
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322426853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 12

Simulation of Discrete‐Event Systems in MATLAB

Raul Campos‐Rodriguez,
Mildreth Alcaraz‐Mejia and Uriel Sanchez‐Ramirez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63230

Abstract

The discrete‐event systems (DES) are systems guided by asynchronous events rather
than by the passage of the time as in traditional systems. There exists a wide set of
systems that could be considered within this class, such as communication protocols,
computer and microcontroller operating systems, flexible manufacturing systems,
communication drivers for embedded applications and logistic systems, among others.
Their proper study is a requirement for a suitable implementation of embedded
hardware and software, for example. The aim of this chapter is to approach the
simulation of this class of systems within the MATLAB/SIMULINK framework. A
suitable simulation process, allowing the injection of input signals to the system and
observing its output response, is a first step in the analysis of this class of systems,
which may lead to more elaborated analysis such as reachability and deadlock
avoidance. The advantage of the approach and techniques proposed in this chapter is
the application of the set of tools, algorithms and visualization instruments present in
the MATLAB/SIMULINK to the simulation of Discrete‐Event Systems, which allows a
simple integration of various DES by utilizing the matrices that define them. The
concluding section of the chapter provides a link for downloading all the code for the
examples developed here.

Keywords: discrete‐event systems, analysis, modelling, simulation, MATLAB/SIMU‐
LINK

1. Introduction

The discrete‐event systems (DES) are systems guided by asynchronous events rather than by
the passage of time as in the traditional framework of Control Theory, for example [1]. There
exists a wide set of systems that could be considered in the class of DES, such as operating systems

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

of microprocessors and embedded microcontrollers, communication protocols such as IPv4/
IPv6, complex software architectures such as database management systems, production
systems and flexible manufacturing systems (FMSs), delivering and logistic systems, among
others. Their proper study is a requirement for the fulfillment of performance and safety
requirements, for example. The traceability of requirements and its satisfaction is simplified by
using a model that is suitable for a rigorous simulation process [2].

The aim of this chapter is to approach the simulation of DES within the MATLAB/SIMULINK
framework. Analysis such as the application of random inputs to a DES and the visualization
of system’s output response are intended to be covered in this chapter. The overall goal is to
enable the application of the set of tools, algorithms and visualization instruments present in
the MATLAB/SIMULINK to the analysis of DES. There exist several approaches for the
analysis of this class of systems. On the one hand, for example, empirical practices are used
for addressing the problems that arise in the DES field. Most of these practices are based on
experience and good knowledge among engineers in the daily execution of a system. On the
other hand, in the formal point of view, scientists and engineers typically use mathematical
tools based on automata theory, Petri nets (PN), Markov chains and Queue theory for ad‐
dressing main aspects in the design and implementation of DES. The aspects most studied in
the analysis of DES are the reachability and deadlock analysis, fault tolerance, control and
observability schemes, to mention a few [3].

In recent years, the simulation methods have taken great relevance in the design and imple‐
mentation of big systems. These methods allow engineers and scientists the study of complex
behaviours by simulating in the lab different real‐world scenarios. Intensive workload
conditions, parametric variations, environmental changes and fault scenarios are possible to
investigate by simulation methods. Statistical information, performance curves, and parameter
optimization are some of the possible results obtained by a simulation process.

2. Discrete‐event systems (DES)

As mentioned in the introduction, within a DES the state evolution depends on the occurrence
of events that are asynchronous in time. An event is an instantaneous action occurred in the
context of the DES that is relevant for the understanding of the system. An occurrence of an
event may cause an immediate change in the system state. For example, an event could be a
package arriving by the network connection, a button pressed by the user at a control panel,
a timer’s overflow within an embedded device driver, a change in a Boolean flag within an
Interrupt Service Routine, etc. By convention, it is supposed that no time is elapsed between
the event occurrence and the change of the state in a DES.

Some examples of DES’s include communication protocols, supply chains, queue systems, task
schedulers, logistic systems, device drivers, memory managers, landing and take‐off systems
of airplanes, urban rail systems and subway, and line of manufacturing and production
systems, among others. For a wide list of examples of DES, see [4].

Applications from Engineering with MATLAB Concepts256

The study of a DES is important for several reasons, including safety and economic issues, for
example. There exist several approaches in the study of this class of systems. For example,
there exist empirical practices for addressing the problems that arise in the DES. Most of these
are based on experience and good knowledge among engineers in the daily execution of the
DES. In the formal point of view, scientists and engineers use automata theory, PN, Markov
chains and Queue theory for addressing main aspects in the design and implementation of
DES, such as the modelling, reachability and deadlock analysis, fault tolerance, and control
schemes, among other interesting properties [5, 6].

In recent years, the simulation methods have taken great relevance in the design and imple‐
mentation of big systems. These methods allow engineers and scientists the study of complex
behaviours by simulating in the lab different real‐world scenarios. Intensive workload
conditions, parametric variations, environmental changes and fault scenarios are possible to
investigate by simulation methods. Statistical information, performance curves, and parameter
optimization are some of the possible results obtained by a simulation process.

2.1. Modelling DES with finite state machines

The finite state machines (FSM) are one of the first and most used mathematical models for
the representation of the dynamics of a DES. A FSM is an extension of the concept of the
automaton [7]. The states and events are basic concepts in the construction of a FSM. It is
supposed that at every time, the FSM is in one of a finite number of states and that an incoming
event causes an immediate change in the state of the FSM. Formally, a FSM is defined by
G = (Q, Σ, δ, q0) where [8]:

• Q is a finite set of states,

• Σ is a finite set of input symbols called events,

• δ :Q ×Σ→Q is a partial relation called the state‐transition function,

• q0 is the initial state and is in Q.

As a graphical representation, the states are depicted as circles or ovals, while the events are
represented as labelled arrows from one “source” state to other “destination” state. The initial
state q0 is designated by an incoming arrow, usually thicker than the other, with no source
state.

Alternatively, the definition of a FSM may include a set of “marked states” designated as Qm

which represents the “acceptable” or “suitable” states of a DES. Moreover, an extension to the
state‐transition function may include subsets of Q as its range, allowing the representation of
a non‐deterministic FSM. For simplicity of the code implemented in this work, the determin‐
istic definition of a FSM with no marked states is considered. The modification of the code here
developed for the inclusion of those cases is not hard to achieve.

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

257

Figure 1 depicts a FSM model of the basic functionality of a typical microwave oven adapted
from [9]. The initial state is Idle, as denoted by the thicker incoming arrow to s1, where the
oven performs no activity, and it is waiting for the buttons pressed by the user. The events that
the user may execute in the system are denoted by the labels over the arrows. For example, at
the “Idle” state the user may press the “Full Power” button (e1) that causes a change to the state
s2 “Full Power on.”

Figure 1. A FSM model of a microwave oven. The initial state is determined by the bold incoming arrow to s1 which

corresponds to Idle. The system events are labelled over the arrows and designated as ei for i =1…8 for an easy im‐

plementation. Similarly, the states are designated as sj for j =1…8.

Then the user may set the time for the cooking process at the “Set Time” state. For security
reasons, if the door is opened, the operation of the oven is disabled, otherwise it is enabled.
At the “Operation Enabled” state, i.e. s6, if the user presses the “Start” button, the cooking
process begins. Any opening of the oven’s door immediately disables its operation. After a
timeout event, the cooking process is completed and the FSM is restarted to its initial state
ready for the next operations.

For simplicity in the construction of the state‐event matrix, the labels si for i =1, …, 8 and ej

for j =1, …, 8, have been added to the FSM model representing the state and event, respec‐
tively. The initial state of the FSM in Figure 1 is q0 = e1 while the state‐event matrix is the fol‐
lowing:

Applications from Engineering with MATLAB Concepts258

e e e e e e e e
s s s
s s s
s s s
s s s s
s s
s s
s s s
s s

1 2 3 4 5 6 7 8

1 2 3

2 3 4

3 2 4

4 4 5 6

5 6

6 7

7 5 8

8 1

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

By using the information of the initial state and the state‐event matrix, the next section provides
a way of simulating an arbitrary FSM by the implementation of an S‐Function in MATLAB.
Before addressing the details of the implementation, the following subsection considers
another useful method based on PN for the modelling of a DES.

2.2. Modelling DES with PN

A PN is another mathematical tool widely used for the design, the modelling, and the
simulation of a DES [10]. The modelling process of a DES with a PN is quite natural and
intuitive, due to its graphical representation as in the case of FSM. One advantage of the PN
modelling technique is the compact representation of the systems. Moreover, the PN formalism
resides in a strong mathematical basis from the linear algebra. Formally, a PN model is a pair
(B, M0), where B is a Petri net structure (PNS) {P , T , F }, such that:

• P = {p1, p2, ⋯ , pm} is a finite set of places;

• T = {t1, t2, ⋯ , tn} is a finite set of transitions;

• F = I∪ O is a flow relation, where I (pi, tj)→ℕ+ and O(ti, pi)→ℕ+ are the input and output
functions;

• M0 ∈ (ℕ+)m is a special vector known as the initial marking of the net, where m = | P | .

Pictorially, circles represent the places, while rectangles or bars, represent the transitions. The
flow relation F = I∪ O, is represented as directed arcs or arrows. On the other hand, the matrices
B −(i, j) ∶ = I (pi, tj) and B +(i, j) ∶ =O(ti, pi), capture the structure of the flow function, while
B ∶ = B + − B −, represents the incidence matrix of the PN. Thus, B is a matrix of size m ×n , where
m is the number of places, and n the number of transitions. The net’s state, or marking, is a
vector M (k)∈ (ℕ+)m, where m is the number of places in the PN. A marking represents the state
of the net at time k , i.e., the number of tokens in each place at the time k .

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

259

In the classical definition of a PN, the number of tokens cannot be negative. Also, it is sup‐
posed that the index k is updated at every time that an event occurs. For simplicity, the
marking M (k) is represented by using subscripts as Mk , and Mk (pi), pi ∈ P for representing
the number of tokens in place pi at the time k . The initial marking M0 represents an initial
tokens distribution over the net’s places. Thus, M0(pi) for pi ∈ P , represents the initial num‐
ber of tokens in place pi. The marking M0 may enable one or more transitions to be fired. An
enabled transition ti ∈T at the marking M0, denoted by M0 t , is one that fulfils
 M0(pj)≥ B −(pj, ti), ∀ pj ∈ P . Given any marking, say Mk , the set of all its enabled transitions is
simply denoted as Mk . The firing of enabled transitions leads to the dynamic behaviour of
a PN, captured by the state equation:

k k kM M Bu1+ = +
r

The interpretation of the previous equation is as follows. The marking Mk , of size m ×1 ,
represents the system state at time k . The vector u→ k , of size n ×1 , represents the firing of one
or more enabled transitions by the marking Mk . The matrix B, of size m ×n , is the incidence
matrix of the net. The vector Mk +1 represents the state reached by net’s evolution. If Mk ti

and ti is fired, then using (1), the net reaches a new marking computed as Mk +1 =Mk + Bt
→
i. In

this equation, u→ k = t
→
i is a vector with a one in the i − th position and zero anywhere else. This

marking’s evolution is denoted as Mk→
ti

Mk +1 , in order to emphasize the fact that from mark‐
ing Mk the net fires ti and reaches Mk +1. The marking evolutions may consecutively enable
other transitions to be fired, which leads to the concept of reachability set of a PN. The
reachability set of the PN (B, M0) is denoted by R(B, M0), for emphasizing the fact that it de‐
pends on initial condition M0. Thus, R(B, M0) is the set of all markings Mk evaluated by (1),
by only considering the firing of enabled transitions. A firing transition sequence of the PN

(B, M0) is a sequence of transitions σ = titjtk ⋯ tl such that M0→
ti

M1→
tj

M2→
tk

⋯M l→
tl

Ms, where
the length of σ , denoted by |σ | , is the number of its transitions. If the number of transi‐

tions in σ is not finite, then |σ | =∞. A short representation for this trajectory is M0→
σ

Ms, for

highlighting the fact that from M0, the net fires σ, and reaches Ms. If Mk→
σ

Ms for some Mk

and σ, then Mkσ means that the marking Mk , enables the firing of the entire sequence σ.

The Parikh Vector σ→ ∈ℕm maps every transition in the set T to its number of occurrences in
sequence σ. Thus, if σ = titjti then, σ→ is a n −vector with a two in the i − th position, one on the
j − th position, and zero anywhere else. The firing language of an PN (B, M0) is
 

Applications from Engineering with MATLAB Concepts260

 ℒ(B, M0) : = {σ ∈T * |σ = titjtk … tl}, such that M0→
ti

M1→
tj

M2→
tk

⋯Mr→
tl

Ms, where T * is the Kleen
closure, as in automata theory [7], of the transition’s set.

Figure 2. PN model representing a FMS. The system is composed of a mill machine, a lathe and a robot, connected
through buffers. The incoming raw material arrives from the inventory to the robot’s section. Then they are routed to
the mill, lathe, painting or assembling stations.

Figure 2 represents a PN model of a FMS adapted from [11]. Be careful to not confuse the name
of a FMS in this subsection with the name of a FSM of the previous one. It is composed of a
robot arm (p3), a mill machine (p5), a lathe (p7), a painting device (p13) and an assembling

machine (p14). A set of buffers {p1, p2, p4, p6, p8, p9, p10, p12} connects together the system. The

FMS is able to process different components at the intermediate stages, which are lastly
assembled at the AM stage (p14). The firing of t1 and t2 represents the arriving of raw material

from a non‐depleting inventory, which is aleatory. It was interpreted and adapted from its
original layout in [11]. The incidence matrix of the PN is of size B 14×21 , while the initial
marking M0 14 is a zero vector, meaning that the FSM is empty. The incidence matrix B of the

FMS is the following:

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

261

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-
-

- - - - -
- -

-
- -

-
-

0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú

-ê ú
ê ú- -ê ú
ê ú- -
ê ú

- -ê ú
ê ú-
ê ú
ê úë û

The next section is devoted to the implementation of suitable functions for the integration of
FSM models as well as PN models into a Simulink model.

3. Simulating DES in MATLAB

The S‐functions are a mechanism in the MATLAB environment for extending the capabilities
of SIMULINK. By writing an S‐function, the user is able to implement complex behaviours of
real systems that directly interact with other blocks in a SIMULINK model. The S‐function API
defines the structure of an S‐function and accepts MATLAB, C, C++ or FORTRAN as coding
languages. The S‐function is compiled as MEX files, which are linked, loaded and executed
dynamically. By using a special syntax, it is possible to write functions for continuous, discrete
and hybrid systems. Moreover, with a proper solver and a suitable integration step, the
modelling and simulation of a DES is possible with accuracy and great detail. The SIMULINK
library provides a block called S‐Function as a placeholder for the user defined S‐functions.
The block includes a dialog box where it is possible to specify the file containing the function
and its parameters.

There are two different categories for the S‐functions, called Level‐1 and Level‐2. Each of them
has its advantages and disadvantages. A detailed comparison among them is out of the scope
of this chapter. An interested reader may refer to the MATLAB documentation for more
information. The Level‐2 is the newest category and is the one used in the rest of this work.
The functions are written in MATLAB as m‐files.

The name of the m‐file has to be that of the function it implements and has to include five
standard sections. The setup section is executed in the initialization stage of the simulation
process and allows specifying the number of inputs, outputs, states and parameters, among
other characteristics of the function. The DoPostPropSetup is executed after the setup and allows
defining the blocks of memory used by the function. It also allows the definition of discrete
state variables. The InitConditions section specifies the initial conditions of the block, while the

Applications from Engineering with MATLAB Concepts262

output section specifies the outputs it produces in the sense of the control theory. The Update
is perhaps the most important section since it is the place where the system’s dynamic is
implemented. The Update and Output section are executed at every integration step in the
simulation process.

3.1. Implementing the FSM dynamics

The state‐event matrix of a FSM captures its behaviour and allows a straightforward imple‐
mentation of its dynamics within a SIMULINK model. Following the structure of an S‐function,
the next code provides an overview of the main aspects of its implementation. The function is
called my_fsm and corresponds with the file name.

The setup defines the number of input parameters and its characteristics, among others.

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

263

The DoPostPropSetup allows defining the state of the FSM that has to be preserved during the
simulation process. Since this implementation is for a deterministic FSM, it is one dimensional
and used as discrete state. The name is chosen conveniently to be “State.”

The InitConditions allows defining which of the states of the FSM is selected as initial. The
initial state is provided by the user as the second parameter of the block.

The Output function returns the current state of the FSM, which is stored in the 24 DWork
vector previously defined in the DoPostPropSetup section.

Finally, the Update section implements the change of state experiments by a FSM due to the
input signals it receives. For this purpose, the state‐event matrix is represented with the rows
labelled as the states of the FSM while the columns are labelled as its events. To simplify the
codification within a MATLAB function, only integers are used for representing both the state
as well as the events. In this way D(1, 2)=3 means that when the FSM is in the state one, i.e.
s1, and the input is the event two, i.e. e2, then the FSM reaches the state three, i.e. s3. When
D(i, j)=0 means that at the i − th state, the j − th event is not defined, and accordingly, the state
of the FSM is not changed. By assuming this convention in the codification of the FSM, the next
code is straightforward and implements the change of state in a FSM due to the incoming
events.

Applications from Engineering with MATLAB Concepts264

3.2. FSM simulation example

The function my_fsm detailed in the previous subsection is used for the simulation of the
FSM of Figure 1. The state‐event matrix is coded as a matrix D 8×8 of integer where every
entry represents a state, as discussed in the previous subsection. Thus, for example,
D(1, 1)=2, as expected according to the FSM in Figure 1. The ε event from “Cooking Com‐
plete” to “Idle”, i.e. from s8 to s1, is coded as e8. That is, the event e8 corresponds to the last
column in the state‐event matrix. The entire matrix coded in the MATLAB workspace is:

D

2 3 0 0 0 0 0 0
0 3 4 0 0 0 0 0
2 0 4 0 0 0 0 0
0 0 4 5 6 0 0 0
0 0 0 0 6 0 0 0
0 0 0 0 0 7 0 0
0 0 0 5 0 0 8 0
0 0 0 0 0 0 0 1

é ù
ê ú
ê ú
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

By using the above matrix D, Figure 3 shows a SIMULINK model that integrates the my_fsm
for simulating the FSM model of the microwave oven in the Figure 1. The FSM block encap‐
sulates a Level‐2 S‐function block with the my_fsm S‐function inside. The parameters are the

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

265

matrix D and the initial state d0=1 defined in the MATLAB workspace in the same directory
of the SIMULINK model. A random number generator, together with constant of one,
represents the aleatory generation of events for the FSM block.

Figure 3. A SIMULINK model that uses the my_fsm function representing the microwave oven. The random integer
generator produces a number in the range 0, k −1 which represents the incoming events to the FSM model. The con‐
stant is added to avoid the generation of the zero event.

The constant is added to avoid the generation of the zero event which is meaningless in the
context of the simulation process of the microwave oven. The FSM block clearly defines the
input and output ports for the incoming events and system state, respectively. The scope allows
the visualization of the events reached by the FSM as the process simulation evolves.

Figure 4 shows a simulation of 200 events of the microwave oven model in Figure 3. At the
time zero, the FSM is in the state s1, as defined by d0=1. Then, the system changes to the state
s3, which means that the incoming event was e2, i.e. the user pressed the “Half Power” button
in the oven panel. At that time, the simulation process shows that the user pressed the “Full
Power” since the system state has down changed to s2. Then, the system remains at the same
state s2 for some time. After that, the system state changes to s3 again and it immediately moves
to the state s5 by briefly passing to the state s4 before.

The system state remains at s5 for a while and then it moves to the state s6, then to s7 and then
back to s5 again (the user opened the oven’s door!).

Then, it seems that the user closed the door (e5) and pressed the “Start” button (e6). Thus, the
cooking process ended above the event fifteen and the system state returns to its initial idle
condition at s1. Other interesting behaviours of the systems could be analysed from the chart.
For example, it could be noticed that in a second execution, over the event 18, the oven was
completing a more direct cooking process where the oven’s door has not opened once the
cooking process started. Above the event nineteen, the system returns to the idle state s1. This
could be considered a typical cooking process for a microwave oven.

Applications from Engineering with MATLAB Concepts266

In a similar way, the chart in the Figure 4 and others that may be obtained from different
simulation processes of the model in Figure 3 could be interpreted, allowing optimizations
of the FSM behaviour to meet security and performance requirements.

3.3. Implementing the PN dynamics

The dynamic behaviour of a PN is governed by its state equation. The enabling condition for
the transitions in a PN is an additional requirement for the trajectory evolutions in a model.
The setup stage allows defining the size of the net model.

The implementation considers two parameters. The first one is the incidence matrix B and the
second one is the initial marking M0. These parameters are used for defining the sizes of the
input and output ports of the block.

Figure 4. The different states of the FSM representing the microwave oven for a simulation process of 200 events. The
chart shows four complete cocking process, represented by those reaching the state eight. The difference in those com‐
pleted processes represents different action carried out by the user.

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

267

The DoPostPropSetup stage allows the definition of the state of the PN. The PN marking has
to be preserved between simulation steps and also is the output of the block.

The InitConditions stage initializes the marking Mk , defined in the previous stage, to the
second input parameter, which corresponds to the initial marking M0.

The Output stage is used to provide to external blocks the current marking of the PN, which
corresponds to the DWork vector defined in the DoPostPropSetup stage.

The Update stage is where the PN dynamics is implemented. This stage verifies the transitions
that are allowed to fire by the input provided by an external agent, or controller, in the sense

Applications from Engineering with MATLAB Concepts268

of the Control Theory. Likewise, it verifies that those allowed transitions are also enabled by
the current marking Mk of the PN. A random number generator allows an aleatory firing
among the transitions that are ready to fire. Finally, the current marking Mk is updated in
accordance to the PN state equation.

3.4. PN simulation example

The S‐function my_ptn is used for the simulation of the PN model in Figure 2. The SIMULINK
model is depicted in Figure 5a. The only elements required for the simulation process are the
incidence matrix B 14×21 and the initial marking M0 14 .

The model includes a block of 21 elements to represent that all of the transition of the model
are allowed to fire. In this way, the dynamics of the PN model entirely depends on the marking
of the net. The scope allows the visualization of the marking of all the places of the PN.

With a discrete solver and a fixed step of one, this model allows the simulation of the FMS. As
shown in Figure 5b, the subsystem for the PN model includes blocks for inputs and outputs.
These blocks could be used in the modelling of several controllability and observability

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

269

problems by using matrices of proper size. For example, a matrix for the input function block
may be arranged with columns representing the transitions of the PN and the rows represent‐
ing the input commands to the system.

Figure 5. The integration of the S‐Function implementing a PN model into the SIMULINK environment. In (a) a model
for the FMS is depicted, with a constant input allowing all the 21 transitions to fire and a scope for signal visualization.
In (b) an insight of the FSM block is shown, which includes blocks for inputs and outputs.

Figure 6. First part of the state of the PN representing the Flexible Manufacturing System. The chart shows the mark‐
ing evolution of the places from p1 to p4 for a simulation process of 300 events. The first two places shows the pattern
of the arriving material from the inventory to the system.

Applications from Engineering with MATLAB Concepts270

Similarly, a matrix for the output function block may be arranged with columns representing
the places of the PN and the rows representing the output signals from the system. However,
a deep study of these topics are out of the scope of this work, and are here mentioned for
providing a more complete simulation model that could be used for more purposes. Thus, for
both cases in this simulation, the core function for the input and output blocks are identity
matrices.

Figure 7. Second part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
p5 to p8. The place p5 corresponds to the mill machine, while the places p6 and p7 correspond to the lather. The place

p8 shows the pieces waiting the AM machine.

Figure 8. Third part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
from p9 to p12. The place p9 corresponds to a waiting stage for the pieces prior to its assembling in AM. The places

p10, p11 and p12 correspond to the painting stage.

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

271

Figure 6 shows the marking of all the places in the PN model for a simulation process of 1000
events (seconds). Since the integration step was fixed to one, then every second in the scope
could be interpreted as an event in the DES. The aleatory behaviour of the signal in the scope
is due to the random selection of the transition firings in the Update section of the S‐function,
as detailed in the last subsection. It is easy noting an accumulation of tokens, or parts, in the
place p9 as well as in the place p14. On the one hand, the accumulation of tokens in place p9

means that the event associated to transition t13 is firing at a rate greater that of t12 and t14. On
the other hand, the accumulation of tokens in the place p14 is normal since there is where the
finished products are stored (Figures 7–9).

Figure 9. Last part of the state of the PN representing the FMS. The chart shows the marking evolution of the places
p13 and p14. The place p13 corresponds to the last section of the painting stage while the place p14 represents a buffer
of pieces finished in the FMS.

Indeed, it is to be expected that the number of tokens in the place p14 increases over time. A
good exercise is to modify the PN model including an extra transition with p14 as its unique
input place, run the simulation and analyze the effects in the marking of this place. Such an
extra transition may represent the interconnection of this system to another section in a more
complex assembling line.

The markings of the places p1 and p2 represents an increase in the number of raw parts arriving
to the FSM. The behaviour of the marking in the other places follows an aleatory pattern due
to the random number generator used in the selection of the firing transition inside the Update
section in the S‐function.

4. Conclusions

This chapter showed a suitable way of simulating Discrete‐Event Systems within a SIMULINK
model in the MATLAB framework. The dynamics of a FSM as well as a PN has been imple‐
mented by using Level‐2 MATLAB S‐function. One of the advantages of the technique
developed in this work is that for simulating a system, only the matrices that define a DES are
required.

Applications from Engineering with MATLAB Concepts272

By using a discrete solver with a fixed step of one, accurate simulation processes in a SIMU‐
LINK model are possible. Two application examples illustrate the developed techniques. On
the one hand, a FSM model representing a microwave oven has been simulated. On the other
hand, a PN model representing a FMS has been simulated, as well.

Extension for FSM including marked states and non‐determinism are simple to implement
based in the code here provided. Similarly, extension for PN models including observability
and controllability problems are as well simple to implement.

The link for free downloading the code for the examples developed in this chapter is: http://
www.mathworks.com/matlabcentral/fileexchange/54959‐simulation‐of‐discrete‐event‐
systems‐in‐matlab

Author details

Raul Campos‐Rodriguez*, Mildreth Alcaraz‐Mejia* and Uriel Sanchez‐Ramirez

*Address all correspondence to: rcampos@iteso.mx and mildreth@iteso.mx

Electronics, Systems and Informatics Department, ITESO University, Tlaquepaque, Jalisco,
Mexico

References

[1] E. D. Sontag. Mathematical Control Theory: Deterministic Finite Dimensional Systems.
Springer, 2nd Ed., New York, USA, 1998.

[2] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer, 2nd Ed.,
New York, USA, 2009.

[3] R. Boel and G. Stremersch (Editors). Discrete Event Systems: Analysis and Control.
Springer, 1st Ed., New York, USA, 2000.

[4] G. A. Wainer and P. J. Mosterman (Editors). Discrete‐Event Modeling and Simulation:
Theory and Applications. CRC Press, 1st Ed., Florida, USA, 2010.

[5] R. Campos‐Rodriguez and M. Alcaraz‐Mejia. A Matlab/Simulink Framework for the design
of controllers and observers for discrete‐event systems, Electronics and Electrical Engineer‐
ing, 2010, 3(99), pp. 63–68.

[6] R. Campos‐Rodriguez, M. Alcaraz‐Mejia and J. Mireles‐Garcia. Supervisory control of
discrete event systems by using observers. Proceedings of IEEE 15th Mediterranean
Conference on Control & Automation, 2007, pp. 1–7, Athens, Greece, DOI 10.1109/
MED.2007.4433816.

Simulation of Discrete‐Event Systems in MATLAB
http://dx.doi.org/10.5772/63230

273

[7] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, languages, and
computation, vol. 1. Addison‐Wesley, 1979.

[8] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event process‐
es. SIAM J. Control and Optimization 25 (1), pp. 206–230. 1987.

[9] F. Wagner, R. Schmuki and T. Wagner. Modeling Software with Finite State Machines: A
Practical Approach. Auerbach Publications, 2006.

[10] T. Murata. Petri nets: Properties, analysis and applications, Proceedings of the IEEE, 77 (4),
pp. 541, 580. 1989.

[11] M. H. de Queiroz, J. E. R. Cury and W. M. Wonham. Multitasking Supervisory Control of
Discrete‐Event Systems. Discrete Event Dynamic Systems: Theory and Applications, 15,
pp. 390–393, Dordrecht, The Netherlands, 2005. Example also available online at http://
wwweb.eecs.umich.edu/umdes/manufact2.html

Applications from Engineering with MATLAB Concepts274

