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Abstract

There are many potential advantages of direct and inverse dynamic and quasi-static
analysis of mechanisms, namely control the risk of slippage, improve stability, better
adaptation to the environment, obtaining smooth movements and optimizing energy
consumption. This chapter proposes new analysis methods and algorithms to bring new
solutions to the mechanics of the machines under consideration. The methodology has
been developed in modular programs thanks to the flexibility of MATLAB®.

In  this  chapter,  a  methodology for  the  complete  kinematic  and dynamic study of
mechanisms is provided.

The programs have been designed so that all parameters can be modified. It was possible
to automate these calculations creating an algorithm implemented in a programming
language to easily find the solutions and the results of the analysis.

To test the interest of the methodology, in this chapter, this has been applied to the field
of robots, especially the design of the biped robot PASIBOT. The inverse and forward
dynamics, accounting for support foot slippage, are encoded in MATLAB®.

In addition, the methodology was applied to another machine, an unmanned ground
vehicle (UGV), obtaining navigation optimization results using a numerical program
based on a quasi-static half vehicle model.

Keywords: mechanism, dynamics, quasi-static, robot, vehicle

1. Introduction

Nowadays, walking robots, service robotics, and unmanned ground vehicles are considered
one of the main areas of research. The employment of robots for dangerous tasks makes its
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design a crucial point. The interest in the development of humanoid robotics (personal
assistance, social task, etc.) is rising, and it is being studied by a great number of research
groups. The main issue is current mobile robots are not adapted to be used in domestic
environments due to their lack of maneuverability but also to their large volume and/or weight.

These days humanoid biped have a high number of actuators that are used to control the high
degrees of freedom (DOF) they possess. Nonetheless, one of the biggest drawbacks in human‐
oids is that both the weight and the power consumption still make this technology not suitable
for many tasks and/or environments. In the majority of cases, around 30% of the total weight
is related to the actuators and wires, and more than 25% to the reduction systems. That is why
our work is focused on finding a new dynamics analysis to simplify the design of new
mechanisms and kinematic chains which, maintaining the robot functionality, does not require
such a high number of actuators. This would reduce the robot mass and hence its power
consumption and total cost [1–4].

In recent years, different research groups have developed robots based on passive walking
techniques. Biped locomotion has been studied from several perspectives. Much effort is
devoted to the design of optimal trajectories and stabilized walking cycles via control pro‐
grams. However, researchers have not focused enough their efforts in solving the slip problem,
which has been largely ignored [5, 6].

In this chapter, the kinematics and dynamics analysis of PASIBOT (a biped walking robot
designed and built by the Maqlab Groups of the Universidad Carlos III de Madrid, shown in
Figure 2) are presented. The methodology to do the completed study from a theoretical point
of view is explained. The study objective is to calculate all the forces and torques between links,
as well as the linear and angular position coordinates, velocities, and accelerations for all links,
for any time. The equations have been implemented in MATLAB® code, and the corresponding
results have been contrasted [7–12].

The program accepts the initial kinematic state and the motor torque (as a function of time) as
inputs and returns the bipedal movement, including the sliding of the supporting foot. The
sliding is taken into account by adding one degree of freedom. Thus, we focus on the kinematics
and dynamics of the sliding supporting foot [13].

In addition, there is no doubt about all advantages unmanned vehicles have. For this reason,
the kinematics and dynamics analysis is one of the principal research lines in robotics. The
Tallinn University of Technology is researching in the design and development of the unman‐
ned ground vehicle (UGV) shown in Figure 20. This UGV is an all-terrain vehicle equipped
with an engine for each of its wheels. The novel aspect of this vehicle is that each wheel is
attached to the body by a leg so that the angle between the latter and the body may vary thanks
to the use of an attached actuator [14–16].

In this chapter, a parametric quasi-static half vehicle model is implemented on MATLAB®

following the explained methodology. The program calculates the variation in configuration
angles that optimized desired criteria as the vehicle passes on a particular track profile. This
algorithm makes it possible to find the variation of configuration angles along the track profile
that keeps the applied torque constant and/or minimized and/or satisfying certain criterion.
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2. Methodology

The sketch of the methodology is shown in Figure 1.

The first step is to define the mechanism. It is basically naming variables and parameters (with
the correct nomenclature the implementation in MATLAB® code is made easier) and classify‐
ing the type of movement (degrees of freedom, class of joints, etc.)

Figure 1. Sketch of the methodology.

It is possible to solve the kinematics and dynamics through the inverse dynamics or the
forward dynamics algorithm depending on the type of mechanisms, the known input, and the
desired output. Also, if the dynamics are complicated, the quasi-static approach can be useful.
The biggest advantage of this approach is that it is easily optimized. This is a valuable tool to
improve design and control with mathematics software.

In this chapter, the methodology of inverse and forward dynamics is applied to the biped
walking robot PASIBOT and the quasi-static approach to an unmanned ground vehicle.

Forward and Inverse Dynamics and Quasi-Static Analysis of Mechanizes with MATLAB®

http://dx.doi.org/10.5772/63372
95



Note that the input and output of each approach are different and the equations are also
different. However, the methodology can be simplified in the Figure 1 for both, and the
correctly chosen nomenclature helps to generate a MATLAB® code. The developed MAT‐
LAB® code is totally parametric, giving the possibility of changing the values, adding new
analysis and new degrees of freedom (like slippage), or looking for analysis of sensibility.

Another advantage of doing the whole analysis with MATLAB® code is that the result can be
used as an input for redesigning or as an optimizing function.

3. Kinematics of the biped robot PASIBOT

Nowadays, certain commercial software of mechanical simulation provides the dynamics of
a mechanism with a small error. But, in some cases, like a biped robot actuated by small number
of actuators, it is also possible to obtain the kinematics and apply this methodology and obtain
the dynamics with a low degree of error. In this chapter, the kinematics of the biped PASIBOT
is developed. In next chapters, the inverse and forward dynamics are addressed using the
relations obtained in the kinematics.

The biped PASIBOT is a one-degree-of-freedom mechanical system based on a combination
of classical mechanisms that emulates human walking. PASIBOT is shown in Figure 2.

Figure 2. PASIBOT.

The biped PASIBOT (see Figures 2–4) is a mechanism composed of three sub-mechanisms of
conventional type, each of which is designed to perform a different function:
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1. The mechanism “Chebyshev” is responsible for generating a quasi-straight line.

2. A pantograph handles extend the “Chebyshev” coupling curve.

3. The stability of the biped is achieved by parallel extensions.

In Figure 3, the sub-mechanisms Chebyshev and pantograph as well as the trajectories for the
most relevant points are shown.

The only engine of the biped conveys a full rotation to the crank of the Chebyshev mechanism,
so that the end of its connecting rod (point C in Figure 3) makes a cyclical movement, one of
its tracts being a quasi-straight line. This point is connected to one end of the pantograph, so
that its other end (point E in Figure 3) carries an inverted and amplified from the previous
path. The corresponding amplification ratio depends on the lengths of the links of the panto‐
graph. The amplification ratio is two for the design of PASIBOT presented here.

Figure 3. The sub-mechanisms Chebyshev and pantograph with the trajectories of their notable points.

Points A, B, and D in Figure 3 are attached to the hip, as can be seen in Figure 4. The stabilization
system consists of a series of articulated parallelograms which are based on the two longest
links of the pantograph. These parallelograms guarantee the parallelism between the foot in
contact with the floor and the stabilizing link, the end of which slides on a slot at the hip. Since
that slot is aligned with the linear segment of the Chebyshev trajectory, the supporting foot
remains parallel to the slot during the whole period of support. In order to provide the opposite
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leg with the appropriate movement, the corresponding crank is phased out π rad (see Figure
4) in the same motor axis. In fact, both cranks are part of the same rigid element.

Figure 4. Sub-mechanisms of PASIBOT; nomenclature and numeration for the supporting leg and angular positions
for the links.

As shown in Figure 4, any link belonging to the flying leg has the same name and number as
the corresponding link from the supporting leg, but with a prime to distinguish between them.
Each leg comprises 12 links, apart from the engine crank (link number 8), which is shared with
both legs (no link number 8’ exists), so the biped PASIBOT has a total of 24 links, including
the single hip (link number 13).

Listed below are the parameters and variables that describe the kinematics and dynamics of
the biped:

li: length of the link i (mm)

mi: mass of the link i (kg)

�i: angle between the link i and the hip (rad)

ωi: rotational velocity of link i (rad/s)

αi: rotational acceleration of link i (rad/s2)

Ii: inertia moment for the link i (kg mm2)

rij: position vector of the ij joint from the link i center of mass (mm)

rijx: x projection of the position vector (mm)
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rijy: y projection of the position vector (mm)

fij: force exerted by the link i on the link j (N)

fijx: x projection of the fij (N)

fijy: y projection of the fij (N)

In Figure 5, a sequence for one step of PASIBOT is presented, as simulated with a commercial
program. Note that one step corresponds to a half rotation (π rad) of the motor crank.

Figure 5. PASIBOT gait along one step (from �8= π to 3π/2 rad).

After defining the whole type of movement and the nomenclature, the kinematical study of
one PASIBOT step is presented here. The kinematics is developed for the phase of “simple
support,” in which the supporting foot is in contact with the horizontal ground, whereas the
other leg is flying. First, no sliding between the supporting foot and the ground is considered,
so it can be considered part of the ground. Hence, the biped PASIBOT is a one DOF planar
mechanism, and we can refer the angular positions of any link to the angular position of the
motor crank (ω8):

8 ,  ( ) 1,2, 1 ,2 ,i i iq q q ¢ ¢= = ¼ (1)

Then, the x,y coordinates for its center of mass can be easily expressed with respect to that
angle:

8 8 ; ,  1,2, 1( ) ,2 ,) (i i i ix x y y iq q ¢ ¢= = = ¼ (2)

The angular velocities, accelerations and the center of mass linear velocities and accelerations
are obtained by taking the first and second derivatives in Eqs. (1) and (2).

Actually, the biped kinematics is divided into three closed-loop kinematic chains:

1. Chebyshev chain (links number 7, 8, 9, and 13)
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The distance between motor crank and rocker fixed points (A and B in Figure 3, respectively)
in a Chebyshev mechanism is lAB = 2l8, the rocker arm length is l9 = 2.5l8, the connecting rod
length is l7 = 5l8, and the rocker arm and connecting rod are joined at the middle point of the
latter. The link lengths have been particularized for the designed biped, and normalized to the
crank length, l8 = 1. Taking into account these lengths, the Chebyshev closed-loop kinematic
chain provides (see Figure 6):

7 9 82.5 2.5 2j j je e eJ J J- - + (3)

Figure 6. Chebyshev chain (lengths in units of l8).

In Eqs. (3)–(5), both projections (vertical and horizontal) for each closed-loop equation are
written in a compact form following the Euler’s formula, where j is the imaginary unit.

2. Pantograph chain (links number 9, 7, 3, 6, and 13)

The tendons length is l4 = l6 = 6l8, whereas the distance between the connecting rod-femur and
upper tendon-femur joints (points C and F, respectively) is lCF = 3l8, and the distance between
rocker arm-hip and upper tendon-hip joints (points B and D, respectively) is lBD = 12l8, so the
pantograph closed-loop kinematic chain provides (see Figure 7):

( )6 3 7 96 3 2.5 12 0j j j je e e e jJ J J J+ + + - = (4)
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Figure 7. Pantograph chain (lengths in units of l8).

3. Stability chain (links number 8, 7, 10, and 13)

In our model, the stabilizing link length is l10 = 4.2l8. The vertical distance between the motor
crank joint and the slot at the hip is 4l8. The horizontal projection distance between the motor
crank joint and the end of the stabilizing link is called x. The stability closed-loop kinematic
chain is as follows (see Figure 8):

10 7 824. 5 4 0j j je e e x jJ J J- + - + = (5)

Figure 8. Stabilization chain (lengths in units of l8).
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As stated below, these equations determine the angles for all the links as functions of that for
the motor crank, ϑ8, which is also a function of time. Solving Eq. (3), the following expressions
for the connecting rod and rocker arm angles are found:

2 2
8 8 8 8 8

7
8

2 2
8 8 8 8 8

9
8

4 cos 13 cos 10 sin 16 cos 60 cos 100
cos

25 20 cos

4 cos 13 cos 10 sin 16 cos 60 cos 100
cos

25 20 cos

a

a

J J J J J
J

J

J J J J J
J

J

ì é ù- × + × - + × - × - × +ï ê ú=
ï ê ú- ×
ï ë û
í

é ùï - × + × - - × - × - × +ê úï =
ê ú- + ×ï ë ûî

(6)

From Eq. (4), the femur and tibia angles are found as functions of the previous ones:

2
7 9 7 9

6

2
7 9 7 9

3

(2.5 (cos cos ) ( 27 ) 2.5 (sin sin 12) 144 ( 27 )
cos

12

(2.5 cos cos ) (27 ) 2.5 (sin sin ) 12) 36 (27 )
cos

6

A A A
a

A

A A A
a

A

J J J J
J

J J J J
J

ì é ù× + × - - - × + - × × - - -ï = ê ú
×ï ê úï ë û

í
é ùï × + × - + × + - × × - -

= ê úï ×ê úï ë ûî

(7)

where A=(2.5⋅ (cosϑ7 + cosϑ9))2 + (2.5⋅ (sinϑ7 + sinϑ9)−12)2

Finally, Eq. (5) gives the solution for the stabilizing angle:

7 8
10

5 sin sin 4asin
4.2

J JJ × - -æ ö= ç ÷
è ø

(8)

As can be seen in Figure 3, the rest of the angles involved are identical to one of the given ones
in Eqs. (6)–(8), in particular:

1 5 10

12 4 3

2 13 6

J J J
J J J
J J J

= =

= =

= =
(9)

For the links belonging to the opposite leg, we apply a phase out of π radians on ϑ8:

( ) ( )' 8 8iiJ J J J p= + (10)

In order to reference all values to the ground, this corresponding base change must be applied:
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ground
1,iiJ J J= - (11)

where ϑi
groundϑ is the angle related to the ground system, and ϑi is the corresponding one

related to the reference system fixed at link 14 (hip).

The positions of the center of mass for every link are obtained using trigonometric relations
(e.g. x2=L2cosϑ2/2, y2=L2sinϑ2/2; x3=L2cosϑ2+L3cosϑ3/2, y3=L2sinϑ2+L3sinϑ3/2; etc.). Then,
by time differentiating once and then twice, the angular velocity and acceleration as well as
linear velocity and acceleration, respectively, for any link are calculated.

Thanks to apply this equations on MATLAB program, the kinematics of the biped robot
PASIBOT can be solved for one step, considering a motor crank constant angular velocity,

( )8 : 8  8·t tw J w= (12)

The PASIBOT possessed a single DOF, so the positions of the center of mass of link i can be
referred to the angular position of the motor crank (ϑ8):

( ) ( )8 , 2,3 1’,2’, 8i i i iJ J J= = ¼ ¼ ¹ (13)

( )8 , 1i iX X iJ= ¹ (14)

( )8 , 1i iy y iJ= ¹ (15)

4. Slipping kinematics of the biped robot PASIBOT

If the supporting foot is allowed to slip, the PASIBOT becomes a 2-DOF mechanism (the biped
moves across a plane, and the supporting foot supposedly remains horizontal). Eqs. (13) and
(15) remain valid, while Eq. (14) increases by the value of the supporting foot slippage x1 as
follows:

( )1 8x x X ;i 1i i J= + ¹ (16)

The first and second time derivatives of Eq. (16) are as follows:
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where a prime denotes explicit derivative with respect to ϑ8, and dots denote time derivatives.

5. Non-slipping inverse dynamics of the biped robot PASIBOT

The inputs for the dynamical problem are the kinematic magnitudes (angular acceleration, αi,
and its center of mass acceleration, (aix, aiy)). The dynamical equations for the motion of every
link, using Newton action-reaction law, are exposed in Eq. (18):

( ) ( ) 
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(18)

There are three equations for each link (there are 23 links, excluding the supporting foot), and
the system describing the dynamics of the whole mechanism consists of 69 linear equations.
The system (Eq. 18) is expressed in a matrix form (Eq. 19), and then solved with a MATLAB®

via matrix inversion:
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M

K M (19)

The code of the matrix that must be written in MATLAB® is shown in Figure 9.
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Figure 9. The matrix A (coefficient).

Using MATLAB® code the kinematical and dynamical equations have been implemented in
order to obtain solutions depending on a set of parameters (link dimensions, masses and
densities, motor angular velocity) entered by the user. In Figure 10, the MATLAB flow chart
of the kinematics and dynamics algorithm is shown.

Figure 10. MATLAB® flow chart for the PASIBOT kinematics and dynamics calculus code.
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The MATLAB® program first finds the corresponding value of ϑ8(t), and using Eqs. (6) to (11),
it obtains the corresponding values of the rest of the angles and the positions of the centers of
mass. Then, it calculates the kinematics. These data, which define the state of the biped at the
time t, form the inertia matrix, (I), in Eq (19). Finally the MATLAB® program inverts the
coefficient matrix, (A), by means of a matrix inversion subroutine and multiplies both matrices
to provide the forces and torques between links at this time step. These values are stored to be
plotted and the calculations are restarted for the next time step.

The results have been validated by comparison with others programs (working model and
ADAMS code). The main advantage of the program developed via MATLAB® is that it lets us
perform fast modifications, making the final robot design easier by changing parameters.

As the first result, the program implemented in MATLAB® has calculated the motor torque
required to perform the movement. Figure 11 shows the actuator torque in the crank (link
number 8) related to time, for different values of the motor angular velocity, ω8.

In Figure 11, the same shape for each case can be appreciated apart from the torque obtained
from the highest velocity value (ω8 = 5 rad/s). With this velocity, the dynamical effect of the
inertia forces becomes important. However, for low speeds (below 3 rad/s) torque graphs
hardly differ from one to another.

In Figure 12, the torque is represented again but for different loads (5, 10, and 15 kg) added to
the hip. It is an interesting result. It shows that the required motor torque depends slightly on
the added load. This is because the hip remains at almost the same level in a course of a step.

Figure 11. Torque for different crank velocities. T is the period for one step.
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Figure 12. Actuator torque for different hip extra loads.

6. Forward dynamics for biped robot PASIBOT

The dynamics of mechanical systems can be modeled in two ways: inverse dynamics, which
calculates the forces and torques that produce kinematics (movement), and forward dynamics,
which computes the movement from known applied forces and torques.

When addressing forward dynamics, the kinematics is unknown. However, the angular
position of the motor crank, ϑ8, defines the position of the remaining links by Eqs. (20)–(22).
These functions were defined in Eqs. (6)–(12). The corresponding angular velocities and
accelerations as well as the center of mass linear velocities and accelerations are obtained from
the corresponding first and second time derivatives:

( )

( ) ( )

8
i 8 8

8
2

8 8 8 8

d d '
d d

'' '

i
i

i i i

t
J J

J J J J
J

J J J J J J J

= =

= +& && &&

& &
(20)

( )
( ) ( )
i i 8 8

2
i i 8 8 i 8 8

X =X '

X =X '' X '

J J

J J J J+ &&&&

&&
(21)

Forward and Inverse Dynamics and Quasi-Static Analysis of Mechanizes with MATLAB®

http://dx.doi.org/10.5772/63372
107



( )
( ) ( )
i 8 8

2
8 8 8 8

y y '

y y '' y '
i

i i i

J J

J J J J

=

= +

&&
&&&&

(22)

When the kinematics is unknown, Eq. (19) becomes a system of second-order differential
equations. To solve it numerically, in addition to time discretization, a motor crank angle ϑ8

discretization is proposed. In this way, the derivatives of the known functions, ϑi = ϑi(ϑ8), Xi =
Xi(ϑ8) and yi = yi(ϑ8), are computed with respect to ϑ8 as follows:
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In fact, to implement the forward dynamic problem, Eqs. (23)–(25) are inserted into Eqs. (20)–
(22) and then into Eq. (18). Thus, we obtain a system of equations in which the first and second
time derivatives of ϑ8 are unknowns, while the torque is now a known function of time, T8 =
T8(t). The resulting system of equations is as follows:
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Figure 13. Evolution of the motor crank angle for different motor torques, when the biped starts walking from rest,
according to the program described in this chapter (a) and according to Working Model 2D simulations (b).

To solve this system of differential equations, Eq. (26), a time discretization is used. For each
time step, a linear inhomogeneous system is calculated, where the forces between links, and
the angular acceleration of the motor crank, ϑ̈8, are unknowns, while the angular velocity of
the motor crank, ϑ̇8, is known. In fact, ϑ̇8 is assigned an initial input, ϑ̇8(t =0), which is updated
after solving Eq. (26) in the previous time step, regarding the determined angular acceleration
as constant during ∆t. Then the updated angular velocity is as follows:

[ ] ( )8 8 81n t n t tJ J JD = é - D ù + Dë û
& & && (27)

Thus, the coefficient matrix is obtained from Eq. (19) by eliminating the column corresponding
to the torque coefficients T8 (previously, it was unknown), and adding a column representing
the coefficients of the motor crank angular acceleration, ϑ̈8. The torque T8 must now be included
in the right-hand side (RHS) column vector. The forward dynamics system is obtained as
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Note that the torque T8 now appears in the RHS column vector (constants column). Now some
results from the developed forward dynamics model are presented.

As shown in Figure 13(a), the torque above which the biped can start walking is 0.84 Nm. The
initial value of ϑ8 is π/2 (both feet are on the floor).

These results were compared with those obtained with the software Working Model 2D.
Comparing Figure 13(a) and (b), we can say that the results are similar enough to each other
to validate the program described in this chapter.

The MATLAB® program allows changing the density. In Figure 14, the motor crank angle is
plotted for a constant torque, T8 = 1 Nm and varying total weight (obtained by varying the
density of all links).

Figure 14. Evolution of the motor crank angle, for a constant motor torque, T8 = 1 Nm, and for different total weights.
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7. Dynamics of the biped robot PASIBOT including slippage between the
ground and the supporting foot

7.1. Inverse dynamics with slippage

In the previous sections, we have applied inverse dynamics to parametrically calculate the
required torque at the sole motor for PASIBOT to walk at a steady state (constant speed) with
no sliding between the supporting foot and the floor. However, when sliding between the
supported foot and the floor is allowed the kinematics is unknown and other approaches must
be applied. In fact, three more equations regarding the supporting foot dynamics must be
considered, as well as the kinematics-statics friction condition.

The forces acting on the supporting foot are

x x x y01 12 112 1 1 12y 12y 112 1f -f -f =m x ;f -f -f =m g&& (29)

Figure 15. Forces acting on the supporting foot (link 1). Link 1 is connected to links 2 and 12. The floor is considered as
link 0.

Since r10x
and f 01 y

r  are both unknown, Eq. (30) is the non-linear torque equation for the
supporting foot (link 1; see Figure 15):

( ) ( )x y y x x y y x x y y x10 01 10 01 12 12 12 12 1,12 1,12 1,12 1,12r f -r f - r f -r f - r f -r f =0 (30)
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Eq. (30) is non-linear. If Eq. (18) is solved without Eq. (30), the latter can be used to obtain the
instantaneous zero moment point (ZMP) relative to the center of mass, ZMPx = r10x

 r10x, which
determines whether the biped topples.

In summary, the “inverse dynamic static friction equation” is obtained as follows in a matrix
form:
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(31)

The forces and the motor torque in each time step are computed by solving Eq. (31) via matrix
inversion encoded in MATLAB®.

When the supporting foot is allowed to slide, x1 becomes an independent variable (in general,
x1 ≠0, ẋ1 ≠0, ẍ1 ≠0). To consider sliding between two bodies involves three possible scenarios:
(1) no sliding (static friction), (2) imminent sliding, and (3) actual sliding. To determine the
sliding status at each time step, conditional branching was incorporated into the code.

Initially, no sliding is assumed and the state is static friction (x1 =0; ẋ1 =0; ẍ1 =0). Thus, solving
Eq. (31), the values of friction force ( f 01x

) and normal force ( f 01 y
) are calculated. Then, the static

friction condition

01 s 01x y
f fm£ (32)

is evaluated for a specified static friction coefficient, μs. If Eq. (31) is satisfied, the time is in‐
cremented by Δt and Eq. (31) is recalculated using the updated values of rij, ẍ i, ÿ i, ϑ̈ i. This step
closes the “static friction” conditional loop.

If Eq. (32) is false, the PASIBOT enters the state of imminent slipping. This system has the
following conditions: First, since the acceleration of the supporting foot,ẍ1, is no longer zero
but unknown, it must appear in the column vector of unknowns. Second, the kinetic frictional
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relationship between normal and tangential components of the floor-foot force must be
considered:

01 k 01 ,
x y

f fm= (33)

where μk is the kinetic friction coefficient.

The new matrix of coefficients is then obtained from its predecessor by adding the following:

• A column of mi elements in positions corresponding to the x components of Newton’s
equations, with zeros elsewhere.

• An additional row incorporating Eq. (34).

Therefore, the final matrix form of the “inverse dynamic sliding friction equation” is as follows:
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(34)

The sign of the friction force is depending on the sliding status in the previous calculation. The
friction force opposes the horizontal component of the other forces acting on the foot when the
previous state was imminent sliding. The friction force opposes the velocity of the supporting
foot when the previous state was actual sliding.

With Eq. (34), the MATLAB® program calculates the acceleration with which the supporting
foot has begun sliding, ẍ1. In the current time interval ((n −1)ΔT −nΔt), the supporting foot is
assumed to move with the calculated uniform acceleration. The velocity and position of the
supporting foot are then updated by Eq. (35):
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The MATLAB® program obtain the kinematics and dynamics data (torque and force data) for
all links, and then it increments the time by ∆t and re-solves Eq. (34). Note that the square
brackets show the dependence.

When the PASIBOT is having a slippage, the friction force is against the supporting foot
movement. This force is considered constant during this time interval, and it can stop the
sliding of the PASIBOT but not change the direction of the movement. This is obtained with
the stopping time, ts, and compares it with the time increment, ∆t, as shown in Eq. (36):

1
s

1

xt =-
x
&
&& (36)

If ts is positive and less than ∆t, then friction stop the PASIBOT sliding before the end of the
time interval. Else, if it becomes negative or exceeds ∆t, the PASIBOT continues sliding in the
time interval. After that, the MATLAB® program updates the results using ts instead of ∆t and
returns to the beginning to solve the case of static friction, as provided in Eq. (31).

Figure 16. MATLAB® program flowchart with slippage.
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In Figure 16, it is shown the MATLAB® program inverse dynamics flowchart with slippage.
The forces between links and torque (dynamical variables) are calculated during the “STOR‐
ING DATA” task. The position, velocity, and acceleration (kinematic unknowns) for the
supporting foot are updated according to Eq. (34).

7.2. Forward dynamics with slippage

In the previous sections, we have applied this methodology to design the MATLAB® program
of inverse dynamics with slippage. To obtain the forward dynamics program, the slippage is
treated as in 30, while the dynamics is formulated as in 34. The MATLAB® flowchart showed
in Figure 16 is mostly maintained, but the systems of equations are different:

– The equation system to be calculated in the state of “STATIC FRICTION” is the forward
dynamics system of Eq. (28): static system (ST).

– The equation system that describes the slippage of PASIBOT (Eq. 35) in the state of “SLIDING
FRICTION,” is added to Eq. (28). Also, the motor torque appears in the constants’ column and
the motor acceleration and the slippage acceleration become the penultimate and final
elements of the unknowns’ column. Using Eqs. (20)–(25), the first and second derivatives with
respect to ϑ8 of the position, velocity, and acceleration of every link are calculated, with a
sufficiently fine discretization of ϑ8. The resulting system of equations (36) is referred to as the
“sliding system (SL).”

( )
( )
( )

( )

11 12 1,71 1
01

21 22 2,71
01

31 32 3,71 2 8 22 12
41 42 4,71 2 2 8

51 52 5,71 2 2 8

8

71,1 71,2 71,71 12' 12' 8

0
0 0

'
' 0
' 0

.

0

0
1 0 0 0

x

ypf

k

a a a m f
a a a f
a a a m x m f
a a a m y
a a a I

I

a a a I

J
J

J J

J J
m

-é ù
ê ú
ê ú
ê ú- -ê ú
ê - ú
ê ú-ê ú
ê ú
ê ú

-ê ú
ê ú
ê ú

-ê ú
ê ú±ê úë û

L
L

L
L
L

M M O M M M
L L L L
M M M O M M

L
L

( )
( )

( )

[ ] [ ] [ ] [ ] [ ]

1
2

2 2 8 8
212 2 2 2 8 8

2
2 2 8 8

10 12 8

8

1

1
8 1

0

''

''

''
.

.

(coeff. ) · (forces, , ) (cts) ·

x

y

', 'y

m g

m X
f m g m y

I

f T

x

A U x C U A C

J J

J J

J J J

J

J -

é ùé ù
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú +
ê úê ú

= ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú
ê úê ú

ë û ë û

é ù = Þ =ë û

&

&
M &

M

&& M
&&

&& &&

(37)

– In “STORING DATA” mode, the kinematics of the supporting foot is updated by Eq. (37).
The motor crank position and velocity is updated according to Eq. (35).

Some results are presented in the following figures, in which different friction coefficients and
motor crank velocities have been considered. Figure 17 plots the horizontal supporting foot
position as a function of time for a constant motor crank angular velocity, ϑ̇8 =3rad / s,  and
varying friction coefficient (here μs  =  μk ≡  μ). From this plot, we can deduce the time course
of the supporting foot sliding.
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Figure 17. Supporting foot versus time (in units of one period, T) for constant ϑ8 = 3 rad/s, for a set of different friction
coefficient.

In Figure 17, it is shown that the minimum friction coefficient that prevents the slippage is
0.08. Also, it can be observed that the slippage occurs during preferred phases. The sliding
starts at mid-step until when the swinging leg has reached its highest point. If two slippages
occur, one of them is again invoked at mid-step, while the other occurs at the first quarter step.
For μ = 0.03, slippage occurs repeatedly at various phases.

Figure 18 shows the sliding characteristics for constant friction coefficient μ = 0.1 but different
motor crank angular velocities.

Figure 18. Supporting foot versus time (in units of one period, T) for μ = 0.1, varying ϑ8.

Because the program is parametric it is easy to set different values for static and kinetic friction
coefficients (kinetic friction coefficient is smaller than static friction coefficient). Figure 19
shows the supporting foot of the PASIBOT with slippage for a static friction coefficient, μs =
0.2, and three different kinetic friction coefficient, μk = 0.2, 0.1, and 0.05.
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Note that the bigger the kinetic friction coefficient, the smaller the sliding distance slippage
occurs. Also, if there is slippage, it occurs at the same point for all three cases.

Figure 19. Supporting foot versus time for constant ϑ8 = 5 rad/s, for the same static friction coefficient and for three
different kinetic friction coefficients.

8. Applied quasi-static approach methodology to UGV

The quasi-static methodology is applied in this chapter. The main advantage of this approach
is that it is easily optimized. It is applied to a vehicle in order to optimize the navigation
capabilities. This methodology is applied to an UGV shown in Figure 20, which was designed
and developed by the Tallinn University of Technology. This unmanned ground vehicle can
change the angle between the body and the legs to improve the capabilities of passing obstacles
or navigation. It changes the position of the center of mass (CoM) relative to the ground-wheel
contacts, as well as the distance between the ground and the body [14].

In order to explain how to apply the methodology to implement this analysis in MATLAB®

code, the nomenclature and geometry of the vehicle are presented. The position and/or
trajectories of centers of mass, joints, and ground-wheel contact points are defined. Then the
quasi-static model is developed and the equations to calculate the forces and torques involved
are implemented in MATLAB®. The algorithm with the quasi-static equations obtains the
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position along the track for any configuration angles, and then calculates the optimal values
of those angles that satisfy a given condition. If the vehicle slips or overturns at any point of
the track, it is also calculated by the program [15, 16].

Figure 20. The unmanned ground vehicle (UGV) of Tallinn University of Technology.

The nomenclature is shown in the following list:

Flw: force on the rear wheel exerted by the rear leg

Fwl: force on the front leg exerted by the front wheel

Fr: friction force exerted by the ground on the rear wheel

Ff: friction force exerted by the ground on the front wheel

Nr: normal force exerted by the ground on the rear wheel

Nf: normal force exerted by the ground on the front wheel

M: torque on the wheels (supposedly the same on front and rear wheels)

D: ground-front wheel contact point; T: ground-back wheel contact point

L = 0.83 m: body length; l = 0.35m: leg length; C: Center of mass

φr: angle between rear leg and body; φf: angle between front leg and body

βr,βf: rear wheel contact angle, front wheel contact angle

f(x): function defining the track profile

g(x): function defining the trajectory for the centers of the wheels

mw = 50 kg: wheel mass; mb = 300 kg: body mass; ml = 20 kg: leg mass

First, the problem of positions is resolved. For a given ground function, with the front wheel
position, xf and the configuration angles, φr and φf, the back wheel can be located. The slope
of the ground at x is obtained as: βx = tan-1[f'(x)]. After the locus of the centers of the wheels,
g(s) are calculated as follows (see Figure 21):
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(38)

Figure 21. Position problem.

The front wheel center position (sf,g(sf)) is obtained from Eq. (38) and the wheelbase is solved
as following:

( ) ( )2 22
r f r fcoscos coscos sinsin sin sinR L l l lj j j j= - - + - (39)

The intersection between the function g(s) and the circumference of radius R centered on the
front wheel (xf − rsinsinβf, f (xf) + rcoscosβf) locates the back wheel center (see Figure 22).

Figure 22. Scheme for locating the back wheel center.

Once the position of the vehicle is established, the locations of the CoMs are solved. The quasi-
static approach can be calculated with three subsystems: (see Figure 23): (1) back wheel, (2)
back wheel, both legs and body, and (3) the whole vehicle.
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Figure 23. Vehicle subsystems.

For each subsystem, equilibrium requires two force equations and one moment equation:
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where the unknowns are: Fr, Nr, Ff, Nf, Flwx
 Flwx, Flwy Flwy, Flwx

 Fwlx, Flwy Fwly and M. The

torque is the same on front and back wheels. This system of nine equations can be simplified
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into a new system of five equations, where the unknowns are the torque, normal forces, and
friction forces. And in a matrix form: A⋅F = C ⇒ F = A-1 C, where
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MATLAB® code is used to solve the system of five equations. The program calculate for a set
of discretized values of the front wheel position, the needed torque for any combination of a
set of discretized values of the angles ϕr and ϕd. Thus, different criterions can be applied:
minimize the energy to be supplied to the wheels, minimize the instantaneous torque or
maximization the grip, the ground-wheel normal force, etc.

Some results are presented for a soft bump: square exponential profile, f (x)=0.1e −(x−4)2 (in
meters). Figure 24 shows the torque function that must be applied for any static configurations
angles passing the soft bump.

Figure 24. Torque needed passing a soft bump for different static configuration angles.

Figure 25(a) shows configuration angles variation needed to pass over the soft bump, with the
minimum variation of torque and the corresponding torque function. Figure 25(b) shows the
sequence of the UGV passing through the soft bump.
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Figure 25. (a) Configuration angles and torque and (b) sequence of the UGV.

9. Conclusions

The methodology provided in this chapter can be applied to mechanisms, vehicles, or robots
for the complete mechanical study. The kinematics and dynamics are solved using Newton-
Euler equations, from the movement of the actuator to iterating during the time of initial
condition as well as external forces, and with the quasi-static approach.

The programs have been designed so that all parameters can be modified. It was possible to
automate these calculations creating an algorithm implemented in a programming language
to simply find the solutions and the results of the analysis.

The methodology has been applied to design the biped robot PASIBOT. The kinematics and
dynamics (both forward and inverse) of the biped robot “PASIBOT,” taking into account for
support foot slippage are encoded in MATLAB® code.

The great advantage of creating a parametric MATLAB® code following this methodology is
that the algorithm can be modify to obtain the results in a parametric way or even changing
the conditions easily. For example, it can calculate the motion of the biped from the torque
function given by the biped’s sole motor or the torques required for starting and braking as
well as defining the conditions that prevent or control slippage.

Because the program remains parametric the lengths, densities and masses, motor velocities
and torque, friction coefficients and other parameters can be modified by the user.

The methodology was also applied to another machine, a UGV vehicle, obtaining navigation
optimization results. A numerical program based on a quasi-static half vehicle model is
presented. For a given profile that could be read by sensors the program calculates how the
angles between the body and the legs must vary, in order to fulfill the criteria like maintain as
constant as possible the torque for example. The program created with this methodology in
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MATLAB® code also can calculate the values of normal and friction forces, checking if the UGV
rolls over or slip at any point.

In conclusion, this methodology can help to generate MATLAB® programs that will be valuable
tools to optimize some navigation capabilities, dynamics analysis, quasi-static analysis, and
slippage control among other.

Following this link the reader can find some examples of MATLAB codes done with the
methodology of the chapter: http://www.mathworks.com/matlabcentral/profile/authors/
7854464-eduardo-corral

The code that calculates the inverse dynamic of the biped PASIBOT with slippage (using the
methodology that we explain in the chapter) and the code that calculates the torque of the UGV
and that optimized the best route are in the previous links.
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