is

visible with RC5. RC5 has the throughput leadership when comparing both algorithms but

also uses a larger percentage of the Waspmote’s RAM (2,15%) than XTEA (0,95%). Results

are also consistent with the ones obtained in both DETPIC32 and Raspberry Pi.

Figure 4.1 represents a full comparison between the mentioned algorithms throughputs

as well as memory footprint including the already mentioned best HMAC performers in the

Waspmote device.

64

Figure 4.1: Representation of the most relevant performers in the Waspmote device.

Given the current set of tested primitives and methodology and the Waspmote device, the

best performers, or in other words, the performers who are more prominent in a compromise

between throughput and memory footprint or in a specific application, are hereby declared.

Other primitives, including some top 5 primitives did not achieve such compromise and were

not represented. Results from the majority of the selected primitives are also transposed

to both the DETPIC32 and Raspberry Pi devices. SOSEMANUK and HC-128 also feature

these devices top 5 regarding throughput, also being in a high throughput/high memory

category. In the same way, RC5 and XTEA continue to provide a medium throughput (with

more relevance on RC5 where the throughput differences are more accentuated) while still

having a low memory footprint. Likewise, HMAC-MD5 is the fastest HMAC in all the devices

and SHA-1 the one offering less permanent memory consumption. Both AES version results

are, however, inconclusive. While performing along with RC5 and XTEA in the Waspmote

regarding throughput, their performance drops on both DETPIC32 and Raspberry Pi at

the same time that permanent memory footprint also increases comparatively with other

primitives. The classification of such results as inconclusive is due to the large number

of AES implementations available whereas some may favor architectures with 8-bit words

(Waspmote) and others with 32-bit (DETPIC32 and Raspberry Pi). This is just a possibility

and no further tests were performed with different AES implementations, leaving such results

simply as inconclusive.

Initialization vs non-initialization in stream ciphers

Despite what it may seem, constant reinitialization of a particular cryptographic primitive

may prove useful in some real world applications. Given a scenario where a device actually

powers off— not entering idle mode, actually being shutdown— and then activated by an

external unit (e.g. RTC) in order to transmit information, RAM memory contents would be

lost. Such situation may seem abstract but could indeed happen when the communications

65

are significantly spaced. And, in such cases, the initialization time of primitives may play a

significant role.

Such type of initializations greatly affected the results obtained with stream ciphers.

Values range from losses of around 99% in performance to a mere less than 1%. Th HC

family— HC-128 and HC-256— which performed distinctively in all the devices is the one

suffering the most accentuated decline: the least decline is observed around 98% in the

DETPIC32 with others being in orders between 98% and 99%.

SOSEMANUK, which is also included in the top 5 for all the devices, experiences losses

between 64,66% in the DEPTPIC32 and around 84% in the Waspmote with Raspberry Pi

standing in the middle with a decrease of throughput of 77,15%.

Rabbit and Trivium, featuring the top 5 performance in all the devices and Raspberry Pi

respectively, suffer a cutback around 60% in all devices.

Salsa20/12, in contrast, suffers very little from being repeatedly initialized, with a maxi-

mum decrease of 2% in the Raspberry Pi and not being in the top 5 but in 6th place for this

device. Also important to refer is that this algorithm is one of the fastest for the DETPIC32.

Remaining primitives reduce throughput between the orders of 20% and 40% not having

additional patterns worth noting.

Worthy of note is the recalling that such results were obtaining for 80 byte sets of data.

Variations in such amount would certainly account for different losses. Simply because the

Salsa20/12 reports less performance degradation when constantly reinitialized is no reason to

always use it without first assessing message sizes to be transmitted. Regardless, for contents

of 80 bytes or less (where initialization time will become more accentuated) its use should

be pondered (especially when considering the use of a stream cipher) since the constant

reinitialization of stream ciphers alters the top 5 throughput performers.

66

Chapter Five

Security in a complete M2M

solution

Observed and analyzed how devices behave when executing uniquely cryptographic code, it’s

necessary to advance further in the direction of a real scenario. A scenario which does not

comprehend only code destined to enforce security but that being just part of a larger set

of features. The flexibility of cryptographic primitives may play a fundamental role in the

end narrowing algorithm possibilities or at least help grasping just how much of the devices’

resources will be available for implementing security after the remaining (and visible for the

final user) functionalities are implemented.

It’s certain that sometimes industrial manufacturers implement proprietary solutions

which serve their purposes and could also result, in the end, in products having the same

functionalities as standardized options, being a design option/choice1. However, in this case,

where the intent is to grasp the security margin after implementing functionalities, that would

be a bad approach. A bad choice because defining message envelopes and resource exposure

would only be applicable to a single case which would not be used in any real environment—

manufacturers’ proprietary solutions as proprietary as they may be will be used in real situ-

ations. Designing a solution from scratch would not successfully meet the intended purpose.

Therefore an existent solution which may be largely used in the near future was chosen for

resource exposure: CoAP.

5.1 ETSI M2M

Already mentioned in the beginning, there is the pursue for effective global standardization

in IoT. Advantages of standardization are well known and numerous from interoperability to

1Not using recognized standards may (with a great certain) cause interoperability problems when
integrating products which follow standards. Meanwhile that can also be the goal: only allow a
subset of products to interoperate. Despite all the problems and difficulties it may cause, it’s the
manufacturer’s option.

67

ease of deployment of solutions. From the advances in this field, one is particularly attractive

due to following an open approach: the ETSI M2M initiative.

Responding to industry appeals and in consequence of a formal standardization mandate

from the European Commission, the ETSI Technical Committee M2M emerged in 2009. Since

then, this TC have been active, establishing a functional architecture following a horizontal

approach for M2M supported by a considerable number of published technical specifications

and elaborating a series of technical reports involving specific scenarios from eHealth to smart

grids and others.

Such architecture, comprised of three distinct domains— device, gateway and network

service domains— features a RESTful service provisioning approach at all layers (service

capability layers— SCLs) with the ultimate goal of scalability. Besides, it also specifies a

number of different interactions and interfaces for attaining such services regarding device’s

capabilities[64]:

• Communication between non-ETSI compliant devices/gateways and the network—

legacy case;

• Non-ETSI compliant devices communicating with a compliant gateway or with other

ETSI compliant devices— legacy case;

• The standard scenario of devices communicating with a gateway and the gateway with

higher layers;

• Direct communication between a device and the network layer.

Due to inclusion of the legacy cases, current vertical approaches can be deployed in

conjunction with an ETSI infrastructure as long as the gateway or other entities translate

their actions. Such feature is of enormous importance since it means that existing solutions

may adopt the ETSI architecture scalability without infrastructure replacement but simply

by adding entities with proxy capabilities.

5.2 CoAP

As any other RESTful philosophy, ETSI M2M implies the existence of resources. While

being an abstract concept, resources are no more than addressable entities/objects containing

information— on ETSI M2M identified by an URI[65]. Besides the URI, everything from

operations to be performed as well as eventual parameters required to perform actions and

even the data types being exchanged have to be specified in order for both communicating

parties to understand each other. For that purpose ETSI proposes the use of HTTP or CoAP

also allowing other envelopes[66].

Whereas HTTP is widely used in nowadays Internet including to request resources either

it be web pages or REST services, it is a much more complex protocol than it may appear at

68

first sight. Usage of such protocol has impact on both device’s resources and communications

which may be considered excessive if the main reason for its usage is the simplified and

familiar access to resources through URIs following a RESTful approach. Meanwhile CoAP

presents itself as a lightweight REST alternative to HTTP.

5.2.1 Brief Overview

CoAP or Constrained Application Protocol, is an application layer protocol (as well as

HTTP), currently undergoing as standardization attempt by the IETF featuring its 18th

draft version. As the draft’s abstract indicates, CoAP is designed to be lighter than HTTP

while still being easy to translate between the two protocols. There are, however, a number

of features worth mentioning[67]:

Transport layer. In contrast to HTTP, designed to run over TCP, CoAP can perform over

any transport layer be it stateful or not.

Binary headers. Headers are binary instead of text allowing to obtain a reduced header

size with a minimum size of 4 bytes.

Resource discovery. Without prior knowledge of host’s resources, it’s possible to obtain

them sending a request with the host URI followed by “.well-known/core”.

Multicast. CoAP supports multicast in contrary to HTTP, allowing messages to be sent to

multiple nodes, further reducing message overhead.

DTLS. DTLS is to CoAP as TLS is to HTTP and provides equivalent security guarantees

but, as CoAP, also assuming an unreliable transport layer.

There are also a significant number of similarities with HTTP including the existence of

GET/POST/PUT/DELETE methods, a request/response model and many others. Many

more similarities and differences could be enumerated and CoAP further described but that

is not the purpose. The purpose is simply to state that CoAP is a lightweight option for

providing REST services which provides easy translation to HTTP while offering a smaller

footprint both in communications and processing capabilities with features offering potential

for large scale adoption in IoT devices[68].

5.2.2 Implementation

With the purpose of evaluating the CoAP overhead in devices, an implementation was placed

in a device. It’s important to enhance that in projects defining CoAP as a requirement, the

amount of resources reserved for security may equal the quantity of resources available only

after the CoAP and resources deployment. Defining an approximate estimate of resources

used by such implementation becomes important to determine exactly when CoAP and secure

messaging can coexist.

69

Already described in Chapter 4, a libelium Waspmote was selected as the target device.

An existing CoAP library intended for Arduino— Arduino-CoAP2— written in C++ was

modified to be compatible with the Waspmote. The choice of such library resided on the fact

that it’s a very minimalistic implementation, relies on underlying layers that not UDP/IP and

is not heavily dependent on a particular minimalistic operating system (such as CONTIKI or

TinyOS3). Despite presenting strict implementation ties with Arduino and its libraries, as any

libraries not depending on operating systems, does not rely on high level operations provided

by their existence. It’s also important to mention that Arduino-CoAP implements simply a

reduced, functional version of the 8th CoAP draft being possible to retrieve resources as well

as observing them. Such implementation does not contain all the CoAP features and would

not be included in a fully ETSI compliant device due to limited functionalities but it’s a legit

implementation for devices intending to be as ETSI compliant as possible within their own

limitations. Also worth noting is that DTLS is not implemented. Overhead of such library

establishes the minimum requirements to access data in a CoAP fashion without the use of

any cryptographic security.

Such library was also modified in order to not depend on the particular transmission

method underneath CoAP— being instead an object to handle communications given as

an argument for the library at initialization. Due to the use of C++ and polymorphism

this was achieved modifying all device dependent interactions by interactions with an object

given at initialization, object which is responsible for implementing all interactions with the

communication module. Such alterations are depicted in Figure 5.1.

Figure 5.1: Class diagram reflecting the CoAP library changes. Methods denoted “=0”

in classes represent pure virtual methods.

2https://github.com/dgiannakop/Arduino-CoAP
3Both CONTIKI and TinyOS are open-source implementations of minimalist operating systems

intending for use in constrained devices.

70

https://github.com/dgiannakop/Arduino-CoAP

Besides mediating access to communications through an abstract class, a specific scenario

had to be implemented in order to test such modifications. Such choice led to the implemen-

tation of communications resorting to ZigBee. Although UDP is mentioned along the CoAP

draft, as mentioned earlier, the latest draft version also clearly states when describing the

CoAP message’s format:

(...)It could also be used over other transports such as SMS, TCP or SCTP, the

specification of which is out of this document’s scope.

Such sentence strongly discards UDP as the only underlying option and indicates that CoAP

can be used on top of other transport mechanisms— and in this case, the choice laid upon

ZigBee. The resulting code can, however, be used with any other communication method as

long as the respective communication class is implemented extending GenericCommDevice.

5.2.3 CoAP overhead

Throughput was not measured during evaluation of the CoAP overhead. Each resource has

a different path indicating its location (different processing time) and the obtainment of

data from each resource varies in time. While the data could be obtained instantly through

the use of a “dummy” resource, realistic throughput measures should include the latency in

obtaining data from the resource itself— which depends on the resource (e.g. obtain values

from sensors). Also, messages are obtained through a communications module which would

implicate the creation of a virtual module, useless in real scenarios, to simulate message

exchange. It would be possible to use a real module but the benchmark would be dependent

on the conditions (including proximity). Due to this factors, throughput was not evaluated

as it is considered that realistic throughput benchmarks should be performed in concrete

scenarios.

Both RAM and Flash memory still consist valid measures. Meanwhile, as stated previ-

ously, memory used by resource classes as well as memory containing resource’s paths varies.

Determining the maximum memory usage as was determined in Chapter 4 for cryptographic

primitives is very subjective due to the reason that maximum memory usage could probably

be located at the class that implements the communication (maximum depth of function

calls with memory being allocated by each function before calling the next level)— and that

depends on the communication module. Resources and their respective classes (containing

code and data) should also be considered. Besides number of resources, different resources

with different management requirements can greatly influence memory usage, therefore mem-

ory measurements followed a minimum boundary approach: measuring memory required to

declare and instantiate and initialize (when applicable) classes.

Besides assessing memory for an instantiation of a CoAP class, measurements were also

performed resorting to its initialization with a ZigBee communication class and with CoAP

resources. In order to do so, resource objects for the Waspmote’s battery and accelerometer

were also implemented.

71

It’s also important to state that both RAM and flash memory usage is not linear when

resorting to the use of libelium libraries. That is, when recording memory usage for two

different programs, the totality of memory used by the inclusion of both functionalities in

a single program may not equal the sum of both memory usages minus a base value. For

instance, pieces of code used to obtain values from two different sensors may produce a dif-

ferent memory usage when put together even considering a base value equal to an init and

loop functions stripped of functionalities. Such situations were identified during experiments

using the Waspmote and are due to multiple inclusions performed by the device’s libraries. In

other words, if somewhere along the chain of inclusions there is a reciprocal inclusion of the

same code/data definitions, such will only be included once resulting in less memory usage

than the simple sum of independent pieces of code. This differs from the last chapter where

cryptographic code was isolated and it was possible to retrieve a value which corresponded to

the increase in memory by using cryptographic primitives. There is only an exception for this

situation: an uninitialized CoAP class which does not contain resources neither a commu-

nication class different from the abstract GenericCommDevice (and by consequence without

ties with Waspmote’s libraries). These circumstances led to the decision of measuring total

memory usage instead of considering an initial base referential. Memory values obtained with

an uninitialized CoAP class as well as the implemented resources and different combinations

using the developed communication class are presented in table 5.1.

RAM usage
(Bytes)

% RAM used
Flash usage

(Bytes)
% Flash used

CoAP 1386 16,92% 2762 2,11%
XBeeZBDevice 4459 54,43% 54442 41,54%

CoAP +
XBeeZBDevice

5199 63,46% 55318 42,20%

Acc Resource
(Accelerometer)

1502 18,33% 6738 5,14%

Battery
Resource

1410 17,21% 6822 5,20%

CoAP +
XBeeZBDevice

+ Acc
5378 65,65% 57148 43,60%

CoAP +
XBeeZBDevice

+ Battery
5284 64,50% 57162 43,61%

CoAP +
XBeeZBDevice

+ Acc &
Battery

5445 66,47% 58504 44,64%

Table 5.1: Memory measurements of the altered CoAP library as well as ZigBee com-
munication and resources when deployed in the Waspmote device.

72

5.3 Functionalities vs security

Obtained CoAP results in the particularly tested device (Waspmote) are discouraging. Not

due to overhead caused by the CoAP implementation itself but due to an evident increase

in memory usage when using manufacturer’s libraries. And yet, those same libraries are the

ones in which the manufacturer provides support being programmers accountable for the use

of third-party software.

Uniquely CoAP itself, as a complete REST protocol providing services does not seem

to use as much hardware resources as expected being its main requirement RAM memory.

The standalone use of the modified CoAP library does not hinder the use of any of the so

far studied cryptographic techniques. Notwithstanding, it’s important to remember that the

modified library does not implement all of CoAP features. Complete CoAP implementations

(although being heavily-dependent on operating systems) such as libcoap[69] report flash

requirements over 25000 bytes (over 9 times the required flash for this implementation) for

a simple REST CoAP application, including transport layer but also not featuring DTLS

meaning that there is no cryptographic security— and such increase in functionalities may

also reflect in the required amount of RAM.

Using a “real” communication class with the modified library shows disappointing values

but, indeed, there must exist underlying layers in order for devices being capable of commu-

nicating. Previously developed cryptographic code presented memory values including both

total memory use and difference according to an initial base code. Since such code does

not include dependencies to the Waspmote library, the effect of multiple inclusions already

described is not verified and the total used memory can be estimated with a simple sum.

Even not considering DTLS, some of this cryptographic code can be immediately excluded

from use in conjunction with CoAP and ZigBee in this device. Values around 45% of flash

memory for CoAP, ZigBee and simply two resources discourage the use of further high per-

manent memory usage cryptographic primitives and it happens that the fastest primitive

in this device also is the only using more permanent memory— SOSEMANUK. As long as

no more resources are present and total flash usage does not reach its maximum, it’s still

perfectly possible to use SOSEMANUK in the described situations. However, more resources

would require a new assessment of the total flash memory used.

While permanent memory depletion is an easily identifiable situation (the code cannot

be uploaded to the device), RAM usage is more preoccupying. RAM depletion, in the middle

of a program’s execution in a embedded system, is contrary to the principles of embedded

systems themselves since they are developed for operation without human intervention leading

to an increase in stability requirements. And, a minimum and not maximum value of almost

67% for CoAP, ZigBee and two resources is not reassuring. A percentage of 33% for RAM

usage, besides not providing a memory margin for two previously analyzed primitives—

SOSEMANUK and HC-128— is indeed preoccupying if the amount of resources were also to

increase.

73

The described situation may be purely abstract— there is no guarantee that other man-

ufacturers and devices would use such massive percentages of a device’s memory simply for

providing communication— but, once again, shows that real implementations are subdued

to such kind of problems. Nonetheless, the minimalist altered CoAP library usage seems

perfectly reasonable in other situations where underlying layers don’t use high percentages

of the device’s memory resources.

Meanwhile Waspmote and similar devices, even using this minimalist CoAP implemen-

tation with low memory footprint underlying layers are still far from even being close to

become ETSI compliant. Besides the obvious lack of CoAP features and DTLS not being

implemented, ETSI M2M also defines a large set of resources that should be available in

the device’s SCL. Observing how this device reacts to CoAP (17% RAM usage) without any

resources, adding a transport layer, DTLS, missing CoAP functionalities and even a large

set of resources seems unrealistic. Still, much more work and development would be required

in order to affirm this since a personal view based on experience in working with this device

lacks scientific method. What preliminary obtained data shows is that simply providing a

comfortable RESTful philosophy in devices uses at least 17% of volatile memory whereas

the simple addition of cryptographic primitives causes an increase of less than 1% of this

hardware resource for data privacy and less than 6% for integrity and authentication. Such

comparison may however be unfair since the simple use of cryptographic primitives is not a

security solution on its own and it would be necessary such a solution in order to compare

both features at the same level.

74

Chapter Six

Conclusions

The main goals of this dissertation, which consisted in the study and discussion of security

in IoT devices focusing on cryptographic security and evaluation of coexistence of secure

messaging and resources, were fulfilled. For that, a small C cryptographic library consisting

of 20 different implementation of 15 different cryptographic primitives 4 of which were block

ciphers, 7 stream ciphers and 4 HMACs was created with the particularity of being portable

and thus suitable for use in IoT heterogeneous scenarios. A minimalistic C++ CoAP imple-

mentation was also adapted allowing deployment in multiple scenarios with the underlying

communication layers not being restricted to a particular scenario.

Focus, as it is obvious by the increase in level of detail, was in real placement of crypto-

graphic primitives in devices that could serve the future Internet of Things or at least simu-

lating an heterogeneous environment maintaining similar properties. From there, besides the

usual AES, three not so known primitives were identified as offering more performance at

similar or larger expense in both volatile and permanent memory: SOSEMANUK, HC-128

and Rabbit. Two other not so common primitives were identified offering less performance

than AES but offering very attractive memory requirements: RC5 and XTEA. Their lack

of wide adoption in computer environments may not reflect in embedded IoT devices due

to their small footprint while also presenting good throughput rates. Other cryptographic

algorithms were also presented and this work may serve as a small catalog or at least as a

starting point when deciding which algorithms should be deployed in similar devices or are

at least worthy further evaluations.

The conclusion that HMAC authentication offers real limitations when comparing its

throughput to ciphers was also reached— in fact it was long been reached in the past— but

its limitation were presented with real values in IoT devices. The existence of real values

in real, heterogeneous devices offering concordant results is a confirmation that encryption

and authentication should be offered by other techniques such as authenticated modes of

operation when both are required. These modes and their performance were not evaluated

here, consisting in a limitation of the present work.

A complete comparison among resources reserved for security and features in a complete

75

ETSI M2M compliant device was not possible due to the non-existence of such device and lack

of implementation. In order to implement a totally compatible ETSI library for use in devices

would be required another dissertation with that as its sole goal. Instead, an evaluation of

CoAP hardware resources usage is presented which may have some applicability by presenting

real values of the impact of creating service capability layers using such protocol. Conclusions,

as expected, show that creation of such layer even without underlying layers neither resources,

potentially uses much more hardware resources than the standalone use of cryptographic

primitives. This comparison may be unfair since sole use of primitives is not enough to

guarantee secure messaging— being required a complete protocol— but as mentioned, such

comparison is performed with a stripped down (without transport layer, lacking of resources

to expose and without DTLS) simple declaration of a CoAP object responsible for handling

requests and responses.

6.1 Future work

This work does not, by all means, shows exactly how to obtain security in IoT devices.

Security refers to much more than simply cryptography and many other directions could have

been followed and explored when intending to analyze such property, from safe programming

options and rules to physical protection and even security protocols assuming that the best

cryptographic primitives were already established and provided no critical flaws.

Such directions constitute further possible work. Being a secure IoT environment a conju-

gation of several factors, all need to be studied and deployed before even considering uniting

the words “security” and “IoT”.

A situation was also described at the start of this dissertation that may prove countless

research opportunities in the future: malware in IoT. Constrained devices are sadly unpre-

pared to deal with malware, and IoT is a vision where those vulnerable devices will be at

range of attackers and malware, through the nowadays common Internet, which is not quite

secure even for mighty, powerful machines filled with anti-malware techniques. From effective

malware injection (for research purposes only) to proposal of techniques for malware scanning

and report, multiple exploration options are available.

As a direct consequence of the developed work and not just addressed issues, much more

could also be performed including but not limited to:

• Expanding the current primitive catalog to also include comparison with asymmet-

ric techniques and ciphers working in different modes of operations— with a special

emphasis on authenticated modes;

• Integration of DTLS and the adapted CoAP library, evaluating its full hardware re-

quirements;

• Development of an ETSI M2M device scenario, implementing resources within a CoAP

library also featuring DTLS and evaluation of the hardware requirements for using such

solution with and without secure messaging.

76

References

[1] M. Zorzi, A. Gluhak, S. Lange, and A. Bassi, “From today’s INTRAnet of things to a future
INTERnet of things: a wireless- and mobility-related view”, Wireless Communications, IEEE,
vol. 17, no. 6, pp. 44–51, 2010.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: a survey”, Computer Networks:
The International Journal of Computer and Telecommunications Networking, vol. 54, no. 15,
pp. 2787–2805, 2010.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (IoT): a vision,
architectural elements, and future directions”, Future Generation Computer Systems, vol. 29,
no. 7, pp. 1645–1660, 2013.

[4] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management of resource constrained
devices in the Internet of Things”, Communications Magazine, IEEE, vol. 50, no. 12, pp. 144–
149, Dec. 2012.

[5] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: bridgingwireless sensor net-
works into Internet of Things”, in 8th International Conference on Embedded and Ubiquitous
Computing (EUC), 2010 IEEE/IFIP, Dec. 2010, pp. 347–352.

[6] F. Yang and C. Yan, “Design of WSN gateway based on ZigBee and TD”, 2010 International
Conference On Electronics and Information Engineering (ICEIE), vol. 2, pp. 76–80, Aug. 2010.

[7] B. da Silva Campos, J. J. P. C. Rodrigues, L. M. L. Oliveira, L. D. P. Mendes, E. F. Nakamura,
and C. M. S. Figueiredo, “Design and construction of a wireless sensor and actuator network
gateway based on 6LoWPAN”, 2011 IEEE International Conference on Computer as a Tool
(EUROCON), pp. 1–4, Apr. 2011.

[8] H. K. Kalita and A. Kar, “Wireless sensor network security analysis”, International Journal of
Next-Generation Networks, vol. 1, no. 1, pp. 87–105, 2009.

[9] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary, “Wireless sensor network security: a survey,”
in book chapter of security”, in Distributed, Grid, and Pervasive Computing, Yang Xiao (Eds,
CRC Press, 2007.

[10] H. Orman, “The morris worm: a fifteen-year perspective”, IEEE Security & Privacy, vol. 1, no.
5, pp. 35–43, 2003, issn: 1540-7993.

[11] The MITRE Corporation, 2011 CWE/SANS Top 25 Most Dangerous Software Errors, 1.0.3,
Sep. 2011.

[12] V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H. Bos, “Memory errors: the past, the
present, and the future”, 15th International Symposium on Research in Attacks, Intrusions
and Defenses, Sep. 2012.

[13] McAfee, Mcafee threats report: fourth quarter 2012, 2012.

[14] ——, Mcafee threats report: first quarter 2013, 2013.

77

[15] Z. Jianwei, G. Liang, and D. Haixi, “Investigating China’s online underground economy”, Uni-
versity of California, Institute on Global Conflict and Cooperation, Tech. Rep., Jul. 2012.

[16] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier”, Symantec, Tech. Rep., Feb.
2011.

[17] G. H. Nibaldi, “Specification of a Trusted Computing Base (TCB)”, MITRE CORP BEDFORD
MA, Tech. Rep., Nov. 1979.

[18] NASA, Nasa automated information security handbook, 2410.9A, Jun. 1993.

[19] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and Applications, 2nd ed., ser.
Information Security and Cryptography. Springer, 2007, pp. 01-03.

[20] S. A. D’Agostino, D. Engberg, and A. Sinko, “The roles of authentication, authorization &
cryptography in expanding security industry technology”, Security Industry Association (SIA),
Tech. Rep., Dec. 2005.

[21] A. Zúquete, Segurança em Redes Informáticas, 3rd ed. FCA, 2010, pp. 55-60.

[22] ——, Segurança em Redes Informáticas, 3rd ed. FCA, 2010, pp. 33-35.

[23] ——, Segurança em Redes Informáticas, 3rd ed. FCA, 2010, pp. 38-39.

[24] J. John R. Black, “Message authentication codes”, pp. 19-21, PhD thesis, University of Cali-
fornia, Davis, 2000.

[25] ——, “Message authentication codes”, pp. 25-28, PhD thesis, University of California, Davis,
2000.

[26] A. Zúquete, Segurança em Redes Informáticas, 3rd ed. FCA, 2010, pp. 65-67.

[27] M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: new methods for message authentication
using finite pseudorandom functions”, in Advances in Cryptology — CRYPT0’ 95, 1995, pp. 15–
28.

[28] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authentica-
tion”, in CRYPTO ’96 Proceedings of the 16th Annual International Cryptology Conference on
Advances in Cryptology, 1996, pp. 1–15.

[29] S. Turner and L. Chen, “Updated Security Considerations for the MD5 Message-Digest and the
HMAC-MD5 Algorithms”, RFC 6151, Mar. 2011, pp. 3–4. [Online]. Available: http://tools.

ietf.org/rfc/rfc6151.txt.

[30] T. Wollinger, J. Guajardo, and C. Paar, “Cryptography in embedded systems: an overview”,
in Proceedings of the Embedded World 2003 Exhibition and Conference, 2003, pp. 735–744.

[31] S. Vanstone, “Next generation security for wireless: elliptic curve cryptography”, Computers &
Security, vol. 22, no. 5, pp. 412–415, 2003, issn: 0167-4048.

[32] V. Gupta, S. Gupta, S. Chang, and D. Stebila, “Performance analysis of elliptic curve cryptog-
raphy for SSL”, in WiSE ’02 Proceedings of the 1st ACM workshop on Wireless security, 2002,
pp. 87–94.

[33] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing elliptic curve cryptog-
raphy and RSA on 8-bit CPUs”, in Cryptographic Hardware and Embedded Systems - CHES
2004, ser. Lecture Notes in Computer Science, M. Joye and J.-J. Quisquater, Eds., vol. 3156,
2004, pp. 119–132, isbn: 978-3-540-22666-6.

[34] ANACOM, Avaliação da QoS dos serviços GSM, UMTS e cobertura das redes (GSM e
WCDMA), nos principais aglomerados urbanos e eixos rodoviários de Portugal Continental,
Nov. 2011, pp. 55–60.

78

http://tools.ietf.org/rfc/rfc6151.txt
http://tools.ietf.org/rfc/rfc6151.txt

[35] GSMA, http://www.gsma.com/aboutus/history, available on Oct. 2013.

[36] B. H. Pansambal and R. D. Kokate, “Smart data acquisition system using M2M communica-
tion”, in International Journal of Applied Engineering Research, 2012.

[37] D. López, I. Vázquez, J. Ruiz, and D. Sainz, “Gprs-based real-time remote control of microbots
with M2M capabilities”, in Fourth international workshop on wireless information systems
(WIS 2005), 2005, pp. 42–51.

[38] L. Cristaldi, M. Faifer, F. Grande, and R. Ottoboni, “An improved M2M platform for multi-
sensors agent application”, in Sensors for Industry Conference, 2005, Feb. 2005, pp. 79–83.

[39] S. Pocuca and D. Giljevic, “Machine to machine (m2m) communication impacts on mobile
network capacity and behaviour”, in MIPRO, 2012 Proceedings of the 35th International Con-
vention, May 2012, pp. 607–611.

[40] M. Toorani and A. Beheshti, “Solutions to the GSM security weaknesses”, in Next Generation
Mobile Applications, Services and Technologies, 2008. NGMAST ’08. The Second International
Conference on, Sep. 2008, pp. 576–581.

[41] K. Nyberg, “Cryptographic algorithms for UMTS”, in ECCOMAS 2004, Proceedings, vol. II,
2004.

[42] U. Meyer and S. Wetzel, “A man-in-the-middle attack on UMTS”, in WiSe 2004, Proceedings
of the 3rd ACM workshop on Wireless security, 2004, pp. 90–97.

[43] Z. Ahmadian, S. Salimi, and A. Salahi, “New attacks on UMTS network access”, in Wireless
Telecommunications Symposium, 2009. WTS 2009, Sep. 2009, pp. 1–6.

[44] O. Dunkelman, N. Keller, and A. Shamir, “A practical-time related-key attack on the KASUMI
cryptosystem used in GSM and 3G telephony”, in Advances in Cryptology, CRYPTO 2010,
2010, pp. 393–410.

[45] M. Paik, “Stragglers of the herd get eaten: security concerns for GSM mobile banking applica-
tions”, in HotMobile 2010, Proceedings of the Eleventh Workshop on Mobile Computing Systems
and Applications, ADDENDUM, JANUARY 2010, 2010, pp. 54–59.

[46] Karsten Nohl, “Rooting SIM cards”, in Black Hat USA 2013, 2013.

[47] Waspmote Datasheet, http://www.libelium.com/v11-files/documentation/waspmote/

waspmote-datasheet_eng.pdf, version 2.3, Waspmote v1.1 Datasheet, Nov. 2012.

[48] Waspmote Quickstart Guide, http://www.libelium.com/uploads/2013/08/quickstart_

guide.pdf, version 4.2, Aug. 2013.

[49] NIST, FIPS PUB 197, Advanced Encryption Standard (AES), U.S. Department of Commerce/-
National Institute of Standards and Technology, 2001. [Online]. Available: http://csrc.nist.

gov/publications/fips/fips197/fips-197.pdf.

[50] Intel, Intel Advanced Encryption Standard (AES) Instructions Set, Rev 3.01, 2012. [Online].
Available: http : / / software . intel . com / articles / intel - advanced - encryption -

standard-aes-instructions-set/.

[51] A. Bogdanov, D. Khovratovich, and C. Rechberger, “Biclique cryptanalysis of the full aes”, in
Proceedings of the 17th international conference on The Theory and Application of Cryptology
and Information Security, ser. ASIACRYPT’11, Springer-Verlag, 2011, pp. 344–371.

[52] A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin, and C.
Vikkelsoe, “PRESENT: An Ultra-Lightweight Block Cipher”, in Cryptographic Hardware and
Embedded Systems - CHES 2007, ser. Lecture Notes in Computer Science, vol. 4727, Springer
Berlin Heidelberg, 2007, pp. 450–466.

79

http://www.gsma.com/aboutus/history
http://www.libelium.com/v11-files/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/v11-files/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/uploads/2013/08/quickstart_guide.pdf
http://www.libelium.com/uploads/2013/08/quickstart_guide.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://software.intel.com/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://software.intel.com/articles/intel-advanced-encryption-standard-aes-instructions-set/

[53] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis of RC5”, in EUROCRYPT 1998,
Springer-Verlag, 1998, pp. 85–99.

[54] J. Lu, “Related-key rectangle attack on 36 rounds of the xtea block cipher”, International
Journal of Information Security, vol. 8, no. 1, pp. 1–11, 2009.

[55] E. Lee, D. Hong, D. Chang, S. Hong, and J. Lim, “A weak key class of xtea for a related-
key rectangle attack”, in Progress in Cryptology - VIETCRYPT 2006, ser. Lecture Notes in
Computer Science, vol. 4341, Springer Berlin Heidelberg, 2006, pp. 286–297.

[56] M. Robshaw, “The eSTREAM Finalists”, in New Stream Cipher Designs- The eSTREAM
Finalists, ser. Lecture Notes in Computer Science, vol. 4986, 2008, pp. 1–6.

[57] A. Klein, “The estream project”, in Stream Ciphers, Springer London, 2013, p. 229.

[58] I. Dinur and A. Shamir, “Breaking grain-128 with dynamic cube attacks”, in Fast Software
Encryption, ser. Lecture Notes in Computer Science, vol. 6733, Springer Berlin Heidelberg,
2011, pp. 167–187.

[59] P. Stankovski, S. Ruj, M. Hell, and T. Johansson, “Improved distinguishers for HC-128”, De-
signs, Codes and Cryptography, vol. 63, no. 2, pp. 225–240, 2012.

[60] Y. Lu, H. Wang, and S. Ling, “Cryptanalysis of rabbit”, in Information Security, ser. Lecture
Notes in Computer Science, vol. 5222, Springer Berlin Heidelberg, 2008, pp. 204–214.

[61] T. Xie and D. Feng, “How to find weak input differences for MD5 collision attacks.”, Cryptology
ePrint Archive, 2009.

[62] F. Mendel, T. Nad, S. Scherz, and M. Schläffer, “Differential attacks on reduced RIPEMD-
160”, in Information Security, ser. Lecture Notes in Computer Science, vol. 7483, Springer
Berlin Heidelberg, 2012, pp. 23–38.

[63] M. Stevens, “New collision attacks on sha-1 based on optimal joint local-collision analysis”,
in Advances in Cryptology – EUROCRYPT 2013, ser. Lecture Notes in Computer Science,
vol. 7881, Springer Berlin Heidelberg, 2013, pp. 245–261.

[64] “ETSI TS 102 690- Machine-to-Machine communications (M2M); Functional architecture”,
ETSI, Tech. Rep., Jun. 2013, pp. 32–34.

[65] “ETSI TS 102 92- Machine-to-Machine communications (M2M); mIa, dIa and mId interfaces”,
ETSI, Tech. Rep., Jun. 2013, p. 28.

[66] “ETSI TS 102 92- Machine-to-Machine communications (M2M); mIa, dIa and mId interfaces”,
ETSI, Tech. Rep., Jun. 2013, p. 72.

[67] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application Protocol (CoAP), draft-ietf-
core-coap-18”, Internet Draft, Jun. 2013. [Online]. Available: http://tools.ietf.org/html/

draft-ietf-core-coap-18.

[68] C. Bormann, A. Castellani, and Z. Shelby, “Coap: an application protocol for billions of tiny
internet nodes”, Internet Computing, IEEE, vol. 16, no. 2, pp. 62–67, 2012, issn: 1089-7801.

[69] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, and C. Görg, “Implementation of CoAP
and its application in transport logistics”, in Proceedings of the workshop on Extending the
Internet to Low power and Lossy Networks (IP+SN 2011), 2011.

80

http://tools.ietf.org/html/draft-ietf-core-coap-18
http://tools.ietf.org/html/draft-ietf-core-coap-18

Appendix A: Base code used in

devices

Waspmote

#include <crypto / c o n f i g . h>

volatile uint32_t ope ra t i on s = 0 ;

/* Cryptographic primitive key, data and result */

/*

uint8_t key [] = {};

uint8_t text [] = {};

uint8_t result [] = {};

*/

/* Initialization */

void setup ()

{

USB. begin () ;

USB. p r i n t l n ("Init") ;

/* Cryptographic primitive setup goes here (if necessary)*/

/* Program timer to generate an interruption each second */

TIMSK1 |= (1 << OCIE1A) ; //enable comp interrupt timer1

s e i () ; //enable global interrupts

TCCR1A = 0 ;

TCCR1B = 0 ;

TCCR1C = 0 ;

OCR1A = 7811 ; // Set CTC compare value to 1Hz (Freq_Clock = 8Mhz)

//timer startup

TCCR1B |= (1 << CS10) | (1 << CS12) | (1 << WGM12) ; //prescaler = 1024

}

/* Attend interrupt */

ISR (TIMER1_COMPA_vect)

{

81

//disable interrupts

c l i () ;

/*Prints throughput: */

USB. p r i n t l n (operat ions , 10) ;

ope ra t i on s = 0 ;

//enable interrupts

s e i () ;

}

void loop () {

/*Base RAM is measured here*/

//USB.println(freeMemory());

/* Call cryptographic primitive here */

ope ra t i on s++;

}

DETPIC32

#include <detp ic32 . h>

#include "config.h"

volatile int hal f_second = 0 ;

volatile uint32_t ope ra t i on s = 0 ;

/* Cryptographic primitive key, data and result */

/*

uint8_t key [] = {};

uint8_t text [] = {};

uint8_t result [] = {};

*/

/* Configure timer to generate interrupts */

void c o n f i g () {

/*timer 1 config*/

T1CONbits .TCKPS=3;

PR1=39062;

TMR1=0;

T1CONbits .TON=1;

/*timer 1 interrupts config*/

IFS0b i t s . T1IF=0;

IPC1bits . T1IP=2;

82

IEC0bits . T1IE=1;

}

int main () {

/* Cryptographic primitive setup goes here (if necessary) */

c o n f i g () ;

Enab le Inte r rupt s () ;

while (1) {

/* Call cryptographic primitive here */

ope ra t i on s++;

}

return 0 ;

}

/* Attend interrupt */

void _int_ (4) isr_T1 () {

D i s a b l e I n t e r r u p t s () ;

if (hal f_second) {

p r i n t I n t (operat ions , 1 0) ;

p r i n t S t r ("\n") ;

hal f_second = 0 ;

ope ra t i on s = 0 ;

}

else{

hal f_second = 1 ;

}

IFS0b i t s . T1IF=0;

Enab le Inte r rupt s () ;

}

Raspberry Pi

#include "config.h"

#include <s i g n a l . h>

#include <sys / time . h>

#include <s t d i o . h>

typedef void (∗ s ighand le r_t) (int) ;

volatile uint32_t ope ra t i on s = 0 ;

/* Cryptographic primitive key, data and result */

/*

* uint8_t key[] = {};

83

* uint8_t text[] = {};

* uint8_t result[] = {};

*/

void t imer (int s i g)

{

p r i n t f ("%d␣operations\n" , o pe ra t i on s) ;

ope ra t i on s = 0 ;

}

int main () {

struct t imeva l my_value = {1 ,0} ;

struct t imeva l my_interval = {1 ,0} ;

struct i t i m e r v a l my_timer = { my_interval , my_value } ;

s e t i t i m e r (ITIMER_REAL, &my_timer , 0) ;

s i g n a l (SIGALRM, (s ighand le r_t) t imer) ;

/*Init cryptographic primitive if necessary*/

while (1) {

/*Call cryptographic primitive*/

ope ra t i on s++;

}

return 0 ;

}

84

Appendix B: Views on obtained

results

Cryptographic primitives sorted by performance

Waspmote

HC-256 is not featured due to inability of the Waspmote of executing the implemented version

(lack of RAM memory). The remaining results can, however, be observed in table 1. It’s

important to note that stream ciphers were initialized prior to benchmarking.

Bytes/s Cycles/byte Primitive type
SOSEMANUK 47504 168 Stream cipher
HC-128 27940 286 Stream cipher
Rabbit 19416 412 Stream cipher
AES-128 9920 806 Block cipher
XTEA (optimized) 9681,6 826 Block cipher
RC5 8933,6 896 Block cipher
AES-256 6416 1247 Block cipher
XTEA 6162 1298 Block cipher
HMAC-MD5 5970 1340 HMAC
Salsa20/12 5691,2 1406 Stream cipher
Trivium 4720 1695 Stream cipher
Present 2488 3215 Block cipher
HMAC-SHA-1 (optimized) 2263 3535 HMAC
HMAC-SHA-1 1369 5844 HMAC
HMAC-RIPEMD-160 1318,7 6061 HMAC
MICKEY 2.0 740 10811 Stream cipher
HMAC-SHA-256 609 13136 HMAC
MICKEY-128 2.0 520 15385 Stream cipher
Grain-128 192 41667 Stream cipher

Table 1: Sorted throughputs obtained using the Waspmote device

85

DETPIC32

As with the previous sorted results, it’s important to note that stream ciphers were initialized

prior to benchmarking.

Bytes/s Cycles/byte Primitive type
HC-128 2985040 13,4 Stream cipher
HC-256 2061840 19,4 Stream cipher
SOSEMANUK 1629304 24,55 Stream cipher
Rabbit 1486280 27 Stream cipher
Salsa20/12 1030920 38,8 Stream cipher
RC5 958072 42 Block cipher
Trivium 842560 47,5 Stream cipher
XTEA (optimized) 570404 70 Block cipher
HMAC-MD5 405764 99 HMAC
HMAC-SHA-1 (optimized) 296305 135 HMAC
XTEA 286480 140 Block cipher
HMAC-RIPEMD-160 190701 210 HMAC
AES-128 112208 356 Block cipher
AES-256 57488 696 Block cipher
HMAC-SHA-1 32050 1248 HMAC
HMAC-SHA-256 26960 1484 HMAC
MICKEY 2.0 26640 1502 Stream cipher
MICKEY-128 2.0 22960 1742 Stream cipher
Present 20816 1922 Block cipher
Grain-128 3940 10152 Stream cipher

Table 2: Sorted throughputs obtained using the DETPIC32 device

86

Raspberry Pi

As with the previous sorted results, it’s important to note that stream ciphers were initialized

prior to benchmarking.

Bytes/s Cycles/byte Primitive type
HC-128 10059040 70 Stream cipher
Trivium 7811280 90 Stream cipher
Rabbit 6565360 107 Stream cipher
HC-256 6531200 107 Stream cipher
SOSEMANUK 6425280 109 Stream cipher
Salsa20/12 5308160 132 Stream cipher
RC5 2862840 245 Block cipher
XTEA 2666480 263 Block cipher
XTEA (optimized) 2164320 323 Block cipher
HMAC-MD5 1869633 374 HMAC
HMAC-SHA-1 (optimized) 1172537 597 HMAC
HMAC-RIPEMD-160 966861 724 HMAC
AES-128 422400 1657 Block cipher
AES-256 268992 2602 Block cipher
Present 187456 3734 Block cipher
MICKEY 2.0 131280 5332 Stream cipher
HMAC-SHA-1 128289 5456 HMAC
MICKEY-128 2.0 111360 6286 Stream cipher
HMAC-SHA-256 97446 7183 HMAC
Grain-128 13040 53681 Stream cipher

Table 3: Sorted throughputs obtained using the Raspberry Pi device

87

Initialized vs non-initialized stream ciphers

Results corresponding to performance, in number of operations per second, between ini-

tialized and non-initialized stream ciphers. In the first, the algorithm is initialized prior to

benchmarking and then, blocks of 80 bytes are ciphered by it while in the second the primitive

is initialized and used for ciphering once per each block of data during benchmark. Despite

presenting the number of operations per second as an indicative measure, the decrease in

performance is directly correlated with byte throughput and inversely correlated with the

number of cycles per byte as it is with operations per second.

Waspmote

As with previous appendices, HC-256 is not included with Waspmote results. The remaining

results for this device can be observed at table 4.

Operations/s
(initialized)

Operations/s
(non-initialized)

Decrease in
performance

Grain-128 2,4 1,7 29,17%
HC-128 349,25 3,6 98,97%
MICKEY 2.0 9,25 6,33 31,57%
MICKEY-128 2.0 6,5 4 38,46%
Rabbit 242,7 95 60,86%
Salsa20/12 71,14 70,93 0,3%
SOSEMANUK 593,8 94,75 84,04%
Trivium 59 22 62,72%

Table 4: Comparison of throughput values of initialized/non-initialized stream ciphers
in the Waspmote device.

DETPIC32

Operations/s
(initialized)

Operations/s
(non-initialized)

Decrease in
performance

Grain-128 49,25 35,25 28,43%
HC-128 37313 736 98,02%
HC-256 25773 302 98,83%
MICKEY 2.0 333 238 28,53%
MICKEY-128 2.0 287 171 40,42%
Rabbit 18578,5 7239,75 61,03%
Salsa20/12 12886,5 12638 1,9%
SOSEMANUK 20366,3 7198 64,66%
Trivium 10532 4506,5 57,21%

Table 5: Comparison of throughput values of initialized/non-initialized stream ciphers
in the DETPIC32 device.

88

Raspberry Pi

Operations/s

(initialized)

Operations/s

(non-initialized)

Decrease in

performance

Grain-128 163 116 28,83%

HC-128 125738 2260 98,20%

HC-256 81640 861 99,06%

MICKEY 2.0 1641 1168 28,82%

MICKEY-128 2.0 1392 841 39,58%

Rabbit 82067 31486 61,63%

Salsa20/12 66352 65012 2,02%

SOSEMANUK 80316 18351 77,15%

Trivium 97641 35146 64%

Table 6: Comparison of throughput values of initialized/non-initialized stream ciphers

in the Raspberry Pi device.

89

Primitives sorted by RAM usage

Sorted RAM usage is presented here. Due to impossibility of RAM measuring using the

DETPIC32 and RAM variations in the Raspberry Pi corresponding to variations in code

size, only the Waspmote results are presented. Percentages indicate the percentage of RAM

occupied by cryptographic primitives only (without base code) considering the 8 KB in the

device (8192 bytes).

RAM usage % RAM Primitive type
XTEA 78 0,95% Block cipher
XTEA (optimized) 78 0,95% Block cipher
RC5 176 2,15% Block cipher
MICKEY 2.0 400 4,88% Stream cipher
Trivium 401 4,895% Stream cipher
AES-256 425 5,19% Block cipher
MICKEY-128 2.0 458 5,59% Stream cipher
HMAC-MD5 460 5,62% HMAC
HMAC-SHA-1 478 5,83% HMAC
Rabbit 482 5,88% Stream cipher
Grain-128 486 5,93% Stream cipher
AES-128 511 6,24% Block cipher
Salsa20/12 546 6,67% Stream cipher
HMAC-SHA-1 (optimized) 620 7,57% HMAC
HMAC-RIPEMD-160 630 7,69% HMAC
HMAC-SHA-256 878 10,72% HMAC
Present 1095 13,37% Block cipher
SOSEMANUK 2972 36,28% Stream cipher
HC-128 4666 56,96% Stream cipher
HC-256 Over 8KB N/A Stream cipher

Table 7: Sorted RAM usage by cryptographic algorithms in the Waspmote device.

90

Primitives sorted by permanent memory usage

Sorted permanent memory usage is presented here. The numbers presented do not include

base code size, revealing an increase in the binary size by addition of the primitives. While

for the Waspmote and the DETPIC32 a correspondence between the primitive size and the

device’s memory is established, for the Raspberry Pi such does not happen. This is due to

the binary being stored in an SD card and thus not offering a fixed-size permanent memory

like the other devices.

Waspmote

Permanent
Mem. usage

% Permanent
Mem.

Primitive type

RC5 1054 0,80% Block cipher
XTEA 1116 0,85% Block cipher
AES-256 1360 1,04% Block cipher
Grain-128 1414 1,08% Stream cipher
HMAC-SHA-1 2634 2,01% HMAC
AES-128 2722 2,08% Block cipher
Present 3044 2,32% Block cipher
MICKEY 2.0 3322 2,53% Stream cipher
HMAC-SHA-256 3572 2,73% HMAC
Rabbit 3706 2,83% Stream cipher
MICKEY-128 2.0 3914 2,99% Stream cipher
Salsa20/12 5416 4,13% Stream cipher
HMAC-MD5 8936 6,82% HMAC
XTEA (optimized) 11924 9,10% Block cipher
Trivium 15584 11,89% Stream cipher
HMAC-SHA-1 (optimized) 23110 17,63% HMAC
HC-128 24892 18,99% Stream cipher
HC-256 29008 22,13% Stream cipher
HMAC-RIPEMD-160 30004 22,89% HMAC
SOSEMANUK 46436 35,43% Stream cipher

Table 8: Sorted permanent memory usage by cryptographic algorithms in the Wasp-
mote device.

91

DETPIC32

Permanent
Mem. usage

% Permanent
Mem.

Primitive type

XTEA 2592 0,49% Block cipher
RC5 2784 0,53% Block cipher
Grain-128 4008 0,76% Stream cipher
Salsa20/12 4456 0,85% Stream cipher
MICKEY 2.0 5436 1,04% Stream cipher
Rabbit 7052 1,35% Stream cipher
HMAC-SHA-1 7432 1,42% HMAC
HMAC-SHA-256 7864 1,50% HMAC
AES-256 8808 1,68% Block cipher
HMAC-MD5 11160 2,13% HMAC
XTEA (optimized) 12872 2,46% Block cipher
Present 13972 2,66% Block cipher
AES-128 16280 3,11% Block cipher
HMAC-SHA-1 (optimized) 18544 3,55% HMAC
HC-128 19744 3,77% Stream cipher
Trivium 21204 4,04% Stream cipher
HMAC-RIPEMD-160 22268 4,25% HMAC
HC-256 23308 4,45% Stream cipher
MICKEY-128 2.0 36120 6,89% Stream cipher
SOSEMANUK 54176 10,33% Stream cipher

Table 9: Sorted permanent memory usage by cryptographic algorithms in the DET-
PIC32 device.

92

Raspberry Pi

Permanent
Mem. usage

Primitive type

XTEA 2022 Block cipher
Grain-128 3202 Stream cipher
Salsa20/12 3305 Stream cipher
RC5 3430 Block cipher
MICKEY 2.0 3779 Stream cipher
MICKEY-128 2.0 4149 Stream cipher
Rabbit 4740 Stream cipher
HMAC-SHA-1 4905 HMAC
HMAC-SHA-256 5256 HMAC
Present 5731 Block cipher
HMAC-MD5 6019 HMAC
AES-256 6775 Block cipher
Trivium 9428 Stream cipher
HMAC-RIPEMD-160 10071 HMAC
AES-128 13271 Block cipher
XTEA (optimized) 14070 Block cipher
HMAC-SHA-1 (optimized) 14164 HMAC
HC-128 19703 Stream cipher
HC-256 24375 Stream cipher
SOSEMANUK 30233 Stream cipher

Table 10: Sorted permanent memory usage by cryptographic algorithms in the Rasp-
berry Pi device.

93

Appendix C: Cryptographic

complexity vs resources

Ciphers complexity

To ease comparison among primitives, the complexity granted by the benchmarked ciphers

can be observed in figure 1. Both theoretical complexity and complexity in the worst case

(considering the best cryptanalysis to date) is displayed. It should be noted that this com-

parison does not consider the applicability of the cryptanalysis in real scenarios neither side-

channel attacks.

Figure 1: Complexity provided by the deployed ciphers.

95

Memory usage vs complexity

Figures 2 and 3 correlate both RAM and flash memory usage and complexity provided by the

deployed ciphers. HC-256 RAM usage is not depicted due to the impossibility of executing

it in the Waspmote device thus lacking an exact value.

Figure 2: Correlation between benchmarked block ciphers’ complexity and memory

usage.

Figure 3: Correlation between benchmarked stream ciphers’ complexity and memory

usage.

96

Throughput vs complexity

Figures 4 and 5 correlate throughput and complexity provided by the deployed ciphers.

Figure 4: Correlation between benchmarked block ciphers’ complexity and throughput.

Figure 5: Correlation between benchmarked stream ciphers’ complexity and through-

put.

97

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Objectives
	Contributions
	Structure

	State of the art
	IoT is more than RFID
	IoT scenarios
	IoT horizontal architecture
	IoT devices' characteristics
	Security problems and countermeasures
	IoT is fragile
	Restricted devices are vulnerable
	Code injection
	IoT: the next Android?
	Traditional malware detection applied to IoT
	Possibility of IoT botnets
	A parallel between restricted devices and single-board computers

	Security overhead
	Chapter overview

	Securing IoT
	Trusted computing base
	Sufficient and rational security
	Symmetric Ciphers
	Block ciphers
	Stream ciphers
	What they provide?

	Message Authentication Codes
	HMAC

	Public-key cryptography
	Elliptic curve cryptography

	Routing and cryptography
	Operator coupled security
	Wide availability
	GSM
	UMTS and LTE
	End-to-end security
	SIM malware

	Chapter overview

	Evaluating cryptographic implementations in IoT devices
	Methodology
	Devices
	Performance metrics
	Implementation properties
	Tools and compilers

	Block ciphers
	Stream ciphers
	HMACs
	Result discussion

	Security in a complete M2M solution
	ETSI M2M
	CoAP
	Brief Overview
	Implementation
	CoAP overhead

	Functionalities vs security

	Conclusions
	Future work

	References
	Appendix A: Base code used in devices
	Waspmote
	DETPIC32
	Raspberry Pi

	Appendix B: Views on obtained results
	Cryptographic primitives sorted by performance
	Waspmote
	DETPIC32
	Raspberry Pi

	Initialized vs non-initialized stream ciphers
	Waspmote
	DETPIC32
	Raspberry Pi

	Primitives sorted by RAM usage
	Primitives sorted by permanent memory usage
	Waspmote
	DETPIC32
	Raspberry Pi

	Appendix C: Cryptographic complexity vs resources
	Ciphers complexity
	Memory usage vs complexity
	Throughput vs complexity

