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Abstract

This study addresses the issue of response reduction factor which is used in modern

codes to scale down the elastic response of the structure. The level of ductility and

overstrength of RC buildings in Kathmandu valley are investigated. The ductility and

overstrength factors are estimated by analyzing the buildings using non-linear pushover

analysis for 12 engineered designed RC buildings of various characteristics representing a

wide range of RC buildings in Kathmandu valley. Finally, the response reduction factor of RC

building in Kathmandu valley is evaluated by using the relation of ductility and overstrength

factor.
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1 INTRODUCTION

1.1 Background of the Study

1.1.1 Seismic Hazard of Nepal and Kathmandu Valley

Nepal and the Himalayan range that forms its northern border with China

were formed as a result of the collision of the Indian plate with the Tibetans plate

about 50 million years ago. This collision still continuous which results in subduction

of Indian plate below the Tibetan plate makes Nepal and the entire Himalayan range

seismically active.

Nepal lies in a very high seismic hazard zone. Global seismic hazard map

shows Nepal in Zone 4 as possible shaking of MMI IX or above with 10% probability

of exceedence in 50 years [46]. Probabilistic seismic hazard mapping of Nepal

conducted during building code development in Nepal has shown PGA of 0.36 g in

Kathmandu Valley in 500 years return period [49]. In summary, Nepal including

Kathmandu valley lies in a very high seismic hazard zone.

Looking at the urbanization of Kathmandu valley now, if similar earthquake

as that of 1934 A.D was to occur today, the scenario would be devastating, and the

fatalities would be very high. For that earthquake scenario, Japan International

Cooperation Agency [46] estimated up to 59000 houses destroyed, 18000 deaths

and 59000 seriously injured. Another study carried out in the frame work of the

Kathmandu valley Earthquake Risk Management Project [47] estimates a total of

40000 deaths, 95000 injuries and 600000 or more homeless.

Seismic hazard map of Nepal and Eastern Himalaya (figure 1.1) also gives

justify that Kathmandu valley is in highly vulnerable due to earthquake. So, it is

urgent need to assess the non-linear behaviour of RC buildings in Kathmandu valley

during earthquake.
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Figure 1.1. Seismic hazard map of Nepal and Eastern Himalayan

Source: Global Seismic Hazard Assessment Program in Continental Asia (GSHAP).

International Lithosphere Program (ILP), 1999

1.1.2 Trend of Building Design and Construction

Most of the casualty from earthquakes is due to collapse of buildings. More

than 80 % of the total people killed in developing countries during earthquakes are

collapse of buildings.

But now-a-days, the trends of RC building construction are rapidly increased

[46].  Figure 1.2 shows the trend of building construction in Kathmandu valley and

clearly shows that the trends of RC buildings construction is rapidly increasing from

the past some years.
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Figure 1.2. Trend of Building Construction in Kathmandu Valley

Source: “The Study on Earthquake Disaster Mitigation in the Kathmandu Valley

Kingdom of Nepal”. Japan International Cooperation Agency (JICA) and Ministry of

Home Affairs, His Majesty‘s Government of Nepal, 2002.

Now-a-days the number of engineer designed buildings is also increasing.

The design of RC building mainly based on seismic coefficient method which gives

approximate design base shear. The value of Response Reduction Factor (R) = 5 is

taken in all the times, considering the building is special moment resisting frame

with expectation of very high ductility. To meet these expected very high ductility

capacity of structural members has to go very high inelastic deformation. The

capacity governs the structural behaviour and damageability of buildings during

earthquake ground motions. Sometimes Response spectrum method was also used

to determine the design base shear of the structure but it is also far to address the

actual base shear which is generated during earthquake.
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Although, the current practice for earthquake resistant design is mainly

governed by the principles of force-based seismic design, there have been significant

attempts to incorporate the concepts of deformation- based seismic design and

evaluation into earthquake engineering practice. In general, the study of the inelastic

seismic response of buildings is not only useful to improve the guidelines and code

provisions for minimizing the potential damage of buildings, but also important to

provide economical design by making use of the reserved strength of the buildings as

it experiences inelastic deformations. In recent seismic guidelines and codes in

Europe and USA, the inelastic response of the building are determined using

nonlinear static methods of analysis known as the pushover analysis methods but

such trends does not established in South Asian region [24].

1.1.3 Research need

Past evidence had shown that the structures in Kathmandu valley are

vulnerable due to earthquake [46]. The RC building construction trends increases day

by day. Buildings are designed based on linear elastic methods which are considered

only elastic range. Assumption was made that Non-linearity of the structure is

incorporated by response reduction factor R. The effect of ductility, over strength,

load path and column beam capacity ratio on performance of structure is essential

to study through non linear analysis.

Table 7 of IS 1893(Part 1): 2002 gives the value of Response Reduction Factor,

R, for lateral load resisting system. IS 13920-1993 gives the ductility requirement for

earthquake resistant design.  For special moment resisting RC frame structures

(SMRF) R value is given as 5. While designing the RC structure R value is taken as 5 in

all situations. Code does not explain all necessary circumstances of SMRF. Thus it is

essential to study the real behaviours of RC buildings in Kathmandu valley through

non-linear analysis and suggest the circumstance which affects the response of the

structure.
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2 OBJECTIVES, APPROACHES AND METHODOLOGIES

2.1 Objective of the Study
The main objective of this research is to verify the designed R factor of most

common engineer designed RC buildings in Kathmandu Valley through comparing

the assumed R factor during design to actual R factor obtained from non-linear

analysis. The specific objectives of the study are to:

 Select most common engineer designed RC buildings and study different

parameters to consider for analysis

 Study different method of non-linear analysis to calculate R factor and

select the appropriate method to calculate the R factor

 Conduct non-linear analysis and calculate R factor of more than 10

buildings

 Compare the calculated R factor with the assumed one and also with

different parameters of the building

 Evaluate ductility reduction factor of study buildings

 Evaluate Overstrength factor of study buildings

 Check effect of overstrength factor on the ductility factor

 Check effect of load path on response reduction factor

 Check beam column capacity ratio on building ductility

 Check combined effect of beam column capacity ratio and load path on

response reduction factor

2.2 Study Approaches

This study will be a combination of both the field work and desk study for

analysis. However, the field work is limited to selection of typical RC buildings for

analysis. More work is on desk study as it is more an analytical study.
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Review of R factor calculation methods and also review of different non-linear

analysis methods for calculation of R factor is one of the major parts of the study.

2.3 Research Methodology

To meet the objectives of the study a methodology has been developed and

given in Figure 1.1 below. The research will be started from review and study of RC

buildings and lastly conclusions are drawn. The brief description of each steps are:

2.3.1 Review and study of engineered design buildings in Kathmandu

valley

The trends of construction RC buildings, designing criteria, behaviours of

structure during earthquake were firstly studied [chapter 1]. The secondary data are

used in this study to fulfil the study needs. Apart from this, some primary data are

also collected. The sources of secondary data are:

 Journal and newspapers

 Published and unpublished articles

 Past studies  made in this field

 Data from the analysis results from structural analysis program.

2.3.2 Selection of sample building for response reduction factor (R)

study

Sampling was done randomly which represent the nature of deigning trends

and construction practices in different localities. The buildings of Kathmandu valley

which has Plan less than 2000 sq.ft and up to 5 stories are taken as the population of

the study. The site soil condition is taken as medium, clay.
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2.3.3 Review of response reduction factor methodologies

Response reduction factor is used to scale down the elastic force of the

structure. Elastic force generated during the earthquake is divided by force reduction

factor(2R) to obtain design base shear which is used for designing of structure.

Ductility factor, over strength factor and redundancy are the key factors for the

formulation of response reduction factor. Different methodologies and its

formulation is presented in chapter [3]

2.3.4 Review of different pushover methods for conducting non-linear

pushover analysis

Different procedures used for the analysis of non-linear behaviour of the

structure were studied and appropriate method for non-linear analysis of study

buildings was chosen. The detailed description of the pushover and modeling of

structure is given in chapter [4].

Figure 2.1. Analytical procedure for non-linear analysis
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2.3.5 Analysis and interpretation of results

After pushover analysis, capacity curve of the structure is obtained. Capacity

curve of the structure gives the ultimate deformation and ultimate base shear.

Bilinear idealization of capacity curve gives the yield deformation. With the help of

these data, over strength factor, displacement ductility, ductility reduction factor

and ultimately response reduction factors are calculated. The calculations are based

on the mathematical expressions explained in chapter [3] and [4]. Sample calculation

of one model is given in Annex 3.1. The final results and interpolation of the results

are presented in chapter [5]. Finally, conclusions were drawn based on results which

is presented in chapter [6]
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Figure 2.2. Flow Chart of Research Methodology
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3 REVIEW ON CALCULATION METHODOLOGIES FOR RESPONSE

REDUCTION FACTOR

3.1 Definition of Response Reduction Factor
Response reduction is used to scale down the elastic response of the

structure [8]. The structure is allowed to be damaged in case of severe shaking.

Hence, structure is designed for seismic force much less than what is expected under

strong shaking if the structure were to remain linearly elastic.

It is simply represents the ratio of the maximum lateral force, Ve, which

would develop in a structure, responding entirely linear elastic under the specified

ground motion, to the lateral force, Vd, which has been designed to withstand.

Response reduction factor R, is expressed by the equation:

R = Ve/ Vd (1)

The factor R is an empirical response reduction factor intended to account for

damping, overstrength, and the ductility inherent in the structural system at

displacements great enough to surpass initial yield and approach the ultimate load

displacement of the structural system [1]. The concept of a response reduction

factor was based on the premise that well-detailed seismic framing systems could

sustain large inelastic deformations without collapse(ductile behavior) and develop

lateral strength in excess of their design strength(often termed reserve strength)[2].

R factor is first introduced in 1978[3], used to reduce the elastic shear force (Ve)

obtained by elastic analysis using a 5% damped acceleration response spectrum for

the purpose of calculating a design base shear(Vd). Major static analysis routines are

Equivalent Lateral Force Method and Response Spectrum Method; in both

procedures R factors are utilized to calculate the design base shear.

Now, the IS code provides the realistic force for elastic structure and divides those

forces by (2R) [16].

Force reduction factor (2R) = = Rµ Ω (2)
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Figure 3.1. concept of response reduction factor

Source: proposed draft provisions and commentary on Indian Seismic Code IS

1893 -Part 1

3.2 Response Reduction Factor Formulation

In the mid-1980s, Berkeley [1] described R as the product of three factors

that accounted for reserve strength, ductility, and added viscous damping

(3)

Rs stands for overstrength and calculated to be equal to the maximum base shear

force at the yield level (Vy) divided by the design base shear force (Vd).

Rµ stands for ductility factor and calculated as the base shear (Ve) for elastic

response divided by the yield base shear (Vy). The damping factor was set equal to

1.0.

ATC 19 [27] splitting R into three component factors.

(4)
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Where Rξ is replaced by RR(redundancy factor). Differences in the values of the

behavior factors specified in various codes for the same types of structure.

3.3 Previous Studies on calculation of Response Reduction Factors of

Existing Buildings

Tinkoo Kim and Hyunhoo Choi [4]

Determine the strength reduction factors for structures with added damping

and stiffness device. For the structural period between 0.50 seconds to 5 seconds,

the strength reduction factors for TADAS device with ductility equal to 6 varies from

8.30 to 10.70.

Bhavin Patel1 and  Dhara Shah2 [23]

Formulate the key factors for seismic modification factor of RCC framed

staging of elevated water tank. The analysis revealed that three major factors, called

reserved strength, ductility and redundancy affect the actual value of response

modification factor. Conclusion was made that the water tank which is well design by

using codal procedure has the response reduction factor 4.0.

Greg Mertz1) and Tom Houston2) [6]

Proposes a methodology to develop force reduction factors that are

appropriate for the evaluation nuclear facilities. These force reduction factors are

functions of acceptable limit state; the structural system, material, and detailing for

each individual element, structure’s natural frequency; and the influence of higher

modes and soft stories. The acceptable limit state, structural system, material and

detailing is used to develop allowable element ductilities. Individual element

ductilities are modified to account for either MDOF or soft story effects. These

modified element ductilities are combined with the structures natural frequency and

an appropriate SDOF dynamic model to develop the force reduction factor.
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A. Kadid and A. Boumrkik [7]

Evaluated the performance of RC framed buildings under future expected

earthquakes, a non-linear static pushover analysis has been conducted. To achieve

this objective, three frame buildings with 5, 8 and 12 stories were analyzed. The

results obtained from this study show that properly designed frames will perform

well under seismic loads.

Devrim Ozhendekci, Nuri Ozhendekci and A. Zafer Ozturk [5]

Evaluate the seismic response modification factor for eccentrically braced

frames. Conclusion was made that one constant R-value cannot reflect the expected

inelastic behavior of all building which have the same lateral load resisting system. In

the analysis they used overstrength factor, ductility factor and redundancy factor for

the evaluation of R-values to the EBF systems.

R = RΩ * Rμ * RR (5)

3.4 Overstrength Factor

3.4.1 Overstrength

The structure has finally reached its strength and deformation capacity. The

additional strength beyond the design strength is called the overstrength. Most

structures display considerable overstrength. Sequential yielding of critical regions,

material overstrength, strain hardening, capacity reduction factors are the sources of

overstrength (Ω).

Overstrength can be employed to reduce the forces used in the design, hence

leading to more economical structures. The main sources of overstrength are [13]:

 The difference between the actual and design material strength

 Conservation of the design procedure and ductility requirements

 Load factors and multiple load cases

 Serviceability limit state provisions
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 Participation of nonstructural elements

 Effect of structural elements not considered in predicting the lateral load

capacity

 Minimum reinforcement and member sizes that exceed the design

requirements

 Redundancy

 Actual confinement effects

 Utilizing the elastic period to obtain the design forces.

Member size or reinforcement lager than required, strain hardening in materials,

Confinement of concrete, strength contribution of non-structural elements and

special ductile detailing are also the sources of overstrength [24]

Overstrength factor (Ω) = apparent strength/design strength [9]

Ω =   Vu/Vd (6)

Figure 3.2. Force Displacement relationship for overstrength

3.4.2 Previous Studies on calculation of Overstrength factor of

Existing Buildings

In this section, some of the previous studies about overstrength factor are

reviewed
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Freeman [10]

The author reported overstrength factors for 3 three storey moment resisting

frames, two constructed in seismic zone 4 and one in seismic zone 3 were 1.9, 3.6,

and 3.3 respectively.

Kappos [11]

In this study five R/C buildings, with one to five stories, consisting of beam,

columns, and structural walls are examined and as a result overstrength factors 1.5

to 2.7 are obtained.

Lee, Cho and Ko [12]

In their study the authors investigated overstrength factors and plastic rotation

demands for 5, 10, 15 storey R/C buildings designed in low and high seismic regions

utilizing three dimensional pushover analysis. One of their conclusions is that the

overstrength factors in low seismicity regions are larger than those of high seismicity

regions for structures designed with the same response modification factor. They

have reported factors ranging from 2.3 to 2.8.

A.S Elnashai1 and A. M. Mwafy2 [13]

Develops the relationship between the lateral capacity, design force reduction

factor, the ductility level and the overstrength factor. The lateral capacity and

overstrength factor are estimated by means of inelastic static pushover as well as

time- history analysis of 12 buildings of various characteristics representing a wide

range of contemporary RC buildings. Conclusion was made that the

recommendations of FEMA 273[14] and Paulay and Priestley [15] underestimate the

inelastic period.
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3.5 Ductility Reduction Factor

3.5.1 Terms used in ductility reduction factors

Strength, stiffness and ductility are the essential structural properties for the

seismic protection.

Stiffness

If the deformation under the action of lateral forces is to be reliably

quantified and subsequently controlled, designer must make a realistic estimate of

the relevant property stiffness. This quantity relates loads or forces to the ensuing

structural deformations. A typical non-linear relationship between induced forces or

loads and displacements, describing the response of a reinforced concrete

component subjected to monotonically increasing displacement. For design

computations, one of the two bilinear approximations may be use where Vy defines

the yield or ideal strength Vi of the member [16]. The slope of the idealized linear

elastic response

K = Vy / ∆y (7)

Figure 3.3 is used to quantify the stiffness.

Figure 3.3. Stiffness Vs Strength relationship1

Structure A has higher strength and lower stiffness as compared to structure B.

Strength

If the structure is to be protected against damage a selected or specified

seismic event, inelastic excursions during its dynamic response should be prevented.
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This means that the structure must have adequate strength to resist internal actions

generated during the elastic dynamic response of the structure [16].

Figure 3.4. Stiffness Vs Strength relationship2

Structure A has higher strength and higher stiffness as compared to structure B.

Ductility

Ductility of a structure, or its members, is the capacity to undergo large

inelastic deformations without significant loss of strength or stiffness. Ductility is a

very important property, especially when the structure is subjected to seismic loads.

Ductile structures have been found to perform much better in comparison to brittle

structures [16]. High ductility allows a structure to undergo large deformations

before it collapse. Large structural ductility allows the structural to move as a

mechanism under its maximum potential strength, resulting in the dissipation of

large amount of energy [1].

The extent of inelastic deformation experienced by the structural system

subjected to a given ground motion or a lateral loading is given by the displacement

ductility ratio “µ”  and it is represented by the ratio of maximum absolute

displacement to its yield displacement [9].

The inelastic behavior of structure can be idealized as [9]

μ = ∆u / ∆y (7)

Where μ∆ is the displacement ductility, ∆u is the ultimate deformation and ∆y is the

yield deformation.
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Figure 3.5. Representation of displacement ductility (source FEMA 451).

Yield deformation is obtained as follows [17]

The nonlinear force-displacement relationship between base shear and

displacement of the control node shall be replaced with an idealized relationship to

calculate the effective lateral stiffness, Ke, and effective yield strength Vby, of the

structure shown in figure 4.8. The relation shall be bilinear, with initial slope Ke and

post-yield slope γ. line segments on the idealized force-displacement curve shall be

located using an iterative graphical procedure that approximately balances the area

below and above the curve. The effective lateral stiffness, Ke, shall be taken as the

secant stiffness calculated at a base shear force equal to 60% of the effective yield

strength of the structure. Thus, Vy is the intersection of initial and effective stiffness.
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3.5.2 Previous studies on Calculation of Ductility Reduction Factors of

Existing Buildings

Newmark and Hall [18]

Define the ductility factor is the ratio of maximum deformation to the yield

deformation and proposed the following equations for the determination of ductility

reduction factor (Rμ).

Rμ = 1.0     (T < 0.03 second) (8a)

Rμ = 2μ − 1 (0.12 < T < 0.03 second) (9a)

Rμ = μ        (T > 1.0 second) (10a)

T. Paulay and M. J. N. Priestley [48]

Divides the time period of the structure for calculating ductility reduction

factor.

Rμ = 1.0     for zero-period structures (8a)

Rμ = 2μ − 1 for short-period structure (9a)

Rμ = μ        for long period structure (10a)

Rμ = 1+ (μ-1) T/0.70 (0.70 s < T < 0.3) (11)

Miranda and Bertero [19]

Introduced the equation for reduction factor by considering 124 ground

motions recorded on a wide range of soil conditions. The soil conditions were

classified as rock, alluvium and very soft sites characterized by low shear wave

velocity. A 5% of critical damping was assumed. The ductility factor was give by

Rμ = μ
ф

+1 (12)

Values of are calculated by using the relations:

ф = 1+
μ

- exp (-2(ln (T)-0.2)2) for alluvium site (13)

ф = 1+
μ

- exp (-1.5(ln (T)-0.6)2) for rock site (14a)
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ф = 1+ – exp (-3(ln ( )-0.25)2) for soft site (14b)

Lai and Biggs [20]

In this study design inelastic response spectra were based on mean inelastic

spectra computed for 20 artificial ground motions. Analyses carried on for periods

equally spaced between 0.1s and 10s with 50 natural periods. The ductility reduction

factors corresponding to the proposed coefficients are given by

Table 3.1: α & β coefficients proposed by authors Lai & Biggs

M. Mahmoudi [21]

Develops the relationship between overstrength and member ductility of RC

moment resisting frames having one, two, three, four, five, six, eight, ten and fifteen

stories with three spans. The results indicate that the overstrength depends on

member ductility considerably and its amount is not equal for structures having low,

medium and high ductility.

Ioana Olteanu, Ioan-Petru Clongradi, Mihaela Anechitei and M. Budescu[22]

Presents the characteristics of the ductility concept for the structural system.

The reduction of the seismic forces is realized based on the ductility, redundancy and

the strength excess of the structure. Among these, the most significant reduction of

the design forces is based on the ductility of the structure that depends on the

chosen structural type and material characteristics.
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3.5.3 Ductility of unconfined beam sections.

Calculation of moment and curvature [25].

a) At just prior to cracking of the concrete

b) At first yield of the tension steel.

c) When the concrete reaches an extreme fibre strain of 0.004

a) Before cracking (elastic behaviors)

Mcrack = fr *I/ y bottom (15)

.

φcrack =
/

(16)

b) At first yield of the tension steel

My = As fy jd (17)

k = [(ρ+ρ') 2 n2 +2(ρ+ρ'd'/d) n ]1/2 – (ρ+ρ') n (18)

φy =
/( ) (19)

a = (As fy - As' fy)/ 0.85 fc' b (20)

Mu = 0.85 fc' a b (d-a/2) + As' fy (d-d') (21)

c) When the concrete reaches the extreme fibre strain

φu = εc / c (22)

n = Es / Ec (23)

ρ = As/ bd (24)

ρ' = As'/ bd (25)

The same concept is followed by SAP 2000 [33] to develop moment curvature

relation.

Plastic hinge length

Various empirical expressions have been proposed by investigators for the

equivalent length of plastic hinge lp and the maximum concrete strain εc at ultimate

curvature.

BAKER:

a) for members with unconfined concrete.
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lp = k1 k2 k3 ( z/d )1/4 (26)

b) for members confined by transverse steel

lp = 0.80 k1 k3 ( z/d) c (27)

CORLEY:

For simply supported beam

lp = 0.50 d + 0.20 √ (z/d) ; εc = 0.003 +0.02 b/z + (ρs fy/2 (28)

Mattok suggested

lp = 0.50 d+ .05d (29)

εc = 0.003+0.02 b/z +0.20 ρs (30)

Sawyer: lp = (0.25d+0.075z)

Where,

k1 = 0.70 for mild steel or 0.90 for cold worked steel.

K2 = 1+ 0.50 Pu/Po, where Pu = axial compressive force in member and Po is axial

compressive strength of member without bending moment.

K3 = 0.60 when fc' = 35.2 N/mm2 or 0.90 when fc' =11.7 N/mm2; assuming fc' = 0.85

* cube strength of concrete.

z = distance of critical section to the point of contraflexure

d = effective depth of member.

A good estimate of the effective plastic hinge length may be obtained from the

expression.

lp = 0.08 l+ 0.022 db fy

Where

db = nominal diameter of bar in mm.

For user-defined hinge properties, the procedure used by Park and Paulay

[25] is used to determine moment –rotation relationships of members from the

moment-curvature relationships. In this procedure, the moment is assumed to vary

linearly along the beam and columns with a contraflexure point at the middle of the

members. With this assumption, the relations are

θy = L. φy /6 (31)
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Plastic hinge rotation capacity of members is estimated using the following

equations proposed by ATC-40 [26] and value at ultimate moment is obtained by

adding plastic rotations to the yield rotation.

θp = (φult – φy) lp (32)

ATC-40[26] suggests that plastic hinge length equals to half of the section

depth in the direction of loading. This technique was adapted to calculate plastic

hinge length in this study.

3.6 Redundancy Factor

Redundant is usually defined as: exceeding what is necessary or naturally

excessive. Building should have a high degree of redundancy for lateral load

resistance [16]. More redundancy in the structure leads to increased level of energy

dissipation and more overstrength. In a nonredundant system the failure of a

member is equivalent to the failure of the entire structure however in a redundant

system failure will occur if more than one member fails. Thus, the reliability of a

system will be a function of the system’s redundancy meaning that the reliability

depends on whether the system is redundant or nonredundant[16].

Table 3.2: Redundancy factor (RR ) was taken from ATC

Lines of vertical seismic framing Drift redundancy factor

2 0.71

3 0.86

4 1.0

Overstrength, redundancy and ductility together contribute to the fact that an

earthquake resistant structure can be designed for much lower force than is implied

by the strong shaking.
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3.7 Codal provisions for reduction factors:

In design codes the considered seismic force used to dimensioning the

structural elements is multiplied by several coefficients, in order to simplify the

design process. One of them is the reduction factor. The behavior factor of the

response is computed as a product of three factors

R = Rs Rμ Rξ,

3.7.1 Response Reduction Factor as per ATC-19

In the ATC-19[27] meeting from 1995 damping reduction factor was replaced by

the redundancy factor RR. R = (Rs Rμ) RR

Table 3.3: The strength reduction factor for Reinforced Concrete Structures

Structural type Rs

Rc structures medium and high elevation 1.6………………………….4.6

Rc structures with irregularities in elevation 2.0…………………………..3.0

3.7.2 Response Reduction Factor as per IBC, 2003

The seismic force at the bottom of the building, according to the American

design code, is computed with the following relationship (IBC, 2003) [28]:

V = . W

Table 3.4: Reduction factor According to IBC 2003

Structural type R

Special Rc frames 8.0

Intermediate Rc frames 5.0

Ordinary Rc frames 3.0
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3.7.3 Response Reduction Factor as per New Zeeland design norm

According to the New Zeeland design norm[30], the coefficient Cμ from the

seismic force relation is determined by taking into consideration the fundamental

oscillation period, T1, the ductility displacement, μ∆, and soil type,

Ftot = Cμ R Z Wt

The value of Cμ coefficient ranges between 0.40 and 0.040, for ductile Rc structures

with the ductility displacement, μ, between 4 and 6. The values of the ductility

displacement, μ∆, are listed in table

Table 3.5: Ductility displacement values, μ∆, according to New Zeeland design norms

Structures RC Prestressed concrete

Structures with elastic behaviors 1.25 1.00

Structures with limited ductility - -

Frames 3.00 2.00

Coupled walls 2.00 -

Ductile structures - -

Moment resisting frames 6.00 5.00

Walls 5.00 -

3.7.4 Response Reduction Factor in Japanese design code

According to Japanese design code [30] the seismic force at the bottom of

the structure is computed using the following relation (Building standard Law of

Japan, 2004)

Vun,i = Ds,i Fes,i Vi.

The coefficient Ds,i depends on the structural type and it represents the inverted

value of the behaviour factor from the European norm. This factor is influenced by
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the material used. In table are presented only the values for reinforced concrete

structures depending on the structural type and ductility class.

Table 3.6: Response Reduction Factor According to BSL J

Ductility Moment-resisting frame Other frames Frames with bracing

Excellent 0.30 0.35 0.40

Good 0.35 0.40 0.45

Normal 0.40 0.45 0.50

Low 0.45 0.50 0.55

3.7.5 Response Reduction Factor in IS 1893 (part1):2002

According to IS 1893[16] (part1):2002, Criteria for Earthquake Resistant

Design of Structures, design seismic base shear can be computed as

VB = Ah W

Ah =

Where, R is the response reduction factor, depending on the perceived seismic

damage performance of the structure, characterized by ductile or brittle

deformations. The values of R of the buildings are given in the table.

Table 3.7: Response reduction factor R for Buildings Systems

Lateral load resisting system R

Building frame system

Ordinary RC moment-resisting frame (OMRF) 3.0

Special RC moment-resisting frame ( SMRF) 5.0

Unreinforced masonry wall building 1.50
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3.7.6 Response Reduction Factor in NBC 105:1994

Nepal National Building Code, NBC 105:1994 [32], establish the following

relation for Seismic Design of Buildings in Nepal.

The design horizontal seismic force coefficient, Cd shall be taken as

Cd = CZIK

Where, K is the structural performance factor. The structural type may be different

in each of two directions in a building and in that case the appropriate value for K

shall be selected for each direction. When more than one structural type is used in

the structure for the direction under consideration, the structural performance

factor for the element providing the majority of the seismic load resistance shall be

applied provided that the elements of the other structural types have the ability to

accept the resulting deformations.

Table 3.8: Structural performance factor

Item Structural type Minimum detailing

requirement

Structural

performance

1.a Ductile moment resisting frame Fulfill the ductility

requirement of IS 4326

and for steel frames,

additional requirements

of NBC 111-94

1.0

1.b Frame as in 1.a. with

reinforcement concrete shear

wall

For frame : as for 1.a RC

shear walls must comply

with appropriate

detailing for ductility

requirement

1.0

2.a Frame as in 1.a with either steel

bracing members detailed for

1.5
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ductility or reinforced concrete

infill panels

2.b Frame as in 1.a with masonry

infill

Must comply with

detailing requirements of

: IS 4326

2.0

3 Diagonally- braced steel frame

with ductile bracing acting in

tension only

Must comply with the

detailing for ductility

requirements of Nepal

Steel Construction

Standard

2.0

4. Cable –stayed chimneys Appropriate materials

standard

3.0

5. Structures of minimal ductility

including reinforced concrete

frames not covered by 1 or 2

above, and masonry bearing wall

structures

Appropriate materials

standard

4.0

Building codes allow for an elastic structural analysis based on applied forces

reduced accounting for the presumed ductility supplied by the structure. For elastic

analysis, use of reduced forces will result in a significant underestimate of

displacement demands. Therefore, the displacements from the reduced-force elastic

analysis must be multiplied by the ductility factor to produce the true “inelastic”

displacements.
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3.8 Formulation used for this study

For the determination of Overstrength factor (Ω) concept of FEMA 451 is

used, which gives

Ω = Vu / Vy Χ Vy/Vd = Ωo Χ RR

Ω = Vu/Vd (6)

The expression of equation (6) is same as the indication given by IS 1893-2002.

For the determination of displacement ductility following expression is used

μ= ∆u / ∆y (7)

For determination of ductility reduction factor, equation (11) is used

Rμ = 1+ (μ-1) T/0.70 (0.70 s < T < 0.3)

For the determination of Response Reduction Factor (R), the main concept given by

ATC-19 is used, which is given in equation (4)

R = Ω × Rμ × RR

But in our case, Overstrength and redundancy factor is taken as single term i.e

overstrength factor and the IS 1893-2002 gives the value of Force Reduction Factor =

(2R), same concept is used to determine Response Reduction Factor of the study

structures.

2R = Ω × Rμ

R = Ω × Rμ/2
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4 REVIEW ON NON-LINEAR METHODS OF ANALYSIS

4.1 Introduction
Researcher formulates the different techniques for the study of non-linear

behaviors of the structure.

4.1.1 Previous Study on Non-Linear Analysis

Krawinkler H. and Seneviratha [39]

Conducted a detailed study on pushover analysis. The accuracy of pushover

predictions were evaluated on a 4-story steel perimeter framed in 1994 Northridge

earthquake. The comparison of pushover and nonlinear dynamic analysis results

showed that pushover analysis provides good predictions of seismic demands for

low-rise structures having uniform distribution of inelastic behavior over the height.

Mwafy A.M. and Elnashai [40]

Performed a series of pushover analysis and incremental dynamic collapse

analysis to investigate and the applicability of pushover analysis. Twelve RC buildings

with different structural system were studied. The results showed that triangular

load pattern outcomes were in good correlation with dynamic analysis results. It was

also noted that pushover analysis is more appropriate for low-rise and short period

structures and triangular loading is adequate to predict the response of such

structures.

Chopra A.K and Goel R.K [41]

Developed an improved pushover analysis procedure named as Modal

Pushover Analysis (MPA) which is based on structural dynamic theory. Firstly, the

procedure was applied on to linearly elastic buildings and it was shown that the

procedure is equivalent to the well known response spectrum analysis. Then, the
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procedure was extended to estimate the seismic demands of inelastic systems. The

MPA was more accurate than all pushover analysis is estimating floor displacements,

storey drifts, plastic hinge rotations and plastic hinge locations.

4.1.2 Nonlinear static pushover analysis

It is the incremental analysis used by SAP 2000. It divides the load applied

and the target displacement to the predefined nos of steps. Each steps of load will

be applied to the structure. The steps is increased or decreased so that the target

incremental displacement is achieved. The target incremental displacement and

corresponding sum of lateral forces is recorded. The stress and deformation output

from previous step will be imposed to next step of loading. The process is repeated

till the instability of structure or target displacement.

Virote Boonyapinyo1, Norathape Choopool2 and Pennung Warnitchai3. [42]

The performances of reinforced-concrete buildings evaluated by nonlinear

static pushover analysis and nonlinear time history analysis were compared. The

results show that the nonlinear static pushover analysis is accurate enough for

practical applications in seismic performance evaluation when compared with

nonlinear dynamic analysis of MDOF system.

A.Kadid and A. Boumrkik. [43]

Use a non linear pushover analysis to evaluate the performance of framed

buildings under expected earthquakes in Algeria. The results obtained from this

study show that properly designed frames will perform well under seismic loads.

Gergely, P., R.N. White, and K.M. Mosalam, [44]

Use static nonlinear pushover analysis for evaluation and modeling of infilled

frames buildings. Conclusions are made that elastic seismic analysis methods are

inadequate for the estimation of the internal force and displacement distributions.
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4.1.3 Static Pushover Analysis Procedure

Pushover analysis can be performed as either force-controlled or

displacement- controlled depending on the physical nature of the load and the

behavior expected from the structure. Force-controlled option is useful when the

load is known (such as gravity loading where structure is loaded gravity load plus 25

% of live load) and the structure is expected to be able to support the load.

Displacement- controlled procedure is used when specified drifts are sought (such as

in seismic loading), where the magnitude of the applied load is not known in

advance, or when the structure can be expected to lose strength or become

unstable. The first mode response of the structure was assigned as the load pattern

for the lateral push applied to the structure.

Nonlinear version of finite element package SAP2000 [33] can model nonlinear

behavior and perform pushover analysis directly to obtain capacity curve for three

dimensional models of the structure. A displacement-controlled pushover analysis is

basically composed of the following steps:

 Developing a three dimensional bare frame model of existing RC buildings.

 Application of gravity loads and live loads.

 Application of 10% static lateral load induced due to earthquake, at CG of the

building

 Developing M-θ relationship for critical regions (Plastic hinging zone) of beam

and column element with shear strength confirming and non confirming.

 Pushing the structure using the load patterns of static lateral loads, up to

displacements larger than those associated with target displacement using

static pushover analysis

 Developing hinge progressing sequence in different steps of the loading.

 Developing tables of roof displacement vs. base shear or pushover curve.
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The earthquake forces are estimate as per IS 1893-2002 (part-2) [16]. Moment –

rotation and Axial load- Bending moment (P-M2-M3) relationships for flexural and

compression members have been developed using SAP 2000 software. Above

relationships are also analytically calculated by the methods suggested by R. Park

and T. Paulay [25].

4.1.4 Default Vs User-Defined Hinge Properties for Concrete Sections

The built-in default hinge characteristics of concrete sections are based on

ATC-40[26] and FEMA-273[14] criteria which consider basic parameters controlling

the behavior. Based on these parameters, in this study, default moment hinges

assigned to all beams have same plastic rotation capacities (M3) and default PMM

hinges assigned to all columns have same plastic rotation capacities regardless of the

section dimensions. Slope between points B and C is taken as 10% total strain

hardening for steel and yield rotation is taken as zero for default concrete moment

and PMM hinges and then user defined hinge properties is assign to the elements.

For user-defined hinge properties, the procedure used by Park and Paulay

[25] was utilized to determine moment-rotation relationships of members from the

Moment-curvature relationships. In this procedure, the moment is assumed to vary

linearly along the beams and columns with a contra- flexure point at the middle of

the members. Based on this assumption, the relationship between curvature and

rotation at yield is obtained.

In this study user defined plastic hinge is generated only on beam element. In

Numerical model, there is only option to put the reinforcement of column element.

Moment curvature relation of beam element according to the detailing of beam

section is established which gives ultimate moment, yield moment, ultimate

curvature, yield curvature. Plastic hinge length is taken as 0.50 d (ATC-40). From

these data, scale factor, rotation of various segments of plastic hinge is obtained.

(Detail in annex)
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Pushover analyses were performed using both default and user-defined hinge

properties and the effect of hinge properties were illustrated on pushover curves as

shown in figure.

Pushover analyses with default and user-defined hinge properties yield

differences in sequence of plastic hinging and hinge pattern. The rotation value at

the yield point of hinges is not needed for pushover analyses performed by SAP2000

because the program uses cross-sectional dimensions in the elastic range.

Default hinge properties based on ATC-40[26] and FEMA-273[14] criteria are

generally preferred to perform pushover analysis by SAP2000 because determination

of cross-sectional characteristics of all members of a structure, especially for a three

dimensional structure, and inputting these sectional properties into the program

make the pushover analysis impractical. Thus, the results of a pushover analysis with

default hinge properties should be interpreted with caution since default hinges

could not simulate the exact nonlinear behavior of the structure.

4.1.5 Force-Displacement Relationships

When the structure is analyzed with three loading conditions (GRAV, EQX and

EQY), pushover curve of the structure is obtained. The curve is the base shear vs.

deformation curve.

Figure 4.1. Component Force-Deformation Curve

A generic component behavior curve is represented in figurer. The points marked on

the curve are expressed by the software vender [33] as follows:



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 35

 Point A is the origin

 Point B represents yielding. No deformation occurs in the hinge up to point

B, regardless of the deformation value specified for point B, the deformation

(rotation) at point B will be subtracted from the deformations at points C, D,

and E. Only the plastic deformation beyond point B will be exhibited by the

hinge.

 Point C represents the ultimate capacity for pushover analysis. However, a

positive slope from C to D may be specified for other purposes.

 Point D represents a residual strength for pushover analysis. However, a

positive slope from C to D or D to E may be specified for other purposes.

 Point E represents total failure. Beyond point E on the horizontal axis, if it is

not desired that the hinge to fail this way, a large value for the deformation

at point D may be specified.

4.1.6 Capacity

Capacity is a representation of the structures ability to resist the seismic

demand. The overall capacity of a structure depends on the strength and

deformation capacities of the individual components of the structure [36]. In order

to determine the capacities beyond the elastic limit, non linear analysis is required.

Figure 4.2. Global capacity (Pushover curve) of a structure.

Capacity curve is the fundamental for the determination of response reduction

factor.



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 36

Maximum displacement, yield displacement, yield shear force and maximum shear

force, initial stiffness and effective stiffness can be obtained from the capacity curve.

The health of the structure is judged by the capacity curve.

Idealization of Capacity Curve

The capacity curve presents the primary data for the evaluation of the

response reduction factor for structures, but first of all it must be idealized in order

to extract the relevant information from the plot. The intension is to obtain the

overstrength and the ductility reduction factor by studying the pushover curve.

For this purpose a bi-linear curve is fitted to the capacity curve, such as the

first segment starts from the origin, intersects with the second segment at the

significant yield point and the second segment starting from the intersection ends at

the ultimate point. The slope of the first segment is found by tracing the individual

changes in slopes of the plot increments; the mean slope of the all increments are

calculated from each step and compared with the latter, searching for a dramatic

change. First segment, referred to as elastic portion, is then obtained with a mean

slope of the successive parts of the curve until a remarkable change occurs. The

second segment, referred to as post-elastic portion, is plotted by acquiring the

significant yield point by means of equal energy concept in which the area under the

capacity curve and the area under the bi-linear curve is kept equal. Graphical

method or auto cad program is developed to read and plot the pushover data then

fit the bi-linear curve by utilizing the above mentioned methodology.

This method is an improved version of the one, proposed by FEMA 273[14]

which offers a visual trial & error process and suggests that the first segment

intersects the original curve at 60% of the significant yield strength.
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Figure 4.3. Bi-linear Idealization of a Generic Capacity Curve

Bi-linear idealization provides the essential components, which are significant

strength and the significant yield displacement as well as the predetermined design

strength and the ultimate displacement. With the help of these data, the

overstrength factor which is calculated as the ratio of the yield strength to the design

strength. Moreover, ductility ratio can be calculated as the ratio of maximum

displacement to the yield displacement which is the key element in calculation of the

ductility reduction factor.

4.1.7 Demand

Demand is the representation of the earthquake induced ground by ground

motion. Ground motions during an earthquake produce complex horizontal

displacement patterns in the structures that may vary with time [36]. For a given

structure and ground motion, the displacement demand is an estimate of the

maximum expected response of the building during the ground motion.

Procedure to determine demand [ATC-40]

1. Construct a bilinear representation of the capacity curve.

 Draw the post-elastic stiffness Ks by judgment to represent an average

stiffness in the range in which the structure strength has leveled off.
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 Draw the effective elastic stiffness Ke by constructing a secant line passing

through the point on the capacity curve corresponding to a base shear of

0.60Vy, where Vy is defined by the intersection of the Ke and Ks.

2. Calculate effective fundamental period.

3. Calculate the target displacement by displacement coefficient method.

Alternately, the displacement demand during earthquake is obtained by

considering FEMA 451. Geometrically, the ratio of Ve /Vy is numerically equal to the

ratio of ∆u/∆y. so in this study for the calculation of ductility supply the ratio of

∆u/∆y is used. For the prediction of ductility demand, total elastic force is calculated

without considering reduction factor. Stiffness of the structure is determined by

using K = Ve/∆e (FEMA 356).

For example, modal 3 have the design base shear 379.6 KN (calculation is based on IS

1893-2002). If force reduction factor is not considered, the total elastic force

demand is 3796, which is 10 times more than design force.

From capacity curve, the initial stiffness of the structure is 46402 KN/m, then

displacement ductility demand is calculated as (µd) =Ve/K, where Ve is the elastic

base shear demand and K is the initial stiffness which represent the slope when the

structure is in fully elastic.

Thus, µd = 3796/46402 =0.082 m

4.1.8 Performance

The performance is dependent on the manner that the capacity is able to

handle the demand [29].

Figure 4.4. Performance point in a structure
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The NEHRP Guidelines for Seismic Rehabilitation of Buildings, FEMA 273 and

Provision for seismic Regulations for New buildings and other structures, FEMA 302

define three discrete Structural Performance Levels namely Immediate Occupancy

Level (IO), Life Safety (LS), and Collapse Prevention (CP)

Immediate Occupancy (IO)

It is the post earthquake damage state where only minor structural damage

has occurred with no substantial reduction in building strength. So, the building is

safe to occupy but possibly not useful until repaired.

Life Safety (LS)

It is the post earthquake damage state in which significant damage to the

structure has occurred, but some margin against the partial or total collapse remain.

In this stage, the building is safe during the earthquake but probably

Collapse Prevention (CP)

It is the post earthquake damage state in which the structure is on the verge of

experiencing either local or total collapse.

Figure 4.5. Ranges of pushover curve

(Source: ELSEVIER, ENGINEERING STRUCTURE JORUNAL)
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4.1.9 Equal displacement rule

Figure 4.6. Elasto-Plastic Response of Structure

In figure [4.6], “The relationship between elastic displacement B and inelastic

displacement E depends on the natural period of the structure. If the period is

greater than 0.7 s, analyses have shown that E is approximately equal to B (i.e., the

deflection of the equivalent elastic structure is approximately equal to that of the

elasto-plastic structure, ∆u = ∆e). This is referred to as the Equal Displacement

Principle” [45].

Structure which have time period greater than 0.7 s, ductility reduction factor is

calculated by using the equation:

Rμ = μ (T > 0.70 s) …………………………………………. (33)

Where Rμ = ductility reduction factor and μ = displacement ductility [48].
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4.1.10 Equal Energy Rule

Low period structure tends to display significant residual deformations. So, in

low period structure equal energy concept is used. [9]

Deformation

Figure 4.7. Concept of Equal Energy Rule

FE/ FI = Rμ = 2μ − 1 (T < 0.3 s) [48].........................34

NBC [45], indicates that for period less than 0.3 s, analyses have shown that Equal

Energy Principal applies. That is, the area OAB is equal to OCDE [figure 4.6].

A gradual variation in R is found to occur between structural period of 0.3 s

and 0.7s.

Rμ = 1+ (μ-1) T/0.70[48].............................................35

Equation 33 is consistent with assuming that the deflection of the elastic and elasto-

plastic systems is the same [49].

Equation (34) is consistent with assuming that the potential energy stored at the

maximum deflection is same for the elastic and elasto-plastic systems [49].

4.2 Procedure for seismic analysis of RC Building as per IS 1893 (Part

1): 2002

4.2.1 Equivalent static lateral force method

Total design lateral force or design seismic base shear Vb along any principal

direction shall be determined by

Vb = Ah W
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T = 0.075 h 0.75

Determination of Design Base Shear

Design base shear, VB = Ah W

Ah = Z/2*I/R*Sa/g

Qi = Vb.∑
4.2.2 Response Spectrum Method

Procedure for calculating design base shear without considering the stiffness

of infill.

a) Determination of Eigen values and Eigenvectors

Mass matrices and stiffness matrices of the frame lumped mass model are,

M = [M] and K = [K]

For the above stiffness and mass matrices, eigenvalues and eigenvectors are worked

out as follows

|K-ω2m|= 0

By solving the above equation, natural frequencies (eigenvalues) of various modes

are calculated. The quantity of ωi
2, is called the ith eigenvalue of a matrix [-M ωi

2+K]

фi. Each natural frequency (ωi) of the system has a corresponding eigenvector (mode

shape), which is denoted by фi. The mode shape corresponding to each natural

frequency is determined from the equations

[-M ωi
2+K]ф1 =0

[-M ωi
2+K]ф2 =0

[-M ωi
2+K]ф3 =0

[-M ωi
2+K]фn =0

Solving the above equation, modal vector (eigenvectors), mode shape and natural

period under different modes are found

{ф} = {ф1 ф2 ф3 ф4…………..фn}

Determination of Modal Participation Factors

The modal participation factor (Pk) of mode k is,



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 43

Determination of Modal Mass

Determination of Lateral Force at Each Floor in Each Mode

The design lateral force (Qik) at floor i in mode k is given by

Qik = Ak фik Pk Wi

Determination of Storey Shear Forces in Each Mode

The peak force is given by,

Determination of Storey Shear Force due to All Modes can be obtained as;

The peak storey shear force (Vi) in storey i due to all modes considered is

obtained by combining those due to each mode in accordance with modal

combination i.e. SRSS (square root if sum of squares) or (complete quadratic

combination) methods.

Square roof of sum of squares (SRSS)

If the building does not have closely spaced modes, the peak response quantity (λ)

due to all modes considered shall be obtained as,

The base shear to the study buildings is vertically distributed by using equivalent

static lateral force method, but response spectrum method is used in one building

compare the differences in design base shear.
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4.3 Displacement Coefficient Method (FEMA-273)

The Displacement Coefficient Method described in FEMA-273 estimate the

structural performance in terms of a target displacement representing the maximum

expected top displacement representing the maximum expected top displacement.

It combines the pushover analysis with a modified version of the equal displacement

approximation, according to which the linear elastic spectral displacement or

spectral acceleration corresponding to the effective period and damping of the

equivalent SDOF system, is corrected by some factors. These factors were obtained

for regular frame buildings. The factors for buildings with vertical mass, stiffness and

strength irregularities are being examined by Karawinkler and SeneViratna [22].

Among its advantages is that the DCM provides a direct numerical procedure to

define displacement demand and need to conversion in spectral format.

For this analysis bilinear representation of capacity curve is required to be

used in the procedure. The procedure described is for bilinear representation. After

the construction of bilinear curve, effective fundamental period (Te) of the structure

is calculated using Equation

Te= Ti√ Ki/Ke

The target displacement δt in FEMA-273 is given by

δt = COC1C2C3Sa  g Te2/4П2

Where,

C0: modification factor to relate spectral displacement and likely roof displacement

of the structure. The first modal participation factor at the roof level is used.

C1: modification factor to relate expected maximum inelastic displacements to

displacements calculated for linear elastic response.

C2: modification factor to represent the effect of hysteresis shape on the maximum

displacement response. In this study, C2 was taken as 1.1 for both elastic and

inelastic deformation levels. As the estimates of Displacement Coefficient Method

(FEMA-356) depend on the coefficient C2, the coefficient C2 should be taken as unity

in the elastic range and should take the specified value for the considered
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performance level in the inelastic range for seismic performance evaluation

purposes.

C3: modification factor to represent increased displacements due to second-order

effects. Sa: response spectrum acceleration at the effective fundamental period of

the structure.

Te: effective fundamental period of the structure.

In this method, different target displacements can be obtained for different seismic

performance levels. In this study, target displacements for each ground motion

record were calculated for life safety performance level.

Table 3.9: Values for modification factor C0

Number of stories 1 2 3 5 10

Modification factor 1.0 1.2 1.3 1.4 1.5

Factor C1 is the modification factor to relate expected maximum inelastic

displacements to displacements calculated for linear elastic response:

C1 = 1.0                          for Te < ToC1 = 1/R [1.0+ (R-1) To/Te]     for T > To

The coefficient R is expressed in terms of base shear at yield strength Vby asR = / / Where,

W is the total dead load and expected live load. Vby is determined using pushover

analysis where the pushover curve is defined by a bilinear relation as shown in
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Figure 4.8. Bilinear idealization of pushover curve.

Factor C2 is the modification factor represent the effect of hysteresis shape on the

maximum displacement response. Values for C2 may be taken as follows.

Table 3.10: Values for C2

T = 0.1 second T ≥ To second

Structural performance

Level

Framing

type 1

Framing

type 2

Framing

type 1

Framing

type 2

IO 1.0 1.0 1.0 1.0

LS 1.3 1.0 1.1 1.0

CP 1.5 1.0 1.2 1.0

Factor C3 is the modification factor to represent increased P-∆ effects. For building

with positive post yield stiffness, C3 may be set equal to 1.0. for buildings with

negative post yield stiffness value , C3 is calculated using the following relations

C3 = 1.0 + |γ| (R-1)3/2 / Te

Where α is the ration of post yield stiffness to effective elastic stiffness for the

bilinear pushover curve idealization.

4.4 Selection of appropriate method of analysis for the study

Due to simplicity and different researcher also used non-linear static

pushover analysis with sufficient accuracy [section 4.1.2] to study non-linear

behaviors of the structure, is the main clues for the selection the Static Non-linear

Pushover Analysis in this study.
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5 ANALYSIS AND INTERPRETATION OF RESULTS:

5.1 Distribution of Lateral Force
Lateral force in the study buildings is calculated by seismic coefficient

method, given by IS 1893-2002. The results of lateral forces, design base shear and

total weight of the study buildings are tabulated in table 5.1.

Figure 5.1. Distribution of lateral force

Table 5.1: Distribution of lateral forces:

Model Plan Q1(KN) Q2 (KN) Q3 (KN) Q4 (KN) Q5 (KN) Vb (KN) W (KN)

1 35.35 142.20 62.88 - 435.97 4844.08

2 60.37 191.50 205.85 - - 457.72 5085.82

Q5

Q4

Q3

Q2

Q1
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Model Plan Q1(KN) Q2 (KN) Q3 (KN) Q4 (KN) Q5 (KN) Vb (KN) W (KN)

3 49.14 167.09 163.33 - - 379.56 4217.36

4 61.66 159 92.64 - - 313.29 3481

5 22.24 88.98 200.20 298.73 188.65 798.80 8875.72

6 23.88 95.51 189.65 146.13 - 455.17 5057.50

7 13.68 54.73 123.13 144.40 54.36 390.55 4392.09

8 48.52 160.36 142.43 - - 350 3903.7

9 35.52 122.72 116.26 - - 274.50 3050

10 55.88 163.01 136.31 - - 355.20 3946.64

11 31.37 125.48 214.98 131.34 - 503.63 5590

12 15.76 63.10 141.85 252.18 197.15 670 7435
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5.2 Natural Structural Period of the Structure

Time period of study is based on Numerical analysis in SAP 2000 and IS 1893

(Part 1): 2002. Time Period of structure obtained from Numerical analysis is

indicated as T (Numerical Model) where as from code, T = 0.075 h0.75 is tabulated as

T (code). Code based procedure gives higher time period than time period of

structure obtained from model analysis. The results of natural period of the study

structure is tabulated in Table 5.2

Table 5.2: Time period and number of stories of study buildings

Model No No. of Storey T (Numerical Model) T (Code)

1 3 0.36 0.375

2 3 0.35 0.375

3 3 0.34 0.375

4 3 0.3 0.375

5 5 0.55 0.55

6 4 0.43 0.465

7 5 0.46 0.55

8 3 0.31 0.375

9 3 0.3 0.375

10 3 0.31 0.375

11 4 0.4 0.465

12 5 0.43 0.55
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5.3 Ductility reduction factor (Rμ)

Ductility of a structure, or its members, is the capacity to undergo large

inelastic deformations without significant loss of strength or stiffness. Displacement

ductility factor is the ratio of ultimate deformation to yield deformation (FEMA 451).

It is represented by the symbol μ. μ = ∆u / ∆y. Ductility reduction factor is calculated

using the equation (11).

Rμ = 1+ (μ-1) T/0.70

Figure 5.2. Representation of displacement ductility

For an example: Model 2 (EQY) has ∆u equal to 0.117m and ∆y= 0.032. In this

case, displacement ductility factor μ = 0.117 / 0.032 = 3.7. Similarly, for the

calculation of ductility demand, firstly elastic base shear is determined. In this case,

elastic base shear is equal to 4577.2 KN. Initial stiffness (K) equal to 31913. Elastic

displacement demand is calculated as:
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Figure 5.3. Representation of ductility demand of the structure

∆eu= Ve / K = 4577.2 / 31913 = 0.143

Displacement ductility demand of the structure is computed as (μd) = ∆eu / ∆y

= 0.143 / 0.032 = 4.5

Ductility reduction factor (Rμ) =1+(3.7-1) 0.30/0.70 = 2.22

EQX and EQY are the conditions of Pushing X and Y direction to the structure.

The overall results of ultimate displacement ∆u, yield displacement ∆y, displacement

ductility supply μ, Initial stiffness of structure K, elastic base shear demand Velastic,

elastic displacement ∆eu and ductility demand µd is presented in Table 5.3, 5.4, and

5.5.
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Table 5.3: Level of displacement ductility in the study buildings

Model EQ Push ∆u ∆y μ K Velastic ∆eu µd

1 EQX 0.165 0.029 5.7 32437 4359.7 0.134 4.6

EQY 0.149 0.035 4.3 28444 4359.7 0.153 4.4

2 EQX 0.111 0.022 5 47632 4577.2 0.096 4.4

EQY 0.117 0.032 3.7 31913 4577.2 0.143 4.5

3 EQX 0.076 0.024 3.2 46402 3795.6 0.082 3.4

EQY 0.062 0.027 2.3 41803 3795.6 0.091 3.4

4 EQX 0.2 0.026 7.7 33703 3132.9 0.093 3.6

EQY 0.196 0.036 5.5 34731 3132.9 0.090 2.5

5 EQX 0.139 0.045 3.1 18987 7988 0.421 9.5

EQY 0.087 0.029 3 21202 7988 0.377 13

6 EQX 0.198 0.038 5.2 22430 4551.7 0.203 5.3

EQY 0.199 0.043 4.6 18199 4551.7 0.250 5.8

7 EQX 0.223 0.044 5.1 13177 3905.5 0.296 6.7

EQY 0.199 0.04 5 19990 3905.5 0.195 4.9

8 EQX 0.10 0.04 2.5 23333 3500 0.15 3.75

EQY 0.058 0.025 2.25 45000 3500 0.08 3.11

9 EQX 0.061 0.017 3.6 19520 2745 0.141 8.3

EQY 0.049 0.015 3.3 22639 2745 0.121 8.1

10 EQX 0.16 0.039 4.1 26471 3552 0.134 3.4

EQY 0.164 0.029 5.6 37718 3552 0.094 3.2

11 EQX 0.201 0.055 3.7 14515 5031.7 0.347 6.3

EQY 0.119 0.046 2.6 16511 5031.7 0.305 6.6

12 EQX 0.094 0.028 3.4 25232 6700 0.266 9.3

EQY 0.12 0.028 4.3 27356 6700 0.245 8.57
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Table 5.4: Comparison of displacement ductility (user defined hinge result)

Model EQ Push µ µd

1 EQX 5.7 4.63

EQY 4.26 4.38

2 EQX 5.04 4.37

EQY 3.67 4.48

3 EQX 3.18 3.41

EQY 2.31 3.36

4 EQX 7.67 3.58

EQY 5.51 2.54

5 EQX 3.13 9.45

EQY 2.99 12.99

6 EQX 5.2 5.34

EQY 4.62 5.82

7 EQX 5.08 6.74

EQY 4.97 4.88

8 EQX 2.5 3.75

EQY 2.25 3.11

9 EQX 3.59 8.27

EQY 3.27 8.08

10 EQX 4.11 3.44

EQY 5.65 3.25

11 EQX 3.66 6.3

EQY 2.58 6.62

12 EQX 3.36 9.29

EQY 4.29 8.57
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Table 5.5: Displacement ductility (default hinge)

Model EQ Push ∆u ∆y µ

1 EQX 0.2 0.049 4.05

EQY 0.186 0.046 4.5

2 EQX 0.185 0.032 5.63

EQY 0.28 0.035 8

3 EQX 0.309 0.03 6

EQY 0.231 0.038 4.8

4 EQX 0.106 0.024 4.26

EQY 0.162 0.037 4.29

5 EQX 0.185 0.076 7.89

EQY 0.2 0.061 3.28

6 EQX 0.19 0.041 4.61

EQY 0.225 0.046 4.78

7 EQX 0.251 0.047 5.32

EQY 0.211 0.065 3.23

8 EQX 0.18 0.07 2.71

EQY 0.15 0.065 2.31

9 EQX 0.085 0.027 2.96

EQY 0.106 0.016 4.5

10 EQX 0.2 0.03 6.67

EQY 0.19 0.027 7.04

11 EQX 0.251 0.044 5.68

EQY 0.251 0.031 5

12 EQX 0.1 0.041 2.42

EQY 0.12 0.034 3.43
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5.4 Overstrength factor (Ω)

The structure has finally reached it strength and deformation capacity. The

additional strength beyond the design strength is called the overstrength.

Numerically,

Overstrength factor (Ω) = apparent strength/design strength

Figure 5.4. Calculation of over strength factor

From above figure, it is clear that, Ω = (Vu/Vy) × (Vy/Vd)

Vu/Vy represents the redundancy factor and Vy/Vd represent overstrength factor.

If both factor (overstrength and redundancy) considered at once as a overstrength

factor then, Ω = Vu/Vd. This concept is used to calculate overstrength factor in whole

study. In model 1, ultimate base shear is 1138.60 KN and design base shear is 436

KN. Overstrength factor (Ω) = 1138.60 /436 = 2.61. Ultimate base shear Vu, design

base shear Vd and overstrength of the study buildings are presented in Table 5.6
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Table 5.6: Overstrength factor based on default hinge

Model EQ Push Vu Vd Ω

1 EQX 915.54 436 2.1

EQY 1007.09 436 2.31

2 EQX 915.44 457.7 2

EQY 735.3 457.7 1.61

3 EQX 654.56 379.6 1.72

EQY 730.1 379.6 1.92

4 EQX 439.82 313.3 1.4

EQY 451.3 313.3 1.44

5 EQX 1428.58 798.8 1.79

EQY 865.43 798.8 1.08

6 EQX 864.82 455.2 1.9

EQY 819.31 455.2 1.8

7 EQX 425.6 390.6 1.09

EQY 677.56 390.6 1.73

8 EQX 505.7 266.2 1.9

EQY 479.09 266.2 1.8

9 EQX 281.31 274.5 1.02

EQY 334.7 274.5 1.22

10 EQX 488 355.2 1.37

EQY 499 355.2 1.4

11 EQX 607.46 503.2 1.21

EQY 601.11 503.2 1.19

12 EQX 991.6 670 1.48

EQY 1300 670 1.94
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5.5 Response reduction factor (R)

Response reduction is used to scale down the elastic response of the

structure. Numerically, R = Overstrength factor × Redundancy factor × Ductility

factor

But, in this study, overstrength and redundancy is considered as overstrength factor.

Finally, Force reduction factor (2R) = Overstrength factor × ductility reduction factor

R = (Ω × Rμ)/2

Figure 5.5. Representation of Force Reduction Factor
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For an example, model 1 have overstrength factor (Ω) = 2.61 and ductility factor (Rμ)

= 2.79 (in EQX condition). In this case, response reduction factor:

R = (2.61Χ 2.79) /2 = 3.64. All other calculations are presented in the tabular form.

The response reduction factor of the study buildings based on user defined

hinges is presented in Table 5.7. Response reduction factor based on default hinge

results are presented in Table 5.8. Comparisons of Rμ, Ω, and R, based on default

and user-defined hinges are presented in Table 5.9 and final R value based on

minimum R among two loading condition ( EQX and EQY) is presented in  Table 5.10.

Relation of R value with column beam capacity ratio (C/B) and load path is

shown in Table 5.11. Similarly, relation of R with satisfied C/B capacity ration and

complete load path is presented in Table 5.12. Relation of R with C/B ratio satisfied

condition and incomplete load path is presented in Table 5.13.Relation of C/B

capacity ratio, Rμ, overstrength factor Ω, and response reduction factor is shown in

Table 5.14. Comparison of high Rμ and less Ω and response reduction factor >= 5 is

presented in Table 5.15. Comparison of R with less Rμ and high overstrength is

shown in Table 5.16. Finally, performance of the study buildings is given in Table 5.17
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Table 5.7: Response reduction factor based on user defined hinge

Modal EQ Push Ω Rµ 2R R

1 EQX 2.61 2.79 7.28 3.64

EQY 3.26 2.54 8.29 4.14

2 EQX 3.48 2.68 9.33 4.66

EQY 3.15 2.22 6.99 3.50

3 EQX 3.62 2.05 7.44 3.72

EQY 3.6 1.63 5.87 2.94

4 EQX 4.17 2.11 8.78 4.39

EQY 4.14 1.66 6.85 3.43

5 EQX 1.7 2.51 4.26 2.13

EQY 1.08 2.57 2.78 1.39

6 EQX 2.4 3.46 8.30 4.15

EQY 2.3 3.10 7.13 3.57

7 EQX 2.1 3.63 7.62 3.81

EQY 2.36 3.46 8.18 4.09

8 EQX 3.24 1.66 5.39 2.70

EQY 3.8 1.55 5.90 2.95

9 EQX 1.56 2.11 3.29 1.65

EQY 1.44 1.97 2.84 1.42

10 EQX 3.74 2.37 8.87 4.44

EQY 4.28 1.99 8.53 4.26

11 EQX 1.85 2.51 4.65 2.33

EQY 1.8 1.79 3.23 1.61

12 EQX 2.06 2.45 5.05 2.52

EQY 1.94 3.02 5.86 2.93
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Table 5.8: Response reduction factor based on default hinge

Model EQ Push Ω Rμ 2R R

1 EQX 2.1 2.57 5.39 2.70

EQY 2.31 2.80 6.47 3.23

2 EQX 2 3.32 6.63 3.32

EQY 1.61 4.50 7.25 3.62

3 EQX 1.72 3.43 5.90 2.95

EQY 1.92 2.85 5.46 2.73

4 EQX 1.4 2.40 3.36 1.68

EQY 1.44 2.41 3.47 1.74

5 EQX 1.79 6.41 11.48 5.74

EQY 1.08 2.79 3.01 1.51

6 EQX 1.9 3.22 6.11 3.06

EQY 1.8 3.32 5.98 2.99

7 EQX 1.09 3.84 4.18 2.09

EQY 1.73 2.47 4.27 2.13

8 EQX 1.9 1.76 3.34 1.67

EQY 1.8 1.58 2.84 1.42

9 EQX 1.02 1.84 1.88 0.94

EQY 1.22 2.50 3.05 1.53

10 EQX 1.37 3.51 4.81 2.41

EQY 1.4 3.67 5.14 2.57

11 EQX 1.21 3.67 4.45 2.22

EQY 1.19 3.29 3.91 1.96

12 EQX 1.48 1.87 2.77 1.39

EQY 1.75 2.49 4.36 2.18
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Table 5.9: Comparison of Rμ, Ω and R of Study Buildings

Rµ Ω R

Modal EQ Push default user default user default

user

hinge

1 EQX 2.57 2.79 2.1 2.61 2.7 3.64

EQY 2.8 2.54 2.31 3.26 3.23 4.14

2 EQX 3.32 2.68 2 3.48 3.32 4.66

EQY 4.5 2.22 1.61 3.15 3.62 3.5

3 EQX 3.43 2.05 1.72 3.62 2.95 3.72

EQY 2.85 1.63 1.92 3.6 2.73 2.94

4 EQX 2.4 2.11 1.4 4.17 1.68 4.39

EQY 2.41 1.66 1.44 4.14 1.74 3.43

5 EQX 6.41 2.51 1.79 1.7 5.74 2.13

EQY 2.79 2.57 1.08 1.08 1.51 1.39

6 EQX 3.22 3.46 1.9 2.4 3.06 4.15

EQY 3.32 3.1 1.8 2.3 2.99 3.57

7 EQX 3.84 3.63 1.09 2.1 2.09 3.81

EQY 2.47 3.46 1.73 2.36 2.13 4.09

8 EQX 1.76 1.66 1.9 3.24 1.67 2.7

EQY 1.58 1.55 1.8 3.8 1.42 2.95

9 EQX 1.84 2.11 1.02 1.56 0.94 1.65

EQY 2.5 1.97 1.22 1.44 1.53 1.42

10 EQX 3.51 2.37 1.37 3.74 2.41 4.44

EQY 3.67 1.99 1.4 4.28 2.57 4.26

11 EQX 3.67 2.51 1.21 1.85 2.22 2.33

EQY 3.29 1.79 1.19 1.8 1.96 1.61

12 EQX 1.87 2.45 1.48 2.06 1.39 2.52

EQY 2.49 3.02 1.75 1.94 2.18 2.93
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Conclusion

In most of the cases, calculation of R-value using default hinge properties has higher

value than default hinge properties.

Figure 5.6. Design strength, over strength and response reduction factor
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Table 5.10: Final R value of Study Buildings

Model R max R min

1 4.14 3.64

2 4.66 3.5

3 3.72 2.94

4 4.39 3.43

5 2.13 1.39

6 4.15 3.57

7 4.09 3.81

8 2.95 2.7

9 1.65 1.42

10 4.44 4.26

11 2.33 1.61

12 2.93 2.52

Conclusion

Average R-value of study building is 3.18
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Table 5.11: Relation of R with C/B ratio and load path

C/B capacity ratio Load path R

Model C/B>1.1 C/B<1.1 Complete Incomplete R max R min

1 √ √ 4.14 3.64

2 √ √ 4.66 3.5

3 √ √ 3.72 2.94

4 √ √ 4.39 3.43

5 √ √ 2.13 1.39

6 √ √ 4.15 3.57

7 √ √ 4.09 3.81

8 √ √ 2.95 2.7

9 √ √ 1.65 1.42

10 √ √ 4.44 4.26

11 √ √ 2.33 1.61

12 √ √ 2.93 2.52

Table 5.12: Relation of R with satisfied C/B ratio and complete load path.

C/B capacity Load path R

Model C/B>1.1 Complete R max R min

1 √ √ 4.14 3.64

2 √ √ 4.66 3.5

4 √ √ 4.39 3.43

6 √ √ 4.15 3.57

7 √ √ 4.09 3.81

10 √ √ 4.44 4.26
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Table 5.13: Relation of R with C/B ratio and load path

C/B capacity Load path R

Model C/B>1.1 Incomplete R max R min

3 √ √ 3.72 2.94

8 √ √ 2.95 2.7

Conclusion

Building with Column/beam capacity ratio is satisfied and complete load path have

higher R value than building with incomplete load path.

Table 5.14: Relation of C/B ratio, μ, Rμ and R

Model C/B > 1.1 C/B <1.1 ductility ductility

compariso

n R

Supply(µ) Demand (µ) of ductility R max R min

1 √ 5.7 4.63 µs > µd 4.14 3.64

2 √ 5.04 4.37 µs > µd 4.66 3.5

3 √ 3.18 3.41 µs~µd 3.72 2.94

4 √ 7.67 3.58 µs > µd 4.39 3.43

5 √ 3.13 9.45 µs < µd 2.13 1.39

6 √ 5.2 5.34 µs~µd 4.15 3.57

7 √ 4.97 4.88 µs > µd 4.09 3.81

8 √ 2.5 3.75 µs < µd 2.95 2.7

9 √ 3.59 8.27 µs < µd 1.65 1.42

10 √ 4.11 3.44 µs > µd 4.44 4.26

11 √ 3.66 6.3 µs < µd 2.33 1.61

12 √ 3.36 9.29 µs < µd 2.93 2.52
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Conclusion

Building with sufficient Column/ beam capacity ratio satisfies displacement ductility

supply ≥ displacement ductility demand.

Table 5.15: Comparison with high Rμ and less Ω

Model Loading Rµ Ω R

6 EQX 3.46 2.4 4.15

EQY 3.1 2.3 3.57

7 EQX 3.63 2.1 3.81

EQY 3.46 2.36 4.09

Table 5.16: Comparison with less Rμ and high Ω

Model Push Rµ Ω R

2 EQX 2.68 3.48 4.66

EQY 2.22 3.15 3.5

3 EQX 2.05 3.62 3.72

EQY 1.63 3.6 3.5

4 EQX 2.11 4.17 4.39

EQY 1.66 4.14 3.43

10 EQX 2.37 3.74 4.44

EQY 1.99 4.28 4.26

Conclusion

Making structure stronger than design value we can reduce the ductility demand of

the structure.



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 67

Table 5.17: Performance of study buildings

Modal EQ ∆u ∆y ∆p Vd Vy Vp Vu

1 EQX 0.165 0.029 0.015 436.0 840 497.85 1138.6

1 EQY 0.149 0.035 0.019 436.0 1180 569.75 1421.0

2 EQX 0.111 0.022 0.011 457.7 1200 534.87 1593.8

2 EQY 0.117 0.032 0.016 457.7 1236 555.02 1441.4

3 EQX 0.076 0.024 0.014 379.6 1100 640.33 1372.8

3 EQY 0.062 0.027 0.016 379.6 1090 656.46 1367.6

4 EQX 0.200 0.026 0.012 313.3 927 423.14 1307.7

4 EQY 0.196 0.036 0.012 313.3 1077 409.14 1297.6

5 EQX 0.139 0.045 0.019 798.8 855 776.93 1354.9

5 EQY 0.087 0.029 0.046 798.8 633 688.51 863.8

6 EQX 0.198 0.038 0.029 455.2 880 574.37 1091.9

6 EQY 0.199 0.043 0.034 455.2 800 556.40 1048.4

7 EQX 0.223 0.044 0.040 390.6 600 442.33 818.5

7 EQY 0.199 0.040 0.033 390.6 693 490.47 920.3

8 EQX 0.10 0.04 0.006 350 450 571.25 1134

8 EQY 0.058 0.025 0.006 350 500 549.28 1359

9 EQX 0.061 0.017 0.018 274.5 383 338.79 429.3

9 EQY 0.049 0.015 0.015 274.5 360 339.36 395.1

10 EQX 0.160 0.039 0.018 355.2 1031 474.48 1328.1

10 EQY 0.164 0.029 0.013 355.2 1240 491.74 1519.0

11 EQX 0.201 0.043 0.048 503.2 722 567.64 929.3

11 EQY 0.119 0.041 0.042 503.2 800 621.22 903.2

12 EQX 0.094 0.028 0.033 670.0 1120 975.00 1380.0

12 EQY 0.120 0.036 0.044 670.0 980 626.00 1300.0



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 68

5.6 Re-detailing the model 5

When Model 5 is detailed as per ductile requirement, then the structure meet the

requirement of Strong column weak beam philosophy (annex 4.1). The results and

the comparison of various parameters are presented in Table 5.18

Table 5.18: Comparison of Model 5 with Ductile Detailing

Model5 C/B < 1.1 C/B>1.1

EQ push EQX EQY EQX EQY

K 18987 21202 20000 22000

Vu 1354.9 863.8 1800 1700

Vd 798.8 798.8 798.8 798.8

Velastic 7988 7988 7988 7988

∆u 0.139 0.087 0.62 0.376

∆y 0.045 0.029 0.08 0.076

∆e 0.42 0.37 0.4 0.36

μ 3.1 3 7.75 4.947368421

μd 9.33 12.75 5 4.736842105

Ductility μ < μd μ < μd μ > μd μ > μd

Rμ 2.65 2.58 4.15 3.94

Ω 1.696169254 1.081372058 2.25 2.128192288

2R 4.494848523 2.78993991 9.3375 8.385077615

R 2.247424262 1.394969955 4.66875 4.192538807
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Figure 5.7. Comparison of R value in X and Y directions

Figure 5.8. Comparison of R in EQX loading

Figure 5.9. Comparison of R in EQY loading
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Figure 5.10. Comparison of overstrength factor

Figure 5.11. Comparison of ductility reduction factor

Figure 5.12. Comparison of displacement ductility in EQX loading
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Figure 5.13. Comparison of displacement ductility in EQY loading

Figure 5.14. Comparison of displacement ductility
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6 CONCLUSION AND RECOMMENDATION

6.1 Conclusions

Calculation of response reduction factor using non-linear pushover analysis as

described in methodology section of this dissertation has been done for 12 typical RC

buildings in Kathmandu Valley. The obtained Response Reduction Factors are further

analyzed and compared with different structural parameters of the buildings.

Followings are the conclusions arrived at from the analysis and interpretation of the

results.

 R Value of all buildings are less than 5

 Frames which do not meet the criteria of “Strong column-Weak beam” do

not meet the high ductility demand required by special moment resisting

frame. The response reduction factor obtained from non-linear pushover

analysis was too less than assumed in those types of buildings.

 In the Buildings with column/beam capacity ratio is satisfied and having

complete load path, got higher R value than buildings with incomplete load

path.

 Buildings having ductility supply ≥ ductility demand satisfies column/beam

capacity ratio..

 If the over strength factor is more the total response reduction factor can be

achieved even the ductility factor is less.

 If the Building having C/B ratio < 1.1 has changed to meet the condition of

C/B > 1.1. The R value is significantly increased which indicates that the major

factor for Response Reduction Factor is C/B ratio.
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6.2 Limitations of the Study

 Only 12 buildings were randomly selected for the study, most of the

buildings are irregular in plan.

 Only nonlinear static pushover analysis  was done

 All the selected buildings did not satisfy the requirement of strong

column weak beam philosophy

 Only the effect of horizontal force were considered in analysis

 Soil structure interaction was not considered

 Only bare frame analysis was done

 User defined hinge was used only in beam elements

6.3 Recommendations

To achieve higher value of R, Buildings must have to meet Strong column

weak beam philosophy and complete load path. Therefore, it is recommended to

meet strong-column weak –beam principle to consider the RC building as special

moment resisting frame building.

6.4 Recommendations for further study

 Determination of R-value of the buildings by using non-linear time

history analysis

 Non-linear analysis of the building considering the effect of infill wall

 Effect of soil structure interaction on response reduction
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ANNEXES

Annex 1.1. Plan of Study Buildings

Modal 1 Modal 2 Modal 3 Modal 4

Modal 5 Modal 6 Modal 7 Modal 8

Modal 9 Modal 10 Modal 11 Modal 12



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 80

Annex 1.2. Area of Study Building in different Floor

Area (m2)

Modal GF FF SF TF TF

1 109.8 105.8 - - 102.3

2 121.6 120.6 - - 76.5

3 116.0 111.9 - - 89.3

4 108.0 104.1 - - 28.9

5 155.5 148.1 148.1 148.1 89.0

6 90.0 90.0 90.0 69.7

7 60.4 65.0 65.0 65.0 13.4

8 112.8 97.3 - - 46.9

9 95.5 81.8 - - 25.3

10 99.5 96.7 - - 54.5

11 124.1 124.1 122.2 - 48.7

12 107.0 107.0 107.0 107.0 70.0
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Annex 1.3. Capacity check

Model Column/beam capacity ratio>1.1

Check the ratio

Model 1

Model 2
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Model 3

Model Column/Beam capacity ratio >1.1

Model 4

Model 6
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Model 7

Model Column/Beam capacity >1.1

Model 8

Model 10
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Model Column/Beam capacity < 1.1

Model 5

Model 9
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Model 11

Model 12
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Annex 2.1. Results from Static Pushover Analysis

(USER DEFINED PLASTIC HINGE RESULT)

Model 1X

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

0 0.00015 0 174 0 0 0 0 0 0 0 174

1 0.00288 92.99 173 1 0 0 0 0 0 0 174

2 0.01666 539.6 136 38 0 0 0 0 0 0 174

3 0.03471 835.4 124 36 14 0 0 0 0 0 174

4 0.04188 887.3 110 43 21 0 0 0 0 0 174

5 0.07369 990.0 99 32 37 5 1 0 0 0 174

6 0.10987 1061. 90 31 29 12 12 0 0 0 174

7 0.14053 1107. 86 32 20 6 27 3 0 0 174

8 0.16539 1138. 86 31 15 2 32 8 0 0 174

Model 1Y

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

0 0 0 174 0 0 0 0 0 0 0 174

1 0.00698 209.9 173 1 0 0 0 0 0 0 174

2 0.02479 716.5 132 42 0 0 0 0 0 0 174

3 0.04067 963.0 117 45 12 0 0 0 0 0 174

4 0.07194 1210. 103 43 28 0 0 0 0 0 174

5 0.08126 1254. 99 45 27 3 0 0 0 0 174

6 0.11433 1340. 86 41 38 1 8 0 0 0 174
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7 0.14433 1412. 82 41 30 11 8 2 0 0 174

8 0.14876 1420. 82 40 30 8 7 7 0 0 174

9 0.14913 1421. 82 40 30 8 7 7 0 0 174

10 0.14913 1421. 82 40 30 8 7 7 0 0 174

Model 2X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 -0.0008 0 216 0 0 0 0 0 0 0 216

1 -0.0007 0.531 215 1 0 0 0 0 0 0 216

3 0.02115 1007. 156 56 4 0 0 0 0 0 216

5 0.02876 1196. 139 72 5 0 0 0 0 0 216

7 0.05021 1411. 115 68 32 0 1 0 0 0 216

9 0.06554 1485. 96 69 48 2 1 0 0 0 216

11 0.09100 1552. 90 62 55 6 3 0 0 0 216

13 0.11079 1593. 85 58 56 9 5 3 0 0 216

Model 2 Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00007 0 216 0 0 0 0 0 0 0 216

1 0.00317 131.7 215 1 0 0 0 0 0 0 216

2 0.02898 955.4 154 54 8 0 0 0 0 0 216

3 0.04197 1186. 138 59 19 0 0 0 0 0 216

4 0.04895 1247. 129 67 20 0 0 0 0 0 216

5 0.07494 1342. 123 45 48 0 0 0 0 0 216

6 0.08651 1377. 120 37 56 3 0 0 0 0 216
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7 0.08651 1377. 120 37 56 3 0 0 0 0 216

8 0.10195 1410. 117 27 59 12 1 0 0 0 216

9 0.10195 1410. 117 27 59 12 1 0 0 0 216

10 0.10766 1422. 117 25 59 13 2 0 0 0 216

11 0.10766 1422. 117 25 59 13 2 0 0 0 216

12 0.11732 1441. 116 24 58 14 4 0 0 0 216

13 0.11732 1441. 116 24 58 14 4 0 0 0 216

Model 3X

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

m KN

0 0.000051 0 230 0 0 0 0 0 0 0 230

1 0.000704 37.341 229 1 0 0 0 0 0 0 230

3 0.017899 835.22 178 52 0 0 0 0 0 0 230

5 0.036041 1178.7 153 64 13 0 0 0 0 0 230

7 0.048616 1282.7 139 59 32 0 0 0 0 0 230

9 0.063312 1342.3 125 64 41 0 0 0 0 0 230

11 0.076355 1372.7 123 54 50 3 0 0 0 0 230

Model 3Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00017 0 230 0 0 0 0 0 0 0 230

1 0.00051 15.93 229 1 0 0 0 0 0 0 230

3 0.01884 782.0 176 54 0 0 0 0 0 0 230

5 0.03936 1190. 151 55 24 0 0 0 0 0 230

7 0.04496 1261. 141 61 28 0 0 0 0 0 230
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9 0.05710 1344 132 66 32 0 0 0 0 0 230

11 0.06242 1367. 126 71 33 0 0 0 0 0 230

Model 4X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 162 0 0 0 0 0 0 0 162

1 0.00097 52.79 162 0 0 0 0 0 0 0 162

2 0.01773 620.0 124 38 0 0 0 0 0 0 162

3 0.03508 897.0 114 42 6 0 0 0 0 0 162

4 0.05750 1049. 110 26 26 0 0 0 0 0 162

5 0.06708 1090. 97 27 38 0 0 0 0 0 162

6 0.09448 1143. 93 25 40 4 0 0 0 0 162

7 0.12167 1189. 90 14 42 12 4 0 0 0 162

9 0.14543 1230. 87 14 32 16 13 0 0 0 162

11 0.16945 1263. 86 15 24 13 24 0 0 0 162

15 0.19953 1307. 85 12 25 4 36 0 0 0 162

Model 4Y

St

ep

Displace

ment

BaseFo

rce

Ato

B

Bto

IO

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyo

ndE

Tota

l

m KN

0 0.000122 0 162 0 0 0 0 0 0 0 162

1 0.000542 15.435 161 1 0 0 0 0 0 0 162

3 0.035569 844.68 104 50 8 0 0 0 0 0 162

4 0.056205 1022.2 86 50 26 0 0 0 0 0 162

5 0.076301 1123.1 76 53 31 2 0 0 0 0 162

6 0.100715 1176.0 70 50 35 5 2 0 0 0 162
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7 0.120315 1206.3 69 43 39 6 5 0 0 0 162

8 0.120315 1206.3 69 43 39 6 5 0 0 0 162

9 0.148132 1244.6 62 37 41 13 9 0 0 0 162

10 0.180141 1281.6 60 34 38 9 21 0 0 0 162

11 0.180142 1281.7 60 34 38 9 21 0 0 0 162

12 0.18016 1281.7 60 34 38 9 21 0 0 0 162

13 0.19504 1296.5 60 33 36 7 25 1 0 0 162

14 0.195972 1297.5 59 34 36 7 24 2 0 0 162

Model 5X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00003 0 348 0 0 0 0 0 0 0 348

1 0.01334 257.1 348 0 0 0 0 0 0 0 348

2 0.02870 548.7 301 47 0 0 0 0 0 0 348

3 0.04451 729.8 269 78 1 0 0 0 0 0 348

4 0.06172 896.8 263 59 26 0 0 0 0 0 348

5 0.07791 1043. 251 64 33 0 0 0 0 0 348

6 0.09332 1148. 236 79 33 0 0 0 0 0 348

7 0.11239 1250. 232 80 36 0 0 0 0 0 348

8 0.12777 1319. 225 69 39 15 0 0 0 0 348

9 0.13925 1354. 220 73 35 20 0 0 0 0 348

10 0.15003 1376. 216 73 37 16 6 0 0 0 348

Model 5Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN
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0 0.00019 0 348 0 0 0 0 0 0 0 348

1 0.00410 86.21 347 1 0 0 0 0 0 0 348

3 0.01931 408.6 286 62 0 0 0 0 0 0 348

5 0.03488 607.5 264 82 2 0 0 0 0 0 348

7 0.04992 712.5 257 75 16 0 0 0 0 0 348

9 0.06599 787.0 255 56 37 0 0 0 0 0 348

11 0.08127 846.0 251 47 50 0 0 0 0 0 348

13 0.08662 863.7 249 42 57 0 0 0 0 0 348

Model 6X

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

0 0.00007 0 202 0 0 0 0 0 0 0 202

1 0.00130 27.90 201 1 0 0 0 0 0 0 202

2 0.02193 490.6 166 36 0 0 0 0 0 0 202

3 0.04330 763.0 146 47 9 0 0 0 0 0 202

5 0.07188 912.7 131 49 22 0 0 0 0 0 202

6 0.09195 954.7 125 40 37 0 0 0 0 0 202

8 0.14696 1038. 115 30 37 12 8 0 0 0 202

10 0.18793 1084. 111 30 27 10 22 2 0 0 202

11 0.18937 1085. 111 30 25 10 22 4 0 0 202

13 0.1924 1088. 111 29 25 10 23 4 0 0 202

14 0.1976 1091. 111 29 22 12 23 5 0 0 202

Model 6Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 202 0 0 0 0 0 0 0 202
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1 0.00406 77.25 201 1 0 0 0 0 0 0 202

2 0.02435 446.4 171 31 0 0 0 0 0 0 202

3 0.04525 680.1 153 40 9 0 0 0 0 0 202

4 0.06600 833.8 141 44 17 0 0 0 0 0 202

5 0.07476 868.7 137 46 19 0 0 0 0 0 202

6 0.09620 915.0 130 40 31 1 0 0 0 0 202

7 0.11626 952.9 126 31 37 8 0 0 0 0 202

8 0.13706 985.0 116 40 32 8 6 0 0 0 202

9 0.15763 1008. 113 37 38 1 13 0 0 0 202

10 0.17885 1031. 110 39 31 8 14 0 0 0 202

11 0.19879 1048. 108 37 23 17 16 1 0 0 202

Model 7X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00014 0 232 0 0 0 0 0 0 0 232

1 0.00117 14.26 232 0 0 0 0 0 0 0 232

2 0.02715 356.6 187 45 0 0 0 0 0 0 232

3 0.05280 528.9 159 70 3 0 0 0 0 0 232

4 0.07988 635.3 144 66 22 0 0 0 0 0 232

5 0.10297 695.4 130 69 33 0 0 0 0 0 232

6 0.13144 739.2 122 71 39 0 0 0 0 0 232

8 0.15389 763.7 112 67 49 4 0 0 0 0 232

10 0.15389 763.8 112 67 49 4 0 0 0 0 232

12 0.18892 794.9 100 70 49 9 4 0 0 0 232

14 0.22343 818.4 95 68 44 17 8 0 0 0 232

Model 7Y
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Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 -7.27E- 0 232 0 0 0 0 0 0 0 232

1 0.00013 2.565 232 0 0 0 0 0 0 0 232

2 0.02351 399.7 172 60 0 0 0 0 0 0 232

3 0.04987 642.9 159 56 17 0 0 0 0 0 232

4 0.06921 752.8 147 57 28 0 0 0 0 0 232

5 0.07791 778.5 140 61 31 0 0 0 0 0 232

6 0.10317 817.7 135 51 46 0 0 0 0 0 232

9 0.13104 852.9 127 41 53 11 0 0 0 0 232

11 0.15690 882.5 121 41 52 15 3 0 0 0 232

13 0.18536 909.3 116 45 46 9 16 0 0 0 232

15 0.19864 920.2 114 46 34 20 18 0 0 0 232

Model 8X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 174 0 0 0 0 0 0 0 174

1 0.00186 54.14 174 0 0 0 0 0 0 0 174

2 0.02195 506.3 157 17 0 0 0 0 0 0 174

3 0.03391 737.2 139 35 0 0 0 0 0 0 174

4 0.05281 861.7 117 52 5 0 0 0 0 0 174

5 0.05281 861.7 117 52 5 0 0 0 0 0 174

6 0.05970 903.2 113 45 16 0 0 0 0 0 174

7 0.05970 903.2 113 45 16 0 0 0 0 0 174

9 0.07037 968.2 107 40 27 0 0 0 0 0 174

11 0.07037 968.2 107 40 27 0 0 0 0 0 174
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13 0.09159 1085. 93 52 27 2 0 0 0 0 174

15 0.10417 1134. 88 52 32 2 0 0 0 0 174

Model 8Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 174 0 0 0 0 0 0 0 174

1 0.00013 28.92 174 0 0 0 0 0 0 0 174

2 0.02021 870.0 150 24 0 0 0 0 0 0 174

3 0.02619 1031. 130 44 0 0 0 0 0 0 174

4 0.03345 1146. 120 49 5 0 0 0 0 0 174

6 0.03345 1146. 120 49 5 0 0 0 0 0 174

8 0.03666 1191. 117 51 6 0 0 0 0 0 174

10 0.03666 1191. 117 51 6 0 0 0 0 0 174

12 0.05566 1357. 104 46 23 0 0 1 0 0 174

14 0.05596 1359. 103 46 24 0 0 1 0 0 174

Model 9X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00E+0 0 115 3 0 0 0 0 0 0 118

1 0.00229 50.23 114 4 0 0 0 0 0 0 118

2 0.01676 323.5 87 30 1 0 0 0 0 0 118

3 0.02158 374.5 83 33 2 0 0 0 0 0 118

4 0.02668 401.8 78 38 2 0 0 0 0 0 118

5 0.03098 406.6 77 39 2 0 0 0 0 0 118

6 0.05271 422.9 75 33 10 0 0 0 0 0 118
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12 0.05595 424.9 74 33 11 0 0 0 0 0 118

13 0.05595 424.9 74 33 11 0 0 0 0 0 118

14 0.05595 424.9 74 33 11 0 0 0 0 0 118

18 0.06694 434.3 72 34 7 5 0 0 0 0 118

19 0.07076 436.9 72 34 5 7 0 0 0 0 118

20 0.07076 436.9 72 34 5 7 0 0 0 0 118

21 0.07271 437.9 72 34 5 6 0 1 0 0 118

22 0.07446 439.4 72 34 4 6 0 2 0 0 118

23 0.07452 439.4 72 34 4 6 0 2 0 0 118

Model 9y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 118 0 0 0 0 0 0 0 118

1 0.01375 311.2 116 2 0 0 0 0 0 0 118

2 0.01689 368.3 111 7 0 0 0 0 0 0 118

3 0.01739 372.8 107 11 0 0 0 0 0 0 118

4 0.01857 376.2 106 12 0 0 0 0 0 0 118

5 0.02952 379.5 104 11 3 0 0 0 0 0 118

6 0.03039 380.4 103 10 5 0 0 0 0 0 118

7 0.03135 380.9 103 9 6 0 0 0 0 0 118

8 0.03425 382.8 102 8 8 0 0 0 0 0 118

9 0.03524 383.1 102 8 8 0 0 0 0 0 118

10 0.03876 385.7 101 9 8 0 0 0 0 0 118

11 0.03900 385.8 101 9 8 0 0 0 0 0 118

12 0.04890 395.0 101 9 8 0 0 0 0 0 118

13 0.04898 395.0 101 9 8 0 0 0 0 0 118

14 0.05085 397.0 101 9 8 0 0 0 0 0 118



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 96

15 0.05275 398.7 101 9 8 0 0 0 0 0 118

Model 10X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00016 0 170 0 0 0 0 0 0 0 170

1 0.00079 16.54 170 0 0 0 0 0 0 0 170

2 0.02107 553.3 142 28 0 0 0 0 0 0 170

3 0.04180 925.6 112 54 4 0 0 0 0 0 170

4 0.05821 1066. 97 61 12 0 0 0 0 0 170

6 0.08009 1164. 91 56 23 0 0 0 0 0 170

8 0.10574 1230. 80 56 32 2 0 0 0 0 170

10 0.12919 1277. 77 48 39 4 2 0 0 0 170

12 0.14434 1306. 72 46 40 8 4 0 0 0 170

15 0.16024 1328. 72 42 39 9 6 2 0 0 170

Model 10Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 170 0 0 0 0 0 0 0 170

1 0.00062 26.74 169 1 0 0 0 0 0 0 170

2 0.02144 811.9 141 29 0 0 0 0 0 0 170

3 0.03428 1106. 114 55 1 0 0 0 0 0 170

4 0.05315 1276. 98 54 18 0 0 0 0 0 170

5 0.07545 1355. 92 39 38 1 0 0 0 0 170

6 0.09806 1411. 84 35 47 3 1 0 0 0 170

9 0.11852 1445. 83 30 42 11 4 0 0 0 170
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11 0.13899 1479. 82 27 42 11 8 0 0 0 170

13 0.16041 1514. 80 27 27 19 15 2 0 0 170

15 0.16377 1519. 77 30 23 21 15 4 0 0 170

Model 11X

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00144 0 271 1 2 0 0 0 0 0 274

1 0.00144 2.96E 271 1 2 0 0 0 0 0 274

2 0.02184 296.1 231 41 2 0 0 0 0 0 274

3 0.04564 549.6 207 62 5 0 0 0 0 0 274

4 0.06314 684.6 196 59 19 0 0 0 0 0 274

5 0.08746 756.0 175 65 34 0 0 0 0 0 274

6 0.10853 799.4 169 54 51 0 0 0 0 0 274

9 0.12912 837.9 161 50 56 7 0 0 0 0 274

11 0.15081 870.7 151 55 54 9 5 0 0 0 274

13 0.171 896.0 142 60 48 15 9 0 0 0 274

15 0.19257 919.6 139 57 49 9 20 0 0 0 274

17 0.20144 929.2 137 58 46 9 24 0 0 0 274

Model 11Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00062 0 271 1 2 0 0 0 0 0 274

1 0.00075 2.1 270 2 2 0 0 0 0 0 274

2 0.01644 261.1 241 31 2 0 0 0 0 0 274

3 0.03172 503.9 223 49 2 0 0 0 0 0 274
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4 0.04687 684.3 202 70 2 0 0 0 0 0 274

5 0.05739 760.8 173 92 9 0 0 0 0 0 274

6 0.07342 821.0 155 104 15 0 0 0 0 0 274

7 0.08963 856.1 142 107 25 0 0 0 0 0 274

8 0.09906 874.2 135 94 45 0 0 0 0 0 274

9 0.09906 874.3 135 94 45 0 0 0 0 0 274

10 0.11503 896.6 133 84 55 2 0 0 0 0 274

11 0.11794 902.2 132 83 57 2 0 0 0 0 274

12 0.11794 902.2 132 83 57 2 0 0 0 0 274

13 0.11852 903.1 131 84 56 3 0 0 0 0 274

Model 12X

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

0 0.00003 0 390 0 0 0 0 0 0 0 390

1 0.00386 124.3 389 1 0 0 0 0 0 0 390

2 0.00967 290.3 358 32 0 0 0 0 0 0 390

3 0.01445 362.2 335 55 0 0 0 0 0 0 390

4 0.03978 496.3 297 93 0 0 0 0 0 0 390

5 0.07201 606.6 292 98 0 0 0 0 0 0 390

6 0.09965 697.9 287 93 10 0 0 0 0 0 390

7 0.12505 775.0 265 77 48 0 0 0 0 0 390

8 0.15779 828.2 258 62 70 0 0 0 0 0 390

9 0.18615 874.0 252 55 83 0 0 0 0 0 390

11 0.21168 911.2 243 53 76 18 0 0 0 0 390

13 0.23744 944.1 224 59 74 33 0 0 0 0 390

15 0.25003 956.5 219 60 52 57 0 2 0 0 390
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Model 12Y

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0.00032 0 390 0 0 0 0 0 0 0 390

1 0.00459 105.4 389 1 0 0 0 0 0 0 390

2 0.02439 380.8 337 53 0 0 0 0 0 0 390

3 0.04761 542.4 315 75 0 0 0 0 0 0 390

4 0.06769 650.5 306 84 0 0 0 0 0 0 390

5 0.08905 750.2 300 88 2 0 0 0 0 0 390

6 0.10922 839.0 289 86 15 0 0 0 0 0 390

8 0.12575 895.4 270 88 32 0 0 0 0 0 390

10 0.14781 939.9 257 80 53 0 0 0 0 0 390

12 0.16781 977.6 257 71 62 0 0 0 0 0 390

14 0.19023 1019. 252 57 80 1 0 0 0 0 390

16 0.20032 1035. 251 55 79 5 0 0 0 0 390

Annex 2.2. Stages for formation of plastic hinge
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Data from static non-linear pushover analysis

When earthquake force acts in X-direction.

Ste

p

Displac

ement

BaseF

orce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dto

E

Beyo

ndE

Tot

al

m KN

0 0 0 211 15 0 0 0 0 0 0 226

1 0.00066 42.43 210 16 0 0 0 0 0 0 226

5 0.05671 810.2 127 94 5 0 0 0 0 0 226

6 0.06457 833.6 121 97 8 0 0 0 0 0 226

7 0.08740 872.9 118 64 44 0 0 0 0 0 226

8 0.11879 905.8 116 32 73 5 0 0 0 0 226

9 0.14002 925.7 115 29 73 6 0 3 0 0 226

10 0.16007 943.0 115 26 50 29 0 6 0 0 226

12 0.18157 960.6 113 26 31 40 0 16 0 0 226

14 0.18694 963.1 113 26 25 41 0 21 0 0 226

15 0.18694 963.1 113 26 25 41 0 21 0 0 226
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Formation of plastic hinge when earthquake force is applied in X direction.

Section at y2(step-5) Section at y3 (step-5) Section at y4(step-5)

Section at y6(step-5) Section at y7(step-5)

Section at y2(step-10) Section at y3(step-10) Section at y4(step-10)
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Section at y6(step-10) Section at y7(step-10)

Section at y2(step-15) Section at y3(step-15) Section at y4(step-15)

Section at y6(step-15) Section at y7(step-15)
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Data from static non-linear analysis when earthquake force acts on Y-direction (EQY)

Ste

p

Displace

ment

BaseFo

rce

Ato

B

BtoI

O

IOto

LS

LSto

CP

CPt

oC

Cto

D

Dt

oE

Beyon

dE

Tot

al

m KN

0 0.000154 0 211 15 0 0 0 0 0 0 226

1 0.001275 44.612 210 16 0 0 0 0 0 0 226

2 0.021528 495.99 178 48 0 0 0 0 0 0 226

3 0.029981 596.40 162 64 0 0 0 0 0 0 226

4 0.051849 714.93 157 69 0 0 0 0 0 0 226

5 0.073123 811.10 146 62 18 0 0 0 0 0 226

6 0.082163 839.64 140 58 28 0 0 0 0 0 226

7 0.11427 876.83 138 32 56 0 0 0 0 0 226

8 0.136949 899.55 137 12 73 4 0 0 0 0 226

10 0.167526 935.17 137 10 47 30 0 2 0 0 226

12 0.187871 953.59 137 10 30 34 0 15 0 0 226

14 0.191472 955.92 137 10 29 32 0 18 0 0 226

15 0.200154 960.48 137 10 27 29 0 23 0 0 226

Pushover curve in Y-direction
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Plastic hinge formation at Step 5

Section at x1(step-5) Section at x2(step-5) Section at x3(step-5)

Section at x5(step-5) Section at x6(step-5) Section at x7(step-5)

Section at x1(step-10) Section at x2(step-10) Section at x3(step-10)
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Section at x5(step-10) Section at x6(step-10) Section at x7(step-10)

Section at x1(step-15) Section at x2(step-15) Section at x3(step-15)

Section at x5(step-15) Section at x6(step-15) Section at x7(step-15)
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Annex 3.1. Sample Calculation of R-Value of Study Building

Step 1. Determination of total weight of the building by considering DL and

LL.

Step 2. The dead load and live load of slab is taken as trapezoidal distribution

whereas dead load of wall is uniformly distributed.

Step 3. Assigning the calculated load on beam.

Assigning dead load                                         Assigning live load

Step 4.Calculation of design base shear and vertically distribute the design

base shear as per IS 1893-2002.

Sample calculation (Modal 7)

Vertical distribution of base shear to different floor as per IS 1893 (Part

1):2002

Equivalent static lateral force method:

Design seismic base shear Vb along any principal direction shall be determined by

Vb = Ah W

Time Period of the structure is determined by;

T = 0.075 h 0.75

= 0.075 Χ (14.25)0.75

=0.55 sec.

From IS 1893:2002, for medium soil

Sa/g =2.47, Z=0.36,I = 1, and R = 5 is taken

Ah = Z/2*I/R*Sa/g
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Ah = 0.08892

Design base shear, VB = Ah W = 0.08892 * 4392.09 =390.55 KN

Vertical distribution of base shear

Qi = Vb.∑
Q1 = 13.68KN, Q2 = 54.73KN, Q3 = 123.13KN, Q4= 144.40KN, and Q5 = 54.36KN

Response Spectrum Method

Modal 2

Sample calculation of Target displacement in Pushover analysis

Column sizes are 0.23m * 0.31m

Stiffness [K] =
123 =

797817978158591
[M] =

188 0 00 160.3 00 0 66.3 ,                            [K] =
1 − 2 0− 2 2 + 3 − 30 − 3 3

[K] =
159262 −79781 0−79781 138372 −585910 −58591 58591

For the above stiffness and mass matrices, eigenvalues and eigenvectors are worked

out as follows

|K-ω2m|= 0

Solving,

ω1
2 = 1489;    T1 = 2π/√ω1

2

ω2
2 = 134;       T2 = 2π/√ ω2

2
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ω3
2 = 930;       T3 = 2π/√ ω3

2

From above calculation T1 = 0.16 second, T2 = 0.54 second and T3 = 0.20 second

Eigen values [ω2] =
1489 0 00 134 00 0 930

The mode shape corresponding to each natural frequency is determined from the

equations.

[-Mw1
2+K]ф1 = 0

[-Mw2
2+K]ф2 = 0

[-Mw3
2+K]ф3 = 0

When  ,ω1
2 = 1489;

120370 −798781 0−79781 −100315 −585910 −58591 −40130 ф11ф21ф31 = 0

Which gives,
ф11ф21ф31 =[фT  m  ф] =

0.011−0.0570.083
Similarly when ω2

2 = 134;ф12ф22ф32 =[фT  m  ф] =
0.0340.0560.066 Similarly when ω3

2 = 930;

ф13ф23ф33 = [фT m ф] =
0.0560.004−0.08

Eigenvectors can be computed as {ф} = {ф1    ф2     ф3} =
0.011 −.057 . 0830.034 0.056 0.0660.056 0.004 −0.08

Natural period; [T] =
0.16 0 00 0.54 00 0 0.20

Determination of modal participation factor

P1 = × . . × . . × .( ×( . ) . ×( . ) . ×( . ) = -1.56

Similarly, P2 = 19.74; P3 = 5.76

Total mass of the sample building is 414.6

m1 = 0.59%, m2 = 91.41%, m3 = 7.83%

Ah = Z/2 * I/R * Sa/g; then, Ah1 = 0.09, Ah2 = 0.09 and Ah3 = 0.09
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112131 =
0.09 − 1.56 0.011 18800.09 − 1.56 − 0.057 16030.09 − 1.56 0.083 663 =

−2.9012.83−7.73
Similarly,

122232 = 112.5158.0377.03 and
132333 = 54.583.32−27.49112131 = 2.25.1−7.73 ;

122232 = 347.56235.0677.03 And
132333 = 30.41−24.17−27.49

V1 = (2.22+347.562+30.412)1/2 = 348.895 KN

V2 = (5.12+235.062+24.172)1/2 = 236.35 KN

V3 = (7.732+77.032+27.492)1/2 = 82.15 KN

Step5. Assigning the lateral load to the C.G of each diaphragm.

Step 6. Defining the static non-linear load cases. The load cases are defined

as GRAV, EQX (Push in X-direction), EQY (Push in Y-direction). In GRAV load condition

the load case is DL+0.25 LL is used whereas In EQX and EQY user defined load is

used.

Step 7. Assign default plastic hinge in beam and column element. In beam

default M3 hinge (FEMA 356) is used whereas in column P-M2-M3 hinge is used.

User defined hinge for beam (M3) is obtained as:

The stress-strain diagram of steel and concrete use in analysis is:
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Stress-strain diagram of concrete                                 stress-strain diagram of steel

Beam size is 15”Χ 9” ,Top- 6-16mmф bars and ottom-4-16mmф bars are used in

Normal case. In (–ve) cycle (reverse case), the reinforcement is just altered and the

resulting moment curvature is obtained as follows:

Normal condition moment curvature               Reinforcement reverse condition

Sagging moment capacity Hogging moment capacity

Maximum moment (Mu) =119.045 KN-M

Maximum curvature (φmax) = 0.082

Yield moment (My) =89.857 KN-m

Maximum moment (Mu) =157.349 KN-M

Yield moment (My) =130.866 KN-m

Maximum curvature (φmax) = 0.062
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Yield curvature (φyield) = 0.0087

Idealized curvature (φidealized) =0.010

Rotation at C = 0.082 Χ 0.172 = 0.014

Rotation at D = 0.014

Rotation at E = 2 Χ 0.014 = 0.028

Scale factor (S.F) = 119.045 / 89.857 =

1.32

d= (0.381-0.038) = 0.343m

Plastic hinge length = 0.50 Χ d

Yield curvature (φyield) = 0.0097

Idealized curvature (φidealized) =0.011

Rotation at C = Curvature Χ plastic hinge

length = 0.062 Χ 0.172 = 0.011

Rotation at D = 0.011

Rotation at E = 2 Χ rotation at D = 0.022

Scale factor (S.F) = 157.349 /130.866 =

1.20

d= (0.381-0.038) = 0.343m

Step 8. The force is controlled in Gravity load cases and for Push X and Push Y

displacement controlled concept is used. Target displacement is calculated as per

FEMA 273 and the program is launched to that displacement.

Calculation of target displacement.

The target displacement δt in FEMA-273 is given by

δt = COC1C2C3Sa g Te2/4П2

Where,
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C0 = 1.30, C1 =   1, C2 = 1.2

R = 2.5*5085.82/ (755*1.30) =13

C3 = 1.0 + |γ| (R-1)3/2 / Te = 1.0 + |-1.6| (13-1)3/2 / 0.28337 =235.71

δt = 0.6238 m

Step9. After run analysis capacity curve is obtained. With the help of capacity

curve ultimate deformation, yield deformation, ultimate shear, and yield shear is

obtained. (Yield deformation is obtained after bilinear idealization of capacity curve).

Step10.  Determination overstrength factor, by the ratio of ultimate shear to

design base shear.For Push Y (EQY consideration)

Bilinear representation of capacity curve
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Overstrength factor (Ω) = Vu/Vd = 1471/457.7 =3.20

Step11. Determination of ductility factor, by the ratio of ultimate

deformation to the yield deformation (it is also called ductility supply by the

structure)

Displacement ductility factor (µ) = ∆u/∆y = 0.1172/0.032 = 3.67

Ductility reduction factor (Rμ) = 1+ (μ-1)T/0.70 = 3.09

Step12. Determination of elastic deformation (ratio of elastic force to initial

stiffness). Elastic force = 10*457.7 = 4577 KN

Initial stiffness = 31913 KN/m

Elastic deformation demand (∆e) =4577/31913 =0.14m

Step 13. Determination of elastic ductility demand (ration of elastic

deformation to yield deformation.

Elastic ductility demand (µd) = 0.14/0.032 = 4.48

In this case ductility demand > ductility supply

Step 14. Determination of response reduction factor R by using the relation

2R = overstrength factor * ductility factor

= 3.20*3.09 =9.888

R = 4.94

Step 15. Repeatation the same procedure except step7 for user defined

hinge.
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Annex 4.1. Modal 5 (when proper detailing)

Figure capacity ratio of column and beam.
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When modal 5 is detailed according to the ductile detailing as per IS Code.

The capacity ratio of column and beam is shown in figure. The capacity curve is

shown in figure. The maximum deformation is 0.62 m; maximum base shear is 1800

KN. the design base shear is 798.88 KN. The initial stiffness of the capacity curve is

20000. By bilinear representation of the capacity curve, the yield deformation is

0.08m. The elastic deformation is 0.40m.

Ductility supply> Ductility demand

Displacement ductility μ =5

Ductility reduction factor Rμ = 1+ (μ-1)T/0.70 = 4.45

Overstrength reduction factor Ω = 2.25

Response reduction factor R = 4.45 *2.25/2 = 5.00

Similarly for EQ Y case, the maximum deformation is 0.37m, yield

deformation is 0.08m. Maximum base shear is 1700 KN; design base shear is 798.8

KNIn this case also, ductility supply is > ductility demand

Displacement ductility μ = 0.376/0.08 = 4.7

Overstrength factor Ω = 1700/798.80 = 2.13

Ductility reduction factor Rμ = 1+ (μ-1)T/0.70 = 3.9

Response reduction factor R = 3.9 * 2.13/2 = 4.16

Thus from above, it is clear that in a structure, when strong column weak

beam condition is not matched then, the ductility reduction factor and overstrength

decrease which results to decrease  response reduction factor. If design and detailing

is done appropriately, then it results to increase the value of response reduction

factor.
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Annex 5.1. Capacity curve of some sample models
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Annex 6.1. Detailing of study buildings

Secti

on

Top

reinforcement Bottom reinforcement

1/1

2-12mmφ +2-

16mmφ 2-12mmφ+1-16mmφ

4/4 6-16mmφ 4-16mmφ

6/6 6-16mmφ 4-16mmφ

Secti

on

Top

reinforcement Bottom reinforcement

1/1 6-16mmφ 4-16mmφ

3/3

4-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

5/5

2-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

6/6

4-12mmφ+2-

16mmφ 2-12mmφ+1-16mmφ

Sect

ion

Top

reinforcement Bottom reinforcement

1/1

2-12mmφ+4-

16mmφ 2-12mmφ+1-16mmφ

3/3

3-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

4/4

2-12mmφ+1-

16mmφ 4-16mmφ

5/5

2-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

6/6 5-16mmφ 3-16mmφ
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8/8 3-16mmφ 3-16mmφ

Sectio

n

Top

reinforcement Bottom reinforcement

1/1

1-12mmφ+4-

16mmφ 1-12mmφ+2-16mmφ

3/3

4-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

6/6

2-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

Sectio

n

Top

reinforcement Bottom reinforcement

3/3 5-12mmφ 4-12mmφ

5/5

3-16mmφ+2-

20mmφ 2-16mmφ+1-20mmφ

Sectio

n

Top

reinforcement Bottom reinforcement

1/1 4-16mmφ 3-16mmφ

6/6 5-12mmφ 4-12mmφ

7/7

3-16mmφ+2-

20mmφ 2-16mmφ+1-20mmφ
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Sectio

n

Top

reinforcement Bottom reinforcement

1/1

2-12mmφ+3-

16mmφ 2-12mmφ+1-16mmφ

3/3 4-16mmφ 3-16mmφ

6/6

2-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

Sectio

n

Top

reinforcement Bottom reinforcement

1/1

2-12mmφ+3-

16mmφ 3-16mmφ

3/3

3-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

6/6 6-16mmφ 4-16mmφ

Sectio

n

Top

reinforcement Bottom reinforcement

1/1 4-16mmφ 3-16mmφ

3/3 6-16mmφ 3-16mmφ

5/5 4-12mmφ 3-12mmφ

7/7

3-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

9/9

3-12mmφ+2-

16mmφ 2-12mmφ+1-16mmφ
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Sectio

n

Top

reinforcement Bottom reinforcement

1/1 5-16mmφ 4-16mmφ

3/3 6-16mmφ 4-16mmφ

5/5

4-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

Sectio

n

Top

reinforcement

Bottom

reinforcement

1/1

3-12mmφ+2-

16mmφ 2-12mmφ+1-16mmφ

3/3

3-12mmφ+1-

16mmφ 2-12mmφ+1-16mmφ

6/6 6-16mmφ 4-16mmφ

Sectio

n

Top

reinforcement

Bottom

reinforcement

1/1 4-16mmφ 3-16mmφ



ASSESSMENT OF RESPONSE REDUCTION FACTOR OF RC BUILDINGS IN KATHMANDU VALLEY USING NON-LINEAR PUSHOVER ANALYSIS 121

Model No Beam size Column

size

C1 C2 C3 C4

1 15”*9” 12”*12” 10-16mmφ 4-16mmφ

+6-12mmφ

6-16mmφ+

4-12mmφ

_

2 15”*9” 15”*12” 10-16mmφ 4-16mmφ+

4-20mmφ

6-16mmφ+

4-20mmφ

8-20mmφ

3 15”*9” 15”*12” 8-20mmφ 4-20mmφ+

4-16mmφ

_ _

4 15”*9” 14”*14” 8-16mmφ 10-12mmφ 8-16mmφ+

2-12mmφ

_

5 15”*9” 12”*12” 6-16mmφ+

4-20mmφ

10-16mmφ 4-20mmφ+

8-16mmφ

_

6 15”*9” 12”*12” 10-16mmφ 8-16mmφ+

2-12mmφ

6-16mmφ+

4-20mmφ

_

7 15”*9” 12”*9” 8-16mmφ 6-16mmφ+

4-20mmφ

4-16mmφ+

4-20mmφ

_

8 15”*9” 14”*14” 10-16mmφ 8-16mmφ+

2-12mmφ

4-16mmφ+

6-12mmφ

_

9 15”*9” 12”*9” 10-12mmφ 4-16mmφ+

6-12mmφ

2-16mmφ+

8-12mmφ

10-

16mmφ

10 15”*9” 14”*14” 4-20mmφ+

4-16mmφ

8-16mmφ 4-16mmφ+

4-12mmφ

_

11 15”*9” 12”*9” 2-20mmφ+

8-16mmφ

4-16mmφ+

4-20mmφ

6-16mmφ+

4-12mmφ

_

12 15”*9” 14”*14” 8-20mmφ 4-16mmφ+

4-20mmφ

_ _
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