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Abstract

Carbon dioxide capture has become an important component for ensuring reduction of
greenhouse gases in the atmosphere. Even though emission reduction technologies such
as electrostatic precipitators (ESP) and flue gas desulfurization (FGD) are in place at
most electricity-generating stations today, the large point source emitters of carbon
dioxide (CO2) and other emissions, such as heavy metals, to the atmosphere are still
fossil  fuel  electricity-generating  stations.  When  CO2  capture  is  employed,  these
emissions can be further reduced. However, despite its important ability to reduce
atmospheric emissions, the CO2 capture technology in fact still releases some emissions
through its stacks into the air. Since the safety and stability of the CO2 capture technology
are fundamental considerations for widespread social acceptance, the potential liability
associated with the capture technology is cited as an important barrier to successful
CO2 capture implementation. Liability of the technology is further clouded by a failure
to clearly define what is at risk, especially regarding human health and safety. This
research study will focus on investigating the risks associated with human health and
safety resulting from the different versions of the technology including: (i) no capture
system, (ii) post-combustion, and (iii) oxy-fuel combustion CO2 capture technology at
the  Boundary Dam Power  Station (BDPS)  in  Estevan,  Saskatchewan,  Canada.  The
research objective of this study was to evaluate the risk to human health associated with
the  BDPS  in  Estevan,  Saskatchewan,  Canada,  using  the  American  Meteorological
Society’s Environmental Protection Agency Regulatory Model (AERMOD) and cancer
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and non-cancer risk equations. This research presents the air dispersion modeling of the
conventional lignite-fired electricity generation station at the BDPS, the inclusion of
post-combustion CO2  capture technology,  and the oxy-fuel  carbon dioxide capture
process. The heavy metals were measured near the power plant located in Estevan,
Saskatchewan. This study shows that the emissions from the three stacks posed cancer
risks of less than one chance in a million (1 × 10−6). There were only two emissions from
the “no capture” scenario that caused inhalation cancer risks of more than 1 × 10−6. In
terms of  non-cancer  risks,  the  pollutant’s  concentration from the  three  stacks  was
unlikely to cause any non-cancer health effects.

Keywords: carbon dioxide capture, AERMOD, air dispersion, risk, human health

1. Introduction

According to [1], in recent decades, climate change has had the strongest and most compre-
hensive impact to natural systems [2, 3]. Recent changes in climate affect heat waves, floods,
wildfires, ecosystems and human systems. Emissions of CO2 are known to contribute to the
climate change as well. CO2, a major greenhouse gas (GHG) which results in climate change,
is mostly generated from electrical generation that uses fossil fuels (e.g., oil, coal, and natural
gas, which are regarded as the world’s primary source of energy). To cope with this problem,
the use of an effective CO2 capture technology has become an important approach in ensuring
the reduction CO2 emissions. However, since additional energy is required in carbon capture
systems operation, the consumption of primary materials and fuel is increased when com-
pared to the amount used in fossil-fuel-based energy production systems without the carbon
capture technology. Consequently, it is necessary to evaluate both the energy utilization of the
technology and the risks of the gaseous emissions to human health. This study focuses on the
latter consideration.

The objective of this study was to analyze and compare the risks to human health posed by a
lignite coal-fired electricity generation station that has the following: (i) no capture system, (ii)
post-combustion, and (iii) oxy-fuel combustion CO2 capture technology at the Boundary Dam
Power Station (BDPS) in Estevan, Saskatchewan, Canada. The total area in Estevan is 795.32
square kilometers with a population density of 16.3 persons per square kilometer [4]. For the
post-combustion system presented in this paper, the CO2 is absorbed by a monoethanolamine
(MEA) solvent and is purified and compressed for transportation and storage. The fuel in an
oxy-fuel technology is combusted in pure oxygen (O2) (>95% volume), which results in a
concentration of CO2 that is ready for transportation and storage. However, despite its
advantages in cutting greenhouse gas (GHG) emissions, post-combustion and the oxy-fuel
capture processes also emit some gases through their stacks.

A comparison of the risks to human health posed by a lignite coal-fired electricity generation
station that has the following: (i) no capture system, (ii) post-combustion, and (iii) oxy-
fuel combustion CO2  capture technology at the Boundary Dam Power Station (BDPS) in
Estevan, Saskatchewan, Canada, will reveal whether there are health-related risks associated
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with the different types of carbon capture technology. Understanding the associated risks
of the technology can support formulation of the standards and regulatory frameworks
required for large-scale application of the carbon capture technology [5]. In this study, the
health-related risks of the three technologies are analyzed so as to shed light on the
relationships between quantitative emission releases and the probability of occurrences of
health effects.

This paper is organized as follows: Section 2 presents some background to the study and
provides a discussion on health effects of selected power plant pollutants, Section 3 presents
methods of LCA, Section 4 provides several methods for air dispersion modeling and risk
assessment of post- and oxy-fuel combustion CO2 capture processes, Section 5 discusses the
results from the analysis, Section 6 gives the discussion, and Section 7 presents conclusion and
discusses some direction for future work.

2. Background health effects from typical power plants

2.1. Background and related work

To assess the emissions from the stack and the environmental impacts of the carbon capture
technology, three case scenarios of a typical power plant were evaluated. The three scenarios
include a power plant with the following: (i) no carbon capture system, (ii) the post-
combustion carbon capture system, and (iii) the oxy-fuel combustion carbon capture system.
The life cycle inventory (LCI) results generated from a life cycle assessment (LCA) study
were used for calculating the pollution concentrations in each grid block within the plume
area [6–8]. Air dispersion modeling has been used to evaluate the concentration in each grid
block. After that, the concentrations are evaluated for the possible impacts on human health.
The emissions released from the tall stacks of the electricity generation plants were not
deposited near the source, but further away [9, 10]. PM2.5 is ingested into the body via the
respiratory system. Hg0 has the longest atmospheric life span of the various species of
mercury and can be transported easily over long distances due to its insolubility in and low
reactivity to water. Hg0 is the common mercury species in lignite [11]. Hgp and Hg2+, with
their high reactivity and solubility in water, can be controlled by some emission control units
such as electrostatic precipitators (ESP) and wet and dry flue gas desulfurization (FGD) [10,
12]. In addition, while rainfall parameters (e.g., wind, temperature, inversions, rainfall’s
duration, frequency, and intensity) and precipitation near the stacks affect the deposition of
wet mercury (Hg), various meteorological factors such as wind speed affect the deposition
of dry Hg [12, 13]. According to [9] and [14], even though most power plants were unlikely
to cause any significant non-cancer risks to human health, arsenic (As), chromium (Cr), and
lead (Pb) were the primary contributors to these risks. For cancer risks, the results showed
that the pollutants would not cause any carcinogenic health effects to the population [9, 14].
The studies on air dispersion and risks from coal-fired power plants are summarized in
Table 1.
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Study Country Air dispersion

and risk

methods   

Technology/power

plant        

Results

Taiwan ISCST - 550 MW coal

-fired power plant

with ESP, FGD,

and SCR

- 10 stacks

- The average gaseous Hg (Hg0 and Hg2+) was

2.59–4.12 ng/m3

- The average particulate Hg (Hgp) was

105–182 pg/m3

- The majority of the Hg from the stacks was in

gaseous form, so the particulate form was very low

- The maximum concentration of total Hg was from

downwind site D (10 km from the plant)

- The lowest concentration of total Hg was from

upwind site A (11 km from the plant)

Lee and

Keener

Table [12]

USA AERMOD and

ISCST3

- 2 coal-fired

power plants

- 4 stacks for

each plant

- The average annual atmospheric mercury

concentration was 0.014–0.085 ng/m3 depending on

each power plant and air dispersion modeling

- The average annual dry Hg deposition was

3.62–6.25 μg/m2 depending on each power plant

and air dispersion modeling

- The average annual dry Hg deposition was

0.35–13.73 μg/m2 depending on each power plant

and

air dispersion modeling

- Wet Hg deposition is influenced by rainfall

parameters

and precipitation near the stacks

- Dry Hg deposition depends on meteorological

factors

- There were similar trends of Hg deposition

between these two power plants

Mokhtar

et al.

Malaysia AERMOD and

quality health

- 700 MW coal

-fired power plant

- The predicted atmospheric As, Cd, Cr, and
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Study Country Air dispersion

and risk

methods   

Technology/power

plant        

Results

Table [14] risk assessment

(QHRA)

with

ESP and FGD

- 3 power plants

Pb concentrations were 1.84 × 10−4, 2.3 × 10−5, 5.38 ×

10−4,

1.73 × 10−4 μg/m3

- Hazard quotient (HQ) values of all pollutants

concentration were less than one. This showed that

the pollutants concentration were unlikely to cause

any non-cancer risks to human health

- For cancer risks, the results showed that the

pollutants would not cause any carcinogenic health

effects to the population which are at 1 km away

from the power plants

French et

al. Table

[9]

U.S. Screening

assessment

426 coal-fired and 137 oil-

fired power plants

- Cancer risks: 424 of the 426 coal-fired plants did

not pose any risks. As and Cr were the primary

contributors to these risks

- Non-cancer risks: None of the emissions posed

these risks

- Hg emitted during coal-fired power generation

is a potential concern since it is a persistent

emission which contributes to the Hg levels

especially in freshwater fish. Moreover,

the emission mostly does not become

deposited near the source but further away

Table 1. Summary of air dispersion studies on coal-fired power plants.

2.2. Health effects of typical power plant pollutants

Emissions from a typical coal-fired electricity-generating station without carbon capture
technology include secondary aerosols such as heavy metals, nitrogen oxides (NOx), sulfur
dioxide (SO2), and non-methane volatile organic compounds (NMVOC), which pose risk to
human health [15]. The emissions constitute air pollution and can be hazardous to human
health [3]. Health effects of selected power plant pollutants are summarized and shown in
Table 2.
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Substances Human toxicity  Limit value Typical

exposure

within the

plume

Comments

Acute (short-term

effects)

Chronic (long-term

effects)

TWA (the

8-hour

time-

weighted

average

(TWA)

limit

STEL

(short

term)/C

ceiling

Emission

factors

(kg/mg

coal)

Sulfur

dioxide (SO2)

Lung irritant, triggers

asthma, low

birthweight in

infants

Reduces lung

function, associated with

premature

death

5000 ppm 15,000

ppm

2300 Contributes to acid

rain and poor

visibility

Nitrogen

oxides (NOx)

Changes lung

function, increases

respiratory illness

in children

Increases sensitivity

to respiratory illnesses

and causes permanent

damage of lung

2 ppm 5 ppm 0.054 Forms ozone smog

and acid rain. Ozone

is associated with

asthma, reduced lung

function, adverse

birth outcomes, and

allergen sensitization

Nitrogen

dioxide (NO2)

Affect health

exposure mortality

Decreased lung function

in children, perhaps

adults

N/A N/A 4.25 –

Carbon

monoxide

(CO)

Increase frequency

and severity of

angina, headaches,

exacerbation of cardio

pulmonary

dysfunction

Decrease work

capacity in healthy

adults, decrease

alertness, flulike

symptom in healthy

adults, asphyxiation

N/A 1 ppm N/A –

Particulate

matter (PM)

Asthma attacks,

heart rate variability,

heart attacks

Cardiovascular

disease, lung inflam

mation, premature

death, decreased lung

function

25 ppm 100 ppm N/A Fine-particle pollution

from power plants is

estimated to cut short

the lives of 30,000

Americans each year

Hydrogen

chloride

(HCl)

Inhalation causes

coughing, hoarse

ness, chest pain, and

inflammation of

respiratory tract

Chronic occupational

exposure is associated

with gastritis, chronic

lung inflammation, skin

inflammation

N/A N/A 0.308 –

Greenhouse Gases - Selected Case Studies40



Substances Human toxicity  Limit value Typical

exposure

within the

plume

Comments

Hydrogen

fluoride (HF)

Inhalation causes

severe respiratory

damage, severe

irritation, and

pulmonary

edema

– N/A 2 ppm 0.6 Very high exposures

through drinking

water or air can cause

skeletal fluorosis

Arsenic (As) Ingestion and

inhalation affect

the gastrointestinal

system and central

nervous system

Known human

carcinogen with high

potency. Inhalation

causes lung cancer;

ingestion causes lung,

skin, bladder, and liver

cancer. The kidney is

affected following

chronic inhalation and

oral exposure

N/A 2 ppm 0.075 –

Cadmium

(Cd)

Bronchial and

pulmonary irritation,

long-lasting

impairment of lung

function

Human carcinogen of

medium potency, kidney

injury, chronic

inhalation, and oral

exposure

0.01 mg/m3 N/A 0.000205 Other effects noted

from chronic

inhalation exposure

are bronchiolitis and

emphysema

Lead (Pb) Abdominal (stomach)

pain, seizures

Kidney injury,

decrements in renal

function, anemia,

paralysis, nervous

system issues, and loss

of cognitive ability

0.01 mg/m3 N/A 0.0000255 –

Antimony

(Sb)

Gastrointestinal

symptoms (vomiting,

diarrhea, abdominal

pain, and ulcers)

Hemolysis with

abdominal and back

pain

0.05 mg/m3 N/A 0.00021 Acute inhalation is

related to irritation of

the respiratory tract

and impaired

pulmonary function

Barium (Ba) Vomiting, perioral

paresthesias, diarrhea,

paralysis,

hypertension, and

cardiac dysrhythmias

Baritosis (coughing,

wheezing, nasal

irritation), kidney

damage

0.5 mg/m3 N/A 0.000009 The health effects

depend on the dose,

water solubility, and

route of exposure
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Substances Human toxicity  Limit value Typical

exposure

within the

plume

Comments

Chromium

(Cr)

High exposure to

chromium VI may

result in damage to

the kidneys,

gastrointestinal

bleeding, and

internal bleeding

Known human

carcinogen of high

potency

0.5 mg/m3 N/A N/A Chronic effects from

industrial exposures

are inflammation of

the respiratory tract,

effects on the kidneys,

liver, and

gastrointestinal

tract

Beryllium (Be) Erythema and edema

of the lung mucosa.

This will produce

pneumonitis

Chronic beryllium

disease or berylliosis

0.5 mg/m3 N/A 0.0000395 The effects of

beryllium vary

depending on the

concentration of the

substance in the air

and the duration of

the air exposure

Copper (Cu) Nausea, vomiting,

abdominal pain,

anemia

Symptoms of liver

toxicity such as

Wilson’s disease,

jaundice,

and swelling

0.002

mg/m3

0.01

mg/m3

0.0000105 –

Cobalt (Co) Allergic contact

dermatitis

Asthma,

carcinogenicity

1 mg/m3 N/A N/A Two routes that cobalt

can be absorbed: (1)

oral and (2)

pulmonary routes

Molybdenum

(Mo)

– A gout-like illness,

higher serum uric acid

levels, carcinogenicity

0.02 mg/m3 N/A 0.00005 –

Manganese

(Mn)

– Parkinson’s disease,

clumsiness, tremors,

speech disturbances,

psychological

disturbances, cough,

bronchitis, lung disease

0.5 mg/m3 N/A N/A No reports of human

effects following acute

effects to manganese

are available

Selenium (Se) Producing coughing,

nosebleeds, dyspnea,

bronchial spasms,

bronchitis, and

chemical pneumonia

Alkali disease

(hair loss, erosion of the

joints of the bones,

anemia, etc.),

cardiovascular disease

0.2 mg/m3 N/A 0.000245 –
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Substances Human toxicity  Limit value Typical

exposure

within the

plume

Comments

(lung irritation caused

by toxins, gases, etc.)

Nickel (Ni) Skin rash, eczema Asthma attacks, chronic

bronchitis, reduced lung

function, lung, and

nasal sinus cancer

(>10 mg nickel/m3)

0.1 mg/m3 N/A 0.00065 People can be exposed

to nickel

by breathing air

and drinking water

Vanadium (V) Cough, sputum,

difficulty in breathing,

ear, nose, and throat

irritation, headache,

palpitation

Cardiovascular

disease

0.05 mg/m3 N/A 0.00014 –

Mercury (Hg) Inhalation exposure

to elemental mercury

results in central

nervous system

effects and effects

on gastrointestinal

tract and respiratory

system

Methyl mercury

ingestion causes

developmental effects.

Infants born to women

who ingested

methylmercury may

perform poorly on

neurobehavorial tests

0.2 mg/m3 N/A N/A The major effect from

chronic exposure to

inorganic mercury is

kidney damage

Volatile

organic

compounds

(VOCs)

Irritation, neurotoxic

effects, hepatotoxic

effects, headache,

nausea, irritation of

eyes, respiratory

system, drowsiness,

fatigue

Asthmatic symptom,

cancer

0.025

mg/m3

N/A 0.0000415 –

Table 2. Health effects of typical coal-fired power plant pollutants (modified from Refs. Table [16–21]).

3. Methods of life cycle assessment (LCA)

LCA is a methodology that studies the whole life cycle of a product, often called the cradle-to-
grave approach, in which complex systems are broken down into elementary flows. The life
cycle assessment consists of four main stages: goal and scope definition, LCI analysis, life cycle
impact assessment (LCIA), and interpretation. The phase of defining the goal and scope of an
LCA study is important for it is at this stage that the requirements are set. The requirements
determine the methodology, which can directly affect the results. The second phase of the LCA
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involves construction of a flow model and an inventory analysis so as to provide inventory
data for supporting the goal and scope defining in the study. The LCI model is generally shown
as a flowchart; and LCI modeling consists of the construction of the flowchart, data collection,
and the calculation procedure [22]. The third phase of LCIA aims to specify the environmental
consequences in the inventory analysis process. This phase is normally applied to translate the
environmental load, inputs, and outputs, based on the inventory results, into environmental
impacts such as acidification, global warming potential, and ozone depletion. The last stage of
an LCA is the interpretation of outcomes. At this stage, the main objectives include reaching
conclusions and preparing recommendations for action. The conclusion should also be
consistent with the goal and scope of the study.

The study focuses on using the emission outputs from the LCI step for calculating the emission
concentration using air dispersion modeling. Then, the results are used to generate the cancer
and non-cancer risks. All unit processes in each scenario of the carbon capture technology are
modeled using engineering equations incorporated in a Microsoft® Excel spreadsheet.

4. Methods of air dispersion modeling and risk assessment of post- and
oxy-fuel combustion CO2 capture technologies

4.1. The selected technological boundaries

To assess health-related risks due to heavy metals, three scenarios are compared, which include
(i) the conventional lignite-fired electricity generation station without CO2 capture, (ii) the
amine post-combustion CO2 capture system, and (iii) the oxy-fuel combustion CO2 capture

Figure 1. Boundary Dam Power Station (BDPS) in Estevan, Saskatchewan, Canada.
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system. The lignite-fired electricity generation station at the BDPS in Estevan, Saskatchewan,
Canada, was used in this study; the BDPS is shown in Figure 1 [23, 24].

The three technologies are compared. These technologies include the following: (i) the
conventional lignite-fired electricity generation station without CO2 capture, (ii) the lignite
coal-fired electricity-generating unit with an amine-based post-combustion capture system,
and (iii) the oxy-fuel combustion CO2 capture system. Each technology is described as follows.
The conventional lignite-fired electricity generation station consists of (i) unit 3 at the BDPS,
which generates 150 MW and is a tangentially fired subcritical boiler, and (ii) a dry ESP unit.
The lignite coal-fired electricity-generating unit with an amine post-combustion capture
system consists of the following: (i) unit 3 at the BDPS, which generates 150 MW and is a
tangentially fired subcritical boiler, (ii) a dry ESP unit, (iii) a wet FGD unit, and (iv) a CO2

capture and compression unit. The oxy-fuel combustion CO2 capture system consists of the
following: (i) an air separation unit (ASU) for cryogenic distillation, which is often commer-
cially used for air separation, (ii) unit 3 at the BDPS, which generates 150 MW and is a
tangentially fired subcritical boiler, (iii) a dry ESP unit, (iv) a wet FGD unit, and (v) a CO2

purification and compression unit.

The oxy-fuel combustion CO2 capture technology model is described in [6]. The post-combus-
tion CO2 capture technology model is presented in [8].

4.2. System boundary

The studied system is located at the BDPS unit 3 in Estevan, Saskatchewan, Canada. From this
location, the emissions of heavy metals are predicted to occur in a circular pattern of 10 degrees
increments with 25 points of 100 m on each increment. Each direction has 25 distances starting
from 100 m and increases every 100 m. The location of the stack at the BDPS unit 3 is set as an
origin of the emissions and designated as (0.0, 0.0).

4.3. Modeling air dispersion and risk

Since the objective of this study is to evaluate the risk to humans posed by the conventional
coal-fired power plant, the post-combustion, and oxygen-based combustion systems specific
to Saskatchewan, Canada, the evaluation was conducted using methodologies for assessing
air pollution dispersion, cancer, and non-cancer risks. Two options were considered for
implementing the air pollution dispersion methodology: AERMOD and CALPUFF. AERMOD
is a steady-state Gaussian plume dispersion model, which is designed to predict near-field (<50
km) impacts [25]. The model aims to estimate and calculate how the pollutions, which are
emitted from a source, can disperse in the atmosphere and travel across a receptor grid [26].
By contrast, CALPUFF is a non-steady-state meteorological and air quality modeling system,
which can be applied to measure air quality from tens to hundreds of kilometers [27, 28]. The
model consists of preprocessing and post-processing programs that can be categorized into
three main components: (1) a meteorological model, (2) an air dispersion model, and (3) post-
processing packages for the meteorological, concentration, and deposition data output [29].
Both AERMOD and CALPUFF were developed by the US EPA. Since the Government of
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Saskatchewan provides the meteorological data specific to Estevan required in the AERMOD
model, and AERMOD has been widely used for predicting near-field impacts of chemical
pollutants, the AERMOD model is suitable because this study aims to evaluate the risks to
health that people who live near the power station face.

Due to the limited available data on the heavy metals, the equations for calculating cancer and
non-cancer risks from [30, 31] were chosen as the most appropriate tools for conducting the
risk analysis.

4.3.1. Modeling air dispersion

As previously stated, AERMOD is a steady-state Gaussian plume dispersion model, which is
designed to predict near-field (or less than 50 km)impacts in both simple and complex terrains
as shown in Figure 2 [25, 32]. The model recognizes the manner in which the pollutants emitted
from a source are dispersed in the atmosphere and travel across a receptor grid [26].

Figure 2. Steady-state Gaussian plume dispersion model in AERMOD [32].

The main data requirements for AERMOD include AERMET, or meteorological data in
Estevan, emission rates released from the selected stack, stack height, exit temperature and
velocity of the selected emission, and inside stack diameter. The sources of data consist of (i)
the meteorological dataset specific to Estevan required in the AERMOD model, which has
been provided by the Government of Saskatchewan (www.environment.gov.sk.ca); (ii) the
stack data for the “no capture” and “post-combustion” scenario provided by the Saskatche-
wan Power Corporation (SaskPower) and the dataset of the oxy-fuel combustion generated
using the IECM software version 8.0.2 (Trademark of Carnegie Mellon University, USA), and
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(iii) the emission rates from the power plant obtained from the LCA studies of a conventional
coal-fired power plant, a post-combustion, and an oxy-fuel combustion CO2 capture processes
[6–8]. The meteorological data from years 2003–2007 were used for the AERMOD modeling
due to the limitations in available data. The stack data and emission rates are summarized in
Table 3.

Coal-fired power
plant 

BDPS unit 3
(without CO2

capture)

BDPS unit 3
(with oxy-fuel combustion CO2

capture)

BDPS unit 3
(with post-combustion CO2

capture)

Stack height (m) 91.44 91.44 91.44

Stack diameter
(m)

4.27 4.27 4.27

Exit gas velocity
(m/sec)

18.1 15.09 18.1

Exhaust gas
temperature (K)

436.15 310.93 436.15

Mercury (Hg) 0.001902781 – 0.001675417

Antimony (Sb) 0.000170833 1.70833E−06 3.41667E−06

Arsenic (As) 0.002041667 0.000018375 0.00003675

Barium (Ba) 0.000541667 5.41667E−06 1.08333E−05

Beryllium (Be) 6.66667E−05 3.33333E−07 6.66667E−07

Cadmium (Cd) 0.000170833 3.41667E−06 6.83333E−06

Chromium (Cr) 0.002458333 0.0000295 0.000059

Cobalt (Co) 0.0002875 0.000002875 0.00000575

Copper (Cu) 0.000958333 2.97083E−05 5.94167E−05

Lead (Pb) 0.00125 0.0000125 0.000025

Manganese (Mn) 0.000179167 1.25417E−06 2.50833E−06

Molybdenum (Mo) 0.001583333 1.58333E−05 3.16667E−05

Nickel (Ni) 0.002416667 3.38333E−05 6.76667E−05

Selenium (Se) 0.017083333 0.0007175 0.001435

Vanadium (V) 0.003666667 2.93333E−05 5.86667E−05

Table 3. Stack features and emission rates.

A comparison of the three scenarios revealed that the higher temperatures, which cause more
atmospheric lift, occur with the stacks in the “no capture” and the “post-combustion capture”
scenarios. However, the flow velocity in the “post-combustion capture” scenario should have
been slightly lowered because of the pressure drop in the unit processes. This study used the
same flow velocity both in the “no capture” and the “post-combustion capture” scenarios
because this study has adopted the data on the exhaust gas velocity and temperature from
SaskPower, which was the only source of data available. The “oxy-fuel combustion” scenario
showed lower exhaust gas velocity and temperatures due to the recycling of the flue gas and
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the CO2 compression and purification unit. The data on exit gas velocity was obtained from
the SaskPower Web site for the “no capture” and “post-combustion” scenarios, while the oxy-
fuel combustion data were results taken from IECM modeling.

4.3.2. Analysis of cancer and non-cancer risks analysis

The risk calculation involves an estimation of the cancer and non-cancer risks related to heavy
metals, which can become inhaled contaminants. The emission data for the “no capture” and
the two “capture” scenarios are taken from the LCI results in [6–8]. Based on the data, the
emission concentrations on the ground were generated using AERMOD, and then, the data
were used for evaluating the cancer and non-cancer risks. The equations recommended for
estimating cancer and non-cancer risks are taken from [30, 31].

4.3.2.1. Long-term cancer risk

While cancer risks can be associated with both inhalation and ingestion, this study only took
the risk related to inhalation into consideration. The unacceptable cancer risk is the risk higher
than 1,000,000 [9, 33]. In other words, a cancer risk which is higher than 0.000001 will cause
carcinogenic effects, which is an undesirable outcome. The unit risk factor (URF) data were
taken from the toxicity values for inhalation exposure shown on the New Jersey Department
of Environmental Protection Web site (www.nj.gov). The cancer risk via the inhalation pathway
can be calculated with the following equation:

Cancer risk EC*URF= (4.1)

where EC = Exposure air concentration (μg/m3) and URF = Unit risk factor (μg/m3)−1.

4.3.2.2. Long- and short-terms non-cancer risk

The exposure to non-cancer risk due to direct inhalation can be estimated using the hazard
quotient (HQ) approach, which involves a ratio for estimating chronic dose/exposure level to
the reference concentration (RfC), an estimated daily concentration of emissions in the air [30,
34]. There are two main types of RfC values associated with long-term and short-term effects.
The RfC data were taken from the toxicity values for inhalation exposure shown on the New
Jersey Department of Environmental Protection Web site (www.nj.gov). HQ values equal to
or less than one are referred to as having little or no adverse effect [34]. By contrast, a HQ value
that exceeds one implies that the emissions have reached a level of concern [35]. However,
since the HQ is not a probability of risk, it does not matter how large the HQ value is, only
whether or not the HQ value exceeds one [34]. For example, a quotient of 0.01 does not mean
that there is a one in a hundred chance that the effect will occur. The HQ value is calculated
using the following equation.

HQ EC / RfC= (4.2)
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where HQ = Hazard quotient (unitless), EC = Exposure air concentration (μg/m3), and RfC =
Reference concentration (μg/m3).

5. Results

5.1. Results from AERMOD

The study examined the air dispersion modeling of the “no capture” and the two “capture”
scenarios. For cancer and non-cancer risks, the maximum 24-hour and 1-hour average
concentration values of heavy metals were used for long-term and short-term exposures,
respectively. The maximum 24-hour concentration values generated from AERMOD of the “no
capture,” “post-combustion CO2 capture,” and “oxy-fuel combustion CO2 capture” scenarios
are shown in Table 4. For short-term effects, the maximum 1-hour concentration values
generated from AERMOD of the “no capture,” “post-combustion CO2 capture,” and “oxy-fuel
combustion CO2 capture” scenarios are shown in Table 5. It can be seen from the two tables
that the maximum 24-hour and 1-hour average concentrations of the heavy metals of the “no
capture” scenario, respectively, show the highest concentrations compared to the other two
scenarios. This shows that when the CO2 capture technologies are applied, lower concentra-
tions of Hg and heavy metals will be emitted into the air. These emissions are captured by the
pollution control units provided in the CO2 capture technologies, and distribution in the
atmosphere is controlled by parameters such as the stack height, exhaust gas temperature, and
exit gas velocity, as shown in Table 3.

Substances Concentrations
No
capture

Oxy-fuel
combustion

Post-
combustion

Hg 4.72E−02 0 4.15E−02

As 5.06E−02 1.08E−03 9.1E−04

Ba 1.34E−02 3.2E−04 2.7E−04

Be 1.65E−03 2.0E−05 2.0E−05

Cd 4.24E−03 2.0E−04 1.7E−04

Cr 6.1E−02 1.73E−03 1.46E−03

Co 7.14E−03 1.7E−04 1.4E−04

Cu 2.37E−02 1.74E−03 1.47E−03

Pb 3.10E−02 7.3E−04 6.2E−04

Ni 5.99E−02 1.99E−03 1.68E−03

Se 4.23E−01 4.21E−02 3.56E−02

V 9.1E−02 1.72E−03 1.46E−03

Table 4. The maximum 24-hour average concentrations of the heavy metals of the “no capture” and the two “capture”
scenarios in 2003–2007 (μg/m3).
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Substances Concentrations

No capture Oxy-fuel combustion Post-combustion

Hg 4.16E−01 0 3.66E−01

As 4.47E−01 8.43E−03 8.05E−03

Ba 1.18E−01 2.48E−03 2.37E−03

Be 1.46E−02 1.5E−04 1.5E−04

Cd 3.74E−02 1.57E−03 1.5E−03

Cr 5.38E−01 1.35E−02 1.29E−02

Co 6.29E−02 1.32–03 1.26E−03

Cu 2.09E−01 1.36E−02 1.3E−02

Pb 2.73E−01 5.73E−03 5.47E−03

Ni 5.29E−01 1.55E−02 1.48E−02

Se 3.74 3.29E−01 3.14E−01

V 8.02E−01 1.34E−02 1.28E−02

Table 5. The maximum 1-hour average concentrations of the heavy metals of the “no capture” and the two “capture”
scenarios in 2003–2007 (μg/m3).

The oxy-fuel combustion system gives out less emission at a lower flow velocity, so the
emissions fall on the ground closer to the stack and there are less emissions further away. By
contrast, the post-combustion system gives out higher emissions at a higher velocity, which
enables the emissions to travel further away; the higher temperature of the flue gas also causes
atmospheric lift of the emissions. As a result, the emissions are more evenly distributed over
a wider area further away from the stack, and their concentrations are lower.

5.2. Results from cancer and non-cancer risks related to heavy metals

The missing inhalation URF and RfC values limit the calculations of cancer and non-cancer
risks for some metals. Cancer and non-cancer risk results are shown in Table 6 and Table 7,
respectively. Tables 6 indicates that the emissions from the stack in each of the three scenarios
pose cancer risks of less than one chance in a million (1 × 10−6). However, there are two
emissions, which include As and Cr, from the “no capture” scenario that pose cancer risks due
to inhalation with a chance greater than 1 × 10−6. In terms of non-cancer risks, the inhalation
exposures are estimated by the HQ value, a ratio to estimate chronic dose/exposure level to
RfC, an estimated daily concentration of emissions in air. The results shown in Table 7 display
that all HQ values are less than one. When the HQ values are less than one, this indicates that
pollutant concentrations from the three stacks are unlikely to correlate with any non-cancer-
related health concerns.
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Substances Inhalation unit risk

factor (URF) (μg/m3)−1

Cancer risk

No capture Oxy-fuel combustion Post-combustion

Hg – – – –

As 4.3E−03 1.45E−06 3.09E−08 2.61E−08

Ba – – – –

Be 2.4-E03 2.64E−08 3.20E−10 3.20E−10

Cd 4.2E−03 1.18E−07 5.6E−09 4.76E−09

Cr 1.2E−02 4.88E−06 1.38E−07 1.16E−07

Co 9E−03 4.28E−07 1.02E−08 8.4E−09

Cu – – – –

Pb 1.2E−05 2.48E−09 5.84E−11 4.96E−11

Ni – – – –

Se – – – –

V – – – –

Table 6. Cancer risks of heavy metals.

Substances Long term Short term

RfC

(μg/m3)

Non-cancer risk RfC

(μg/m3)

Non-cancer risk

No

capture

Oxy-fuel

combustion

Post-combustion No

capture

Oxy-fuel

combustion

Post-combustion

Hg 0.3 1.05E−030 9.24E−04 – – – –

As 0.015 2.25E−024.8E−04 4.04E−04 0.2 1.49E−022.81E−04 2.68E−04

Ba – – – – 0.5 1.58E−033.31E−05 3.16E−05

Be 0.4 5.5E−04 6.67E−06 6.67E−06 – – – –

Cd 0.02 1.41E−036.67E−05 5.56E−05 – – – –

Cr – – – – – – – –

Co 0.006 7.93E−031.88E−04 1.55E−04 – – – –

Cu – – – – 100 1.39E−059.09E−07 8.67E−07

Pb – – – – 0.1 1.82E−023.82E−04 3.65E−04

Ni 0.05 7.99E−032.65E−04 2.24E−04 6 5.87E−041.72E−05 1.65E−05

Se 20 1.41E−041.40E−05 1.18E−05 – – – –

V 0.1 6.06E−031.14E−04 9.73E−05 – – – –

Table 7. Long- and short-term inhalation exposures of heavy metals.
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6. Discussion

The carbon capture technology is one of the most widely discussed solutions for cutting GHG
emissions which are mostly generated from electrical generation that uses fossil fuels (e.g., oil,
coal, and natural gas, which are regarded as the world’s primary source of energy). According
to [36], fossil fuels will be continuously used to supply energy globally for at least the next few
decades, especially with the recent development of shale gas in many regions of the world. In
this scenario, without a proper control technique, the CO2 atmospheric emissions will continue
to increase and pose an even more serious threat to people and the environment. To cope with
this problem, the adoption and use of an effective CO2 capture technology have become an
important approach in ensuring the reduction CO2 emissions. Consequently, it is important to
conduct risk assessment to ensure safety of the carbon capture technology. Understanding
those risks can support the formulation of standards and regulatory frameworks required for
large-scale application of the carbon capture technology [5]. Greater emissions of carbon
dioxide poses hazards to human health because inhaling concentrations of CO2 emissions
around 3–5% will pose risks to human health [37]. Inhaling concentration higher than 15% can
be fatal. The health, safety, and environmental (HSE) risk of the fossil-fuel-based electrical
generation system can be determined to a large extent by both the total amount of CO2 lost
and the maximum rate of CO2 lost in the system [2]. The health-related damage associated with
emissions from coal-fired electricity-generating plants can vary, depending on a number of
factors including the facilities, the function of the plant, the site, and population characteristics
[38].

Different studies focus on different kinds of risks associated with the process of carbon capture
such as (1) cancer and non-cancer risks; (2) population exposure per unit of emissions, which
is associated with atmospheric condition, the population size, and their proximities to the
emissions; (3) social and mental impacts; and (4) accidents and deaths [9, 14, 15, 39–42].
According to [9], among the emissions from coal-fired electricity-generating plants, As and Cr
were the main contributors to cancer risks, and HCl, Mn, HF, and Hg contributed to the non-
cancer risks. The coal combustion process can also release many toxic elements, which include
As, Hg, Cd, Pb, Se, and Zn, and among these, Hg is of the most concern [15]. According to [43],
the population in Estevan has an exceptionally high rate of asthma. In [44], the study compares
the human health risks associated with SO2, NO2, and PM2.5 of the oxy-fuel carbon dioxide
capture with those from the post-combustion CO2 capture technology, and the study reveals
that the oxy-fuel system posed fewer human health risks because this technology captures
more emissions. In [44], the study fills the gap in research because none of the past studies
emphasize the human health impacts due to heavy metals associated with the BDPS in Estevan,
Saskatchewan, Canada. This study produces useful data on human health risk and help
decision makers quantify the impact of different CO2 capture technologies. From a practical
perspective, the study provides support for efforts aimed at improving the air quality in the
Estevan region.
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7. Conclusion

Since the coal-fired electricity generation plant is widely regarded as a significant source of air
pollution, the adoption of the carbon capture technology is a potential solution for reducing
emissions. However, the carbon capture technology requires additional energy for its opera-
tion which results in lowering the overall efficiency of the electricity-generating plant. More
fossil fuel per unit of electricity generated is needed to compensate for the lost capacity, but
the higher requirement also necessitates a higher level of emissions and resource consumption.
Since safety of the carbon capture technology is an important public concern, a risk analysis
of the carbon capture technology was conducted. While risk is normally defined as the
potential of an unwanted negative consequence or event [17], risk analysis is a tool used to
form, structure, and collect information to identify existing hazardous situations and report
potential problems or the type and level of the environmental health and safety risk [36].

This study focuses on examining the health impacts of the conventional coal-fired generation
station without CO2 capture, with post-combustion and oxy-fuel combustion CO2 capture
technologies. The study analyzed the cancer and non-cancer risks to human health based on
the data of air pollutants from heavy metals obtained from the LCA models [6–8]. The risks
associated with these pollutants are calculated for the three CO2 capture scenarios of (i) “no
capture,” (ii) “post-combustion CO2 capture,” and (iii) “oxy-fuel combustion CO2 capture.”

7.1. Summary of air dispersion modeling

The maximum 24-hour and 1-hour average concentration values of Hg and heavy metals are
used for assessing the long-term and short-term exposures, respectively. The results show that,
in the “no capture” scenario, the maximum 24-hour and 1-hour average concentrations of the
Hg and heavy metals, respectively, show the highest concentrations compared to the two
“capture” scenarios. This shows that these emissions are captured by the pollution control
units of the CO2 capture technologies and the less concentrated Hg and heavy metals conse-
quently will be emitted into the air. The air dispersion modeling, which generates emission
concentrations, depends not only on the amount of emissions but also on other parameters
such as the stack height, exhaust gas temperature, and exit gas velocity. Compared to the post-
combustion system, the oxy-fuel combustion system gives out less emission at a lower flow
velocity, so the emissions fall on the ground closer to the stack. As a result, there are less
emissions further away.

7.2. Summary of risk analysis

The analysis results shown in Table 6 indicate that the emissions from the three stacks generally
posed cancer risks of less than one chance in a million (1 × 10−6). However, there are emissions
from two elements in the “no capture” scenario that pose cancer risks of more than 1 × 10−6; As
and Cr are the primary contributors to these risks. In terms of non-cancer risks, the results
show that all HQ values are less than one. This indicates that the pollutant concentration from
the three stacks will not cause any non-cancer health issues.
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A limitation in the cancer and non-cancer risks calculation is that data on URF and RfC
associated with some types of heavy metals are not available. In future studies, this limitation
can be addressed. Generally, it can be concluded that for electricity generation with carbon
capture, even though there are increases in adverse health impacts associated with soil and
water pollution, the broad distribution of health impacts associated with atmospheric pollu-
tants is significantly reduced. We believe the benefits to human health outweigh the negative
of increased emissions.
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