
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322426745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 2

The Empirical Models to Correct Water Column Effects
for Optically Shallow Water

Chaoyu Yang

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63149

Abstract

Seagrass as one of the blue carbon sinks plays an important role in environment, and it
can be tracked remotely in the optically shallow water. Usually the signals of seagrass
are weak which can be confused with the water column. The chapter will offer a model
to simulate the propagation of light. The model can be used to improve the accuracy of
seagrass mapping. Based on the in situ data, we found that the appropriate wave‐
bands for seagrass mapping generally lie between 500–630 nm and 680–710 nm as well.
In addition, a strong relationship between the reflectance value at 715 nm and LAI was
found  with  a  correlation  coefficient  of  0.99.  The  chapter  provided  an  improved
algorithm to retrieve bottom reflectance and map the bottom types. That would be
meaningful for management and preservation of coastal marine resources.

Keywords: seagrass, optical correction model, Sanya Bay, remote sensing technique,
optically shallow water

1. Introduction

Given the rapid change affecting coastal environments, it is a substantial challenge to manage
and preserve the coastal marine resources. It is urgent to find an effective and quantitative
tool to detect such change in the optically shallow water. The spatial resolution and preci‐
sion of the traditional in situ surveys are not enough to detect subtle changes before they
become catastrophic [1, 2]. Remote sensing technique developed rapidly and can provide high
spatial and temporal resolution of the benthos. Optical properties in the optically shallow
waters are relatively more complex than those in the optically deep water, so the application
of remote sensing technique in optically shallow waters is still in its infant stage.
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and reproduction in any medium, provided the original work is properly cited.



An important problem with remote sensing technique in the aquatic environment is the water
column effect [3, 4]. In shallow water, radiance can be affected by phytoplankton, suspended
organic and inorganic matter and dissolved organic substances [5, 6].

There are several methods to correct the water column effects. The single/quasi-single
scattering theory is one of them to estimate the water column contribution. Morel and Gentili
[7] defined the reflectance of the optically shallow waters by removing determinations of the
albedo of the substrate covering the floor. The contribution of a finite substrate to the increase
in reflectance was interpreted in terms of depth if the optical properties of the optically shallow
water and the reflectance at null depth of the deep ocean near the object were known. The
quasi-single scattering theory [8] suggests that bottom upwelling signals can be estimated as
a sum of contributions from the water column and from the bottom. A semianalytical (SA)
model for mapping bottom by using the remote sensing reflectance of shallow waters was
developed and most commonly cited [9, 10]. Another algorithm to compensate for water
column effects is that of Lyzenga [11–13]. This model was developed from two-flow irradiance
transfer. Lyzenga exploited an intrinsic correlation between two color bands. This theory was
utilized to generate a pseudodepth and pseudocolor band. The pseudodepth channel can
theoretically be retrieved with appropriate ground truth information to estimate absolute
depth. The total remote sensing reflectance values with respect to depth were linearized by
removing an optically deep water value and taking the natural logarithm of the result.
Removing a deep-water reflectance value from each pixel [14, 15] or applying the water optical
properties [16] which are calculated from deep waters, were used to eliminate water column
influence. However, there are several issues in these methods. Because these models utilized
the hypothesis that energy traveling through a water column is not related to the substrate
type and water depth. In fact the intensity of light in optically shallow water decreases
exponentially with increasing depth, and changes from electromagnetic radiation. The error
due to the process has reduced the accuracy of seagrass mapping and bottom classification.
Based on these reasons, it is necessary to consider the water depth and the diffuse attenuation
coefficient when removing the water column effects.

In this chapter, we will introduce an improved optical model of incoming solar radiation
transfer. This model consumed the optically shallow water as multilayer water. This effective
and improved method can be applied to research the relationship between reflectance and the
LAI of seagrass.

2. The improved optically shallow water model

In this algorithm the optically shallow water is considered as a plane-parallel water body and
segmented into an enormous number of homogenous layers to describe the optical properties
of the optically water column. In this model, it is supposed an infinitely thin layer S of thickness
Δzi at depth z existed and can be measured downward from the sensor. The ith interval covers
depths from zi to zi+1, with Δzi = zi + 1 − zi. Figure 1 shows that the light is incident onto the surface
and scattered in all directions above the reflecting surface S. In order to calculate conveniently,
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we assume the reflecting surface S lies in the xy plane of a Cartesian coordinate system. In this
model, z axis is vertical to the surface, S, which is described in Figure 1. The light which is
incident onto the surface is defined as the incident irradiance Ed (z, λ). The subscript d
represents incident and λ is the wavelength. The field of view (FOV) of the sensor and the
angle of reflection are the key factors to determine if the photons scattered by the optically
shallow water can be recorded by the detector (Figure 2). It is notable that attention should
paid to those scattered photons which have the ability to get the sensor. We noted the unique
reflected path as CO which is used to represent how the scattered photos get the sensor O. We
suppose that the layer can be segmented into enormous infinitesimals. Figure 2 shows that a
beam of light Φdi illuminates the jth volume Δvj of thickness Δzi. In this situation, a fraction of
the collimated incident beam is scattered by S and get into a solid angle ΔΩj. The spectral
volume scattering function (VSF) is described as [17, 18]:

( )
i j

si

Δz 0 ΔΩ 0
di i j

Φβ ψ,λ = lim lim
Φ Δz ΔΩ
é ù
ê ú
ê úë û� �

(1)

Where Φdi is the incident flux; Φsi is the scattered fraction of incident light; ψ is the scattering
angle between the forward direction of the light and the line between the scattering point C
and the detector O. The part of the optically water column related to the upwelling radiant
flux, Φu

water, is given by [19, 20]:

Φu
water =∑

j
∑

i
β(ψ, λ)⋅ lim

Δzi→0
lim

ΔΩj→0
Φdi ⋅ΔΩj ⋅Δzi (2)

The contribution of downwelling radiant flux, Φdi, is defined as:

( )di d jΦ =E z,λ •Δs
r r

(3)

Where E
→

d (z, λ) is the downwelling irradiance at depth z; Φu
water is the part of upwelling radiant

flux and is described as:

( ) •water water
u uE z, slF =

r r
(4)
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Where E
→

u
water(z, λ) is the fraction of the optically water column to the upwelling irradiance.

The scattering part of the upwelling irradiance is:

( ) ( ) ( )water
u ddE z, E z, , d dzl l b l= × Y W (5)

Kirk [21] defined ku(λ) as vertical diffuse attenuation coefficient for upward flux. Then Philpot
introduced the parameter in [22]. d Eu

water(z → z −surf, λ) is the part of the upwelling irradiance
from the considered layer to the subsurface:

( ) ( ) ( ) ( )( )( ),water
u surf d u surfdE z z E z, , exp k z z d dzl l b y l l- -® = × × - - W (6)

Ed (z, λ) can be calculated as [23]:

( ) ( ) ( )( )( ),d d surf surfd
E z, E z z exp k z zl l l- -= ® - - (7)

Where kd is the vertical diffuse attenuation coefficient for downwelling irradiance.
d Eu

water(z → z −surf, λ) can be obtained by:

( ) ( ) ( )

( ) ( )( ) ( )
, ,water

u surf d surf

u d surf

dE z z E z z ,

exp k k z z d dz

l l b y l

l l

- -® = ® ×

é ù× - + × - Wë û
(8)

Equation (8) can be further simplified as:

( ) ( )
( )( )( ) ( )

, ,

2

water
u surf d surf

surf

dE z z E z z

exp k z z , d dz

l l

l b y l

- -® = ®

× - - × W
(9)

The total VSF β(ψ, λ) can be described as [24]:

( ) ( ) ( )w p, , ,b y l b y l b y l= + (10)

Where w and p represent pure sea water and particles, respectively. The VSF can be estimated
as [25]:
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( ) ( ) ( )
4.32

20
090 , 1 0.835cosw w, lb y l b l y

l
æ ö= ° × × +ç ÷
è ø

(11)

The particle VSF is estimated as [26]. Thus,

( ) ( ) ( )p p p, b ,b y l l b y l= × % (12)

Where bp is the particle scattering coefficient and β̃ p is the particle phase function [27–29]. Here,
the Henyey-Greenstein phase function [30] is selected:

( )
( )

2

3/22

1 1
4 1 2

HG
g

g gcos
y

p y
b -

= ×
+ -

% (13)

Here g is used to adjust the relative amounts of forward and backward scattering in βHG:

( )
1

1

2 cos cosHG d gp y yb y
-

=ò % (14)

In which case dΩ=sinψdωdψ, the contribution from the water column, can be further deduced.
By substituting equations (11)–(13) into (9), the flux by the water can be estimated as (see
Figure 2):
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( ) ( )
( )
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×

(15)

The irradiance of the water can be calculated:

( ) ( ) ( )( )( )

( ) ( )
( )

2

1
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l l l

lb l
l

y w

y
p y

y

+
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(16)

The Empirical Models to Correct Water Column Effects for Optically Shallow Water
http://dx.doi.org/10.5772/63149

33



Where ψ1, and ψ2 can be estimated as:

1 0 0 2
FOVy a q pæ ö= - + + +ç ÷

è ø
(17)

2 0 0 2
FOVy a q pæ ö= - + - +ç ÷

è ø
(18)

Here, FOV is the field of view of the sensor, α0 is the solar attitude and θ0 is the view angle

measured from the z axis. Integration of equation (16), Eu
water(z → z −surf, λ) can be expressed as:

( ) ( )
( )( )( )
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(19)

The subsurface irradiance reflectance can be estimated [31]. Rwater(0−, λ) can be further expressed
as:

( ) ( )
( )

( )( )( )
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é æ ö æ ö× - ° × × Y + Yê ç ÷ ç ÷
è ø è øêë

ù- ú- ×
ú+ - Y û

(20)

The subsurface remote-sensing reflectance just beneath the sea surface [32, 33], Rrs(0−,λ), can
be calculated as:
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( ) ( )0
0rs

R ,
R ,

Q
l

l
-

- = (21)

Q is the radio of the subsurface upward irradiance to radiance conversion factor [34]. Remote-
sensing reflectance of the water column just beneath the sea surface Rrs

water(0−, λ) can be
estimated as:
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(22)

Finally, the bottom reflectance can be obtained by Rrs
b:

( ) ( )0 0b water
rs rs rsR R , R ,l l- -= - (23)

3. Materials and methods

In situ survey was carried out in the Sanya Bay (109°25′–109°29′ E, 18°12′–18°13′ N) in the
South China Sea on 15–20, April 2008(see Figure 3). Thalassia seagrass dominates in this area.
Sanya Bay [35], which is a typical tropical bay, includes a broad range of habitats. Spectral
irradiance was measured by using a spectrometer (S2000, Ocean Optics, Inc.) [36]. The
instrument has a spectral resolution with 0.3 nm and bandwidths are from 200 to 1100 nm.
Besides, a self-designed remote cosine receptor was used to measure signals proportional to
the sky radiance, sea surface radiance and the radiance reflected from a horizontal reference
panel by connecting to the S2000 with an optical fiber (P400-2-UV/VIS) with a FOV of 10°. The
viewing angle was 40°.

Following the method in Mobley [37], the relative azimuth was set as 135°. The spectral
downwelling radiance was measured from a reflectance panel Lg(λ) (Spectralon). The reflec‐
tance of Spectralon is known, and the relationship between the measured radiance and the
incident irradiance Ed(λ) is given by:
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( ) ( ) ( )1
d gE q Ll l l

r
= × × (24)

q(λ) is an angular and wavelength-dependent factor, and ρg is the irradiance reflectance of
Spectralon. Clear sky conditions are necessary to in situ survey. 100 shoots of seagrass were
selected to count leaf number jj, and also to calculate the percentage of shoots with jj leaves
Xjj. Ten shoots with the same leaf number were selected. The leaves were centered on a box
(25 cm×40 cm), and then took a photo to record the situation. Based on the pixels of seagrass
in the photos, Mjj, the average leaf area of seagrass with the different numbers of leaves can be
recorded. The leaf area index M can be estimated as:

( )jj jjM P i M X= ´ ´ ´å (25)

Here P represents the seagrass density of each processing (shoots/m2).

4. Results

The algorithm was employed to obtain the bottom reflectance. Based on the results the seagrass
information which was retrieved from the modeled Rrs

b is reasonable to. In Figure 4, between
550 nm and 750 nm the predicted value Rrs

b agreed very well with the in situ measured bottom
reflectance Rrs

b. Between 600 and 800 nm, Rrs
b was found to be lower than subsurface remote-

sensing reflectance Rrs(0−). This error could be related to the absorption and scattering prop‐
erties of the optically shallow water which mainly affect the spectral reflectance at this band.

It is noted that the subsurface reflectance cannot be used directly to classify the bottom type
or substitute the bottom reflectance. We provided a comparison between the subsurface remote
sensing reflectance and the remote sensing reflectance of the bottom. The results also illustrate
the conclusion in Figure 5(a). It was found that there does indeed exist a considerable difference
between the subsurface remote sensing reflectance Rrs(0−) and the remote sensing reflectance
of the bottom Rrs

b. Compared to the subsurface reflectance, the retrieved bottom reflectance is
more related to in situ measured ones in Figure 5(b). It was found that there is a significant
relationship between in situ measured Rrs

b values and modeled ones. Therefore, it is safe to
conclude that Rrs(0−) cannot be used directly to represent the hyperspectral recognition of
seagrass in optically shallow waters is unfitted.

The seagrass reflectance with different LAI (Leaf Area Index) was surveyed to evaluate the
relationship between the spectral characteristics of seagrass and also validate the sensitivity
bands to LAI. The retrieved bottom reflectance can represent the typical optical properties of
seagrass very well than the subsurface remote-sensing reflectance (see Figures 6(a) and (b)).
Based on Figure 6(b), it is found that the typical optical characteristics of the seagrass are
obvious. In addition, a spectral peak shift from the red edge to the red with leaf areas is
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increasing. It was found that 555, 650, 675 and 700 nm are relatively good bands to extract LAI
information in Figure 6(b). In these regions, an excellent separation among the different LAI
index can be done. These bands correspond to the absorption troughs and reflectance peaks,
which were also related to the photosynthetic and accessory pigments. Large variations in
chlorophyll contents in seagrass leaves could determine a relatively small part of leaf absorp‐
tance. Figure 6(b) shows the properties between 680 and 720 nm in the leaves’ spectrum at the
different sites. The evident phenomenon is related to the package effect. It was found that the
pigment self-shading among thylakoid layers could affect the light absorption and the
harvesting efficiency, and thereby the chlorophyll concentration is not linear with the light
harvesting efficiency [38]. Cummings and Zimmerman [27], and Enriquez [28] also observed
the strong package effect in seagrass, and they concluded that it attributed to the restriction of
chloroplasts to the leaf epidermis. Figures 6(c) and (d) show that there is not an obvious
relationship between subsurface remote sensing reflectance at 715 nm and LAI. On the
contrary, there is a relatively significant relationship between the retrieved bottom reflectance
at 715 nm and LAI. This phenomenon also proves that this algorithm is effective to map
seagrass distribution and bottom classification.

In Figure 6(b), it was found that the reflectance of Thalassia increased from 518 to 532 nm. This
phenomenon was related to the changes in xanthophyll-cycle pigmentation. In addition, the
leaves of Thalassia were found to display an olive-drab color in the South China Sea, and that
properties was related the peak of the retrieved bottom reflectance curve near 550 nm (see
Figure 6(b)). A spectral region of maximum reflectance was found between 800 and 840 nm.
It is the typical spectral reflectance of aquatic plants. Based on the spectrum analysis, the
modeled bottom reflectance retrieved by the improved algorithm can be used to represent the
typical optical properties of seagrass.

5. Conclusions

An improved optically shallow water algorithm was provided to model the radiation transfer.
In the model, the water body was considered as a multilayer, heterogenous, nonhomogenous,
natural media. The algorithm could adjust the input parameter to the equation with the
different optical properties in water column for retrieving bottom reflectance. The equations
which were used to retrieve bottom reflectance or to quantify the benthos can keep the same
form. The method could model a wide range of the optical characteristics for radiation fields
in these layers. These properties are useful to simulate any contribution of each region and
learn the mechanisms of the formation of the radiation characteristics inside and outside the
layers. The algorithm can appropriately minimize the effects of the optically shallow water on
the remotely sensed signal to obtain an estimate of the reflectance of seagrass.

Based on the results and analysis, the method was proved to be valid for improving the
accuracy of bottom mapping. The water column correction algorithm is necessary to retrieve
the empirical relationships between satellite data and the interesting features in the optically
shallow water. Through the implementation of the algorithm and results analysis between
500–630 nm and 680–710 nm were found to be more effective to discriminate and map seagrass
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meadows of the Sanya Bay. Therefore, an appropriate spectral band for seagrass mapping
should include the narrow bands centered 555, 650, 675 and 700 nm (maximum bandwidth 5–
10 nm). A strong correlation coefficient of 0.99 existed between the bottom reflectance at 715
nm retrieved by the water column correction algorithm and LAI. The input parameters for the
algorithm in the study are the remote sensing reflectance from the subsurface. In order to apply
the algorithm to the satellite images, the atmosphere correction should be taken into account.
The atmosphere influence has a great contribution to affect the blue band. In order to improve
the accuracy of the surface reflectance, it could be acquired through further development of
the theory and models for the atmospheric correction. Therefore, the reflectance at 715 nm
could be used to estimate LAI of seagrass.
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