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Abstract

Intracranial  masses  are  a  significant  health  problem  and  present  several  imaging
challenges. The role of imaging is no longer limited to merely providing anatomic details
but the advanced MR techniques permit the assessment of the freedom of water molecule
movement,  the  microvascular  structure  and hemodynamic  characteristics,  and the
chemical makeup of certain metabolites of lesions. In the current chapter, we will discuss
the role of the advanced MR imaging techniques, namely perfusion, diffusion‐weight‐
ed imaging, and MR spectroscopy in the diagnosis and classification of the most frequent
brain tumors in adults. We provide a brief description of the advanced MR techniques
that are currently used, and we discuss in detail the imaging findings for each lesion.
These lesions include gliomas both high and low grade, metastatic lesions, lymphomas,
and lesions that may mimic tumors such as tumefactive demyelinating lesions, abscess‐
es,  and encephalitis.  Our goal is to summarize the diagnostic information that ad‐
vanced MR imaging techniques offer for establishing a diagnosis and clinical decision
making.
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1. Introduction

Among primary brain and central nervous system tumors in adults, meningiomas are the most
common, accounting for 36.4% of all, followed by pituitary tumors (15.5%) and glioblastoma
(WHO Grade IV) (15.1%), which is the most malignant primary brain tumor. Other types are
nerve sheath tumors (8.1%), all other astrocytomas (5.7%), lymphoma (2%), ependymal tumors
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(1.9%), oligodendrogliomas (1.6%), embryonal tumors (1.1%), oligoastrocytic tumors (0.9%),
and all other less frequent tumors (11.7%) [1].

Imaging has a fundamental role in intracranial tumor management. Magnetic resonance
imaging (MRI) is the imaging modality of choice for establishing diagnosis, classification,
surgical planning, and post‐treatment follow‐up. The latest MRI techniques, namely diffu‐
sion, perfusion, and spectroscopy, offer more than the anatomical information that conven‐
tional imaging provides. Diffusion allows the assessment of water displacement within tissue.
Diffusion tensor imaging permits the mapping of axonal organization. Perfusion MRI is a
technique for the assessment of cerebral perfusion. Dynamic susceptibility contrast imaging
(DSC‐MRI) perfusion technique is currently the most widely used and allows the calculation
of relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF). MR
spectroscopy, with single‐voxel or multi‐voxel techniques, can detect metabolites within tissue
such as N‐acetyl aspartate (NAA), choline‐containing compounds (Cho), myoinositol (mI),
lactate (Lac), creatine (Cr), and other molecules. However, no tumor‐specific metabolite has
been recognized to date.

Although the discrimination between intra‐axial and extra‐axial lesions is relatively straight‐
forward, for the accurate discrimination of the variety of intra‐axial tumors of several
difficulties exist. This is of paramount importance for timely and appropriate patients’
management. Herewith, we provide an overview of the latest MR techniques for the differ‐
ential diagnosis of intra‐axial tumors.

2. Primary tumors

Gliomas are the most common primary brain tumors. Glioblastoma accounts for 55% of all
cases followed by diffuse astrocytoma (8.6%), ependymal tumors (6.9%), anaplastic astrocy‐
tomas (6.1%), oligodenrogliomas (5.7%), pilocytic astrocytomas (5.2%), and other less frequent
glioma types [1]. Incidence is higher in males and in whites than in blacks. For glioblastoma,
the median age of diagnosis is 64 years but for low‐grade gliomas (grades I and II), most often
occur between 20 and 40 years. The major diagnostic goal in gliomas is the differentiation of
low‐grade from high‐grade gliomas and from other pathologies that have similar imaging
features.

2.1. Diffusion‐weighted imaging

Apparent diffusion coefficient (ADC) maps alone cannot differentiate between glioma from
another neoplasm or glioma type. Malignancy is usually associated with increased cellular
density, resulting in decreased signal intensity on ADC images. High‐grade gliomas usually
have significant lower ADC values than low‐grade gliomas. A lesion‐to‐normal (L/N) ADC
ratio of 1.43 could differentiate low‐grade from high‐grade gliomas with 100% sensitivity
and 94.4% specificity [2]. Evaluation of the perilesion area may aid the diagnosis of a pri‐
mary tumor due to its infiltrative nature (Figure 1).
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Figure 1. (A) A case of a grade II astrocytoma and of glioblastoma (D). There is a lower ADC value in astrocytoma (B)
than glioblastoma (E). The rCBV map shows increased perfusion in glioblastoma (F) contrary to astrocytoma (C).

2.2. Perfusion imaging

Perfusion MRI can be performed using a variety of methods. The most common techniques
are as follows: T2‐weighted dynamic susceptibility contrast (DSC), T1‐weighted dynamic
contrast enhanced (DCE), and arterial spine labeling (ASL). The latter do not require con‐
trast administration. The relative cerebral blood volume (rCBV) is the most frequent report‐
ed metric. This can be calculated by comparing the cerebral blood volume in a region of interest
that is drawn over the tumor to the CBV of a mirror region of interest placed over the normal
white matter in the contralateral side.

Gliomas are characterized by increased blood vessels formation for the transport of nu‐
trients and oxygen which are essential for tumor growth. Furthermore, apart from glioma
infiltration to parenchyma, malignant cells can also migrate using a perivascular route through
microvasculature [3]. Recent reports showed that glioblastoma cells can even differentiate into
endothelial cells and pericytes, thus aiding tumor vascularization [4]. High‐grade gliomas have
a significantly higher rCBV ratio than low‐grade gliomas (Figure 1). A cut‐off ratio of 0.63 has
been suggested for the differentiation between them [2]. Furthermore, a significant linear
correlation has been reported between rCBV ratio and glioma proliferation potentials as
assessed by Ki‐67 index and tumor's cell cycle analysis [5, 6]. High‐grade tumors had higher
Ki‐67 index, higher percentage of cells in G2/M phase, and lower percentage of cells in G0/G1
phase.

Oligodendrogliomas contrary to other low‐grade gliomas have significant higher rCBV
values (mean 3.68 ± 2.39) [7], overlapping even with high‐grade gliomas. A possible explana‐
tion to this is their increased vascular density and cortical localization [7]. Another impor‐
tant exception is pilocytic astrocytoma, the most common pediatric brain tumor with usually
infratentorial localization [8]. The tumor's mural nodule may show increased rCBV ratio in
comparison with other low‐grade gliomas. Clinicians should also bear in mind that heman‐
gioblastomas may also demonstrate high rCBV ratios.
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2.3. MR spectroscopy

Initial studies with MR spectroscopy showed promise for the diagnosis of brain lesions and
grading; however, recent evidences are controversial. Several metabolites can be measured
that correlate with various pathological alterations within lesions. NAA is the acetylated form
of the amino acid, aspartate, which is found in increased concentrations in viable neurons.
Given that non‐neuronal neoplasms destroy normal neurons there is a reduction in NAA
signal. Choline is a marker of cell membrane and can be found elevated in tumors and
inflammatory processes. Creatine is a measure of energy stores, whereas lactate increases in
cases of ischemia, in which the cell switches to anaerobic glycolysis and lactates accumulates.
Thus, lactate is more likely to be present in high‐grade than low‐grade gliomas. Lipids have
been recognized as a marker of myelin breakdown. Several studies have evaluated both single‐
voxel and multi‐voxel spectroscopy. Multi‐voxel has the advantage of greater spatial resolu‐
tion and extent of coverage, thus permits the evaluation of different components of
heterogeneous masses. Within tumor, some areas may be more metabolically active than
others. In brain tumors, there is usually an increased signal of Cho, whereas NAA and Cr are
reduced. Cho/Cr ratio tends to increase as glioma malignancy progresses. In a recent meta‐
analysis, Cho/NAA ratio showed a sensitivity of 80% and specificity of 76%, higher than Cho/
Cr ratio and NAA/Cr ratio for the differentiation of high‐grade from low‐grade gliomas [9].
However, both sensitivity and specificity do not enable an accurate diagnosis, thus addition‐
al imaging modalities may be needed. A CHO/NAA ratio >1, in voxels outside of the enhance‐
ment region, suggests tumor infiltration and is indicative of a high‐grade glioma (Figure 2).

Figure 2. MR proton spectrum of a grade II astrocytoma (A) and of a glioblastoma (B). Contrary to low‐grade glioma,
glioblastoma exhibits depression of the NAA and creatine (Cr) peaks and elevation of the choline (Cho) peak.
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3. Gliomatosis cerebri

Gliomatosis cerebri is a rare diffuse primary neoplastic process of glial origin with dismal
prognosis. Based on WHO criteria, this diffusely infiltrating glial neoplasm involves at least
three cerebral lobes. There is often bilateral involvement of the cerebral hemispheres and/or
deep gray matter (Figure 3) [10]. Histopathologically, it is characterized by diffuse infiltra‐
tion of brain parenchyma by small, immature glial cells that resembles astrocytes, oligoden‐
droglia, or undifferentiated cells [10, 11]. The lesion can contain areas of WHO grades II or III
tumors, and less frequent grade IV. Symptomatology is subtle and may involve changes in
personality and mental status, headache, hemiparesis, ataxia, and seizures. Although it
appears radiologically as extensive disease, clinical symptomatology may be silent. Diagno‐
sis requires brain biopsy and histopathological examination.

Figure 3. T2‐W axial images show diffuse hyperintense lesions with enlargement of the involved structures and little
mass effect (arrows).

Two subtypes can be identified radiologically: type 1 with no discrete component and type II
with a solid component and diffuse CNS involvement. IDH1 mutations have been reported
more frequent in type II GC [12]. MRI findings are essential for establishing the correct
diagnosis. Hypointensity in T1‐weighted sequences and hyperintensity in T2‐weighted and
FLAIR sequences are the classical findings. Another usual MRI finding consists of diffuse
infiltration of the cortex with an enlargement of the cortical sulci and the absence of clear
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delineation between white and gray. Contrast enhancement is absent [13]. In DWI, there is
usually no restriction. Perfusion MR shows low or normal rCBV values correlating with the
absence of vascular hyperplasia. MR spectroscopy reveals elevated Cho/NAA ratios and
marked elevation of myoinositol [14] (Figure 4).

Figure 4. Short‐echo MR proton spectrum shows an elevated myoinositol (mI) peak (at 3.55 ppm) in a case of gliomato‐
sis cerebri.

4. Primary central nervous system lymphoma

Primary central nervous system lymphoma (PCNSL) is a rare variant of extranodal non‐
Hodgkin lymphoma and affects about 1,000 people in the United States each year. Non‐
invasive diagnosis of PCNSL is of paramount importance given the dramatic benefits of
chemotherapy in this tumor. Typical MR imaging features of PCNSLs are frequent periven‐
tricular locations, perilesional edema, well‐defined margin, and homogeneous and intense
nodular enhancement.

4.1. Diffusion‐weighted imaging

PCNSLs tend to have a low ADC value because of high cellularity (Figure 5). Brain abscess
has higher ADC values than lymphomas; thus, this feature can help in differentiating these
two entities [15].

Neurooncology - Newer Developments170



Figure 5. A case of lymphoma (A, B) revealing a low ADC value (C), low perfusion (D), and elevated levels of Lipids
(E).

4.2. Perfusion imaging

PCNSL has low rCBV compared with that of high‐grade gliomas and metastasis; however,
overlapping values may exist (Figure 5). An important clue is that PCNSL demonstrates a
significant increase in signal intensity above the baseline due to massive leakage of contrast
media into the interstitial space contrary to high‐grade gliomas [16]. Lymphoma tends to
demonstrate higher rCBV compared with toxoplasmosis [15].
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4.3. MR spectroscopy

Characteristic spectroscopic findings for PCNSL include elevated signals of lipid, choline, and
lactate and reduced NAA signal (Figure 5). Large lipid peaks on lesions without central
necrosis are also strongly suggestive of PCNSL [17]. High lipid peak may be due to in‐
creased turnover of the membrane components in transformed lymphoid cells.

5. Differential diagnosis

5.1. Tumefactive demyelinating lesions

Tumefactive demyelinating lesions (TDLs) can be seen either during a relapse of a known
multiple sclerosis or on acute onset. TDL can mimic high‐grade gliomas on conventional MRI.
In both conditions, there is contrast enhancement, perilesional edema, and central necrosis.
Additional histopathology is not always straightforward since abnormal mitotic figures in
reactive astrocytes can be present. In TDL, there is usually incomplete rim enhancement on
MRI and little mass effect and edema (Figure 6).

Figure 6. A case of TDL demonstarting incomplete rim enhancement on sagittal T1-weighted images after intravenous
contrast administration.

5.1.1 Diffusion‐weighted imaging

Min ADC values were higher in TDL than in PCNSLs or high‐grade gliomas given that TDL
is lesser cellular lesions than both PCNSLs and high‐grade gliomas [18]. An important
exception might be an acute demyelinating lesion which has areas of low ADC values (Figure 
7). In acute phase in the TDL rim, there is peripheral restricted diffusion. The abnormal

Neurooncology - Newer Developments172



diffusion resolves within 1–3 weeks. Following restricted diffusion on initial MRI, subse‐
quent Gd enhancement can be seen [19].

Figure 7. A case of TDL (A) demonstrating moderate ADC values (B). The rCBV maps show no elevation of Blood
volume compared with contralateral normal white matter (C).

5.1.2. Perfusion imaging

TDL shows significant lower rCBV values (mean 0.88 ± 0.46) than high‐grade gliomas (mean
6.47 ± 6.52), given the increased angiogenesis that the latter have (Figure 7). However, PCNSL
had a less pronounced difference with a mean value of 2.11 ± 0.53 [20].

5.1.3. MR spectroscopy

TDL findings on spectroscopy are usually involve an elevated choline peak and reduced NAA
signal. There may be also increased lactate and increased Cho/NAA that can reach high levels
similar to that of high‐grade gliomas; thus, differential diagnosis is problematic. The detec‐
tion of glutamate and glutamine elevations has also been suggestive of TDL [21].

5.2. Brain abscess

Brain abscesses usually result from the extension of inflammation from the sinuses, the orbit,
the mastoid cells, or the middle ear. As possible ways of spreading are either direct infection
from a penetrating trauma, septic emboli, and contiguous or hematogenous spread. The most
common pathogen is Streptococcus pneumoniae. Symptomatology is similar to any other mass
lesions but tend to progress rapidly. Classical MRI findings of abscess in T2‐weighted images
are high‐signal intensity with a thin rim of low intensity surrounded by edema. Further‐
more, satellite lesions are more common in abscesses contrary to neoplastic lesions.

5.2.1. Diffusion‐weighted imaging

The characteristic finding of brain abscess in DWI is a core of restricted diffusion due to pus
consistency, whereas in neoplasms, there is usually low DWI signal (Figure 8). However, some
necrotic brain metastasis may also display high signal intensity on DWI [22]. ADC values
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usually increase as treatment is successful even if cavity remains. Another finding in the rim
of neoplastic lesions is a lower ADC value than that of an abscess.

Figure 8. A case of an abscess (A) revealing low ADC values corresponding to the nonenhancing portion of the abscess
(B).

5.2.2. Perfusion imaging

Contrary to glioblastomas and metastases, the enhancing rims of abscesses usually demon‐
strate lower rCBV values. The rCBV ratio of the enhancing portions of abscesses has be reported
to be 0.79 ± 0.18, whereas in tumors was 1.40 ± 0.54 [23].

5.2.3. MR spectroscopy

Relative‐specific MR spectroscopic feature of brain abscess is a succinate peak; however, it is
not present in all cases. Apart from that elevated peaks of lactate, acetate, amino acids, alanine,
valine, leucine, and isoleucine can be found. In abscesses reduced peaks of Cho/Crn and NAA
are usually present [24]. Tuberculous abscesses typically have high lipid (mostly short‐chain
fatty acids such as butyric, isobutyric, caproic). Disappearance of metabolites of bacterial origin
has been correlated with positive response to therapy [25].

5.3. Encephalitis

Encephalitis is an acute, usually diffuse, inflammatory process affecting the brain and may
mimic mass lesions. Herpes simplex (HSV) encephalitis is the most common cause. Biopsy is
helpful in some instances. Patients are usually confused and disoriented at the beginning and
progress to coma within days. MRI demonstrates edema as high signal on T2, primarily within
the temporal lobe, that may extend across sylvian fissure. Enhancement is usually present after
the second week. Foci of hemorrhage occasionally can be found on MRI.
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5.3.1. Diffusion‐weighted imaging

Encephalitis typically demonstrates low ADC values due to cytotoxic edema. However,
encephalitis may mimic an infarct that involves the cortical regions of the temporal lobe.

5.3.2. Perfusion imaging

Perfusion MRI has not been widely studied in encephalitis. At an early stage, there is an
abnormal increase of blood flow in the affected area, followed by hypoperfusion at a later stage.

5.3.3. MR spectroscopy

On MR spectroscopy, finding encephalitis needs to be differentiated from a low‐grade glioma
which has similar findings. In general, there is a decrease in NAA peak usually 1–2 weeks after
onset. After clinical recovery, there is a corresponding increase in NAA [26, 27]. Frequently,
there is an increase in choline and myoinositol peak. An increased Cho/Cr ratio may be
attributed to myelin breakdown. Sporadically, the lactate peak may be elevated.

5.4. Metastasis

Although the annual incidence of brain tumors is 17,000, for brain metastasis is 170,000 [28].
Thus, brain metastasis is the most common brain tumor seen clinically. The source of more
than 50% of metastatic lesions is lung and breast cancer. When a single‐brain lesion is found
in a patient with a history of cancer, in 11% of these cases the lesion will not be metastatic. Four
out of five of solitary metastases are located in the cerebral hemispheres. The majority tends
to occur at the gray/white matter junction and is usually located posterior to the Sylvian fissure.

5.4.1. Diffusion‐weighted imaging

The characteristic diffusion‐weighted imaging feature for metastatic neoplasms is an elevat‐
ed ADC. However, there is an overlap of the ADC values of metastatic lesions with those of
primary neoplasms (Figure 9). Evaluation of ADC values in the non‐enhancing T2‐hyperin‐
tense areas surrounding the lesion may provide clues for the differentiation of high‐grade
gliomas from metastasis, given the lower ADC values in infiltrated areas of primary neo‐
plasms compared with metastatic lesions. A threshold value of 1.302 × 10-3 mm2/s for the
minimum ADC value in the peritumoral regions had a sensitivity of 82.9% and specificity of
78.9% for distinguishing between glioblastoma and metastasis [29]. Although some studies
have not found correlation between restricted diffusion or ADC values and various histolog‐
ic types of metastases; however, a study reported that well‐differentiated adenocarcinomas
had lower DWI signal intensity compared with poorly differentiated carcinomas [30, 31].
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Figure 9. There is overlapping in the ADC values between a metastatic (A) and a primary brain tumor (B).

5.4.2. Perfusion imaging

Angiogenesis is essential for metastatic tumors growth. Thus, these lesions are associated with
increased rCBV values compared with contralateral normal white matter. Thus, perfusion
metrics tend to overlap between high‐grade gliomas and metastatic lesions (Figure 10). The
peak height and the percentage of signal intensity recovery derived from the T2* relaxivity
curve on DSC MR has been reported to provide important clues [32]. Apart from that,
metastasis from melanoma and renal cell carcinoma has been reported to have significant
higher rCBV values than high‐grade gliomas and metastases from lung cancer [33].

Figure 10. Both glioblastoma (A, B) and metastatic lesions (C, D) exhibits increased rCBV values, not permitting a dif‐
ferentiation based on perfusion imaging.
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The rCBV values of perilesional area are usually higher for gliomas than metastatic lesions,
due to glioma's infiltrative nature. In a study of 22 high‐grade gliomas and 26 metastatic
lesions, the rCBV ratios of peritumoural edema were 0.89 ± 0.51 in high‐grade gliomas and
0.31 ± 0.12 in metastasis. A threshold rCBV value of 0.46 has been proposed, with a sensitivi‐
ty of 77.3% and specificity of 96.2% for the differentiation of the two entities [34].

5.4.3. MR spectroscopy

Accurate differentiation between high‐grade gliomas and metastatic lesion based on the
enhancing part is problematic based on MR spectra. In metastatic lesions, there is no NAA
peak, whereas necrosis results in a lipid peak. Lipid and lactate may be also elevated in primary
brain tumors due to necrosis. Myoinosital peaks have not been reported to date in brain
metastases, contrary to high‐grade gliomas which tend to have elevated peaks [35, 36]. Given
that primary tumors have a tendency to infiltrate, evaluation of the T2 hyperintense perile‐
sional tissue provide more important information. Thus, although there is an intratumoral
choline peak in both primary and metastatic lesions, there is no choline elevation in the
peritumoural edema in metastatic lesions [37].

6. Conclusion

Intra‐axial brain lesions are a significant health problem and are often a diagnostic imaging
challenge. Advanced MRI techniques including proton spectroscopy, perfusion, and DWI
have all been evaluated primarily in the context of distinguishing high‐grade gliomas from
metastases, abscess, and CNS lymphoma. Knowledge of the imaging characteristics of the
most common intra‐axial masses may allow the non‐invasive diagnosis and classification of
these masses.
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