
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322426829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 14

Cell-Based Therapies for Parkinson’s Disease: Preclinical
and Clinical Perspectives

Andrea R. Di Sebastiano, Michael D. Staudt,
Simon M. Benoit, Hu Xu, Matthew O. Hebb and
Susanne Schmid

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63747

Abstract

Parkinson’s Disease (PD) is a highly prevalent neurodegenerative disease that affects
millions of people globally and remains without definitive treatment. There have been
many recent advances in cell-based therapy to replace lost neural circuitry and provide
chronic biological sources of therapeutic agents to disease-affected brain regions. Early
neural transplantation studies highlighted the challenges of immune rejection, graft
integration, and the need for renewable, autologous graft sources. Neurotrophic factors
(NTFs) offer a potential class of cytoprotective agents that may complement dopa‐
mine (DA) replacement and cell-based therapies in PD. In fact, chronic NTF delivery
may be an integral goal of cell transplantation in PD, with ideal grafts consisting of
autologous drug (e.g., DA, NTF)-producing cells capable of integration and function in
the host brain. This chapter outlines the past and recent preclinical and clinical advances
in  cell-based  and  NTF  therapies  as  promising  and  integrated  approaches  for  the
treatment of PD.

Keywords: transplantation, tissue graft, stem cells, pluripotent cells, autologous cells,
dopamine replacement, neurotrophic factors

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, following
Alzheimer’s disease. In the developed world, the prevalence of PD is approximately 0.3% of
the population and 1% of those over 60 years of age [1]. Hallmarks of PD include degenera‐
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tion of dopamine (DA) neurons in the substantia nigra (SN) and of dopaminergic nerve
terminals in the striatum, as well as the formation of Lewy bodies containing alpha-synu‐
clein [2–4].  However,  PD also has widespread effects on neurons and nonneuronal cells
throughout the nervous system [4].

Motor symptoms of PD include bradykinesia (i.e. slowness of movement), rigidity, and rest
tremor. These motor symptoms are often seen with postural and gait instability, sleep
disorders, sensory dysfunction, neuropsychiatric conditions, and dysautonomia [5].
Nonmotor symptoms of PD include dementia, depression, gastrointestinal, or sexual
dysfunction and are managed accordingly. Current therapies for PD aim to improve
symptomology, but unfortunately there are no disease modifying treatments. Recent
preclinical studies have provided promising leads for the development of potential new
therapies to restore or preserve neurological function in patients with PD. As the
pathophysiology of PD has become better understood, efforts are expanding to augment or
replace the degenerated neural circuitry using cell-based therapies. The goal of this chapter is
to discuss past and current approaches to cell-based therapies in PD, including studies to
replace lost dopaminergic cells through neural grafting, and the potential of neurotrophic
factors (NTFs) to promote DA neuron survival.

2. Current therapies

2.1. Medical therapies

The use of levodopa is the mainstay of PD treatment, and it is usually administered together
with a decarboxylase inhibitor, carbidopa. Levodopa can cross the blood-brain barrier,
whereas DA and carbidopa cannot. Carbidopa therefore prevents the peripheral conversion
of levodopa to DA, allowing for higher doses in the central nervous system. Identified in the
1960s, levodopa was the first medication demonstrated to provide a significant clinical and
mortality benefit in the treatment of PD [6]. However, long-term use of levodopa can lead to
loss of therapeutic effect, dyskinesia, and neuropsychiatric complications, likely due to the
progressive loss of DA neurons and increasing off-target effects of DA ([7], for review see [8]).
Levodopa is converted by catechol-O-methyl transferase (COMT) to an inert metabolite [9]; as
such, COMT inhibitors may be administered to prevent peripheral metabolism and increase
levodopa availability to the brain. The use of selective monoamine oxidase B (MAO-B)
inhibitors was initially thought to be neuroprotective and has since been used in symptom
control [10] as monotherapy in early PD, as well as an adjunct treatment to levodopa [11].
Cholinergic, adrenergic, glutamatergic, and serotonergic drugs are also being used for treating
PD symptoms that do not respond to DA treatment or for treating levodopa-induced side
effects. All medical therapies only provide partial and temporal relief of symptoms and are
not disease modifying [8].

2.2. Standard surgical therapies

Prior to the advent of levodopa therapy, ablative therapies were used in the control of motor
symptoms. Pallidotomy and thalamotomy were used in the symptomatic control of rigidity
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and tremor, respectively [12,13]. Pallidotomy has been demonstrated to provide sustained
improvement for tremor, rigidity, bradykinesia, and drug-induced dyskinesias, compared
with medical therapy [14]. In the past decades, deep brain stimulation (DBS) has become the
standard of surgical care for PD owing to the versatility of stimulator programming, and the
avoidance of creating a permanent surgical lesion [15]. The two primary targets of DBS are the
internal globus pallidus (GPi) and subthalamic nucleus (STN). DBS improves motor symp‐
toms and often permits a reduction of medication dose and associated side effects, but does
not slow or halt progression of the disease [16].

3. Burgeoning therapies for PD

3.1. Cell-based therapies

As PD is characterized by the loss of dopaminergic nigrostriatal neurons, cell-based thera‐
pies initially focused on the potential to replace these neurons and replenish DA supply in the
striatum using fetal mesencephalic neural grafts. More recently, studies have included the
transplantation of induced pluripotent stem cells (iPSCs), reprogrammed somatic cells or
induced neural progenitor cells (iNPCs).

3.2. Fetal transplantation

3.2.1. Preclinical studies

Early PD transplantation studies involved grafting of fetal ventral mesencephalic (fVM) tissue
into the anterior chamber of the rat eye [17]. These studies identified the optimal develop‐
mental stage of the neural tissue to be used to promote DA neuron survival and outgrowth
[17]. The first graft transplantation studies in a unilaterally lesioned 6-hydroxydopamine (6-
OHDA) PD rat model examined the effects of solid grafts of fetal adrenal medullary or fVM
tissue implanted into the lateral ventricle or preformed cavities adjacent to the striatum and
reported reduced amphetamine-induced rotation behavior [18]. Subsequent studies showed
that grafting cell suspensions of fVM tissue from 14- to 15-day-old rat fetuses into the striatum
of 6-OHDA rats also reduced amphetamine-induced rotation behavior [19]. Follow-up studies
used fVM tissue from 9- to 19-week-old human fetuses. These implants reduced and even
reversed motor asymmetry in unilaterally lesioned 6-OHDA rats [20].

3.2.2. Clinical studies

In 1987, solid graft adrenal medullary transplants were implanted in the head of the caudate
in two patients and produced significant clinical improvement, including reduced tremor [21].
Unfortunately, follow-up studies showed only modest clinical effect, with concerns regard‐
ing efficacy and safety of this technique. Many patients suffered major postsurgical compli‐
cations and psychiatric problems, thus this transplant approach was abandoned. Subsequent
open label studies in six human patients utilized human fVM tissue from 6- to 8-week-old
fetuses grafted into the caudate and putamen, demonstrating overall clinical improvement
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and normal DA signaling seen by 18F-Fluorodopa (18F-FDOPA) uptake in Positron Emission
Tomography (PET) imaging [22–24]. Two patients in this study continued to demonstrate
clinical improvement 20 years later [25]. In a subsequent open label study nigral grafts from
6- to 7-week-old embryos were implanted into the caudate and putamen of seven PD
patients [26,27]. Significant improvement in the activities of daily living was noted after 12
months, in both “on” and “off” states. The dose of levodopa could be reduced by an average
of 39%. Four patients reported an “important difference in their daily lives,” two patients
reported improvement in “some respects,” and one patient did not improve. Other open label
studies with a small number of patients also showed mostly beneficial effects ([28–31],
reviewed in [32]).

A randomized double-blind controlled trial (RDBCT) enlisted 34 patients that underwent
transplantation of fetal mesencephalic tissue into the putamen or sham surgery. The patients
showed limited clinical improvement, despite graft survival and significant reinnervation of
the striatum as confirmed by PET and at autopsy. Interestingly, patients with less severe motor
dysfunction showed significant clinical improvement, suggesting this technique may have
produced some degree of neuroprotection. Furthermore, graft-induced dyskinesias were
observed in over half of the patients [33]. Interestingly, these patients underwent a 2- and 4-
year follow-up RDBCT that demonstrated clinical improvement regardless of the age of the
patient, which was accompanied by significantly increased 18F-FDOPA uptake in the puta‐
men [34]. Another RDBCT had 40 patients with advanced PD undergo transplantation. When
results were normalized according to age, patients under the age of 60 showed significant
clinical improvement, as measured with the Unified Parkinson’s Disease Rating Scale
(UPDRS) and Schwab and England score, while those over the age of 60 did not [35]. Clinical
improvement was correlated with increased 18F-FDOPA uptake in 85% of patients with a
transplant and postmortem examination confirmed dopaminergic cell survival and fibre
outgrowth; however, 15% of patients developed graft-induced dyskinesias or dystonia [35].

To more accurately assess the potential of fetal grafts, a new European study has been designed
to optimize and control for patient selection, tissue composition, tissue placement, and trial
design. TRANSEURO is an open label multicenter trial to define the feasibility and efficacy of
human fetal ventral mesencephalic grafts in patients with PD (https://clinicaltrials.gov/ct2/
show/NCT01898390). The primary outcome measure of this study is the change in motor
UPDRS scores in the absence of PD medications at 3 years posttransplantation. It is hoped that
this new trial will shed light on the true potential of dopaminergic allografts for PD treatment.

The use of human fVM tissue, however, is complicated by ethical issues and difficulty in
obtaining human tissue. Strategies are being developed that involve expansion of fVM tissue
and its dopaminergic neuroblasts [36], and other cell sources are also being investigated for
cell-based treatment of PD.
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3.3. Native human stem cells

3.3.1. Preclinical studies

Human embryonic stem cells (hESCs) were first isolated from the inner cell mass of blasto‐
cysts. These cells demonstrate pluripotency and have been shown to differentiate into neural
cells, including neurons, astrocytes, and oligodendrocytes [37,38]. hESCs may prove useful to
avoid the technical concerns associated with the use of fetal tissue. hESCs have been shown to
differentiate into midbrain DA neurons, and injection of these cells in 6-OHDA lesioned rats
[39] and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys [40] leads
to significantly improved motor function in both models. However, the development of clinical
applications using these cells has been slowed by various biological and social factors,
including the potential for immune rejection and tumor formation, as well as ethical and
political opposition [41].

Alternative stem cell sources have been investigated for differentiation into a neural lineage,
in particular mesenchymal stem cells (MSCs) from bone marrow, umbilical cord blood, dental
pulp, and adipose tissue [42]. Autologous MSCs are favorable due to their availability,
potential for differentiation, and the absence of ethical issues associated with hESCs. In
addition, MSCs have been demonstrated to exert regenerative and neuroprotective effects in
a number of animal PD models potentially, due to endogenous NTF expression. MSCs have
been shown to differentiate into dopaminergic cells that express tyrosine hydroxylase [43].
Implantation of these differentiated MSCs into the striatum of 6-OHDA mice led to signifi‐
cant behavioral improvement, with striatal graft cells confirmed at postmortem analysis [43].

3.3.2. Clinical studies

There is currently very limited clinical data on the efficacy of hESCs in PD. An initial clinical
study in seven PD patients demonstrated that transplantation of autologous bone-marrow-
derived MSCs was safe and feasible with no serious adverse side effects. Unfortunately, no
clinical efficacy was observed, potentially due to the small number of patients and uncontrol‐
led nature of the trial [44].

3.4. Induced pluripotent stem cells

3.4.1. Preclinical studies

With the discovery that somatic cells, such as fibroblasts, can be reprogrammed to a pluripo‐
tent state by viral delivery of four transcription factors, Oct4, Sox2, Klf4, and cMyc [45,46],
studies have focused on the potential of these induced pluripotent stem cells (iPSCs) to
improve current cell-based therapies for treatment of many degenerative medical conditions,
including PD. Compared with fetal grafting and hESC cells, iPSCs provide increased accessi‐
bility as well as ethical advantages. These cells can differentiate into many different cell types
including cardiomyocytes [47], hepatocytes [48], oligodendrocytes [49], glia, and neuronal
subtypes [50]. Murine iPSCs have also been shown to be reprogrammed into dopaminergic
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neurons that express the transcription factors Nurr1, Pitx3 and tyrosine hydroxylase and
demonstrate electrophysiological properties of DA neurons [51]. Subsequent studies demon‐
strated successful differentiation of dopaminergic neurons from both established human iPSC
lines and patient-derived somatic cells [52,53].

In all of these studies, iPSC-derived DA cells demonstrated expression of key dopaminergic
markers and electrophysiological properties of DA neurons. Furthermore, these DA cells were
successfully incorporated into a 6-OHDA rat model of PD, leading to significantly reduced
motor asymmetry [52]. Most recently, primate-derived iPSCs were successfully transplanted
back into the putamen of MPTP lesioned monkeys; these autografts led to significant motor
improvements, and postmortem analysis showed graft survival and outgrowth into the
transplanted putamen [54]. Despite promising results in preclinical studies, several factors
have provided road blocks to utilization of these cells in humans, including use of viruses to
modify cells and risk of tumorigenicity [55].

3.4.2. Clinical studies

The first pilot study in humans was performed in Japan in 2014, and utilized iPSC-derived
autologous pigmented retinal epithelial cells for treatment of macular degeneration.
Transplantation in the first patient was completed without adverse effects; however, long-term
follow-up is necessary [56]. Unfortunately, iPSCs derived from fibroblasts of a second patient
were discovered to have genetic mutations, including three single-nucleotide variations and
three copy-number variants, prompting suspension of the trial [57]. Studies are now focus‐
ing on use of allogenic partially matched donor cells from the Center for iPS Cell Research and
Application, an iPSC bank, for treatment of macular degeneration [57]. There is also poten‐
tial to transform fibroblasts directly into neurons (iN cells) or dopamine cells (iDA cells) using
specific transcription factors: Ascl1, Brn2, Mrt1l, without or with Lmx1a and FoxA2, respec‐
tively [58–60]; however, this technology still needs to be tested in preclinical models.

3.5. Autologous brain-derived progenitor cells (BDPCs)

Recently, the safety and feasibility of performing small volume brain biopsies has been
demonstrated in PD patients undergoing DBS surgery [61]. These tissue specimens yield an
expandable cell population that expresses several NTFs known to be highly protective against
PD neurodegeneration, including glial-derived neurotrophic factor (GDNF), brain-derived
neurotrophic factor (BDNF), and cerebral dopamine neurotrophic factor (CDNF) [61]. The
cultures yield large numbers (i.e. 107) of cells with limited capacity for self-renewal. These cells,
called BDPCs, also show expression of progenitor and neural markers including nestin, Olig1,
and GalC. Colocalization of neural and oligodendroglial markers suggests these BDPCs may
be grafted into the host brain to integrate as autologous glia [61]. A patient-derived cellular
source of neuroprotective agents, reimplanted into the host brain, may confer long-lasting
therapeutic benefit in PD patients. Preclinical studies on the potential for these BDPCs to be
used as an autologous cell-based therapy for PD are currently underway.
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4. Neurotrophic factors

Neurotrophic factors (NTFs) are being intensively evaluated as therapeutic agents for PD
owing to their known roles in neuronal survival, differentiation, and plasticity. Additionally,
NTF deficiency has been associated with PD and replacement or enhancement of NTF
signaling confers neuronal protection in both in vitro and in vivo preclinical PD models [62].
These secreted proteins regulate vital biological programs in the developing and adult nervous
systems and are currently the most potent cytoprotective agents known against PD-related
degeneration in the brain [63]. The NTF families include (1) glial-derived neurotrophic
factor (GDNF) family of ligands (GFL), (2) neurotrophins, (3) neuropoietic cytokines (neuro‐
kines), and (4) cerebral DA neurotrophic factor (CDNF)/mesencephalic astrocyte-derived
neurotrophic factor family (MANF). To date, GDNF and other GFL members have received
the most attention in development of potential new clinical therapies for PD [64].

4.1. GDNF family of ligands

GDNF was the first member of the GDNF family of ligands (GFL) to be discovered. Other
members include neurturin (NRTN), persephin (PSPN), and artemin (ARTN). GFLs are
important for cell survival, neurite outgrowth, cell differentiation, and cell migration [65].

4.1.1. Preclinical studies

Application of GDNF to rat ventral mesencephalic cultures increased survival, neurite length,
and differentiation of DA neurons [66]. GDNF also reduced apoptosis and enhanced cell
survival in cultures derived from monkey, porcine, and human mesencephalic tissues [67].
These effects extend to promote differentiation and protection of dopaminergic neurons
against 6-OHDA and MPTP neurotoxins [65]. Numerous in vivo studies have demonstrated
therapeutic effects of GDNF in the 6-OHDA rat model of PD; the infusion of recombinant
GDNF significantly increased DA neuron survival in both the SN and ventral tegmental area
and improved parkinsonian symptomology, including motor impairments and ampheta‐
mine-induced rotational behavior [68–71]. GDNF has also been shown to be neuroprotective
in the MPTP mouse model of PD [72,73]. Studies in nonhuman primates have demonstrated
that intracerebral administration of GDNF in MPTP-treated rhesus monkeys results in
significant improvements in bradykinesia, rigidity, and postural instability, as well as
increased DA levels in the midbrain, globus pallidus, and SN [74].

4.1.2. Clinical studies

Based on the success of using GDNF in preclinical models of PD, GDNF has now been studied
in four clinical trials via infusion into the ventricular system or putamen [75]. The first RDBCT
compared effects of intracerebroventricular administration of recombinant methionyl human
GDNF (r-metHuGDNF, Liatermin®; Amgen) in escalating doses or placebo in 50 PD pa‐
tients over a period of 8 months. No significant improvement in “on” and “off” total and motor
UPDRS was seen in patients treated with GDNF. Adverse effects included paresthesias,
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nausea, and vomiting. A follow-up open label study in 16 of these patients for 20 months
showed no additional improvement in PD symptomology. It was felt that the adverse effects
resulted from off-target GDNF influence and the lack of therapeutic benefit from an inability
of GDNF to diffuse into the parenchyma from the ventricular source [76].

A subsequent open label study that enrolled 5 PD patients investigated the effects of intra‐
parenchymal delivery of GDNF via implanted catheters in the dorsal putamen (unilateral in
one patient; bilaterally in four patients) and connected to an extracranial pump system [77].
After one year, there were no serious clinical side effects, a 39% improvement in the off-
medication UPDRS motor scores and a 61% improvement in the activities of daily living (ADL)
subscore. Medication-induced dyskinesias were considerably reduced and (PET) scans of 18F-
FDOPA uptake showed a significant 28% increase in putamen DA storage after 18 months [78].
In a follow-up report, the group described one of the patients with bilateral GDNF infusions
who had received treatment for 39 months, then was followed clinically and with PET for
another 36 months. The UPDRS motor and ADL scores “off” medication remained im‐
proved by 74% and 76%, respectively, levodopa usage ceased after a year, and at 36 months
post-GDNF cessation, the 18F-FDOPA uptake remained 29% higher in the posterior putamen
[79]. Another group led a second open label study that enrolled 10 patients treated unilater‐
ally with intraputamenal GDNF [80]. A significant increase in total and motor UPDRS scores
was observed after 24 weeks, but benefit was lost with cessation of treatment. These positive
outcomes spurred a second multicenter, placebo-controlled trial in which 34 PD patients were
randomized to receive bilateral intraputamenal GDNF (15 μg/putamen/day; a dose lower than
that of the previous studies) or placebo via continuous infusion. At 6 months, there was no
significant treatment benefit reflected in the “off” UPDRS motor scores; however, a 32.5%
increase in putamenal 18F-FDOPA uptake was observed in the GDNF-treated cohort [81]. The
disparate outcomes of these studies may reflect differences in study design, cohort size, drug
dosage, and/or delivery systems. The r-metHuGDNF manufacturing company subsequently
withdrew the agent on the grounds of safety concerns regarding production of neutralizing
antibodies in several patients and related cerebellar injuries in animal studies, although no
such injuries were reported in human trials. Efforts are now underway to evaluate adeno-
associated virus (AAV)-mediated GDNF in an open label phase I for patients with advanced
PD (https://www.clinicaltrials.gov/ct2/show/NCT01621581).

4.2. Neurturin

4.2.1. Preclinical studies

Neurturin (NTRN) shares 40% sequence homology with GDNF [82] and has been shown to
promote survival of DA neurons in the nigrostriatal system [82–84]. In vitro, NTRN leads to
neurite outgrowth in cultured spinal motor neurons and protects against glutamate toxicity.
Early studies infusing NTRN directly into the SN was shown to be neuroprotective against 6-
OHDA toxicity, while striatal infusion improved behavioral parameters of DA neuronal
function in rats [83,85]. In MPTP-lesioned monkeys, intraputamenal infusion of NTRN led to
significant improvement in parkinsonian deficits as well as increased DA metabolite levels in
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the globus pallidus [86]. CERE-120, an (AAV) vector expressing NTRN, has also shown
potential therapeutic benefit in preclinical studies [87]. When MPTP-lesioned monkeys were
given CERE-120 into the striatum, motor symptoms were improved and loss of DA neurons
was reduced [88]. After one year follow-up, no toxic adverse effects were observed [89].

4.2.2. Clinical studies

A Phase 1 open-label clinical trial demonstrated safety, tolerability, and potential therapeutic
benefit in PD patients after one year [90]. A subsequent RDBCT enrolled 58 patients to receive
AAV2-NTRN bilaterally into the putamen or sham surgery. The primary endpoint was change
from baseline to 12 months in the UPDRS motor score in the off state, and no significant
difference was found between patients treated with AAV2-NTRN compared with control
individuals. Three of 38 patients in the AAV2-NTRN group and two of 20 in the sham surgery
group developed tumors, with uncertain relations to the actual treatment [91]. Postmortem
analysis of two patients revealed that, unlike the animal studies, putamenal AAV-NTRN
injections did not confer adequate retrograde labeling of neurons in the SN [92]. This deficiency
in axonal transport of AAV-NTRN to the SN was addressed in a phase 1 safety study that
enrolled six patients who received bilateral dual injections into the putamen and SN [93]. Two-
year follow-up suggested that the procedures were well-tolerated and no serious adverse
effects were reported. A second phase 2 RDBCT was then conducted, enrolling 51 patients to
receive bilateral putamen and SN AAV-NTRN (https://clinicaltrials.gov/ct2/show/
NCT00985517). In 2013, it was announced that the trial did not demonstrate statistically
significant improvement in patient UPDRS scores after 15–24 months of follow-up. However,
a more robust response to CERE-120 was observed in PD patients treated within 5 years of
diagnosis, and no safety concerns were raised. There was a marked placebo effect as the control
patients and the CERE-120 treated patients both improved significantly following surgery.
Long-term observational studies of the participants are planned to assess delayed clinical
effect (http://www.prnewswire.com/news-releases/ceregene-reports-data-from-parkinsons-
disease-phase-2b-study-203803541.html).

4.3. Preclinical studies with other neurotrophic factors

4.3.1. Persephin/artemin

Persephin (PSPN) shows approximately 40% sequence homology to GDNF and NTRN [94].
PSPN promotes survival of cultured ventral midbrain dopaminergic neurons as well as motor
neurons and prevents their degeneration after 6-OHDA toxicity [94]. PSPN-overexpressing
neural stem cells grafted into the striatum prevented loss of DA neurons and led to behavioral
improvements in 6-OHDA lesioned rats [95]. Artemin (ARTN) promotes survival of DA
neurons in culture [96] and also protects against DA neuron degeneration in the striatum
following neurotoxic doses of methamphetamine [97]. Although early preclinical studies have
shown therapeutic benefit of both PSPN and ARTN, more studies are necessary before these
NTFs can be tested in a clinical setting.
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4.3.2. BDNF

Brain-derived neurotrophic factor (BDNF) is an essential regulator of neuronal differentiation
and plasticity. It has been suggested that alterations in BDNF expression may be responsible
for the development of neurodegenerative disorders [98]. Postmortem studies of PD patients
have demonstrated that BDNF levels are reduced in the substantia nigra pars compacta as a
result of decreased transcription of the BDNF gene [99]. Another study reported that only 10%
of melanized neurons in the substantia nigra of PD patients were immunoreactive for BDNF
expression, compared with 65% in healthy controls [100]. Serum BDNF levels have also been
shown to correlate with a loss of striatal DA transporter binding in PD patients, suggesting an
influence on striatal neurodegeneration [101]. Animal studies have demonstrated that BDNF
antisense oligonucleotide infusion in rats produces a Parkinsonian phenotype [102], and BDNF
knockout mice have reduced dopaminergic neurons in the substantia nigra [103]. BDNF
promotes in vitro survival and differentiation of human and rat embryonic dopaminergic
neurons, and it has protective effects against various toxins including 6-OHDA and MPTP [99].
In a nonhuman primate model of PD, intrathecal BDNF infusion resulted in milder PD
symptoms and less neuronal cell loss in the substantia nigra [104]. To date, there are no clinical
studies evaluating the efficacy of BDNF therapy in human PD, likely due to the logistical
challenges of CNS drug delivery and dosing, as BDNF has poor blood-brain barrier penetration
if administered parenterally, and intrathecal or intraventricular delivery results in poor
penetration of the brain parenchyma [105].

4.3.3. CDNF/MANF

Mesencephalic astrocyte-derived neurotrophic factor (MANF) was first discovered in 2003 and
was shown to be selectively neuroprotective for dopaminergic neurons [106]. Later, cerebral
DA neurotrophic factor (CDNF) was discovered as a homologue of MANF with 59% sequence
homology [107]. CDNF has been shown to be neuroprotective to DA neurons and intrastriatal
injection of CDNF or AAV-CDNF reduces degeneration of DA neurons and parkinsonian
behavior in rats and increases TH levels in the striatum and SN [107–110]. Interestingly,
intranigral infusion of a combination of both CDNF and MANF via lentiviral mediated
delivery reduced amphetamine-induced rotational behavior and increased striatal TH-fibers
and TH-positive neurons in the substantia nigra [111]. Intranigral CDNF alone also improved
behavior and increased TH fibers in the striatum, but both to a lesser extent than with CDNF/
MANF together, and did not protect against TH neuronal loss in the SN [111]. Intra-nigral
MANF alone did not affect behavior or striatal TH fibers, but did protect against SN neuronal
loss [111]. Results of these studies suggest that combined delivery of CDNF/MANF may be
more effective than single NTFs and may be a more effective potential therapeutic treatment
for PD, although neither NTF has been tested in a clinical setting.

5. Conclusions

There remains a critical need for new therapies to delay or prevent the progression of PD. As
discussed in this chapter, cell-based therapies may provide a promising therapeutic benefit to
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PD patients. NTFs offer a potential class of cytoprotective agents that complement DA
replacement and cell-based therapies in PD, with ideal grafts consisting of immunologically
inert cells that continuously produce and release these agents in the host brain. Further
development and refinement of these potential therapies is essential to develop personalized
care for PD patients.
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