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Abstract

Alcohol use disorders (AUDs) constitute one of the 10 leading causes of preventable deaths
worldwide.  To date,  there  are  only  a  few Food and Drug Administration (FDA)‐
approved  medications  for  AUDs,  all  of  which  are  only  moderately  effective.  The
development of improved and effective strategies for the management of AUDs is greatly
needed. This review focuses on understanding the neurobiological basis of alcohol
addiction with a special emphasis on the role of serotonin (5‐hydroxytryptamine, 5‐HT)
and noradrenaline (NE) in AUDs and sheds light on their complex interplay in the
basolateral amygdala (BLA)––a brain region widely implicated in addiction. There is a
significant evidence to support the role of the amygdala in stress‐induced negative
emotional states resulting from withdrawal from alcohol; in fact, it has been hypothe‐
sized that this leads to craving and relapse. Dysregulation of 5‐HT and NE signaling in
the BLA have been proposed to alter affective behavior, memory consolidation, and most
importantly increase the propensity for addiction to alcohol and other common drugs of
abuse. Improving deficits in 5‐HT and NE receptor signaling may provide ideal targets
for the treatment of AUDs.

Keywords: Addiction, alcohol use disorders, noradrenaline, serotonin, basolateral
amygdala
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1. Introduction

1.1 Alcohol addiction: one drink too many

Alcohol dependence or alcohol abuse, now collectively known as alcohol use disorders (AUDs),
causes significant loss of productivity, health concerns, emotional instability, career‐oriented
failures, and socioeconomic problems [1]. It is estimated that AUDs amount to 3.8% of global
deaths and 4.6% of disability‐adjusted life years [2]. The Diagnostic and Statistical Manual of Mental
Disorders, 4th edition (DSM‐IV‐TR), defines AUDs on the persistence of dependence symp‐
toms like tolerance, withdrawal, increased amounts of alcohol consumed over time, ineffec‐
tive efforts to reduce use, interference with personal or professional life, significant amount of
time spent obtaining, using, and recovering from alcohol or continued use of alcohol despite
harmful consequences [3].  The U.S.  National  Institute of  Alcohol Abuse and Alcoholism
(NIAAA) defined men who consume more than 14 drinks per week and women having more
than 11 drinks per week belong to the “At Risk” category of alcohol consumers.

1.2 Neurobiology of alcohol addiction: a vicious cycle

Alcohol addiction like any other drug addiction is a chronic relapsing disorder characterized
by compulsive alcohol use and alcohol‐seeking behavior [4, 5]. The neurobiology of alcohol
addiction is increasingly complex; however, for the purpose of simplicity, it can be delineated
in three stages. The first phase of this cycle is the Binge and intoxication stage [5]. During this
phase, reward areas of the brain involving the mesocorticolimbic system like the dorsal
striatum and nucleus accumbens (NAc) are activated, which results in pleasurable and
rewarding feelings [5, 6]. Dopamine is a key neurotransmitter involved in this stage [7–9]. The
positive reinforcement is triggered by the pleasurable effects of alcohol where the user wants
“more” to experience the hedonic effects. This is then followed by the Withdrawal stage [5].
During this phase, brain regions that are associated with negative feelings and emotions are
activated, such as the amygdala and bed nucleus of stria terminalis (BNST) [4, 5]. Chronic
withdrawal‐induced stress blunts the activity of the stress–response system and sensitizes
extrahypothalamic structures of the extended amygdala [6, 10]. This stage marks a critical
phase in the addiction cycle where alcohol use is primarily motivated by the desire to avoid
negative feelings of stress, dysphoria, and negative emotional states of alcohol withdrawal.
The third phase is the Preoccupation and anticipation stage [5]. During this phase, brain regions
like the frontal cortex and hippocampus [11] that respond to previously paired alcohol cues
and contexts are activated, intensifying alcohol‐seeking behavior [12, 13]. Since the frontal
cortex is involved in decision‐making and higher executive functions, alcohol‐induced
neuroadaptations of the frontal cortex [14] impair higher cognitive and decision‐making
processes, increasing the rate of relapse in alcoholics.

Over time, as this cycle is repeated, alcohol‐induced neuroadaptations in the reward circuitry,
stress–response pathway, and brain regions involved in higher cognitive functions facilitate
the transition from nondependent to dependent alcohol consumption. These maladaptive
neuromodulations contribute to sensitization, tolerance, craving, and relapse to alcohol‐
seeking [4]. For instance, alcohol‐induced plasticity in glutamatergic signaling in the NAc may
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contribute to behavioral sensitization to the effects of alcohol [15], while changes in the synaptic
properties of NAc‐medium spiny neurons contribute to relapse during withdrawal [16].
Furthermore, chronic alcohol modulates presynaptic and postsynaptic functions on glutamate
neurons in the basolateral amygdala (BLA) [17]. Finally, alcohol impairs communication
between the amygdala and prefrontal cortex to disrupt cognitive and emotional responses that
lead to altered affective states that further contribute to the development of alcohol dependence
[18, 19].

1.3. Pharmacotherapy: available treatment options for AUDS

Bill Wilson and Bob Smith took early steps toward alcohol remediation in 1935 with the
introduction of Alcoholic Anonymous (AA) [20, 21]. This 12‐step approach toward rehabili‐
tation was built on the premise of acceptance of individual helplessness during addiction to
alcohol and other drugs of abuse [22]. This method was adopted by the “Minnesota model of
addiction treatment” in a 28‐day rehabilitation setting [23]. Parallel efforts to treat alcohol‐
ism by understanding the nature and cause of alcohol dependence were gaining momentum,
which led to the foundation of the National Institute of Alcohol Abuse and Alcoholism
(NIAAA) in 1970 [24].

Since then, several approaches to understand and treat alcoholism were designed that took
into consideration individual differences and susceptibility to AUDs. Cognitive behavioral
therapy or motivational therapy was adopted as the first line of treatment to match the needs
of the addict to help recuperate in a 12‐week therapy session called “Project MATCH” [25].
This project was successful in rehabilitation of patients that did not have any psychiatric
conditions. The next step was to combine behavioral and pharmacotherapy in the treatment
of alcoholism called “Project COMBINE” [26]. This study evaluated the efficacy of available
pharmacotherapies, namely acamprosate and naltrexone, in conjunction with or without
medical assistance and with or without cognitive–behavioral therapy [27].

Acamprosate (CampralTM), the calcium salt of N‐acetyl homotaurine, suppresses alcohol
consumption and relapse [28, 29]. Early reports delineating the mechanism of action of
acamprosate were unclear [30]; however, recent studies have shown that acamprosate works
through the calcium ion in its molecular structure [31]. This was supported with improved
results in patients that showed an increase in plasma calcium levels following acamprosate
treatment [31]. Acamprosate has been shown to have a good safety and a tolerability profile
and is highly effective in maintenance of abstinence in patients who are abstinent at treat‐
ment initiation [32].

In addition to acamprosate, the mu‐opioid receptor antagonist, naltrexone (Re ViaTM), was
found effective as a treatment for alcohol consumption and relapse [33]. However, studies have
shown that naltrexone is ineffective in achieving abstinence in alcoholic subjects; instead it is
more effective to reduce consumption [34, 35]. Also, recent research demonstrated that it acts
more specifically for a cohort with single nucleotide polymorphism (SNP) in exon 1 of the mu‐
opioid receptor gene (OPRM1) [36] limiting broader efficacy. Nevertheless, naltrexone reduces
alcohol consumption through a dopaminergic/opioidergic reinforcement system, causing
increased sedation and less arousal in patients consuming alcohol [35]. Both these drugs were
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successful in reducing drinking in combination with behavioral therapy, as highlighted by the
COMBINE project [37].

In addition to acamprosate and naltrexone, disulfiram (Antabuse®) was approved as a
therapeutic treatment for alcoholism. The anti‐alcohol addiction properties of disulfiram were
serendipitously discovered, when a Danish physician Jacobsen accidentally ingested alcohol
over disulfiram and experienced its unpleasant and nauseous effects [38, 39]. Disulfiram
inhibits the enzyme aldehyde dehydrogenase (ALDH), which results in the accumulation of
acetaldehyde on alcohol ingestion [40]. This toxic metabolite produces aversive symptoms,
such as flushing, nausea, and vomiting, and a desire to avoid this reaction encourages
abstinence [41]. Disulfiram also inhibits dopamine‐β‐hydroxylase (DBH), the enzyme required
to synthesize noradrenaline (NE). It reduces NE concentrations and elevates dopamine (DA)
concentrations to facilitate normal DA functioning [40, 41], a pharmacotherapeutic feature of
the drug that makes it an excellent treatment option even for cocaine addicts.

In addition to this, our lab has investigated the role of neuronal nicotinic acetylcholine
receptors in alcohol addiction and came up with varenicline (ChampixTM) as a treatment option
for AUDs [42, 43]. Varenicline was found to be more efficacious in heavy‐drinking smokers
because of the comorbid nature of both the types of addiction involving the recruitment of
nicotinic acetylcholine receptors. Varenicline is now in its third stage of clinical trial as a
treatment option for AUDs [44, 45].

1.4. Shortcomings of available treatment options for AUDs: need for better pharmaceutical
alternatives

Acamprosate, naltrexone, and disulfiram are the only available medications for alcoholism
approved by the Food and Drug Administration (FDA), while nalmefene (SelincroTM), an
opioid receptor antagonist having a similar mechanism of action to naltrexone [46], is approved
as a medication for alcohol abstinence in Europe [47]. Most of these drugs treat one aspect of
alcoholism at best without significantly altering other parameters of alcohol addiction.

Drugs like acamprosate reduce consumption and are effective in motivating abstinence for a
certain period of time. However, acamprosate does not significantly affect abstinence‐induced
rebound consumption of alcohol [48]. Also, despite achieving an aversion for alcohol, the
likelihood of the addict returning to drinking with increased tolerance cannot be assured. A
case study also indicated the development of Parkinson's‐like syndrome with acamprosate
use [49].

Although naltrexone was shown to be very effective with and without cognitive behavioral
therapy, noncompliance with maintenance of drug regimen was shown to limit efficacy [50].
About 37% patients were reported to discontinue naltrexone therapy by 12 weeks and 80%
by 6 months [50]. It is possible that some of the severe complications involved with naltrex‐
one use, that is, renal failure and hepatitis, may have contributed to its early discontinuation
[51]. Furthermore, the efficacy of naltrexone appears to be related to alcohol abusers having
the mu‐opioid SNP [36].
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All the above drugs work best when combined with an individual's motivation to quit
drinking. Disulfiram works on this principle as it deters the positive reinforcing effects of
alcohol and masks them with aversive and negative feelings stimulated by the action of the
drug post‐alcohol consumption [52]. As a result, this drug is effective for alcoholics with a goal
to achieve complete abstinence, but has limited efficacy for alcoholics without these goals.
Noncompliance is one of the biggest challenges in the use of disulfiram, illustrated by the 20%
compliance measure in the largest controlled trial to date [53]. Also, disulfiram is contraindi‐
cated in patients with cardiac disease and on rare occasions may cause severe liver damage [54].

Despite the availability of these pharmacotherapies and behavioral therapy, AUDs are widely
prevalent. As illustrated by COMBINE, no single medication or treatment strategy is effec‐
tive in every case or in every person [37]. A detailed investigation of other neurobiological
factors that play a role in alcohol dependence is needed as are further strategies to treat
alcoholism.

The remainder of this chapter highlights the role of serotonin (5‐hydroxytryptamine, 5‐HT),
NE, and BLA in alcohol addiction with a view to improve current treatment strategies for
AUDs.

2. NE and serotonin: role in alcohol dependence

Prolonged alcohol exposure causes maladaptive changes in regions of the extended amygda‐
la that cause sensitization to negative emotional states and reinforcement of addictive
behaviors during withdrawal. These neuroadaptations alter the activity of important neuro‐
transmitters particularly involved in stress. Such changes are well documented for increas‐
ing the activity of the stress neurotransmitter corticotrophin‐releasing factor (CRF) in rodent
models of alcohol dependence [4]. Additionally, changes in the function and signaling of other
neurotransmitters including 5‐HT [55–57] and NE [55–61] have also been implicated in the
development of alcohol addiction.

NE and 5‐HT play a crucial role in regulating mood, emotions, and importantly, behavioral
adaptations to stress that include addictive phenotypes [57, 60]. As these neurochemicals
widely innervate the reward system [62–66] and extrahypothalamic regions involving the
amygdala [67–71], these are prime candidates to influence alcohol and even other drug‐seeking
behaviors.

Dysregulation of the 5‐HT pathway is implicated in AUDs and other affective states like
depression and anxiety disorders [57, 72, 73]. Recent studies have demonstrated an increase
in the immunoreactivity of tryptophan hydroxylase (TRH)––the rate‐limiting step in 5‐HT
synthesis, in the dorsal raphe nuclei (DRN) of alcohol‐dependent victims of depression and
suicide compared to normal psychiatric controls [74]. Such disruptions in brain serotonin levels
in these individuals have widespread implications in the role of 5‐HT to regulate emotional
and behavioral vulnerability to alcohol and other drugs of abuse. Alcohol increases 5‐HT levels
in the ventral tegmental area (VTA), NAc, and amygdala [75]. These brain regions play a
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pivotal role in processing of information from emotional and rewarding stimuli. Chronic
alcohol abuse alters the activity of these brain areas, resulting in changes in motivational and
goal‐directed behaviors, which further drive alcohol‐seeking behavior [76, 77]. For instance,
studies have shown that behavioral sensitization to alcohol is mediated by accumbal 5‐HT2C

receptors [76], and blockade of 5‐HT3 receptors especially in the VTA attenuates alcohol
consumption [77]. The 5‐HT receptors, 5‐HT1A, 5‐HT1B, 5‐HT2A, and 5‐HT2C, [78–80] have been
widely implicated in alcohol consumption in animal models with new evidence also impli‐
cating 5‐HT3 and 5‐HT6 receptors in alcohol addiction [81, 82].

NE has been shown to play a significant role in negative emotional states which contribute to
alcohol consumption [60, 83, 84]. Acute alcohol decreases [85], while chronic alcohol and
withdrawal increases the activity of neurons in the locus coeruleus (LC), a region that provides
the majority of NE in the brain [86]. Activation of the α2‐adrenergic autoreceptors has been
shown to attenuate the overall negative effects of withdrawal [87], and blocking α1‐adrener‐
gic receptors (ARs) using prazosin reduced alcohol consumption in dependent rats [88] and
human alcoholics [89]. Likewise, treatment with the β‐AR antagonist, propranolol, reduced
drinking in dependent rats [60]. Evidence also suggests that β‐ARs may also contribute in
mediating the anxiolytic effects of alcohol [58].

Furthermore, CRF is a regulating factor in the activation of the hypothalamus–pituitary–
adrenal (HPA) axis to stress [90–94]. Chronic alcohol consumption affects CRF signaling in the
central nucleus of amygdala (CeA) and BNST, as evidenced by alterations in CRF transmis‐
sion during withdrawal [95]. Interestingly, NE and 5‐HT have been shown to interact with the
neurotransmitter CRF in neuroanatomical sites like the LC, DRN, CeA, and BNST [96–100] to
influence addictive behaviors. For instance, yohimbine, a pharmacological agent used to
promote stress in rats, has effects on NE, 5‐HT, and CRF signaling to potentiate alcohol
drinking and reinstatement [101, 102], suggesting possible mutual regulatory roles of these
neurotransmitters in alcohol dependence and relapse. This was further evidenced by CRF
antagonism in the DRN to attenuate yohimbine‐induced alcohol‐seeking behavior in rats [100].
Also, CRF and NE antagonism has been shown to be effective in reducing stress‐induced
reinstatement in human alcoholics [88, 103].

3. The BLA: role in alcohol addiction

The amygdaloid complex is made up 13 distinct nuclei which are divided in three groups: the
deep or basolateral group, the superficial or cortical‐like group, and the centromedial group
[104]. These nuclei have been proposed to be located in such a way to maximize the amygdala's
connections with other limbic, cortical, and subcortical regions of the brain to help facilitate
its function in emotional processing, learning, and fear memory [105–107]. The basolateral
amygdalar complex, comprising of lateral amygdala (LA), basal and basomedial nuclei [108,
109] controls behavioral expressions like emotional arousal, fear, and stress that are linked to
traumatic incidents, stressful environmental stimuli, or pharmacological stressors, and
consolidates them as memories [70]. The BLA communicates through excitatory efferents to
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the prefrontal cortex and structures of the limbic system involving the hippocampus, NAc,
dorsomedial striatum (DMS), and BNST [110–114], while it receives feedback from these
structures through glutamatergic afferents [115, 116], majority of which converge with the
cortical inputs [114] running toward the BLA.

The role of the BLA in fear, memory consolidation, and emotional learning along with its
contribution in associative learning for appetitive conditioning is well documented [70, 105,
117, 118]. Since the BLA can impart incentive salience to a previously neutral stimulus in
response to a motivational or a goal‐directed task [119], recent efforts have now focused on
the role of the BLA in drug‐seeking, including cocaine [120], morphine [121], and alcohol [122–
124].

Alcohol has been shown to increase neuronal activity and glucose utilization in the BLA [125].
Additionally, long‐term alcohol exposure alters glutamate transmission in the BLA [126] and
NAc [127], which is implicated in increased alcohol self‐administration in rodents [128].
Furthermore, alcohol‐induced withdrawal stress increases presynaptic glutamatergic func‐
tion in thalamic afferents to the BLA that may explain the increased emotional dysregulation
during withdrawal [129]. It has also been shown that altered neuropeptide S function in the
BLA following long‐term alcohol exposure may contribute to relapse [130]. Furthermore, a
recent study has shown that IL‐1 receptor signaling in the BLA contributes to binge‐like alcohol
consumption in mice [131].

There is growing body of evidence that supports the role of the BLA in conditioned–cued
relapse [132] and context‐induced reinstatement [133] for alcohol and a variety of other
drugs [134–137]. It was shown that the BLA may play a significant role in cue‐induced alcohol
reinstatement [138], following exposure to previously alcohol‐paired environmental cues
[123]. Research has also shown that BLA–glutamatergic signaling attributes salience to
conditioned cues that are related to alcohol‐seeking [132], while the opioidergic system of the
BLA may play a role in context‐induced alcohol‐seeking [140]. Indeed, since the BLA exten‐
sively communicates with the NAc, alcohol withdrawal‐induced changes in glutamatergic
function in the BLA get perpetuated in structures of the reward system that may contribute to
craving and relapse [141].

It is well documented that repeated and chronic stress leads to adverse behavioral outcomes,
and many studies support the reinforcing effects of chronic stress in drug addiction in animal
models [86, 142–144]. Stress alters the morphology of BLA principal cells and impairs fear
extinction memory [145] that may have implications in the development of affective disor‐
ders like PTSD and depression. It has been shown that the BLA modulates chronic stress‐
induced learning and memory deficits in the hippocampus, suggesting that dysregulation of
BLA–hippocampal signaling may affect memory storage, retrieval, and extinction of fear
memory that may contribute to emotional disorders and drug dependence [146]. Further‐
more, early life stress causes increased excitability of pyramidal cells in the BLA [147], while
chronic restraint stress in adolescent and adult rats increases BLA activity [148]. Increased BLA
excitability has been positively correlated with increased anxiety and increased alcohol‐
seeking behavior [141, 147, 149, 150].
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Long‐term exposure to alcohol simulates chronic stress‐like conditions [130] that have a
profound effect on fear memory consolidation [151]. Alcohol withdrawal‐induced stress has
been shown to increase conditioned fear [152] and impair extinction of fear memory [153]. A
recent study also showed that repeated alcohol exposures enhance retrieval of previously
consolidated fear memories and augments activity in BLA and other brain regions involved
in fear memory retrieval [154].

4. Role of 5‐HT and NE in the BLA in alcohol addiction

There is significant evidence that supports the role of NE and 5‐HT in drug dependence and
alcohol addiction [87, 155–157]. Moreover, the BLA which is highly implicated in depend‐
ence to alcohol‐seeking [17, 123, 131, 132] is densely innervated by these neurotransmitters [58,
71, 158, 159]. Since chronic alcohol exposure causes neuroadaptations that affect the signal‐
ing and receptor subtypes of these neurotransmitters, dysregulation of NE and 5‐HT trans‐
mission in the BLA may lead to a constellation of aversive outcomes including altered
consolidation of alcohol‐related memories, anxiety disorders, and eventually higher rates of
relapse [132, 138].

NE plays a vital role in facilitating the function of the BLA in fear memory consolidation [70].
It has been shown that intra‐BLA infusions of β‐AR agonists enhance retention of inhibitory
avoidance [160], while β‐AR antagonists block fear memory enhancement [69]. Also, α1‐AR
activation in the BLA enhances fear memory consolidation through an interaction with β‐
ARs [161]. This evidence suggests that noradrenergic receptors strongly contribute to BLA
function. It is possible that alteration in NE activity in the BLA may lead to altered memory
consolidation and stress‐coping mechanism that may enhance alcohol‐seeking and relapse
[162]. Indeed, antagonism of α1‐ARs reduced dependence‐induced increase in alcohol
consumption in rats [88]. Furthermore, recent evidence supports the role of β‐ARs in alcohol‐
induced enhancement of GABA synapses in the BLA, suggesting a possible noradrenergic
mechanism mediating the anxiolytic effects of alcohol [58] (Figure 1). This was further
evidenced by intra‐BLA infusions of a β3‐AR agonist that enhanced inhibitory GABA signaling
on BLA pyramidal cells to reduce anxiety‐like and alcohol‐seeking behavior [163].
Furthermore, the neuroadaptive changes associated with chronic alcohol consumption
including desensitization of β‐ARs in the BLA have been shown to modulate its activity [164]
(Figure 1).

In contrast to excitatory dopaminergic/glutamatergic signaling in the BLA that increases its
activity, serotonergic transmission in the BLA is inhibitory [165]. The serotonergic innerva‐
tions on principal glutamate cells in the BLA decrease the overall excitatory activity of these
cells [166] through 5‐HT1A receptors [167] and modulate BLA output (Figure 2). This is
supported by a recent study where depletion of serotonin in the BLA increased glutamate
receptor density and fear‐potentiated startle in mice, indicating that serotonergic inhibition
regulates excitatory signaling in the BLA to modulate affective behaviors like anxiety [68].
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Chronic alcohol‐induced neuroadaptations change 5‐HT receptor expression and function in
the brain [168] that alters the regulatory control of serotonin over BLA principal cells. Loss of
inhibition on BLA principal neurons increases BLA output, increasing anxiety [169, 170] and
other symptoms of withdrawal. In support of this, chronic alcohol or withdrawal stress
increases the expression of 5‐HT1A autoreceptors in the raphe nucleus [168] which causes a
reduction in 5‐HT levels in the BLA. This increases BLA activity, which contributes to anxiety‐
like behaviors following withdrawal from chronic alcohol (Figure 2). Furthermore, 5‐HT2A/2C

receptors have been suggested to potentiate inhibitory GABAergic tone on principal BLA
glutamatergic cells to decrease excitability [67]. Chronic alcohol causes adaptive changes that
lower the expression levels of these receptors, reducing inhibition over BLA principal
neurons [67]. This augments BLA output and increases the possibility of anxiety‐induced
relapse following a period of chronic alcohol exposure [141] (Figure 2). In addition to this,

Figure 1. Changes in NE signaling and BLA output following acute and chronic alcohol exposure or withdrawal.
Acute alcohol decreases NE signaling in the BLA, which is regulated by a feedback loop through presynaptic α2‐adre‐
nergic autoreceptors expressed on NE fibers in the LC. Decreased BLA‐NE levels decrease the excitation of BLA princi‐
pal cells through postsynaptic α1‐ARs. Acute alcohol further enhances the inhibition of BLA principal cells by NE‐
mediated enhancement of GABA synapses through β‐ARs expressed on GABAergic LPSCs. The net result of this
inhibition is decreased BLA principal neuron excitability and BLA activity which has been suggested to reduce anxiety
and may explain the anxiolytic effect of acute alcohol. Chronic alcohol/withdrawal increases NE levels that enhance α1‐
AR mediated excitation of BLA principal cells. Chronic ethanol has been shown to desensitize β‐ARs in the brain
which leads to a reduction in NE's effects on GABA‐LPSCs causing a decrease in the inhibitory tone over BLA princi‐
pal cells, increasing excitability. This increases the net excitability of BLA principal cells and increases BLA activity
causing anxiety during withdrawal and may contribute to alcohol‐seeking and relapse.
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chronic alcohol‐induced neuroadaptations in other receptor subtypes like the GABA‐A
receptors facilitate the anxiolytic effects of alcohol [171]. Increasing the activity of 5‐HT on
GABA‐A receptors on BLA principal cells may contribute in reducing withdrawal‐induced
anxiety and alcohol‐seeking.

Figure 2. Changes in 5‐HT signaling and BLA output following acute and chronic alcohol exposure or withdrawal.
Acute alcohol increases 5‐HT release in the BLA which is regulated by a feedback loop through 5‐HT1A autoreceptors
expressed on 5‐HT neurons in the DRN. Increased BLA‐5‐HT levels enhance the inhibition of BLA activity through
postsynaptic 5‐HT1A receptors expressed on principal neurons. Increased 5‐HT signaling also activates 5‐HT2A/2C recep‐
tors expressed on GABAergic interneurons in the BLA that further increase the inhibition on BLA principal cells
through increased GABAergic tone. The net result of this inhibition is decreased BLA principal neuron excitability and
BLA activity, which has been shown to reduce anxiety and may explain the anxiolytic effect of acute alcohol. Chronic
alcohol/withdrawal increases the expression of 5‐HT1A autoreceptors in the DRN which decreases 5‐HT levels in the
BLA. This reduces 5‐HT1A‐mediated inhibition on BLA principal cells. Chronic alcohol‐induced withdrawal downregu‐
lates the expression of 5‐HT2A/2C receptors on GABAergic interneurons to further decrease the inhibitory GABA tone on
BLA principal cells, increasing excitability. Chronic alcohol also upregulates GABA receptors on principal cells. This
results in a net increase in BLA activity causing anxiety that may contribute to alcohol‐seeking and relapse.

Furthermore, cross‐modulation of synaptic transmission in the BLA by 5‐HT1A/1B receptors and
β‐ARs dictates BLA output [159] that may affect behavioral outcomes like stress, anxiety, and
drug dependence. In support of this, we have shown that pindolol, a drug having dual
pharmacological activity on 5‐HT1A/1B receptors and β1/β2 ARs, decreases alcohol consump‐
tion in mice following long‐term alcohol exposure. Our electrophysiological experiments also
indicate that the BLA may mediate the effects of pindolol on alcohol consumption [172].
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5. Conclusion

Research in the past few decades has significantly increased our understanding of the
neurobiological basis of alcohol dependence. Recent research has targeted pathways that
mediate more than just the reinforcing properties of alcohol. However, despite these concert‐
ed efforts, effective pharmacological interventions for the management of AUDs remain
elusive.

Chronic alcohol consumption causes maladaptive changes in brain regions like the extended
amygdala that cause sensitization to negative emotional states of withdrawal. These changes
disrupt the signaling of many neurotransmitters including those involved in stress. Dysregu‐
lation of NE and 5‐HT signaling has been widely implicated in the development of affective
disorders and alcohol addiction. Specifically, NE and/or 5‐HT impairments in the BLA, a region
involved in stress, emotional processing, and reward‐seeking have been suggested to play a
major role in the development of alcohol dependence (Figures 1 and 2).

In addition to the growing evidence in animal models of alcohol addiction, pharmacological
compounds that target NE and 5‐HT receptors have also shown promise as potential treat‐
ment strategies for AUDs in human patients [173, 174]. Noradrenergic compounds like
propranolol [175, 176] and atenolol [174] have been shown to attenuate alcohol‐seeking
behavior and reduce craving in human alcoholics. Similarly, serotonergic compounds like
buspirone show efficacy to reduce anxiety‐induced consumption in alcoholics [177, 178].
Moreover, our research indicates that pindolol, the FDA‐approved antihypertensive drug
having activity on both 5‐HT and NE receptors, may have a similar mechanism of action to
more effectively reduce alcohol consumption following chronic intake [172].

Since the BLA plays a vital role in affective disorders and stress‐induced maladaptive
behavioral conditioning, drugs that selectively modulate NE and 5‐HT signaling in the BLA
offer great promise in the treatment of AUDs. With the increasing need for improved
pharmacotherapeutic strategies for the management of AUDs combined with the modest
efficacy of current treatments, putative compounds that target 5‐HT and NE receptors may
prove useful for the development of more effective treatment strategies for alcohol depend‐
ence.
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