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Abstract

Oligoastrocytoma (OA) was a glioma recognized in the current World Health Organization
(WHO) classification of the central nervous system (CNS) tumors as a mixed tumor with
an astrocytic and an oligodendroglial component. Its definability was, however, poor so
that its prevalence varies in the various collections. A series of contributions of the literature
and the “International Society of Neuropathology (ISN) – Haarlem Consensus” recently
denied its existence as a tumor entity on the basis of 1p/19q, isocitrate dehydrogenase
(IDH) and α-thalassemia/mental retardation syndrome X-linked (ATRX) status. Most
tumors previously diagnosed as OAs were, therefore, reclassified as either oligodendro‐
gliomas or astrocytomas.

We revised 40 OAs from our glioma series initially diagnosed with stringent histologic
criteria. After the revision based on the above mentioned molecular markers, most of them
changed diagnosis falling into the categories of oligodendroglioma or astrocytoma. Only
one fulfilled the stringent criteria of the current classification system, whereas two cases
remained undefined.

Since ATRX is constitutively expressed in microglia/macrophages, their number in the
histologic sections has a paramount importance in recognizing the oligodendroglial
component. The double ATRX/GFAP, ATRX/IDH1R132H and ATRX/Iba-1 immunostain‐
ings greatly conditions the recognition of the oligodendroglial and astrocytic tumor
cells.
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1. Introduction

In the 2007 World Health Organization (WHO) classification of the central nervous system
(CNS) tumors [1], oligoastrocytoma (OA) was considered as a mixed glioma with an astro‐
cytic and an oligodendroglial component [2, 3]. It could be easily recognized if the two
components were clearly separated, as it rarely happened. Usually, the two cell types were
found intermingled and the differential diagnosis towards astrocytomas and oligodendro‐
gliomas was difficult and, frequently, it remained undefined. Since its first recognition [4] and
confirmation [5], its definability was poor and the tumor was even considered as an oligoden‐
droglioma with reactive astrocytes [6]. The poor tumor definability explains why the preva‐
lence of OAs in the various collections of the literature has been so variable and it accounted
for the need to establish criteria useful for the recognition of the tumor. It was suggested to
rely on the occurrence of at least 10% neoplastic oligodendrocytes in astrocytic gliomas [7]
or 10% neoplastic astrocytes in oligodendroglial gliomas [8], provided that oligodendrocytes
were neoplastic and not normal, and that astrocytes were tumor and not reactive. These
criteria, however, were too vague in the clinical practice and the definition of the tumor
remained a subjective matter. In particular, the recognition of normal from tumor oligoden‐
drocytes, especially in slightly infiltrating or diffuse growth where the cell density is low,
remained unsolved [9].

As a matter of fact, the diagnostic uncertainties of OA were also due to the lack of a reliable
marker for tumor oligodendrocytes in tissue sections. The prevailing diffuse and infiltrating
growth of both oligodendrogliomas and the oligodendroglial component of OAs led to find
the coexistence in the same tumor area of tumor and normal oligodendrocytes to the point that
it was even difficult to establish, in some cases, whether a tumor infiltration existed or not. On
the other hand, the difficulty to recognize a mild oligodendroglial infiltration in oligodendro‐
gliomas themselves was already known, even exploiting the occurrence of abnormal nuclei or
crowding of tumor cells along capillaries or around neurons.

Another critical point was the difficulty to distinguish reactive from tumor astrocytes and to
recognize the real nature of minigemistocytes [10], glial fibrillary oligodendrocytes (GFOC)
[11–13], real gemistocytes, and perineural satellites.

The origin of the tumor was referred to a progenitor stage preceding the astrocytic and oli‐
godendroglial differentiation and, therefore, tumor suppressor protein p53 (TP53) mutations
were searched for in the astrocytic component and the 1p/19q co-deletion in the oligoden‐
droglial one and a genetic analysis was suggested [14]. Anyway, the variability of OA prev‐
alence in the various collections remained high. It was observed that the absence of 1p/19q
co-deletion, typical of oligodendrogliomas, entailed the occurrence of TP53 mutations [15],
but also that it could be present or absent in both tumor components and that all tumor cells
seemed to share the same genetic aberrations [14].
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2. Epidemiology and demographics

2.1. Incidence

OA was the third most common glioma. It accounted for 1% of all brain tumors and 5–10% of
all glial neoplasms. The incidence of OA was approximately 0.03 per 100,000 individuals in the
United States. Young and middle-aged adult population was affected. The median age of
diagnosis was 42 years. Males were more commonly affected than females; the male to female
ratio was approximately 1.43–1. OA usually affected individuals of the Caucasian race with a
higher incidence rate in developed countries [1].

2.2. Etiology

Common risk factors in the development of OA included family history of brain tumors,
ionizing radiation, and allergic diseases.

2.3. Location

OA preferentially developed in the cerebral hemispheres with a frequency that correspond‐
ed to the relative size of the cerebral lobes (frontal, temporal, parietal, and occipital) [1]. It
commonly arose in the supratentorial regions. Occasional locations were insula, diencepha‐
lon, and spinal cord whereas cerebellar location was very uncommon.

2.4. Clinical features

The most common symptoms were seizure, headache, and personality changes.

2.5. Neuroradiological features

On magnetic resonance imaging (MRI), OA was described as characterized by a mass which
is typically hypointense on T1-weighted images and hyperintense on T2-weighted images. No
enhancement is observed on Gadolinium enhanced T1-weighted images (Figure 1A, B).

Figure 1. Magnetic resonance imaging (MRI) of 20-years old woman. A – OA, T1-weighted sequence after gadolinium
contrast enhancement (arrow); B – Id, hyperintensity in T2-weighted sequence.
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3. Histopathology

According to the current WHO classification system [1], OA was classified in two subtypes:
grade II OA (OAII) and grade III OA (OAIII).

3.1. Macroscopic appearance

On gross pathology, OA was characterized by a soft, well-defined, grey-tan, mucoid or
hemorrhagic, calcified mass with or without necrosis that may expand the gyrus, and cause
blurring of the grey white matter junction.

3.2. Microscopic appearance

On histopathologic analysis, OA was characterized by highly cellular lesions composed of both
tumor astrocytes and oligodendrocytes that could be separated or intermingled [5], i.e. the
tumor could be defined as “biphasic” (Figure 2A–C) or “diffuse” (Figure 2D). Astrocytic tumor
cells scattered within oligodendroglial cells had to be recognized as neoplastic and not reactive/
hypertrophic astrocytes.

Figure 2. Histopathologic features of OA. A – OAII with separated astrocytic and oligodendroglial components, x100;
B – Id, astrocytic component, x400; C – Id, oligodendroglial component, x400; D – OAII with intermingled astrocytic
and oligodendroglial cells, x200; E – OAIII, x200. All hematoxylin and eosin (H&E).

OAII. The tumor showed a moderate cellularity with no or low mitotic activity. Microcalcifi‐
cations and microcystic degeneration could occur.

Reactive astrocytes are present in all gliomas, OA included; in the latter, their distinction from
tumor astrocytes was the most important problem since the protean appearance of reactive
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astrocytes, with large cytoplasms, and thick and long processes or with small cytoplasms with
short processes and in variable number, did not allow a clear-cut distinction from tumor
astrocytes.

An important bias was the occurrence of minigemistocytes, GFOC, and true gemistocytes. Both
minigemistocytes and GFOC were regarded as either transitional forms between oligoden‐
drocytes and astrocytes, corresponding to a bipotential glial progenitor cell [16], or as glial
fibrillary acidic protein (GFAP) expressing oligodendrocytes [12], remnants of myelin forming
glia of the developmental period [13].

A high frequency of minigemistocytes could confer an astrocytic aspect to the tumor.

OAIII. The tumor was mainly characterized by a significant or brisk mitotic activity (≥ 6 mitoses
per 10 high power field [HPF]) and a high Ki-67/MIB-1 proliferation index, nuclear atypia,
necrosis, and apoptotic cells (Figure 2E). The malignant transformation was considered as
proceeding either from the one or the other cell component. In the differential diagnosis
towards glioblastoma (GBM), the occurrence of circumscribed necroses was decisive; the
presence of microvascular proliferations (MVPs) would indicate the grade III when occurring
in the oligodendroglial part and the grade IV when in the astrocytic one.

3.3. Immunohistochemistry (IHC)

IHC was practically based only on GFAP expression. No specific immunohistochemical
marker was available for oligodendrocytes [17, 18], although MAP2, OLIG2, Cyclin D1, and
alpha-internexin (INA) immunopositivity could be found in the oligodendroglial compo‐
nent. Approximately one third of OAs showed nuclear p53 accumulation, more commonly in
the astrocytic cells [19].

4. Molecular genetics

As in all gliomas, the origin of the tumor proceeds from the step-wise accumulation of genetic/
epigenetic alterations. Thirty-fifty percent of OAs exhibited loss of heterozygosity (LOH) on
chromosomes 1p and 19q [20, 21], while approximately 30% of them harboured TP53 muta‐
tions. In particular, OAs of the temporal lobe more frequently exhibited TP53 mutations, and
less commonly, 1p and 19q losses [22, 23].

OAII typically exhibited the type and distribution of genetic alterations observed in grade II
gliomas [22]. OAIII showed genetic alterations commonly involved in the progression of
astrocytic and oligodendroglial tumors, including loss of 9p with homozygous deletion of the
cyclin-dependent kinase inhibitor 2A (CDKN2A) (p14ARF) gene, allelic loss on chromosome
10q and epidermal growth factor receptor (EGFR) gene amplification [24].
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5. Treatment and prognosis

OAs responded less favourably to chemotherapy (CHT) due to the chemoresistance of their
astrocytic components [25]. Studies have shown that the standard of care for 1p/19q co-deleted
oligodendroglial tumors should be the combination of CHT and radiotherapy (RT). In OA, a
favourable prognosis was associated to young age, grade II and extent of resection [26].

Compared to astrocytomas, OAs shared with oligodendrogliomas a more favourable prog‐
nosis and an improved response to adjuvant therapy. The NOA-04 prospective trial on
anaplastic gliomas reported virtually identical outcomes for patients with oligodendroglio‐
mas or OAs [27].

6. New criteria for glioma diagnosis after the “ISN-Haarlem Consensus”

Our knowledge on the nature of OA underwent a profound change after the “International
Society of Neuropathology (ISN)-Haarlem Consensus” guidelines led to the official recogni‐
tion of the indispensability of the genetic analysis in order to obtain an “integrated” diagno‐
sis of gliomas [28]. Referred to grade II and III adult gliomas, this new approach would involve
a combination of histologic and molecular data based on the 1p/19q, isocitrate dehydrogen‐
ase (IDH) 1/2 and α-thalassemia/mental retardation syndrome X-linked (ATRX) status.

6.1. 1p/19q chromosomal status

The genetic hallmark of oligodendroglial tumors is a combined chromosomal deletion of the
short arm of the chromosome 1 (1p) and the long arm of the chromosome 19 (19q). Com‐
bined 1p and 19q losses were described in 80–90% of grade II and in 50–70% of grade III
tumors [22, 24].

The 1p/19q chromosomal status was recognized as an important diagnostic biomarker in the
clinical practice. The 1p/19q co-deletion was reported in 60–70% of oligodendrogliomas with
a classical histologic phenotype (perinuclear “halo” and “chicken wire” vascular pattern).
Partial 1p or 19q deletion occurred in approximately 75% of the cases [29, 30]. Oligodendro‐
glial tumors with 1p/19q co-deletion were observed to typically arise at an extra-temporal
location, whereas tumors with intact 1p/19q at the temporal lobe [22]. In contrast, childhood
oligodendrogliomas only rarely exhibited chromosomal abnormalities.

Importantly, the occurrence of 1p/19q co-deletion supports the diagnosis of oligodendroglio‐
ma, especially when histology is atypical. However, its absence does not exclude this diagno‐
sis, leaving unsolved the question of oligodendrogliomas with intact 1p/19q.

In OA, the frequency of the 1p/19q co-deletion was approximately 50% [22]. Virtually, it was
mutually exclusive with LOH of chromosome 17p13 and TP53 mutations, both typical of
astrocytic tumors. In OA, the 1p/19q co-deletion was referred to the oligodendroglial compo‐
nent, whereas TP53 mutations to the astrocytic one.
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6.1.1. Mechanism of the combined loss of the chromosomes 1p and 19q

The mechanism of the combined loss of the two chromosomal arms is an unbalanced t(1;19)
(q10;p10) translocation of 19p to 1q. A centromeric or pericentromeric translocation of
chromosomes 1 and 19 results in two derivative chromosomes, der(1;19)(p10;q10) and
der(1;19)(q10;p10), followed by the loss of the derivative chromosome containing the short
arm of chromosome 1 and the long arm of chromosome 19 [31, 32].

The extent of the 1p/19q co-deletion has important diagnostic and prognostic implications. The
chromosomal arm 1p is entirely deleted only in pure oligodendroglial tumors and the whole-
arm 1p deletion has a strong favorable prognostic significance. Small telomeric (1p36) or
interstitial 1p deletions are frequent as well, but with an opposite prognostic significance; they
associate neither with deletion on the chromosomal arm 19q [33] nor with response to CHT [34].

While the total 1p/19q co-deletion is almost completely exclusive of oligodendrogliomas,
partial 1p deletions are frequent in GBMs and isolated 19q loss in mixed and astrocytic gliomas
in relation to the malignant transformation [35, 36].

Currently, there is a general agreement to diagnose the classical oligodendroglioma only in
presence of a whole-arm 1p/19q co-deletion [37, 38].

Most oligodendrogliomas with 1p/19q co-deletion harbor IDH1/2, telomerase reverse
transcriptase (TERT), homolog of the Drosophila capicua (CIC) and far upstream element-
binding protein 1 (FUBP1) somatic mutations, and O6-methylguanine-DNA methyltransfer‐
ase (MGMT) or CDKN2A (p14ARF) promoter hypermethylation [37, 39–41].

6.1.2. Methods for the detection of 1p/19q chromosomal status

Different methods for the detection of the 1p/19q chromosomal status are employed in the
routine diagnostics. Fluorescent in situ hybridization (FISH) is a single-locus technique, limited
to the 1p36 locus and thus not regarded as a suitable tool due to the high risk of false-posi‐
tive results [34, 37, 42, 43]. On the other hand, LOH analysis is generally carried out with a low
number of microsatellite markers covering only a small chromosomal region.

In contrast, multi-locus techniques, as comparative genomic hybridization (CGH) or multi‐
plex ligation-dependent probe amplification (MLPA) detect gene copy number changes on the
whole chromosome and distinguish whole-arm from partial 1p deletion [44]. Additionally,
they can reveal putative gain of functions on both 1p and 19q chromosomes [45, 46].

In particular, MLPA has been validated as a high-resolution gene dosage assay for the
screening of large deletions and duplication/amplification events in human cancers. In
gliomas, three independent studies validated MLPA to assess the 1p/19q status by compar‐
ing MLPA data with CGH data obtained on the same tumor series, mainly composed of
oligodendroglial tumors [47–49]. In the authors’ experience, MLPA is a reliable and power‐
ful tool to assess the 1p/19q status on formalin fixed and paraffin embedded tumor samples.
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6.2. IDH1/2 mutations

IDHs catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate with production
of NADH/NADPH and they are involved in the Krebs cycle.

Recurrent somatic point mutations affect the arginine (Arg) residue at codon 132 in the IDH1
gene on chromosome 2q33.3. Less frequently, they occur at the homolog Arg (R) residue at
codon 172 in the IDH2 gene on chromosome 15q26.1. The IDH1/2 mutation rate is in the range
of 70– 80% in OII and OIII [50–53] and less in OAII and OAIII, with a higher frequency in 1p/
19q co-deleted tumors [37]. IDH1 mutations prevail in astrocytic tumors whereas IDH2
mutations are more common in oligodendroglial tumors [51, 54].

In low grade gliomas, they are prognostic favorable factors [53, 55, 56].

The c.395G>A (p.R132H) mutation can be easily detected by a anti-IDH1R132H mutation-specific
antibody by immunohistochemical techniques [53, 57]. Tumor cells show IDH1R132H immuno‐
positivity in their cytoplasms, whereas reactive astrocytes and normal glia cells are negative.
This is particularly evident in the picture of cortical perineuronal satellitosis where positive
(tumor) and negative (normal) satellites can be found, at the beginning of invasion.

6.2.1. ATRX mutations

The ATRX gene is located on chromosome Xq21.1, contains 35 exons, and encodes a 2,492
amino acid protein. ATRX belongs to the H3.3-ATRX-DAXX chromatin remodeling path‐
way, involved in chromatin stabilization [58]. ATRX and its binding factor death-associated
protein 6 (DAXX) incorporates the histone protein H3.3 into the nucleosome at telomeres and
pericentric heterochromatin [59, 60]. Alterations of this function lead to loss of structural
integrity at telomeres leading to tumorigenesis. In fact, ATRX or DAXX protein loss is
associated to the alternative lengthening of telomeres (ALT), a telomerase-independent
mechanism of telomere lengthening [61–66].

Germline ATRX mutations give rise to a syndrome characterized by severe mental retarda‐
tion [67] and to α-thalassemia.

Somatic ATRX mutations occur in gliomas of different types and histologic grades [38, 61–65,
68–70]. They are more frequent in grade II (67%) and in grade III (73%) astrocytic tumors and
in secondary GBMs (57%), as well as in mixed gliomas (25% in grade II and 27–53.8% in grade
III tumors) [64, 65, 69, 70]. In contrast, they are rare in primary GBMs (4%), pediatric GBMs
(20%) and in pure oligodendroglial tumors (<10%) [63, 64, 68]. Very importantly, ATRX
mutations do not affect pilocytic astrocytomas [64].

ATRX mutations occur in 70% of IDH mutant and intact 1p/19q low grade gliomas [62, 64, 65].
Restricted to IDH mutant tumors, they are significantly associated to TP53 mutations and
nuclear p53 overexpression and to astrocytic differentiation; they are mutually exclusive
with 1p/19q co-deletion [71, 72]. ATRX and IDH1/2 mutations occur in association and they
may represent early genetic alterations in the development of gliomas affecting progenitors
before their differentiation along the two lineages.

Neurooncology - Newer Developments346



In pediatric gliomas, all ATRX mutations cluster near the C-terminal helicase domains; in adult
tumors, they are evenly distributed across the gene, mainly as frameshift mutations leading
to truncated proteins [63, 64, 69].

The relatively large size of the ATRX gene makes the mutation analysis difficult to be applied
in the routine diagnostic procedures. The immunohistochemical evaluation of the ATRX
protein expression could represent an alternative method to assess the ATRX status. Although
studies reported concordant results between the mutation analysis and IHC [38, 72], tumor
heterogeneity in the ATRX expression and concurrent normal non-tumor cells with constitu‐
tive ATRX expression may explain possible discrepancy. As a matter of fact, ATRX muta‐
tions/ATRX protein loss characterizes astrocytic gliomas, whereas retained ATRX
immunoreactivity characterizes oligodendroglial gliomas. Referred to OA, the former is
typical of the astrocytic component while the latter of the oligodendroglial one [71].

6.2.2. ATRX and prognosis

Patients harboring ATRX mutations would show a better outcome [65]. ATRX has important
prognostic implications in anaplastic gliomas [65]. ATRX loss is a prognostic factor in IDH
mutant and non 1p/19q co-deleted low grade gliomas [62, 65]. In GBMs, ATRX loss affects
younger patients [72].

7. Nosograhic position of OA after the “ISN-Haarlem Consensus”

The “integrated” diagnosis provided for grade II and III adult gliomas covers the diagnostic
uncertainties between astrocytoma and oligodendroglioma and, mainly, of OA.

It has been found that OAs more frequently exhibited the molecular signature of either pure
oligodendroglioma (IDH1/2, 1p/19q co-deletion, CIC, FUB1, and TERT promoter mutations)
or pure astrocytoma (IDH1/2, TP53, and ATRX mutations) with almost total exclusivity [71].
A recent study proved that most low grade gliomas (including 74 OAs) with IDH1/2 muta‐
tions and intact 1p/19q harbored a high frequency of TP53 mutations (94%) and ATRX
mutations (86%) [73].

In 31 of 43 OAs (72.1%), the absence of ATRX mutations, associated with IDH1/2 mutations
and total 1p/19q co-deletion, reclassified them as oligodendrogliomas; 11 of 43 (25.6%), with
concurrent ATRX protein loss and TP53 mutations were reclassified as astrocytomas. The
astrocytes within the tumor were, therefore, interpreted as reactive [71]. These results were
similar to a previous one [64] and were confirmed in a large collection of cases [38]. The
conclusion is that OA should be removed from the WHO classification as a distinct tumor
entity, although rare instances of clearly biphasic OAs exhibiting morphologic and molecu‐
lar heterogeneity have been described. Mixed areas of the tumor could show heterogeneous
ATRX immunoreactivity with positive reactive astrocytes and negative tumor astrocytes [74,
75]. As ATRX is ubiquitously expressed in normal cells (endothelial cells, reactive astrocytes,
microglia cells, and lymphocytes) [38, 71], the real problem in the diagnosis of OA according
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to the 2007 WHO classification seems to ascertain the occurrence of ATRX-negative and
IDH1R132H -positive astrocytes in the tumor.

The astrocytic and oligodendroglial components have been found to share the same molecu‐
lar signature, but with a sheer cell differentiation [71]. They should be regarded as “morpho‐
logically ambiguous” rather than “mixed” tumors, as conventionally referred. 1p/19q co-
deletion and TP53 mutations represent distinct mechanisms of oncogenesis but they do not
provide evidence for a genetic signature specifically related to OA [76].

The “ISN-Haarlem Consensus” suggested considering OA or tumors with ambiguous histolo‐
gy as diffuse astrocytoma when harboring IDH1/2 mutations, intact 1p/19q, and ATRX loss;
as oligodendroglioma when harboring IDH1/2 mutations, 1p/19q co-deletion, and intact ATRX
and as diffuse astrocytoma when harboring wild type IDH. In the absence of molecular data,
the tumor should be diagnosed as oligodendroglioma or diffuse astrocytoma not otherwise
specified (NOS). Finally, the denomination of OA would be only maintained when molecu‐
lar testing does not solve tumor diagnosis [27].

Anyway, there is no doubt on the usefulness of the ATRX IHC [72] and of the double ATRX/
IDH1R132H immunostaining [77] in the diagnosis of adult diffuse gliomas. Based on molecular
data from the above mentioned markers on 54 OAs, it has been concluded that OA repre‐
sents a morphological grey zone rather than a group of truly “mixed” or “intermediate”
gliomas [78]. Importantly, it remains unsolved how to explain IDH mutant diffuse gliomas
with ATRX expression and intact 1p/19q (neither merely astrocytic nor oligodendroglial
lesions) or, more rarely, cases with loss of ATRX protein expression and total 1p/19q co-
deletion (both astrocytic and oligodendroglial lesions).

8. Observations on personal OA series

Our analysis started from the established principles that 1p/19q co-deletion is typical of
oligodendrogliomas, but that it occurs in a low percentage only of tumors with a classical
oligodendroglial phenotype (“honeycomb” appearance and “chicken wire” vessels). Our 40
OA cases had been initially diagnosed according to stringent histologic criteria, so that their
number is slightly lower compared to others’ series. The current revision has been carried out
on the basis of 1p/19q chromosomal status, as detected by MLPA, IDH1/2 mutation status by
IHC and sequencing analysis, and ATRX expression by IHC. The key points were: 1) the
retained expression of ATRX by tumor oligodendroglial nuclei and by reactive astrocyte,
microglia/macrophage, endothelial cell, lymphocyte nuclei, and the ATRX protein loss in
tumor astrocytic nuclei; 2) IDH1/2 mutations, present in low grade gliomas with a higher
frequency in oligodendrogliomas than astrocytomas [52, 79] (Figure 3A–D); 3) therefore,
although they reveal the tumor nature of cells, IDH1/2 mutations can lack both in oligoden‐
droglial and astrocytic tumor cells. As, beside reactive astrocytes, ATRX is expressed in
microglia/macrophage nuclei, Iba-1, CD68, CD16, and CD163 IHC has been performed on
parallel serial tumor sections, as well as the double ATRX/GFAP, ATRX/Iba-1, and ATRX/
IDHR132H immunostaining. Microglia/macrophages can reach in the tumor sections a frequen‐

Neurooncology - Newer Developments348



cy of 50–130 x 40 HPF (personal data); ATRX expressing nuclei could be, therefore, referred to
tumor oligodendrocytes only if their number encompasses the number of microglia/macro‐
phage nuclei. The occurrence of microglia/macrophages is, in our experience, the main bias to
recognize the oligodendroglial component in OA (Figure 4A–H). Normal oligodendrocytes
do not express ATRX and they can be distinguished in this way from tumor oligodendro‐
cytes; moreover, they express Cyclin D1 that, in contrast, is not expressed by tumor oligoden‐
drocytes unless they are cycling cells (Figure 5A–D) [80].

Figure 3. Immunohistochemistry (IHC). A – Oligodendroglioma, ATRX-positive cells, DAB, x200; B – Id, IDH1R132H -
positive perinuclear rim in tumor cells, DAB, x200. C – Gemistocytic astrocytoma, ATRX-negative and GFAP-positive
tumor astrocytes, double IHC with DAB and Fast Red, respectively, x400; D – Id, IDH1R132H -positive cells, DAB, x400.
Anti-IDH1R132H mouse monoclonal antibody (clone H09, Dianova GmbH, Hamburg, Germany) and anti-ATRX rabbit
polyclonal antibody (HPA001906, Sigma Aldrich Co., St. Louis, MO, USA). DAB, 3,3'-Diaminobenzidine.

Figure 4. Immunohistochemistry (IHC). A – Diffuse astrocytoma, GFAP-positive cells, x200; B– Id, scattered ATRX-
positive nuclei, the frequency of which corresponds to the frequency of CD68 positive-cells (C), both x200; D – Diffuse
astrocytoma, apparent OA with GFAP-positive astrocytes and possible oligodendroglial nuclei, x200; E – Id, scattered
ATRX-positive nuclei, x200; F – Id, Iba-1-positive cells covering the number of ATRX-positive nuclei, x200; G – Oligo‐
dendroglial infiltration, ATRX-positive and ATRX-negative nuclei, x200; H – Id, Iba-1-positive cells, x200 in 40 x high
power field. All 3,3'-Diaminobenzidine (DAB).
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The diagnosis of the 40 OA cases changed in 87.5% of them (35/40): 22/40 (55%) were reclas‐
sified as astrocytomas due to the absence of total 1p/19q co-deletion, the occurrence of
IDH1/2 mutations, and the loss of ATRX expression in GFAP-positive, phenotypically look‐
ing tumor astrocytes (Figure 6A–D); 11/40 (27.5%) were reclassified as oligodendrogliomas
due to IDH1/2 mutations, retained ATRX expression, total 1p/19q in 2/11 (18.2%) cases and
partial 1p or 19q deletions in 9/11 (81.8%) cases. In 2/40 (5%) cases the diagnosis changed
into reactive gliosis due to retained ATRX expression in GFAP-positive reactive astrocytes
and to the lack of ATRX-positive oligodendrocytes (Figure 6E–F). Among the remaining five
cases, in one case with partial 1p/19q co-deletion, ATRX-negative and GFAP-positive astro‐
cytes co-existed with a number of ATRX-positive and GFAP-negative oligodendrocytes;
both cell components showed IDHR132H immunopositivity by double ATRX/IDH1R132H immu‐
nostaining. Importantly, by the double ATRX/Iba-1 immunostaining, it was possible to veri‐
fy that the number of ATRX-positive oligodendroglial nuclei was higher than the number of
Iba-1-positive cells. The diagnosis of OA in this case was thus confirmed (Figure 7A). Two
wild type IDH cases without total 1p/19q co-deletion and with heterogeneous ATRX expres‐
sion were regarded as ambiguous since the tumor nature of the two cell components could
not be ascertained. In the other two cases, one with partial 1p/19q deletion and one with
intact 1p/19q, the diagnosis of OA could not be maintained since it was technically impossi‐
ble to perform IDH1R132H IHC.

Figure 5. Immunohistochemistry (IHC). A – Oligodendroglioma, mild infiltration with several ATRX-negative normal
oligodendrocytes and few ATRX-positive nuclei (tumor muclei or microglia/macrophage cells?), DAB, x200; B – Id, Cy‐
clin D1-positive normal oligodendrocytes, DAB, x200; C – Oligodendroglioma, ATRX-positive endothelial cells, DAB,
x400; D – Gemistocytic astrocytoma, microglia/macrophage cells, Iba-1- and ATRX-positive cells, double IHC with Fast
Red and DAB, respectively, x400. DAB, 3,3'-Diaminobenzidine.
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Figure 6. Immunohistochemistry (IHC). A – Gemistocytic astrocytoma, GFAP-positive cells, DAB, x200; B – Id, ATRX-
negative cells, DAB, x200; C – Anaplastic astrocytoma, GFAP-positive cells, DAB, x200; D – Id, ATRX-negative cells,
DAB, x200; E – Oligodendroglioma, reactive astrocytes with GFAP-positive thick cytoplasms and long processes and
ATRX-positive nuclei, double IHC with Fast Red and DAB, respectively, x400. F – Reactive gliosis, reactive astrocytes
with GFAP-positive large cytoplasms and short processes and ATRX-positive nuclei, double IHC with Fast Red and
DAB, respectively, x400. DAB, 3,3'-Diaminobenzidine.

Figure 7. Immunohistochemistry (IHC). A – OA, ATRX- and IDH1R132H -positive astrocytes, double IHC with DAB and
Fast Red, respectively, x630; B – Oligodendroglial minigemistocytes with ATRX-positive nuclei and GFAP-positive cy‐
toplasms, double IHC with DAB and Fast Red, respectively, x1000; C – Oligodendroglioma, satellitosis with ATRX-pos‐
itive nuclei, DAB, x200; D – Normal cortex, ATRX-positive neurons with ATRX-negative satellites, DAB, x400; E –
Oligodendroglial cortical infiltration, ATRX-positive neurons with ATRX-positive and ATRX-negative satellites, DAB,
x400; F – Id, ATRX-positive pericapillary tumor cells, DAB, x200. DAB, 3,3'-Diaminobenzidine.
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The distinction of reactive from tumor astrocytes has always been a crucial point in the
diagnosis of OA. Their recognition as reactive is a point of reference in denying the existence
of such tumor category. Reactive astrocytes retain nuclear ATRX protein expression, as tumor
oligodendrocytes, while tumor astrocytes lack ATRX expression.

By comparing our results with those of the literature, it is noteworthy that the change of
diagnosis from the initial to the current analyses of cases, largely depends on the criteria used
in the initial recognition of OAs. Upon the reclassification of the 35 cases as astrocytoma,
oligodendroglioma, or reactive gliosis, only one could deserve the dignity of OA among the
remaining five cases.

It must be incidentally remark that total 1p/19q co-deletion occurred in 43/113 (38.1%) of our
oligodendroglioma series (selected by the typical morphology of honeycomb appearance and
chicken wire vessel distribution); partial 1p and/or 19q deletions occurred in 36/82 (43.9%) of
oligodendrogliomas and in 12/24 (50%) astrocytomas. Referring to the 40 cases with initial
diagnosis of OA, two had total 1p/19q co-deletion, 14 partial 1p/19q deletion, 12 intact 1p/19q,
and one a gain of function on the chromosome 19q. For the remaining 11 cases, the 1p/19q
status was not available. It is widely accepted that partial 1p/19q deletions may occur in other
gliomas, but one wonders how tumors with an oligodendroglial phenotype with partial
deletions or intact 1p/19q can be classified.

9. Conclusions

By applying the “integrated” approach to the revision of our OA series, we conclude that, OA
could no longer be regarded as a separate tumor entity. However, rare cases might retain the
OA denomination [74, 75, our case], indicating that tumors can differentiate in oligodendro‐
glial and astrocytic sense, even maintaining the same molecular genetics [71], or that they can
arise from progenitors before differentiation in the two lineages.

Two points must be emphasized: one is the importance of the double immunostaining to
recognize the astrocytic nature of tumor cells, especially the association between IDH and
ATRX expression, considering that IDH1/2 mutations prevail in oligodendrogliomas in
comparison to astrocytomas [52, 79]. In supposed mixed tumors with the two separate
components, it has been observed that these share the same molecular asset and that astro‐
cytes in the tumor are reactive cells [71]. However, in tumors with the two cell types inter‐
mingled, tumor cells can be distinguished from reactive astrocytes by the double ATRX/GFAP
immunostaining. It must be remarked that in rare instances 1p/19q co-deletion can be
associated with ATRX mutations/ATRX protein loss [64] and that, since a quota of astrocyto‐
mas do not harbor IDH1/2 mutations, tumor astrocytes with wild type IDH may be found.

Minigemistocytes show definitely the oligodendroglial nature due to their ATRX-positive
nuclei (Figure 7B).

The other point is the great influence that microglia/macrophage occurrence may exert in the
recognition of tumor oligodendrocytes due to their nuclear ATRX positivity. In cases where
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the number of microglia/macrophages is very high to reach the number of ATRX-positive
nuclei, if tumor astrocytes are demonstrable, the tumor should be reclassified as astrocyto‐
ma. In order to recognize an oligodendroglial tumor infiltration, often result of a biopsy, it is
still mandatory that the number of ATRX-positive nuclei in a given area encompasses the
number of microglia/macrophages (personal data). ATRX-negative nuclei in infiltration areas
correspond to normal oligodendrocytes. Only the double ATRX/Iba-1 immunostaining can
reveal the occurrence of normal oligodendrocytes, beside their Cyclin D1 expression. In
IDH1R132H mutant cases, the double ATRX/IDH1R132H immunostaining unequivocally identi‐
fies oligodendroglial tumor cells. The coexistence of normal and tumor oligodendrocytes by
ATRX IHC can be demonstrated in perineuronal satellitosis: in its initial phases, ATRX-positive
and ATRX-negative nuclei are found around neurons; in later phases, all nuclei are ATRX-
positive (Figure 7C–E). The same can be said for pericapillary satellitosis (Figure 7F).

The last point to be discussed is the possibility to find a false “honeycomb” appearance
mimicking the typical perinuclear “halo” with ATRX-positive nuclei. This aspect cannot be
interpreted as suggestive of an oligodendroglial origin of the tumor, being expressions of a
water disturb/edema of unspecified nature, as it may happen for instance, in pilocytic astro‐
cytoma [81].
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