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palavras-chave

resumo

Acidentes com um veiculo, acidentes com dois veiculos, CART, consumo de
combustivel, CORINAIR, emissfes, eventos raros, gravidade, regressao
logistica, seguranca, e veiculo.

Nos ultimos anos, o nimero de vitimas de acidentes de trafego por milhdes de
habitantes em Portugal tem sido mais elevado do que a média da Unido
Europeia. Ao nivel nacional torna-se premente uma melhor compreenséo dos
dados de acidentes e sobre o efeito do veiculo na gravidade do mesmo. O
objetivo principal desta investigacdo consistiu no desenvolvimento de modelos
de previsdo da gravidade do acidente, para o caso de um Unico veiculo
envolvido e para caso de uma coliséo, envolvendo dois veiculos. Além disso,
esta investigacdo compreendeu o desenvolvimento de uma analise integrada
para avaliar o desempenho do veiculo em termos de segurancga, eficiéncia
energética e emissdes de poluentes. Os dados de acidentes foram recolhidos
junto da Guarda Nacional Republicana Portuguesa, na area metropolitana do
Porto para o periodo de 2006-2010. Um total de 1,374 acidentes foram
recolhidos, 500 acidentes envolvendo um Unico veiculo e 874 colisbes.

Para a andlise da seguranca, foram utilizados modelos de regresséo logistica.
Para os acidentes envolvendo um Unico veiculo, o efeito das caracteristicas do
veiculo no risco de feridos graves e/ou mortos (variavel resposta definida como
binaria) foi explorado. Para as colises envolvendo dois veiculos foram criadas
duas variaveis binérias adicionais: uma para prever a probabilidade de feridos
graves efou mortos num dos veiculos (designado como veiculo V1) e outra
para prever a probabilidade de feridos graves e/ou mortos no outro veiculo
envolvido (designado como veiculo V2). Para ultrapassar o desafio e
limitacdes relativas ao tamanho da amostra e desigualdade entre os casos
analisados (apenas 5.1% de acidentes graves), foi desenvolvida uma
metodologia com base numa estratégia de reamostragem e foram utilizadas 10
amostras geradas de forma aleatéria e estratificada para a validagdo dos
modelos. Durante a fase de modelagdo, foi analisado o efeito das
caracteristicas do veiculo, como o peso, a cilindrada, a distancia entre eixos e
a idade do veiculo.

Para a andlise do consumo de combustivel e das emissdes, foi aplicada a
metodologia CORINAIR. Posteriormente, os dados das emissbes foram
modelados de forma a serem ajustados a regressdes lineares. Finalmente, foi
desenvolvido um indicador de andlise integrada (denominado “SEG”) que
proporciona um método de classificagcao para avaliar o desempenho do veiculo
ao nivel da seguranca rodoviaria, consumos e emissfes de poluentes.






Resumo (cont.)

Face aos resultados obtidos, para os acidentes envolvendo um Unico veiculo,
0 modelo de previsdo do risco de gravidade identificou a idade e a cilindrada
do veiculo como estatisticamente significativas para a previsdo de ocorréncia
de feridos graves e/ou mortos, ao nivel de significancia de 5%. A exatiddo do
modelo foi de 58.0% (desvio padrdo (D.P.) 3.1). Para as colisdes envolvendo
dois veiculos, ao prever a probabilidade de feridos graves e/ou mortos no
veiculo V1, a cilindrada do veiculo oposto (veiculo V2) aumentou o risco para
0s ocupantes do veiculo V1, ao nivel de significancia de 10%. O modelo para
prever o risco de gravidade no veiculo V1 revelou um bom desempenho, com
uma exatidao de 61.2% (D.P. 2.4). Ao prever a probabilidade de feridos graves
e/ou mortos no veiculo V2, a cilindrada do veiculo V1 aumentou o risco para 0s
ocupantes do veiculo V2, ao nivel de significAncia de 5%. O modelo para
prever o risco de gravidade no veiculo V2 também revelou um desempenho
satisfatorio, com uma exatiddo de 40.5% (D.P. 2.1).

Os resultados do indicador integrado SEG revelaram que os veiculos mais
recentes apresentam uma melhor classificagdo para os trés dominios:
seguranca, consumo e emissdes. Esta investigagcdo demonstra que nédo existe
conflito entre a componente da seguranga, a eficiéncia energética e emissfes
relativamente ao desempenho dos veiculos.
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abstract

CART, CORINAIR, emissions, fuel efficiency, logistic regression, rare events,
safety, severity, single-vehicle crashes and two-vehicle collisions.

During the last years, the number of fatalities per million inhabitants in Portugal
has always been higher than the average in the European Union. Therefore, at
national level, there is a need for a more effective understanding of crash data
and vehicles effects on crash severity. This research examined the effects of
vehicle characteristics on severity risk, fuel use and emissions. The main goal
of this research was to develop models for crash severity prediction in single
vehicle-crashes and two-vehicle collisions. Furthermore, this research aimed at
developing an integrated analysis to evaluate vehicle’s safety, fuel efficiency
and emission performances. Crash data were collected from the Portuguese
Police Republican National Guard records for the Porto metropolitan area, for
the period 2006-2010. A total of 1,374 crashes were collected, 500 single-
vehicle crashes and 874 two-vehicle collisions. For the safety analysis, logistic
regressions were used. For single-vehicle crashes, the effect of vehicle
characteristics to predict the probability of a serious injury and/or killed in
vehicle occupants (designed as binary target) was explored. For two-vehicle
collisions, additional binary targets were designed: one target to predict the
probability of a serious injury and/or killed in vehicle V1) and another target to
predict the probability of a serious injury and/or killed in vehicle V2). To
overcome the challenge imposed by sample size and high imbalanced data
(only 5.1% were severe crashes), research methodology was developed based
on a resampling strategy and 10 stratified random samples were used for
validation. During the modeling stage, the effect of vehicle characteristics, such
as weight, engine size, wheelbase and age of vehicle were analyzed.

For the vehicle’s fuel efficiency and emissions analysis, pollutants were
estimated using CORINAIR methodology. Following, emissions data were fit
into linear regression models.

Finally, an integrated analysis indicator (entitled “SEG”) that provides rating
classification for the evaluation of vehicle’s safety, fuel efficiency and emission
performances, was developed.

Regarding these results, for single-vehicle crashes, injury severity prediction
model identified age of the vehicle and engine size as statistically significant, at
5% level. Model performance accuracy rate was 58.0% (S.D. 3.1). For two-
vehicle collisions, when predicting injury severity in vehicle V1, the engine size
of the opponent vehicle (vehicle V2) increased the risk for the occupants of the
subject vehicle (vehicle V1), at 10% level. Injury severity prediction model for
vehicle V1 revealed a good performance with a mean prediction accuracy rate
of 61.2% (S.D. 2.4). When predicting injury severity for the other vehicle
involved (vehicle V2), the engine size of the opponent vehicle (vehicle V1)
increased the risk for the occupants of vehicle V2, at 5% level. Injury severity
prediction model for vehicle V2 achieved a mean prediction accuracy rate of
40.5% (S.D. 2.1).






abstract (cont.)

The results of the integrated analysis indicator, SEG, revealed that recent
vehicle achieved better rating simultaneously for all the three domains: safety,
fuel efficiency and emissions performances. Newer vehicles showed a better
overall safety rating, were more fuel efficient (less CO, emissions) and reduced
emissions (more environmental friendly). This research relevance showed that
there is no trade-off between safety, fuel efficiency and emissions.






“Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence,
but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not
an act but a habit.”

Aristotle
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CHAPTER 1

INTRODUCTION

Worldwide, 1.3 million people die annually as a result of a road traffic accidents, leading to more
than 3,000 deaths each day [1]. Between 20 to 50 million more people suffer non-fatal injuries, with
many suffering a disability as a result of their injury level [2]. The World Health Organization (WHO)
has estimated around the same rate, 1.3 million deaths per year, caused by urban air pollution [3].
During the last years, passenger vehicles have shifted towards two extremes: small and light
vehicles and large and heavy vehicles [4]. As a result, vehicle fleet is now highly variable in terms
of mass, engine power and vehicle size. The main goal of this Doctoral Thesis was to investigate
the effect of vehicle characteristics in injury severity risk, fuel consumption and emissions. It
considers if lighter and smaller vehicles represent a higher risk to its occupants. On the other hand,
it explores if larger and heavier passengers’ vehicles decrease the risk towards its occupants,
imposing at the same time, higher risk towards the occupants of a lighter and smaller vehicle
involved in the collision. The research then combines those findings with vehicles emission
estimations to address the important question if there is a trade-off between vehicle’s safety

performance and its fuel efficiency and emissions performance.

An introduction to the present work is carried out in this Chapter, which comprises: background for
road safety and vehicles emissions, research motivation and main objectives. Finally, a structured

reading guide for this Thesis is provided.
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1.1 Background

During the last two decades, the number of registered vehicles has increased exponentially
worldwide leading to a significant increase in road emissions, as well fuel used by the
transportation sector. For passengers travel, road transport dominates as it carries 79% of
passenger traffic [5]. Between 1970 and 2000, the number of cars in the European Union (EU)
increased from 62.5 million to nearly 175 million [5]. Since motor vehicles become a common
means for transportation, traffic injuries are not the only major concern. Reduction of greenhouse
gases (GHG) emissions and fuel consumption have also become a main issue to health,
environmental and transportation authorities. As traffic volume is increasing, road transport alone

accounts for 84% carbon dioxide (CO,) emissions attributable to transport [5].

Road safety progress depends to some extent on what one uses as a measure of exposure to risk
(for example, population, registered vehicles, distance travelled). More than 90% of the world's
fatalities on the roads occur in low-income and middle-income countries, even though these
countries have approximately half of the world's vehicles [2]. In 1998 the ratio of the number of
road deaths in Sweden and Portugal, two countries with comparable population, was 1 to 4.5 [6].
As the health and transport sectors developed their level of co-operation, fatalities per 100 000
population is becoming more widely used [7, 8]. Fatalities over distance travelled have traditionally
been preferred by road transport authorities as this implicitly discounts fatality rates if travel is

increased [7].

Along with the human suffering described above, road crashes have economic costs. In 2010, the
United Nations (UN) and World Health Organization (WHO) reference the economic consequences
of motor vehicle crashes as representing 1 to 3% of the gross national product (GNP) of the world
countries, reaching over $500 billion [1]. The value of preventing one road fatality (VPF) has been
estimated in 1.84 million Euros [9]. At the National level, in 2010, the economic and social cost of
road accidents has been estimated at 1,890 thousand million Euros, representing 1.17% of the
Portuguese GNP [10].

1.1.1 Road accidents- contributing factors

Road traffic accidents result from a combination of factors related to the elements of the system
involving roads, environment, vehicles and road users, and the way they interact [11]. Some factors
contribute to the occurrence of an accident and they could be part of crash causation as well. Other

factors magnify the effects of the collision and thus contribute to severe outcomes.
The risk factors involved in road crashes injuries are grouped into two categories [11, 12]:

1) Risk factors influencing crash involvement: a) Inappropriate and excessive speed; b) Presence

of alcohol and/or drugs; c) Fatigue; d) Being a young male; e) Inadequate visibility or poor weather
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conditions; f) Vehicle factors (such as braking and maintenance); g) And defects in road design and
inefficient maintenance.

2) Risk factors influencing crash severity: a) Human tolerance factors (such as age, sex and health
conditions); b) Excessive speed; c) Seat-belts and child restraints not used; d) Roadside objects
not crash-protective; e) Presence of alcohol and other drugs; f) And insufficient vehicle protection

for occupants and for those hit by the vehicle.

In addition, there are also factors influencing the exposure to risk, such as economic factors and
social deprivation, and risk factors influencing post-crash outcomes of injuries as difficulty in
rescuing and delay in transport of those injured to the hospital. More information on popular
analytical approaches to identify risk factors involved in road traffic injuries are provided at
Appendix 1.

1.1.2 Road safety in Europe
Despite the improvement in road safety, road accidents and their consequences remain a serious
social problem: on average 75 people lose their lives every day on European roads and 750 are

seriously injured [13]. Road safety statistics for the EU and Portugal are presented.

1.1.2.1 Road safety performance in the EU

The number of road fatalities in the EU-27 fell during the decade between 1999 and 2009, from
57,691 deaths to an estimated value of 34,500 deaths [14]. The year of 2001 was a reference year
since the European Commission (EC) published the White Paper- “European transport policy for
2010: time to decide”, which aimed to set an ambitious target of reducing the yearly number of road
deaths by 50% by 2010 compared to 2001 [6]. Subsequently, the EU set an ambitious goal to halve
the number of road deaths by 2010, expecting to save 25 000 lives [15]. As illustrated in Figure 1.1,
the proposed target of halving road deaths between 2001 and 2010 was not achieved in the EU
(30,500 deaths were above the target).
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Figure 1.1 - Road fatalities in the EU since 2001 and targets objective from 2010 to 2020 [16].

Table 1.1 shows police-recorded road fatalities on the basis of death within 30 days for selected
members of the International Traffic Safety Data and Analysis Group (IRTAD) [7]. Sweden was the
country that have achieved the highest reduction in road fatalities (-52.0%) for the long-term (2010-
2001). IRTAD data, showed a reduction of 49.3% in road fatalities, for Portugal during the same

long-term period.

Table 1.1 — Selected European Countries Road Fatalities on the 30 days basis [7].

Recent data Change trend
Country 2010 2009 Annual change 2010-2009 Long-term change 2010-2001
France 3992 4273 -6.58% -51.1%
Germany 3648 4152 -12.1% -47.7%
Portugal 937* 929* 0.9% -49.3%
Sweden 266 358 -25.7% -52.0%
United Kingdom 1905 2337 -18.5% -47.1%

*Data for 2010 was previous to the National Road Safety Strategy 2008-2015 Midterm Review

Comparison of road safety progress between 2001 and 2010 shows that EU achieved a reduction
of 43% of road fatalities, from 54,302 to 30,900 road fatalities, respectively [17]. For the same
period, Portugal have achieved a reduction of 50%, from 1670 in 2001 to 845 in 2010, using a
basis of 24 hrs [17]. The results achieved for this period were published under the 5" Road Safety
Performance Index (PIN) Annual Report [18]. Latvia, Estonia, Lithuania, Spain, Luxembourg,

Sweden, France and Slovenia all reached the EU 2010 target.

Following the EU target between 2001 and 2010, EU has renewed its commitment to improving

road safety by setting a target of reducing road deaths by another 50% by 2020, compared to 2010
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levels. In 2011 more than 30,000 people died on the EU roads [19]. The current 6" PIN Annual
Report presents in the results of the first year of progress towards the EU target of halving road
deaths between 2011 and 2020. Norway leads this ranking with a 20% reduction in road deaths.
On the other hand, Portugal reached the 2010 target with just one year of delay [9]. The 3%
reduction in road deaths in the EU in 2011 compared with 2010 is below the 5.7% average annual
reduction observed for the 2001-2010 decade and also below the 6.7% annual reduction that would
have been needed from 2010 to reach the EU 2020 target [9].

1.1.2.2 Road safety performance in Portugal

Portugal has adopted directives that aim safer roads, compulsory use of seatbelts, standardized
driving licenses and roadworthiness testing of vehicles [6]. In 2003, the Portuguese Plan for the
Prevention of Road Accidents (PPPRA) was approved in order to control the high level of road
accidents [20]. The target adopted by PPPRA was a 50% reduction in the number of fatalities and
serious injuries by 2009 in comparison to the average for 1998-2000 [20]. In 2007 the National
Road Safety Authority (ANSR) was created under the Ministry of Internal Affairs. In 2009 the
National Road Safety Strategy (NRSS) for 2008-2015 it was presented with the purpose to define
10 strategic objectives, monitoring and assessing further actions [20]. The two major targets of
NRSS for 2008-2015 are presented next. The first target, aims the reduction in the road mortality

rate (expressed by the number of road deaths per population) [20]:

e 78 deaths per million inhabitants by 2011;
e 62 deaths per million inhabitants by 2015.

The second target, intends to control the road deaths to 579 until 2015 [15]. Prior to 2009, fatalities
were reported on the 24 hrs basis. Working groups have defined correction factors as a conversion
coefficient to estimate the fatalities, so that comparisons on the basis of the 30 day-definition could
be made with other countries. Until 1997 Portugal applied a conversion factor of 1.30 (shadow area
in Figure 1.2) and starting in 1998, this value was updated by a working group to 1.14 [15]. In 2009,
to meet international agreed definitions, the NRSS established a methodology to account the road
deaths within 30 days, based on the government document “Despacho n.° 27808/2009” [21].
Between 1970 and 2010, the number of fatalities decreased by 48% while the number of vehicles
was multiplied by seven [7]. Figure 1.2 illustrates that despite of the overall progress, after 1970
(when motorization become more visible) the number of fatalities per million inhabitants have

always been higher in Portugal, than the average in the European Union.
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Since 2000, the rate of decline has accelerated, with an average annual decrease of 7.3% between
2000 and 2010 [7]. For the decade, 2000 to 2010, the decrease in fatalities was reduced by -54%,
as shown in Table 1.2 [7].

Table 1.2 - National reported road fatalities, injury crashes and rates in Portugal: 1970-2010* [7].

Indicator 1970 1980 1990 2000 2009 2010 2010 change over
2009 | 2000 | 1990
Fatalities 1785 2850 | 2924 | 2053 | 929 937 0.9% | -54% | -68%
Injury crashes 22662 | 33886 | 45110 | 44159 | 35484 | 35426 | -0.2% | -20% | -21%
Deaths/100000 population 20.6 30.6 31.2 20.0 8.7 8.8 0.8% | -56% | -72%
Deaths/10000 registered vehicle 22.7 14.7 134 4.3 1.6 1.6 0.0% | -63% | -88%
Motorize vehicles/1000 inhabitants | 91 208 234 462 543 545 0.4% 18% 133%

*Data for 2010 was previous to the National Road Safety Strategy 2008-2015 Midterm Review

ANSR has available road fatalities on the 30 days basis since 2010. In 2010 there were 35,426
injury crashes, which had result in 2,475 serious injured and 937 fatalities [22]. The latest ANSR
annual report on road safety on the 30 days basis showed that during the year 2011, there has
been a total of 32,541 crashes involving injuries and those resulted in 2,265 serious injured and
891 fatalities [23]. In 2012, ANSR has released a term review document of the National Road
Safety Strategy for 2012-2015 in order to improve statistics accuracy [24]. During this review
process, the impact of the new methodology on assessing fatalities was visible in comparison with

the records on the 24 hours following the road crash, for which an increment of 14% was been
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applied pos 1998 [24].The real number of road deaths, within the 30 days, was 26% and 29%
higher for 2010, and 2011, respectively [24]. Following this revision, for 2010, ANSR has updated
the previous indicator of 88 deaths/(million inhabitant), in Table 1.2, to 92 deaths/(million
inhabitants), much higher than 62 deaths/(million inhabitant) for the average in the EU-27 [23, 25].
Regarding to the strategic target set for 2011, 78 deaths.(million inhabitant)™ was not reached,
since there were 89 deaths.(million inhabitant)™ [26].

Previously to close the section, Road Safety in Europe, the economic crisis may had an impact in
the positive road safety progress in the EU through a variety of effects in the society: a decrease in
mobility, less inexperienced drivers with relatively higher risks, a reduction in leisure driving, and a
safer driving behavior intended to save fuel [7]. However this relationship is not fully explained. If
cost concerns may reduce individuals trips, hence reducing the risk of a crash exposure, on the
other hand, vehicles owners tended to avoid spending money with vehicle maintenance. In
addition, the increase of the unemployment rate and purchasing loss power force consumers to
drive older cars.

1.1.3 Trends in vehicle’s emissions and fuel use

Transportation systems are vital to world’s prosperity, having significant impacts on economic
growth, social development and the environment. Although the transportation sector accounts for
about 7% of European GDP, its environmental cost offset 1.1% of GDP [27]. In 2010, transport
sector account for 31.7% of the energy consumption in the EU-27, and road transportation in
particular represented 82.1% of the total transportation consumption [25]. In 2010, gasoline/diesel
oil accounted for 53% of the total consumption, reflecting an increase of 9% compared to 2000
[28].

Transport greenhouse gases (GHG) emissions accounted for 24% of GHG emissions from all
sectors in the EU-27, in 2010 [29]. In particular, road transport contributed to 71.1% of the 24%
share in GHG emissions from the transportation sector. Transport GHG emissions (including from
international aviation) as the target defined in the White Paper, were 26% above 1990 levels [29].
In 2010, transport emissions decreased by 0.4% compared to 2009 [29]. For 2011, a similar
reduction of 0.4% was estimated [29]. The decline in GHG emissions from road transport since
2009, can be mainly attributed to the decline in freight transport demand related to the economic

recession and higher fuel prices [29].

In the analysis of CO, emissions among the EU car fleet, vehicle weight is a very important factor
as more weight needs more energy to move the vehicle, thus, it increases the fuel needed for the
same driving distance. During 1995 to 2003, diesel vehicles weight increased by 11.6% (140 kg),

while the average gasoline vehicle by 15% (160 kg) [4]. Even if weight generally increases during
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those years, CO, emissions decrease was due to the increased combustion efficiency, leading to
lower fuel consumption and thus, lower CO, emissions. Generally, diesel and gasoline light
passenger vehicles are shifted to the two extremes in the passenger vehicle fleet: very light and
very heavy vehicles. As for vehicle weight, there was a general shift to smaller and bigger engines

for both diesel and gasoline light passenger vehicles [4].
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Figure 1.3 - Average CO, emissions for new cars (gCOZ.km'l) in EU-27 and targets for 2015 and
2020 [29].

In general, CO, emissions for passenger cars have been decreasing since 2000, as illustrated in
Figure 1.3. The average passenger car emissions target of 130 g CO,.km™ for the new car fleet by
2015, and a target of 95 g CO,.km™ from 2020 onwards are marked on orange and red colors
respectively, in Figure 1.3. CO, emissions from the new passenger car fleet in the EU-27
decreased from 140.2 g CO,.km™in 2010 to 135.7 g CO,.km™ in 2011 [29]. In 2011, average CO,
vehicle emissions for most carmakers were below target levels estimated for 2012. New cars in

2011 were on average 3.3 % more efficient than those vehicles models registered in 2010 [30].
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The progress done with EU regulations and emissions targets has been decreasing the average
vehicle CO, emissions. In 2009 the European Union adopted a Regulation [EC] No. 443/2009 to
impose the CO, emissions of 130 g.km™ on the fleet average, by 2012 [31]. However, due to the
economic recession worldwide and its effect on the automotive industry, the EU has shifted the
CO, emissions of 130g.km™ target to be achieved by 2015. The target of 130 g.km™
(5.6 L.(100km)'l) for the average emissions of new cars was also phased-in by 2015 and 95 g.km'l
(4.1 L.(100km)'l) by 2020 [31, 32]. Then, the EU is expecting that 2015 and 2020 targets will
represent a reduction of 18% and 40% respectively compared with the year 2007 fleet average of
158.7 gCO,.km™ [32]. CO, emissions and fuel consumption are closely related. To achieve
Europe’s targeted 80% CO, reduction by 2050 compared to 1990, oil consumption in the transport

sector must drop by around 70% from nowadays [28].

Actions to reduce GHG emissions, pollutants and noise from vehicles will benefit from shifting from
conventional modes to hybrid and electric vehicles, cleaner fuels and improved vehicle technology.
This form should be complemented by better managing transport demand. Also, reduction of
motorway speed limits from 120 to 110 km.h™ would reduce fuel consumption by 12 % for diesel

cars and 18 % for gasoline cars [29].

During the last years, goals have been set for safer and more sustainable mobility. In 2010, the
United Nations Road Safety Collaboration and the World Health Organization lunched the Global
Plan for the Decade of Action for Road Safety 2011-2020 in more than 100 countries, with one
goal: to prevent five million road traffic deaths globally by 2020 [1]. In 2011, the White Paper
“Roadmap to a Single European Transport Area — Towards a competitive and resource efficient
transport system” was published [33]. Concerning to road safety, the framework established the
goal that by 2050, the EU must move closer to zero fatalities in road transport. This document
defined ten goals for a competitive and resource efficient transport system benchmarks for
achieving the 60% GHGs emission reduction target [33]. It sets the 'Europe 2020' strategy to
achieve CO, emissions reductions by 60 % by 2050 compared to 1990 levels [29, 33]. Hence it is
required to cut the emissions in 68 % from 2010 to 2050 to meet this target. Concerning to road
safety, the framework established the goal that by 2050, the EU must move closer to zero fatalities
in road transport. On the other hand, the Horizon 2020 Transport challenge work program
encourages research in areas such as: power train technology for law CO, and polluting emissions,
and traffic safety [13]. Is that possible an integrated approach towards vehicle safety and
emissions? Thinking about an answer to this question leads to the motivation of this Doctoral

research, stated in the next section.
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1.2 Motivation

A study amongst 21 European Countries has indicated that Portugal had the lowest road safety
performance score, and suggested that Portugal should invest more in vehicle safety technology
and in promoting new(er) cars [34]. During the last decennia there has been an increase in the
amount of consumer interest in the vehicle safety performance and fuel economy. Consumers tend
to equate vehicle safety with the presence of specific features or technologies rather than with the
outcomes of vehicle crash safety/test or crashworthiness [35]. Crash testing is a valuable source
for consumer regarding vehicle crash safety and credits a car manufacturer for focusing on safety.
Under the EuroNCAP, the frontal impact takes place at 64 km.h™, meanwhile the car strikes
deformable barrier that is offset [36]. It simulates one car having a frontal impact with another car of
similar weight. Hence, it can only be compared with vehicles in the same class and within a 113 kg
weight range [37]. EuroNCAP discourage consumers from comparing ratings of cars from different
segments, and in real crashes, there is obviously no control on the vehicle categories involved.
Despite the scientific conditions under which crash tests are conducted, they have limitations as
follows. First, they do not account for weight differential between the vehicles involved within the
collision. Second, the speed of the crash impact frequently is higher than 64 km.h™, which is the
speed at the frontal impact takes place in crash testing [38-40]. Third, crash testing is only
performed for selected models, whereas in real roads there is no control neither in vehicle body
type, neither in the age of vehicles model year. EuroNCAP recognizes there is no capability to
determine what would happen if cars of widely different masses impact each other [41]. Crash
testing programs do not attempt to predict the real crash outcome, rather than provide an indication
of safety best practices that had been implemented in individual vehicle models. During the last
years, due to fuel economy and CO, emissions targets, and global recession, manufacturers have
increase the sales of smaller, lighter cars to offset the fuel economy by their bigger, heavier
models. Minicars are more affordable, and they use less fuel and emit less pollutants, however the
safety tradeoffs are a challenge. In a collision involving two vehicles that differ in size and weight,
the occupants of the sampler lighter car will be in disadvantage? Would a consumer have to
choose the heaviest on the road to gain safety benefits? But if it does, other road users could be at
higher risk specially the ones travelling in a lighter car. On the other hand, if all new passenger cars
would shift towards larger and heavier vehicles, then what would be the cost in fuel consumption

and emissions? Addressing these questions yield to fourth main motivations for this research:

In Portugal, there is a gap in incorporating vehicle characteristics in road safety analysis.

2. Crash testing has limitations in prediction crash compatibility amongst vehicles of different
segments.

3. It is unclear if more environmental friendly vehicles impose a trade-off on its vehicles’
occupants.

4. An integrated approach towards vehicle safety, energy and emissions should be available

not only to policymakers but also to consumers.
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In road safety analysis three key elements are fundamental: vehicle, infrastructure and driver.
Infrastructures design has been significantly improved over the decades. Driver behavior is
complex, subjective and often unpredictable. Therefore the analysis of vehicles effects on severe
crash outcomes plays a central role. Police records data is a valuable source for crash analysis. A
better understanding of the severe crashes outcomes demands the analysis of complex data,
which events are significantly less frequent compared with minor severe crashes resulting in light
injuries and/or property damage only. Rare events are part of the nature of crash injury data: injury
severity level has been estimated by the following distribution: 61.0%, 15.3%, and 2.8% for no
injury, possible injury, evident injury, and severe/fatal injury, respectively [42]. Other sources have
estimated the overall probability of injury cases at about 2.8%, hence there would be about 35
times more probability for classifying a case as non-injury, than injury [43]. Data from the United
States during the year 2010 reflects the imbalance between non-fatal crashes and fatal crashes;
99% to 1%, respectively [44]. During 2010 and 2011, the ratio of fatal crashes has been estimated
around 2.7% [23]. With regard to binary data classification (severe crash vs. non severe crash),
analysis of data containing rare events, poses a great challenge to the machine learning
community. When probabilistic statistical methods are used, such as logistic regression, they
underestimate the probability of the rare events because they tend to be biased toward the majority
class (non severe crashes), which has significantly higher frequency compared to the minority
class (severe crashes). When modeling a rare event, which happens in a very low frequency, it is
difficult for the algorithm to find a valuable split, because the model is already predicting right the
common event. The topics of imbalance datasets and sample balance have not been subject to a
formal study in crash analysis. The overall crash severity at the crash sample explored in this study
was 5.1%. The greatest challenge faced by this study was due to the disproportionate class
distributions of the non-severe and severe events being predicted. To overcome this challenge, a
balanced sample was derived from the original crash sample and it was modeling using binary

classification methodologies.

This Doctoral research is part of the “SAFENV: Predicting the Trade-offs between Safety and
Emissions for Road Traffic’ (PTDC/SEN-TRA/113499/2009), project funded by the Portuguese
Foundation for the Science and Technology (FCT). This is the first study conducted in Portugal
which links vehicle specific characteristics with the crash outcomes. The analysis of crashes
reports sample from the Oporto metropolitan area for the time 2006 to 2010, leads to important
findings to address the contribution of the national car fleet in road safety progress. This research
is intended to support decision-making for safe and sustainable transportation policy and mobility in

Portugal.
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1.3 Research Objectives

The main goal of this research was to develop safety prediction models based on real world crash
data, which was collected from the Portuguese Police crash reports records. The effect of vehicle
characteristics, such as make and model, engine size, weight, wheelbase, registration year (age of
vehicle), and fuel type, on crash outcomes, expressed by the number of injuries and fatalities
among the passengers, is analyzed. It is important to notice that the study focuses on post-crash
consequences rather than on pre-crash contributing factors to the event. In addition to the safety
analysis, vehicles technical information was also used to quantify their impact on fuel consumption

and emissions.
The major objectives of this Doctoral Thesis are:

1. Determine if vehicles characteristics affect crash outcomes and identify which factors are
more significant to predict crash injury severity.

2. Develop decision models to predict the probability of a serious injury and/or fatality in
single-vehicle crashes and in two-vehicle collisions.

3. Develop logistic regression models to predict the probability of a serious injury and/or
fatality in single-vehicle crashes and in two-vehicle collisions.

4. ldentify which vehicles auto brands are more frequently involved in severe crashes and
evaluate brand severity ratio involvement in the sample with the overall severity at
Portuguese fleet.

5. Develop an integrated analysis score to evaluate vehicle’s safety, fuel efficiency and green

performances.

This study addressed the following questions: is there any vehicle dimension important for the
crashworthiness? Is vehicle size or size differential between the two vehicles involved fundamental
to safety? Is it possible for designers of new vehicles to cut carbon emissions without negatively
affecting their safety performance? Is there a trade-off between vehicle safety, fuel efficiency and
emissions performance? Can manufacturers accomplish the European Commission goal to
decrease CO, emissions to 130 g.km™ by 2015, and still achieve a better management of crash

forces?

In summary, this research is intended to support the decision-making process for transportation
policy for safe and sustainable mobility in Portugal. The findings discussed in this Thesis will
provide meaningful interpretations that can be used to identify potential correlations amongst crash
analysis and vehicle characteristics effects in road severity risk. Further, the conclusions will
provide a new assessment of the trade-off between safety and environment in the transportation
research. It will also provide important information for automotive industry to produce low emission

vehicles without compromising many of the basic vehicle functions of performance and safety.
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1.4. Thesis Organization

The present Thesis is organized in 10 chapters, including: introduction, literature review, safety
methodology, descriptive statistics, safety analysis results for single-vehicle crashes and two-
vehicle collisions, emissions estimation and modeling, integrated analysis for vehicle’s safety,
energy and environmental performance, and conclusions. A Thesis reading guide is presented in

Figure 1.4.

CHAPTER 1: | Tl |

= Background
‘- = Motivation

Research objectives

(o133 | Literature Review |

= State of art on crash injury prediction
‘ = State of art on vehicle's emissions and fuel consumption

CHAPTER 3: I Safety Analysis Methodology I

* Analysis strategy for imbalance crash data
‘- = Crash severity classification with decision trees approach
= Crash severity prediction models with logistic approach

CHAPTER 4: I Crash data descriptive statistics and severity ratio within the Portuguese fleet |

Descriptive statistics results
' = Individual wehicle auto brand analysis- severity ratio in the sample and within
Portuguese fleet

CHAPTER 5: [ Crash Severity Classification - Decision Trees Analysis I
Decision trees for two-vehicle collisions and single-vehicle
', crashes with original sample

Decision trees for two-vehicle collisions and single vehicle
crashes with balanced sample
CHAPTER 6: [ Crash Severity Prediction in Two-vehicle Collisions- Logistic Regression Analysis |

Crash severity prediction model selected for crash severity prediction
‘ = Crash severity prediction model interpretation and assessment

CHAPTER T: [ Crash Severity Prediction in Single-vehicle Crashes- Logistic Regression Analysis |

Crash severity prediction model selected for crash severity prediction
’v = Crash seventy prediction model interpretation and assessment

(TN A | Vehicles Emissions Estimation and Modeling |

= Estimation of vehicles emissions using CORINAIR
‘., = Fitting vehicle emissions data into linear regression models

CHAPTER 9: [ Combined Analysis for Vehicle's Safety, Fuel Efficiency and Green Performances |
» Critenia for rating vehicles performance within each domain: safety, fuel consumption

', and green (SEG)

Results for vehicles SEG ratings

(o N B | Conclusions |

Major conclusions
Research recommendations

Figure 1.4 - Thesis reading guide fluxogram.
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CHAPTER 2

LITERATURE REVIEW

Since safety and environment are “transported” together through this Doctoral Dissertation, this
Chapter highlights previous studies for crash injuries analysis and vehicle’s safety and
environmental performance analysis. First, research in crash injury severity prediction modeling is
presented. Second, it discusses statistical approach to deal with crash data complexity and
unbalanced classes (among severe and non-severe observations). Third, it discusses the
correlation of crash testing with real life crash outcomes. Fourth, studies addressing the trade-off
between vehicle’s safety and environmental performance are presented. Finally, main remarks of

the existing studies in this literature review are emphasized.
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2.1 Road Safety Main Risk Domains and Drivers’ Behavior

Traffic safety is a subject with complex interactions amongst these three main factors: human
behaviour, road and vehicle. Delen et al. had identified the factors that affect the risk of increased
injury of occupants during a crash: demographic, behavioral characteristics of person, environment,
roadway conditions and technical characteristics of the vehicle, among others [45]. Hermans et al.
identified the following risks for road safety outcomes: alcohol and drugs, speed, protective
systems, infrastructure, vehicle, and trauma management [34]. Driver behavior and driver
characteristics not only affect the probability to be involved in crash event, but also, how his body

will sustain the impact and his condition following the crash [15, 46].

Multiple socio-physiological factors may influence the injury and fatality outcomes in motor vehicle
crashes. Awadazi et al. had investigated main risk factors for motor vehicle injuries and fatalities
among younger and drivers 65 years of age or older [47]. The point of impact on a vehicle during a
crash had increased risk of both injury and fatality for older drivers. Behavioral factors, such as
alcohol involvement and lack of seatbelts, were likely to place all drivers at increased risk, with
higher likelihood for crash fatalities [47]. The evidence shows major gender differences on the
impacts of driver condition, seatbelt use and airbag deployment on injury severity risks. “Male
drivers, older drivers, drivers who are not wearing safety belts, collisions occurring in a higher
speed zone and head-on collisions significantly increase the risk of death” [48]. Airbag deployment,
may impose a higher risk for female than for males [47]. Women and older drivers are more
frequently killed than other groups under equivalent impact conditions [47-49]. As far as driver’s
age effect, 16 and 17-year-old drivers pose more than twice as much risk to occupants of other
vehicles as do drivers aged 85 and older [50]. In addition to vehicle mass and vehicle type, drivers
characteristics, as well as the circumstances of the collision affected the drivers’ condition post-
crash [48]. Despite of the drivers’ conscious and/or unconscious behavior, Pompili et al. suggested

that above 2% of the traffic accidents are suicide behaviors [51].

Human factor comprehension on crash injuries and fatalities requires further research and more
efficient cooperation between police makers and auto-industry. The injury prevention measures for
fatal crashes may potentially benefit younger and older drivers alike [47]. Eleven thought younger
drivers were linked to the highest risk of collision (manly younger males), individuals aged 50 and
over become the largest segment of potential buyers of automobiles in the marketplace, accounting
for more than 40% of all new cars purchase [52]. If the automotive manufactures want to remain
competitive, particularly given the recent economic downtown in this sector, “understanding the
needs of older consumers and incorporating them into the design of the automobile is important”
[52]. The development, design, and marketing of crash avoidance and safety-related vehicular
technology to consumers are critical to ensure the vehicle purchased is the best fit with their safety

and driving needs.
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2.2 Vehicles’ Size and Weight Effects on Occupants’ Injury Risk

Evans explored vehicle mass and size basing his study on Newtonian mechanics. In this study, for
crash between two cars of different masses, the fatality risk ratio of a lighter to a heavier car
increases as a power function of mass ratio of the heavier to the lighter car [53]. Based on the law
of the conservation of momentum, the change in the velocity for the individual vehicle is subject to
the relative speed and mass proportions between the two vehicles involved in the collision [54].
Hence the mass influence the impact yielding to injury severity [54]. Vehicle mass and size
variables are strongly correlated, which makes it difficult to determine the separate contribution of
mass and size on crash risk [53]. Wood showed that in collisions between cars of similar size and
in single vehicle crashes the fundamental parameters which determine the injury risk are
associated to the size, i.e. the length of the vehicle [55]. However, in collisions between dissimilar
sized cars the fundamental parameters are the weight and the structural energy absorption of the
vehicle[55]. Wenzel and Ross found that mass alone is not an effective predictor of risk, on the
basis of driver deaths per year per million registered vehicles for a given car model [56]. These
authors suggested the quality of cars may be more correlated to risk than weight, but this
correlation was not strong [56]. Robertson analyzed vehicles models from 2000-2005 and stated
that although excess weight and horse power are adverse to other road users (cyclist and
pedestrians), larger vehicle size is related to lower risk because “it gives occupants more room to
decelerate in a crash” [57]. During 2007, the death rate in 1-3 year old minicars involved in
multiple-vehicle crashes was nearly twice as high as the rate in very large cars [58]. Also for single-
vehicle crashes, the fatality risk in minicars was found high as well as in multiple-vehicle crashes
[58]. Broughton showed that the driver casualty rate decreases with the size of his/her car,
however the driver casualty increased with the size of the other car involved in the collision [59].
Newer cars are safer for their occupants and more aggressive to occupants of cars with which they
collide [59]. The author claimed that these effects are partly due to an increase in the mass of new
cars [59]. A further update to this work, showed that the mean risk of death for a car driver in a
collision with a car registered in 2004—2007 is about 23% greater than in collision with a car
registered in 1988-1991 [60]. In car-car collisions when modern cars are involved, it was found
fewer casualties, suggesting that the overall benefits of improved secondary safety have clearly
outweighed the disbenefits of increasing aggressivity [60]. A more modern car provides better
protection to its occupants, mainly achieved by the design efforts that have been made to improve
secondary safety (crashworthiness), also the tendency to greater mass [60]. Méndez et al. advised
that vehicles aggressivity and crashworthiness were influenced by vehicles mass, size and
structural properties [61]. Improvements on vehicles safety increased the injury risk on the
occupants of the older vehicles [61]. Zachariadis suggested that mass seemed to play an important
role in frontal crash tests only [62]. Distribution of mass among vehicles, and not mass per se, is
largely responsible for injury risks [62]. Huang et al. suggested that crashworthiness and crash

aggressivity significantly vary by vehicle type with the dominating effect of vehicle mass [63].
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Tolouei and Titheridge showed that increasing vehicle mass generally decreases the risk of injury
to the driver [64]. The injury risk of occupants in the lighter car is higher than for heavier car, due to
the greater velocity change during the collision [64]. More recently, Tolouei et al. confirmed that the
probability of injury of the driver of vehicle 1 increases with speed limit and with increasing mass
ratio (mass,/mass;), whereas the probability of injury of the driver of vehicle 2 increases with speed
limit and with decreasing mass ratio [65]. Also, this study evokes that there is a protective effect of

vehicle size above and beyond that of vehicle mass for frontal collisions [65].

Fredette et al. analysis showed that drivers of pickup trucks, minivans and sport utility vehicles
were more aggressive than the drivers of others vehicles involved, while their vehicle provided
ahead protection [48]. Keall and Newstead found that in single-vehicle crashes, SUVs are
potentially harmful to their own occupants due to its high centre of gravity compared to the width of
the wheel track, leading to greater instability and a higher risk of rollover [66]. When considering
fatality rates by vehicle type, SUVs showed the highest rate per licensed vehicles [66]. However
driver risk behavior was suggested as a strong contributor of this elevate risk [66]. Regarding to
vehicles incompatibility between passenger cars and light trucks, motor-vehicle manufacturers
have taken voluntary measures to reduce light truck aggressivity by adding crumple zones and
reducing vehicle height [67]. When subject to a frontal crash, passenger vehicles are designed to
absorb crash energy through deformation or crush of energy-absorbing structures forward of the
occupant compartment. However, in collisions between vehicles of different body type, such as
cars and light pickups or SUVs, the capacity of energy-absorption structures would not be fully
utilized because mismatches often exist between the heights of these structures. Therefore, in
2009 new light trucks were required to have the front structure (frame rails) low enough to interact
with the primary structures in cars, which for most cars is about the height of the front bumper [68].
Baker et al. study suggested that the lower front energy-absorbing structure showed a benefit of 19
% reduction in fatality risk to belted car drivers in front-to-front crashes crashworthiness has been a

constant concern for road safety and vehicle design [68].

2.3 Crash Testing and Vehicle Safety Performance in Roads

The improvement in vehicles secondary safety (or crashworthiness) over the years has been
proven by several studies [36, 49, 61, 69-71]. However, debating has been arising if the crash test
results indicate the risk of fatality or injury in serious crashes. This section highlights studies on

vehicles’ safety and crash tests reliability with real crashes.

2.3.1 Perception of vehicles’ safety

Once introducing model variations on the market, car manufacturers face trade-offs when choosing

between interior volume, length*width, mass, maximum engine power, power-to-weight ratio,
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acceleration, and fuel efficiency [72]. Understanding consumers’ preferences for safety is essential
for designing safer vehicles, for encouraging safe driving behavior and to improve overall road
safety. Several studies have been conducted in order to gain a better understanding about
consumer’s perception of vehicle’s safety [35, 52, 67, 73]. Koppel et al. investigated the key
parameters associated with ranking 'vehicle safety’ as the most important consideration in the new
vehicle purchase [35]. Safety-related factors (e.g., EuroNCAP ratings) were more important in the
new vehicle purchase than other vehicle factors (e.g., price, reliability) [35]. Likewise, safety-related
features (e.g., advanced braking systems, front passenger airbags) were considered as more
important than non-safety-related features (e.g., route navigation systems) [35]. Vrkljan and Anaby
found that consumer’s vehicle purchase is influenced by: crash test rating, cost, design, and
reliability. In this study, safety, along with reliability, were considered most important if purchasing a
vehicle amongst overall consumers [52]. Thus, studies have recommend a better understand of
consumers’ perceptions of safety to make easier to plan more effective safety policies and safety
campaigns” [67, 73]. Consumers need to understand the importance of seeking low aggressivity in
the vehicles they are purchasing to minimize harm to other road users with whom they may crash
[66].

2.3.2 Correlation of crash testing with real crashes

There has been a long-standing debate about whether vehicle secondary safety is superior
measured through real world crash analysis or controlled during laboratory testing. Lie and Tingvall
focused on how do EuroNCAP results correlate with real-life injury risks, based on police reports
crashes [54]. These authors claimed that Euro NCAP is not able to predict crash outcomes
because start rakings system does not reflect the mass of the vehicles involved in the collisions,
and mass has an important role in the impact severity distribution [54]. The results suggested that
four-star cars seem to reduce the risk of a serious and fatal injury by more than 30% [54]. The
importance of vehicle’s weight (mass) should not be underestimated, and while this factor is not
taken into account in crash tests into fixed barriers, in a car-to-car impact a 100 kg more weight
difference will decrease the risk of any level of injury by 7% [65]. On the other hand, in single
vehicle crashes, the mass should not have any significant influence on safety [65]. Mendez et al.
showed that the average score of EuroNCAP test of new cars sold in Europe rose from 2 starts in
1988 to 4 stars in 2005. However this improvement on new cars safety rating did not translate into
reductions of the risk of injuries faced by drivers in real traffic situations, because of the evolution of
the car’'s mass fleet [61]. Kullgren et al. compared injury risk measures between Euro NCAP 2 and
5 Star cars with real-world injury outcomes using police and insurance injury data [74]. The 5-star
rated cars were found to offer a superior safety performance over 2-star rated vehicles in the crash
tests and real-world crash and injury performance. Contrary to the work of Lie and Tingvall,
mentioned above, Kullgren et al. claimed that Euro NCAP crash tests were highly correlated with

serious crash outcomes. These authors stated “though weights of new cars have gone up
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substantially in recent years, the results of this study confirm that improved crashworthiness has
been the primary factor in enhanced vehicle safety, rather than the increase in mass” [74].
Newstead et al. maintained that crash tests “do not account for vehicle mass effects in the real

world and they only cover a limited range of crash types” [75].
Based on the literature review, two major limitations are pointed to crash testing.

First limitation is related to the crash testing impact speed. The speed of collision, the delta-v, has
been identified by several authors as the most important variable to access crash severity
outcomes [43, 53, 54, 61, 76]. For vehicle’s occupants involved in impacts with a delta-v =250 km.h"
! the risk of severe injury is more than five times greater than for those in the lower delta-v [69].
However, EURO NCAP frontal impact testing protocol version 6.0 included a car impact speed of

64 km.h'lresulting in a delta-v of approximately 32 km. h™ for the occupants [69].

Second limitation is related to the difficulty to compare vehicles safety ratings amongst different
segments. IIHS endorse the consumers to not compare ratings across vehicle size groups because
size and weight influence occupant protection in serious crashes [77]. “Larger, heavier vehicles
generally afford more protection than smaller, lighter ones” [77]. On the other hand, Euro NCAP
recommend that crash testing only can be compared with vehicles in the same class and within a
113 kg weight range [37].

2.3.3 Vehicles’ improvements: primary safety and secondary safety

Some authors have study vehicles improvements over the years, others have discussed the

benefits of improved car primary safety.

Regarding vehicles improvements over the years, and following the studies presented in section
2.2, Broughton demonstrated that the proportion of injured car drivers who were serious injured or
killed in modern cars was clearly less than in older cars [70]. The author suggested that the
benefits have been proportionately greater in accidents occurring on roads with speed limits of at
most 40 mph [70]. However, it was not conclusive if those severe injuries were due to the efforts of
regulators and manufacturers to produce safer vehicles, or weather independent factors had
contributed to the observed reductions. Ritcher et al. results reveal a decrease in crash severity
(based on collision speed) and injury severity during the 1990s compared to the 1970s. It would
appear that improvements in vehicle design lead to a greater reduction in injury severity from
decreased crash severity alone [69]. Lund stated that, whereas vehicle safety has continuously
improved for vehicle occupants as a whole, it has worsened for many individual drivers who are not
driving the newest vehicles [78]. The author recognized that improvements in occupants protection
from vehicle design have been offset by an increasing risky environment, such as driving behaviors

and higher aggressively of the opponent vehicle [78].
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Regarding to advanced safety technologies, some examples are highlighted in Appendix 2.
Electronic Stability Control (ESC) “was the most important innovation in reducing of vehicle-related
mortality in decades, perhaps the single most effect innovation since the invention of seat belts”
[57]. Farmer focused on the potential of five crash avoidance technologies: blind spot
detection/warning, forward collision warning, emergency brake assist, lane departure
warning/prevention, and adaptive headlights [79]. Of those technologies, the one with the greatest
potential was the forward collision warning system could prevent 2.3 million crashes in the United
States each year [79]. Similarly to Farmer’s research, Jermakian suggested that a combination of
four current technologies (side view assists, forward collisions warning/mitigation, lane departure
warning and adaptive headlights) could mitigate 149, 000 serious and moderate injury crashes and
10,238 fatal crashes each year [80]. Also, forward collision warning was found by the author as

having the greatest potential for preventing crashes of any severity.

A report from IIHS published the results of the Highway Loss Data Institute (HLDI) that analyzed
five existing features: antilock brakes, electronic stability control (ESC), driver frontal airbags, side
airbags, and forward collision warning, introduction in the vehicles fleet [81]. The IIHS reports
states that it takes typically three decades for a promising safety feature first introduced in few
luxury cars to spread through the fleet [81]. Although US government began requiring frontal
airbags installation in some vehicles in 1996, it won’t be until 2016 that 95% of all registered
vehicles will have frontal airbags [81]. ESC was introduced in 1995 models and was standard on 10
percent of 2000 models [81]. It is predicted that 95 percent of registered vehicles in 2029 will have
ESC [81]. A newer report from IIHS stated that forward collision avoidance systems, particularly
those that can brake autonomously, along with adaptive headlights, which shift direction as the

driver steers, show the biggest crash reductions [82].

Regardless of all their potential benefits, the success of crash avoidance technologies in preventing
crashes depends on several factors, including driver acceptance as well as drivers understanding
which could make them to inappropriately respond to the alerts [80, 81]. On the other hand, drivers
with too much confidence in the vehicle safety features may be less observant or drive more

aggressively, thus offsetting the potential benefits of those systems [80].

2.4 Statistical Approaches on Crash Severity Analysis

The development of effective countermeasures for road safety requires a thorough understanding
of the factors that affect the likelihood of a severe injured given any injury level sustained by
vehicles’ occupants following a crash. To gain such understanding, a wide variety of methodologies

have been applied over the years, as discussed in this section.

21



Chapter 2

2.4.1 Crash analysis- General review

In crash severity prediction, the analysis focuses on the contribution of several factors and its
relationship to the crash outcome. Logistic regression provides important information to discuss the
correlation effect between the factors and response variable [83-85]. These factors are called
independent variables or predictors variables, which may explain the response variable (also called
dependent variable or target) [84]. Logistic methodology provides information on the parameters
estimates (input factors), their standard error and their significance level and their confidence
intervals and assumes independence among observations [84]. However, regression models have
many assumptions and implicit underlie relationships between the dependent and independent
variables [86, 87]. An advanced and powerful data mining technique is the Classification and
Regression Trees Analysis (CART) [88]. CART methods do not require predefined causal
relationship between the target and predictors. Decision trees provide an excellent starting point to
predictive modeling and are useful to predict new cases, select useful inputs and optimizing
complexity [84, 89]. CART is a flexible non-parametric technique which can provide more
informative and smart set of models, and its application is a valuable precursor to a more detailed
logistic regression analysis in crash injury data [86]. CART can provide higher prediction accuracy
than the conventional binary logit model [88]. Due to the nature of CART, p-values and hence
significance cannot be explicitly as in logistic regression. However, CART is based on a surrogate
approach for selecting sets of significance variables, and the variable importance rankings could
also act as a surrogate for significance [84, 89]. Thus, logistic regression remains the most popular
method applied by practitioners working within financial services, industry, medicine, marketing and
crash analysis, and it offers a suitable balance of accuracy, efficiency and interpretability [43, 47,
83]. On the other hand, CART is also popular, due to the relative easy way in which models can be
developed, their limited operational requirements, and particularly their interpretability [43, 46, 47,
83].

Savolainen et al. had reviewed statistical methods for motor-vehicle injury severities and the
challenges that complex data imposes, such as endogeneity, when explanatory (predictor)
variables are potentially influenced by injury-severity outcomes [90]. The authors give the example
of a model that would use the presence of airbags as an explanatory variable in a model of injury
outcome. In that case, drivers owing vehicles with airbags may also tend to be more risk
homeostasis. Simply stated, the presence of the airbag releases the perceived risk by the driver,
thus allowing him/her to be more aggressive and/or taking dangerous maneuver when overtaking
on the road. Other example of endogeneity was identified by Méndez et al. when drivers may take
advantage of design improvements and travelling at higher speeds, which translates in higher

impact speeds and therefore, higher injury severity [61].

In crash severity prediction modeling, usually researchers look to several classes of targets, which
sometimes make difficult the comparison results among different studies. Some researchers have

inspected the injury severity of crashes by considering the injury level of the driver only [42, 61, 91-
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93]. Others have included in the analysis the injury-severity of the most severely injured occupant,
whereas, others have included multiple injury levels per crash event [42, 92, 93]. Therefore,
comparison of results among crash severity prediction studies must be made with prudence
because those results are significantly influenced not only by the class of target being modeling,
but also by the data source. Police accident reports are used worldwide for crash analysis and road
safety. However several authors have claimed the misclassification of injury severity among road
casualties in police reports. Hauer claimed that Police miss near to 20% of injuries that require
hospitalization [94]. Tsui et al. study claimed that police reports overestimate injury severity
significantly [95]. This study identified that victims’ age, the Injury Severity Score (ISS), and the
position of the victim significantly determine the likelihood of police injury misclassification [95].
Amoros et al. stated “Police crash data, which are the basis for safety research in most countries,
are incomplete and biased” [96]. Whereas fatal casualties are quite clearly defined and well
reported, non-fatal casualties could be biased [96, 97]. Al-Ghamdi stated that police reports “do not
describe injuries in much detail because of the lack of police qualifications and training as well as
facilities needed to perform complex examinations”, and “medical reports are hard to obtain
because police accident data and medical data are not kept together” [85]. Despite of the above,

Police accident reports are the main source for crash analysis and prevention.

As far as crash data access worldwide, examples are provided for some of the studies under
discussion in this Chapter. In Austria, Boufous et al. data was obtained from a Traffic Accident
Database System (TADS) [98]. In U.S., Bédard et al. and Jermakian used data from Fatality
Analysis Reporting System (FARS) [80, 91]. Also in US, Kockelman and Kweon and Chen and
Kockelman had access to the National Automotive Sampling System General Estimates System
(NASS GES) [92, 99]. Kononen el. al. examined data from National Automotive Sampling System
Crashworthiness Data System (NASS-CDS) [43]. Das et al. used crash data from the Crash
Analysis and Reporting (CAR) system [87].

2.4.2 Crash severity prediction models- A review of previous studies

Previous studies related to crash analyses have used a broad spectrum of statistical models to
reach conclusions. For example, statistical regression models have been widely used for analyzing
contributing factors to injury severity [37, 85, 91, 98-101]. Often, researchers combine different
methods in order to extract partner relationships between variables and to overcome data
complexity [83, 92, 102, 103].

Boufous et al. used multiple linear regression analysis to evaluate factors affecting injury severity
[98]. Results showed that road type, the presence of complex intersections, road speed limit as

well as driver's error, speeding, and use of seat belt were significant predictors of injury severity
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[98]. Bédard et al. used a multivariate logistic regression to identify the independent contribution of
driver, crash, and vehicle characteristics to fatal injuries sustained by drivers [91]. Older drivers,
female gender, blood alcohol concentration (greater than 0.30), driver-side impacts, speeds in
excess of 111 km.h™ prior to the crash, and no seat belt use were related to higher fatality ratios
[91]. Al-Ghamdi applied logistic regression to accident data to examine the contribution of several
variables to accident severity [85]. Accident location (intersection or not) and cause were found
significant to predict a fatal crash [85]. Kockelman and Kweon applied ordered probit models to
examine the risk of different injury levels sustained under all crash types, two-vehicle crashes, and
single-vehicle crashes [92]. Pickup-trucks and SUVs were less safe than passenger cars under
single-vehicle crash conditions. However, in two-vehicle crashes, these vehicle types were
associated with less severe injuries for their drivers and more severe injuries for drivers of their
collision partners [92]. Abdel-Aty studied driver injury severity levels using the ordered probit
models [42]. Models results showed the significance of driver's age, gender, seat belt use, point of
impact, speed, and vehicle type on the injury severity level [42]. Das et al. used random forests,
which were ensembles of individual trees grown by CART algorithm [87]. This methodology has
identified alcohol/drug use and higher posted speed limits as contributing factors to severe crashes
outcomes [87].

Kuhnert et al. combined non-parametric models (such as CART) with logistic regression to
determine if “risk-taking” was a significant contributor to crashes resulting in serious injury or death
[102]. These combined techniques had identify age, driving experience, sex, and seatbelts as the
major contributors to serious injury resulting in hospitalization from motor vehicle accident [102].
Kashani et al. used CART methodology to identify the most important factors which affect injury
severity of vehicles drivers [104]. The results reveled that seat belt use, improper overtaking and
speeding were the most important factors associated with drivers injury severity [104]. Sobhani et
al. developed a kinetic model of two-vehicle crash injury severity using generalized linear
regression model. Mass ratio and speed limit had positive effect on the injury severity score of the
crash [105]. Martin and Lenguerrand estimated driver protection provided by passenger cars for
French vehicles fleet using a conditional Poisson regression [49]. “Recent cars protect their drivers
better than older cars in the event of a collision” [49]. However, for the single-car crashes the
advances in secondary safety were not apparent, “probably because of higher impact speeds” [49].
Méndez et al. evaluated the crashworthiness and the aggressiveness of the Spanish car based on
car’'s year of registration by applying two types of regressions: logistic models for single-crashes
and generalized estimation equation (GEE) models in tow-crash crashes [61]. Crashworthiness
had improved in two-car crashes, and drivers of cars registered before 1985 had a significantly
higher probability of being killed or seriously injured than drivers of cars registered in 2000—2005
[61]. Also, for single-car crashes, the improvements in crashworthiness were also very slight [61].
Chen and Kockelman used a heteroscedastic ordered prohibit model to differentiate the effects of

vehicle weight, footprint (defined as the product of wheelbase and width) on the severity of injuries
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of vehicle occupants [99]. The impact of vehicle’s attributes was also found more significant in one-
car crashes than in two-car crashes. For single-vehicle crashes, larger footprint vehicles seemed to
reduce the risk of serious injuries; while in a two vehicle collision those same vehicles attributes
seemed less crashworthy [99]. Also, heavier vehicles were expected to be more crashworthy
regardless of crash type [99]. Kononen et al. used logistic regression model for predicting serious
injuries associated with motor vehicle crashes [43]. Delta-V, seat belt use and crash impact
direction were found the most important predictors of serious injury [43]. Xie et al. focused on the
analysis of driver injury severity in rural single vehicle crashes using both the multinomial logit
(MNL) model and the latent class logit model (LCL) to find out the relationship between injury
severities and related traffic factors [93]. Driver age, DUI, seat belt usage, points of impact, lighting

condition, speed, which were found to be closely related to driver injury severity levels [93].

Newstead et al. estimated the risk of death or serious injury based on a total secondary safety
index developed with logistic regression model [75]. Crashworthiness and risk impose to another
vehicle were largely independent, with a slight correlation with vehicle mass, which tends to
improve crashworthiness but increases “agressivity” [75]. Total secondary safety rating was found

to be the best for medium vehicles size, whereas, light cars showed the poorest [75].

Table 2.1 highlights the main important studies in the technical literature for crash severity risk
factors modeling and injury severity prediction. For each study, data source, sample description,

selected statistical methods, key findings and research limitations are outlined.
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Table 2.1 — Studies for risk factors analysis and crash injury severity prediction.

AUTHOR’S STUDY

DATA SAMPLE

STATISTICAL METHODS

KEY FINDINGS

LIMITATIONS

Abdel-Aty (2003)

Crash data for the
Central Florida, from
1996 and 1997.

Ordered probit models for multinomial variables
(injury severity levels) which were inherently
ordered.

Driver's age, gender, seat belt use, point of impact, speed,
and vehicle type were significant on the injury severity level.

Only focus on driver’s injury risk.
For vehicle information only use the
vehicle type, as being PC or not.

Al-Ghamdi (2002)

Traffic police records
from 1997 to 1998

Total of 560 crashes
selected in a systematic
random process from all
accident records in Saudi
Arabia.

Logistic regression was used to classify
accidents being fatal or non-fatal.

During the modeling phase some variables were
dropped from the model, those that were not
adding useful information to the variability of the
response variable.

After dropping some variables location and cause of the crash
were found significant.

For two-vehicle collisions, driving a heavy duty trunk seemed
to offer better protection.

For two and single-vehicle crashes, vehicle age and alcohol
were positively associated with injury level.

The odds of being in a fatal accident at a non-intersection
location are 2.64 higher than those at an intersection.

Vehicle information only relied on
vehicle body type classification.
Only 560 serious crashes were
examined and this sample mix
pedestrians, cyclist and vehicle
collisions.

Baker et al. (2008)

FARS was used for two-
vehicle crashes between
2000 and 2003.

Driver fatalities in struck passenger cars were
grouped by crash configuration (front-to-front or
front-to-driver-side), reported driver belt use, light
truck body type (pickup or SUV), and whether or
not the height-matching criteria were met.

Driver fatalities per million light truck vehicle
registration-years then were calculated for each
of these groups.

The estimated benefits of lower front energy-absorbing
structure were a 19 % reduction in fatality risk to belted car
drivers in front-to-front crashes with light trucks and a 19 %
reduction in fatality risk to car drivers in front-to-driver-side
crashes with light trucks.

Focus on the risk to the driver only.
The vehicle characteristics being
analyzed were limited to matching of
primary energy-absorbing structures
that affect the agressivity of light trucks
with cars.

Bédard et al. (2002)

FARS data for US traffic
fatalities from 1975—
1998.

Multivariate logistic regression.

Odds ratio (OR) of a fatal injury increased with age, 4.98 (for
drivers aged 80+ compared with drivers aged 40-49 years.
Female gender (OR=1.54) and blood alcohol concentration
greater than 0.30 (OR=3.16) were associated with higher
fatality odds. In comparison with front impacts, driver-side
impacts doubled the odds of a fatality (OR=2.26), and speeds
in excess of 111 kilometers per hour (were related to higher
fatality odds (OR=2.64) compared with speeds of less than 56
kph.

Only focus in single -vehicle crashes.
Risk to the drivers only.

Boufous et al.(2008)

Database linking hospital
from the Inpatient
Statistics Collection (ISC)
to police crash casualty
records from the Traffic
Accident Database
System (TADS), in
Australia.

Injury resulting from traffic crashes was
measured using the International Classification of
Diseases, 10" revision (ICD-10) Injury Severity
Score (ICISS).

Univariate and Multiple linear regression
analysis.

Different Models were developed: for analysis
impact driver characteristics, for analysis impact
of environment and road and for analysis of the
impact of vehicle and crash information on injury
severity.

Road type, presence of complex intersections, road speed

limit as well as driver's error, speeding, and use of seat belt
were significant predictors of injury severity in older people

hospitalized as a result of a traffic crash

Only focus in older diver risk.

Vehicle information is only limited to
being a car or “other vehicle” and year
of manufacture.

It includes the number of vehicles
involved in the crash but not the effect of
the opponent vehicle.
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AUTHOR’S STUDY

DATA SAMPLE

STATISTICAL METHODS

KEY FINDINGS

LIMITATIONS

Broughton (2008)

British SATS19 national
road accident reporting
system.

Data crashes from 2001
to 2005

Car models were grouped into six types, ranging
from ‘Minis and Superminis’ to ‘4 x 4s and PCs.
Statistical models were fitted to identify the
influence on a driver's risk of injury in a car-car
collision based on type and registration year of
the driver's car and the type and registration year
of the other car in the collision.

Risk has been calculated as driver casualty rate
per million.

Generalized linear model was used to fit the
driver casualty rate data

Analysis focus on secondary risk estimated from
two-vehicle collisions.

Driver casualty rates falls with size of car, except for sport
cars. In car-car collision driver fatality rise with size of the
other car.

In multi-vehicle accident, occupants of smaller vehicle face
greater risk and the asymmetry of risk increases with mass
ratio.

In car-car collisions, driver of the earlier car tends to face
greater risk than the driver of the later car.

The risk of death for the driver of the smallest type of car was
4 times the risk for the largest type.

The risk of death for a driver in collision with the largest type
of car was over twice the risk when in collision with the
smallest type,

The risk of death for the driver of a car registered in 2000-
2003 is less than half the risk for the driver of a car registered
in 1988-1991.

The risk of death for a car driver in collision with a car
registered in 2000-2003 is about 46% greater than the risk
when in collision with a car registered in 1988-1991.

The risk of being killed or seriously injured varies less with car
type and registration year than the mean risk of being killed.
Nature and severity of an accident tend to vary with the local
speed limit.

Focus on the risk to the driver only.
Car information was limited to type and
registration year).

Broughton (2012)

Crashes extracted from
the British National Road
Accident Reporting
System.

Accident data from 2003
to 2007.

Two models were fitted to the accident data and
the dependent variable for each model was
proportion of injured drivers who were killed or
seriously injured.

One model comprise comprised the driver's age
and sex and the registration year of the driver's
car. Other model had added type of car and
registration year. Separated models were fitted
for type of road.

The mean risk of death for a car driver in collision with a car
registered in 2004-2007 was 23% greater than in collision with
a car registered in 1988-1991.

Newer cars are associated with lower risk of injury than older
cars, namely protection of occupants in fatal and serious
accidents and aggressivity in serious accidents.

Fewer casualties in car-car collisions were registered when
more modern cars are involved. So the casualty benefits of
improved secondary safety have clearly outweighed the
disbenefits of increased aggressivity.

Only focus on risk to the drivers.

Predictors were

based on type of car

and registration year.

It does not take i

nto account vehicles’

differential size and mass.

Chen and Kockelman
(2012)

Data was used from
2007 through 2009
NASS GES.

26,421 occupant
observations for one190
vehicle crashes and
72,139 occupant
observations for two-
vehicle were analyzed.
1V and 2V

Data from NASS GES was matched with
additional vehicle-specific characteristics
(obtained using HLDI's database) based on
abbreviated vehicle identification numbers
(VINS).

Heteroscedastic ordered probit model to
distinguish the effects of vehicle weight, footprint
(wheelbase*width) and height on the severity of
injuries sustained by vehicle occupants.

Larger-footprint vehicles and shorter vehicles are estimated to
reduce the risk of serious injury. In single-vehicle crashes,
they appear to be less crashworthy in two-vehicle collisions.
Heavier vehicles are anticipated to be more crashworthy
regardless of crash type.

Moderate changes in vehicle weights, footprints are estimated
to have small impacts, while other factors, such as seat belt
use, driver intoxication, and the presence of roadway
curvature and grade influence crash outcomes much more
noticeably.

The methodology does not explain if the
effect of the opponent vehicle was on

the case vehicle

injury outcomes.

Vehicles differential characteristics such

as weight differe

ntial between the two

vehicles involved in the collisions were

not shown.

Das et al.(2009)

Crash data from the
Crash Analysis and
Reporting (CAR) System
, Florida Department of
Transportation (FDOT),
for the years 2004
through 2006.

Random Forests, which are ensembles of
individual trees grown by CART algorithm, were
used to classify crash severity.

Severity level was defined as Binary (1 =
incapacitating injuries/ fatalities; 2 = possible/
non-incapacitating injuries).

Alcohol/ drug use was associated with increased severity of
crashes irrespective of the length of the corridors or the type
of crashes.

Failure to use safety equipment by all passengers and
presence of driver/passenger in the vulnerable age group (>
55 yr or <3 yr) increased the severity of injuries.

Only consider cr
urban arterials.

ashes occurring in

For vehicle information only consider
vehicle type category: light trucks; heavy
vehicles and light slow moving vehicles.
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AUTHOR’S STUDY

DATA SAMPLE

STATISTICAL METHODS

KEY FINDINGS

LIMITATIONS

Evans (2004)

Crashes cases were
extracted from FARS
data, for 1975-1998

Analysis the quantitative relationship to to
explore what length increases was required to
offset the risk increases from reducing vehicle
mass.

Analysis derived from frontal two-car crashes.

If a car is heavier, it reduces risk to its driver but increases risk
to other drivers.

If a car is larger (without being heavier) it reduces the risk to
its driver and also reduces risk to other drivers.

Increased dimensions in a car provide increased occupant
comfort.

To reduce fatality risk in crashes between large and small
cars requires increasing vehicle length while reducing mass.

Focus only on two-car crashes.

Fredette (2008)

Data from 2 vehicle
collisions occurring
between 1993 and 2001,
from National Collision
Database, in Canada.
Data for 2,999,395
drivers.

Logistic regression was used to model the risk of
driver death or major injury (defined has being
hospitalized).

Pickup trucks, minivans and sport utility vehicles (SUVs) are
more aggressive than cars for the driver of the other vehicle
and more protective for their own drivers.

Like vehicle mass and type, characteristics of drivers and
circumstances of the collision influence the driver’s condition
after impact. Male drivers, older drivers, drivers who are not
wearing safety belts, collisions occurring in a higher speed
zone and head-on collisions significantly increase the risk of
death.

Only focus in older diver risk.

It classifies six vehicle types: passenger
car, SUV, pickup truck, minivan, heavy
truck and bus.

Mass ratio for driver car and impact
were included. The study did not include
vehicle’s technical data information.

Kashani et al.(2011)

Dataset include 213,569
drivers that were involved
in rural road crashes
from 2006 to 2008, in
Iran.

CART was applied to model 13 independent
variables, and the target variable injury severity,
which includes 3 classes: no-injury, injury and
fatality.

Seat belt use, cause of crash and collision type as the most
important variables influencing the injury severity of traffic
crashes.

Vehicle information is only in respect of
vehicle type classification.
Only focus on drivers’ risk.

Keall (2008)

Crash data in the years
2005-2006, New
Zealand.

Population with
2,996,000 vehicles of
which 17,245 were
involved in an injury
crash.

Vehicles grouped by category.

Poisson regression was used to estimate the
number of casualties resulting from crashes
involving the vehicle marker group. Multivariate
logistic regression models were used to estimate
crash risk.

Sport cars high crash involvement rate and injury rate is likely
to be largely due to the way they are driven rather than to
inherent characteristics of the vehicles themselves.

SUVs are dangerous when in the hands of young drivers.
Safety conscious vehicle purchaser should also avoid sports
cars because of the tendency for drivers to take additional
risks when provided with high levels of acceleration and
performance.

Only two continuous variables available
for the analysis, vehicle age and annual
distance driven.

The logistic model for injury crash
involvement had a non-significant
Hosmer-Lemeshow Goodness-of-fit test,
providing evidence of a poor fit.

Kockelman and Kweon
(2002)

Data from National
Automotive Sampling
System GES, which has
all police-reported
crashes in the US for
1998 year.

Ordered probit regression was applied to model
four levels categories: no injury (0), minor injury
(1), severe injury (2), and fatal injury sustained
by driver (3).

Manner of collision, number of vehicles involved, driver
gender, vehicle type, and driver alcohol use play major roles.
Rollover and head-on collisions are particularly serious,
contributing to more severe injury levels than speed increases
of 50 mph and more.

Only considered the risk to the driver.
For vehicle information only consider
vehicle age (model year) and vehicle
type category, such as motorcycle,
SUVs, van, pick-up, heavy duty vehicle.

Kononen et al. (2011)

National Automotive
Sampling System
Crashworthiness Data
System (NASS-CDS) for
1999-2008.

Sample had 14,673
vehicles, 1212 (8.3%)
contained one or more
occupants with ISS 15+
injuries.

Injury Severity Score (ISS) was considered for
crash outcomes injury level analysis.

Logistic regression was conducted using SAS
9.2.

The target was the percent of vehicles with
seriously injured occupant(s).

Delta-V (mph), seat belt use and crash direction were the
most important predictors of serious injury.

Lack of vehicles characteristics for
models inputs. The only information
used was vehicle type (utility, van,
pickup and car).

Kuhnert et al. (2000)

Survey from 1997 to
1998, in Australia.
2000 people were
inquired.

Participants were stratified by sex, vehicle type
and postcode areas).

Combined non-parametric modeling procedures
(CART) and multivariate adaptive regression
splines (MARS) with logistic regression.

MARS and CART are not only modeling tools but exploratory
tools for a more detailed analysis.

Models have identified age, experience, sex and seatbelts are
major contributors to serious injury.

Vehicle information was limited to
vehicle type classification.

It center in the analysis of driver
characteristics rather than other
contributor factors to injury outcomes.
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AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS
The crash data were Crash severity index (CSI) for work zone safety CSI models can provide straightforward measurements of Training model developed with 267
originally obtained from evaluation was proposed and a set of CSI work zone risk levels. injury crashes and 67 fatal crashes.
the Kansas Department models were developed through the modeling of
of Transportation (KDOT)  work zone crash severity outcomes. The crash data used for model
database. Chi-square statistics and Cochran—Mantel— validation had only 18 fatal crash cases.
Data includes 85 fatal Haenszel (CMH) statistics were employed to The size of the fatal crash sample might
crashes and 604 injury ensure the accuracy of risk factor identification. not be large enough to validate the
crashes between 1998 First, a wide range of crash variables were developed models under typical fatal
Li (2008) and 2004. examined in a comprehensive manner and the conditions.
significant risk factors that had impact on crash
severity were selected. Second, the CSI models
were developed using logistic regression
technique by incorporating the selected risk
factors. Finally, the developed models were
validated using the recent crash data and their
ability in assessing work zone risk levels were
analyzed.
Crashes by the police in Poisson regression was used to assess the When a recent car is in collision with an older car, the driver of  Data which would have allowed a good
France between 1996 relative risks. the former is better protected than the driver of the latter. estimate of impact conditions in terms of
and 2005. The risk of the With this regression the relative risks for drivers Improvements in secondary safety are not observed in the Delta-V was not available.
Martin and driver being killed has within the same crash are estimated by case of single-car crashes, very probably because of higher Lack of precision concerning vehicle

Lenguerrand (2008)

been evaluated for a
sample with 144,034
drivers.

Single and two-vehicle
crashes.

conditioning the Poisson likelihood on the
number of deaths in each matched set (single
and two-vehicle crashes)

impact speeds.

characteristics, mainly registration year,
mass and power.

Mendez et. Al (2010)

Data extracted from the
Spanish Road Accident
Database, for cars
registered before 1985
and cars registered, in
2000-2005

Two types of regression models have been used:

logistic regression models in single-car crashes,
and generalized estimating equations (GEE)
models in two-car crashes.

Dependent variables have been defined as
proportion of injured drivers who were killed or
serious injured in the Spanish car fleet.

Crashworthiness improved in two-car crashes: when crashing
into the average opponent car, drivers of cars registered
before 1985 have a significantly higher probability of being
killed or seriously injured than drivers of cars registered in
2000-2005.

In single-car crashes, the improvement in crashworthiness
was very slight.

Increase in the aggressivity of newer cars.

Only focus on analysis of the drivers
risk.

Vehicle information is only limited to the
registration year.

Pakgohar (2011)

Database extracted from
Traffic Accidents of Iran’s
Police.

The size of the target
population was 347,285
road crashes during
2006.

Descriptive analysis, Logistic Regression, and
CART were employed.

The dependent variable (Accident Severity) had
three levels: “Fatal”, “Injury”, and “No Injury”.
During running CART and LR algorithms through
SPSS, the software’s defaults were adopted.

After executing algorithms, the accuracies of 81% and 78.57%
were achieved for CART and LR, respectively. Thus CART
had higher accuracy than LR method.

Accident severity did not take into
account vehicle effect but driver’s age
and gender, seat belt use, and driving
license.

Tolouei (2009)

UK data from two-car
accidents where at least
one driver was injured,
from 2000-2004.

Logistic regression models were used to
represent the independent influence of speed
limit (proxy for accident severity), first point of
impact, driver sex and driver age.

Linear model was estimated using ordinary least
square to investigate the effect of vehicle mass
on its adjusted crash injury risk to the driver.

A 100 kg increase in mass decreases risk of injury to the
driver in a two-car injury accident between 2.6% and 3.2%.
Characteristics of the fleet, and in particular the distribution of
mass within the fleet, it is an important factor in determining
the relationship between mass and secondary safety
performance of individual vehicles.

Only focus in risk to the driver.

It seems that uses an average of
vehicle’s mass and engine size for auto-
brands rather than using vehicles
individual's mass and engine size.
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AUTHOR’S STUDY

DATA SAMPLE

STATISTICAL METHODS

KEY FINDINGS

LIMITATIONS

Tolouei (2013)

UK STATS19 Police
reported data from 2000
to 2006.

Sample dataset included
two-car crashes where at
least one of the drivers
was either killed or
seriously injured (KSI);
this included a total of
2485 two-car crashes.
Two vehicle collisions.

Disaggregate analysis of two-car crash data to
estimate the partial effects of mass, through the
velocity change, on absolute driver injury risk in
each of the vehicles involved in the crash.
Absolute injury risk is defined as the probability
of injury when the vehicle is involved in a two-car
crash.

It separates the effect of vehicle mass from size
(length x width).

The driver injury probability is described by a
logistic function that includes, for each vehicle
involved in the crash, the velocity change
(defined as a function of mass ratio and closing
speed) as well as various driver and vehicle
characteristics.

The probability of injury of the driver of vehicle 1 increases
with speed limit and with increasing mass ratio (u = m2/m1)
while the probability of injury of the driver of vehicle 2
increases with speed limit and with decreasing mass ratio;
that is, in a two-car collision vehicle mass has a protective
effect on its own driver injury risk and an aggressive effect on
the driver injury risk of the colliding vehicle.

There is a protective effect of vehicle size above and beyond
that of vehicle mass for frontal collisions.

Mass might not necessarily impose a trade-off between safety
and environmental goals in the vehicle fleet as a whole. This
is because the secondary safety performance of a vehicle
depends on both its own mass and the mass of the other
vehicles in the fleet.

Only estimate risk to the driver.
Crash analysis focus only frontal two-car
crashes.

Wenzel (2005)

Crashes from fatality
analysis reporting system
FARS, for 1997-2001.

Used the number of driver fatalities during the for
selected vehicle types/models from model years
1997-2001 and divide the number of fatalities for
a given vehicle type or model by the number of
“registration-years”.

Risk defined as drivers deaths per million
registered vehicles for a given car model.

Use both primary risk (crash involvement) and
secondary risk (injury risk) during the analysis.

Range in cars’ risk must be attributed to vehicle design (which
encompasses mass and size) and to difficulty to driver
characteristics and/or behavior.

Mass alone is a “modest” predictor for risk.

Mass and size correlates inversely with risk; large and mid-
size cars have safer records than average subcompact, but
the correlation is not strong. Better correlation was found
between vehicles quality and safer records.

It remains inconclusive whether design features or driver
characteristics and/or behavior are more important to risk.

Focus on the risk to the driver only.

The “other vehicle” could be any model,
including motorcycles, buses and heavy
vehicles.

Study the dependence of risk on vehicle
type and especially on vehicle model,
but not took into consideration vehicles
technical information.

In the risk to the driver did not consider
the effect of vehicles characteristic
differentials.

Xie et al. (2012)

Total number of crashes
with valid data was 4,285
obtained from Florida
Traffic Crash Records
Database, in 2005.
Single-vehicle crashes.

Multinomial logit (MNL) model and latent class
logit (LCL) model were used.

Five crash injury outcomes were considered in
this research: “no injury”, “possible injury”, “non-
incapacitated injury”, “incapacitated injury”, and
“fatal injury”.

To further assess the performance of the LCL
model, a prediction experiment was conducted to
evaluate the goodness-of-fits of the two models.
From the collected data, 3,000 observations
were randomly drawn for model fitting, and the
remaining data are used for evaluation. This
process is repeated 10 times.

Compared to the MNL model, the LCL model improves the
prediction accuracy for the possible injury category by around
37%.

For other injury outcomes, the improvements from the LCL
model range between 10% and 20%, which are quite
significant considering that this is the average result based on
10 randomly generated samples.

Model’s significant risk factors were: driver age, DUI, seat belt
usage, points of impact, lighting condition and speed.

Vehicle age and surface condition were not significant.

Focused on rural single-vehicle traffic
crash and only in crash driver injury
severity risk.

Vehicle information was only limited to
vehicle age and being an automobile or
avan.

Zhang (2000)

Crashes obtained from
Canadian Traffics
Accident Information
Databank from 1988-
1993.

17,367 crashes including
711 fatal observations.

Multivariate logistic regression was used to
calculate the estimated relative risk based on
odds ratios (OR).

Factors significantly related to the increased risk of fatal-injury
in crashes were: age (OR=1.4 for 70-79), sex (OR=1.4 for
males), failing to yield right-of-way/disobeying traffic signs
(OR=1.7), non-use of seat belts (OR=4.0), ejection from
vehicle (OR=11.3), intersection without traffic controls
(OR=1.7), roads with higher speed limits (OR=7.9 for 70-90
km.hr’"; OR=5.8 for 100 km.hr™), head-on collisions
(OR=55.1), two-vehicle turning collisions (OR=3.1 for left-turn,
OR=8.7 for right-turn), overtaking (OR=5.6), and changing
lanes (OR=2.1).

Vehicle information was limited to
automobile or van.

Only focus on risk injuries to the elderly
drivers.
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2.5 Modeling Rare Events- Imbalanced Data

Problems of classification and prediction models with imbalanced classes are common in several
domains. This section discussed the challenges imposed by rare events and summarizes authors’

findings dealing with this topic.

2.5.1 Why are rare events a problem?

f,

Figure 2.1 - A scheme illustrating a dataset with imbalance classes (used with permission [106].

Imbalanced data sets exists in many real-world domains, such as spotting unreliable
telecommunications customers, detection of oil spills in satellite radars images, detection of
fraudulent telephones calls and credit card frauds [83, 106, 107]. High imbalance events occurs in
real-world where the decision is aimed to detect a rare but important case [107]. Imbalance data
correspond to data exhibiting significant and sometimes extreme imbalances between the classes.
A dataset is imbalanced if the classes are not approximately equally distributed. Some authors

claim that natural distributions are not the bets distribution for learning a classifier [107-111].

Figure 2.1 illustrates in a simpler manner an imbalanced classes distribution [106]. The stars
represent the minority class and the circles represent the majority class. In some domains of
civilian life to national security, between class imbalances are on the order of 100:1, 1000:1 and
10000:1, where for each case, one class severely outrepresents another [106]. Classifiers (or
algorithm method) tend to provide a severely imbalance degree of accuracy: with the majority class
having close 100% accuracy, and the minority class having accuracies in the interval of 0-10%
[106]. There is the need to have an algorithm method that it will provide high accuracy for the

minority class, without making vulnerable the accuracy of the majority class.

In literatures, rare events have proven difficulty to explain and predict [110]. The importance of

addressing the imbalance distribution between the majority and minority classes in modeling is
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often derived from the underlying decision context and the costs associated with it [83]. The nature
of the class imbalanced was defined as “a relative problem depending on both the complexity of
the concept represented by the data in which the imbalanced occurs and the overall size of the
training set, in addition to the degree of class imbalance present in the data and the classifier
involved” [110]. High complexity and imbalance classes, as well as small training set sizes, lead to
very small subclusters that cannot be classified accurately [110]. Contrariwise, the class imbalance
problem causes no harm when all subclusters have a reasonable size, thus dismissing the belief
that classification errors will necessarily occur if one class is represented by a large data set and

the other, by a small one [110].

As far as the answer to the question “Why are rare events a problem?” there are several reasons

as explained next.

Explanation 1: Some small disjunctions may not indicate a rare case or exceptional observation,
but rather noisy data [107]. Hence, just small disjunctions that area meaningful should be reserved
for the analysis [107]. In logistic regression modeling to predict a binary target outcome (Y="0" or
“Y=1") with unequal sample frequencies of the two outcomes (“0” and “1”), the less frequent
outcome (“1”) always has lower estimated prediction probabilities than the other outcome [112].
Thus, the logit model would estimate high prediction probabilities for the most common event and
very low for the less frequent event. Hence the inequality of sample proportions of the outcomes
leads to a high overall estimated prediction probabilities and to high log-likelihood [112]. Cramer
stated that a good prediction would be simply a matter of choosing the right predictors[112].
Whatever value the rare outcomes can attain, on average the prevalent outcome will always be
predicted even better [112]. The extent of this asymmetry differs with the fit of the model, which is
usually mediocre, as a “rule” there is a great contrast between the poor prediction of the rare event

and the good prediction of the common event [112].

Explanation 2: The problems of logistic regression in rare events are mainly related to two
sources: statistical procedure can sharply underestimate probability of rare events and commonly
data collection strategies are inefficient for unbalanced data [83, 109]. The first source of problems
of rare events data analysis with binary dependent variables is related to the mean of the binary
variable which is the relative frequency of the events in the data. For instance, logit coefficients are
biased in small samples (under 200) and this problem have been well documented in the literature
[109]. However, it is not widely understood why in rare events data, the biases in probabilities can
be substantively significant for large sample sizes (above thousands) [109]. In addition, the
probabilities of events in the logit analysis are suboptimal in samples containing rare events,
leading to errors in the same direction as biases in the coefficients [83, 109]. The second source of
problems with rare events data is derived from the data collection. Collecting data sets with no
events (and thus no variation on the dependent variable “Y”) led to choice of very large number of
observations with poorly measure explanatory variables [109]. King and Zeng stated that “a trade-
off always exist between gathering more observations and including better or additional variables”
[109].
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Explanation 3: In many applications and domains of data mining, the costs of type | and type I
errors is dramatically asymmetrical, making an invalid prediction of the minority class more costly
than an accurate prediction of the majority class [83]. Traditional algorithms usually have a bias
towards the majority class, which provides more error signals [83]. Moreover, the error signals
derived from different numbers of events “1” and events “0” may shift the decision surface in
feature space for those methods estimating decision boundaries using fundamentally different
approaches to classifier design, depending on their statistical efficiency. Hence, there is the need
to avoid collecting the vast majority of observations without efficiency loss. Some approaches
designed to handle with this problem rely on selecting the events (Y="1") which are relevant,
however those approaches might lead to alter the population to which are inferring or requires

conditional analysis [109].

The above explanations prove why handling imbalance data requires either the development of
distribution insensitive algorithms or an artificial rebalancing of the datasets through sampling [83].
The computer time and memory required for the statistical analysis depend on the number of
cases, the number of variables, the complexity of the model, and the algorithm. Therefore, for

many modeling situations, there is a trade-off between time and memory.

2.5.2 Strategies and methodologies to handle imbalanced data

Solutions to handle imbalanced data sets include: sampling techniques, cost-sensitive methods
and kernel-based methodology [83, 106, 107, 109, 111, 113-115]. The sampling methods comprise
different forms of re-sambling, such as: oversampling, undersampling, cluster-based sampling and
boosting [83, 106-108, 111, 113, 114]. Balancing methods attempt to balance the distributions by
taking into account the proportions of the classes. Whereas, cost-sensitive methods target the
imbalanced data problem by using cost matrices that address the cost of misclassifying any data.
Attention is given to oversampling and undersampling which are among the most common re-

sampling methods.

Crone and Finlay defined undersampling as “instances of the minority and majority classes are
selected randomly in order to achieve a balanced stratified sample with equal class distributions,
often using all instances of the minority class and only a sub-set of the majority class” [83].
Whereas, oversampling have been defined as “the cases of the under-represented class are
replicated a number of times, so that the class distributions are more equal” [83]. These authors
alerted for the inconsistencies in this terminology, which are frequent. Anderson had referred to
oversampling, but essentially described it as undersampling by removing instances of the majority
class[83, 116]. Also, Sarma defined oversampling as including all the cases of the “responders”
and only a fraction of the “non-responders” [117]. Japkowicz and Stephen defined random
oversampling as “oversampling the small class at random until it contains as many examples as
the other class” [110]. On the other hand, random undersampling was defined as “eliminating at

random elements of the over-sized class until it matches the size of the other class” [110]. Nisbet et
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al. defined “oversampling” as increasing the sample rate category, and “undersampling” as

reducing the sample of the common category [118].

King and Zeng strategy was to select on Y by collecting observations (randomly or all those
available) for which Y=1 and a random selection of observations for which Y = 0 [109]. In fields
were the number of observable ones is strictly limited (such as in crash injury severity events) the
authors recommend collecting all available or large number of ones. Subsequently, the decision
how many numbers of zeros must be collected depends if that collection is not costless, the
analysis must collect more zeros than ones [109]. A useful practice is sequential, involving first the
collection of all ones and an equal number of zeros [109]. “Real information in the data lies much

more with the ones than the zeros, but researchers must be careful to avoid selection bias [109].

Japkowicz and Stephen compared various strategies to handle class imbalanced: two re-sampling
methods (random oversampling and random undersampling) and cost-modifying [110]. These
authors found random oversampling more useful than random undersampling [110]. In some
applications, cost sensitive methods perform better than sampling methods [106, 113, 119]. Cost-
sensitive learning outperforms random resampling [110]. However the cost of misclassification is

generally unknown in real cases [107].

Each of the above methods has advantageous and disadvantageous and they have been subject
of several discussions in the literature. The major drawback of undersampling is that can discard
potentially useful data [107]. On the other hand, random oversampling can increase the likelihood
of occurring overfitting, when this methodology relives exact copies of the minority class [107].
Chawla suggested that undersampling is usually better than oversampling with replications [111].
Nisbet et al. recommend that if the data set is not large it is better to oversampling the rare
category [118]. In the case of oversampling selection, overfitting may occurs when classifiers
produce multiple copies of the same example; although the training accuracy will be high the

classification performance on the unseen testing data is worse [106].

Sampling methodologies (under and oversampling) generally lead to models with an enhanced
discriminatory power, but both random oversampling and random undersampling methods have
their shortcomings: random undersampling can discard potentially important cases from the
majority class, thus impairing an algorithm’s ability to learn the decision boundary, while random
oversampling duplicates records and can lead to the overfitting of similar instances [83]. Therefore,
undersampling tends to overestimate the probability of cases belonging to the minority class, while
oversampling tends to underestimate the likelihood of observations belonging to the minority [119].
As both over and under-sampling can potentially reduce the accuracy in generalization for unseen
data, a number of studies have compared variants of over- and under-sampling, and have
presented (often conflicting) viewpoints on the accuracy gains derived from oversampling versus
undersampling [111, 113]. The presence of irrelevant data it would make undersampling more

effective than oversampling or even cost-modifying on fields presenting a large variance in the
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distribution of the larger class [110]. However, undersampling, removing examples from the

majority class, may cause the classifier to missing important information [111, 113].

2.5.3 Effect of sample size in predictive modeling

With regard to binary data classification, analysis of data containing rare events or imbalance class
distributions poses a great challenge to industry and to the machine learning community [114].
Sample size and balance may affect not only the accuracy but also the interpretability and
efficiency of the algorithms [83]. Larger sample sizes raise the probability that a sample will be
representative of the entire population, and therefore guarantee similar predictive accuracy,
however increases computation times and data acquisition costs. On the other hand, smaller
samples, the patterns contained in the data may be missed or erroneous patterns may be detected,
thus enhancing efficiency at the cost of limiting accuracy [83]. The ratio of events to variables tends
to be a less important factor for larger samples, hence decreasing the probability of overfiting.

Harrell claimed that amount of information in a data set with a categorical outcome is determined
not by the total number of cases in the data set itself, but instead by the number of cases in the
rarest outcome category (for binary target data sets) [103]. Therefore, this author recommended
separating sampling as an effective resampling strategy for productive modeling [103]. Crone and
Finlay suggested that logistic regression had a near optimal performance using far fewer
observations than methods such as CART, when there is a concern with sample size on the
efficiency of the algorithm [83]. Also, this work stated that oversampling significantly increases the
accuracy relatively to undersampling, across all algorithms. For logistic regression, the balancing
applied to datasets appears to be of minor importance. However, the other methods demonstrate a
greater sensitivity to balancing, particularly CART [83].

As final remarks regarding to re-sampling strategies, it should be noted that over and
undersampling will impact not only the predictive accuracy, depending on the statistical efficiency,
but also the resource efficiency in model construction and application. Balancing (re-sampling) has
an impact on the total sample size by omitting or replicating good and/or bad instances, thereby
decreasing or increasing the total number of instances in the dataset, which impacts the time taken
for model parameterisation [83]. “It is still unclear which sampling procedure performs best, what
sampling rate should be used and that the proper choice is probably domain specific’ [107].
Although, algorithms presented in this literature review (section 2.4) claimed to improve
classification accuracy, there are certain situations in which learning from original data sets may
provide better performance [106]. Thus, it would be desirable a uniform benchmark platform to
provide assessment between existing and future methodologies. Henceforth, the results are not

universal and depend on the dataset properties and the application domain [83].
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2.5.4 Severe crashes as rare events- Predictive challenges

In contrast to the domain of credit card fraud detection, injury severity prediction on road safety
analysis is missing an approach to deal with the rare events (severe crashes). The imbalance
between severe crashes and non-severe crashes highlighted with the following road safety
indicators. A study in US, with crash data from 1996 to 1997 have shown the following distribution
driver injury: property damage only (no injury; 58.8%); possible injuries (20.7%); evident injuries
(9.0%); and severe/fatal injuries (4.8%) [42]. In 2009, crash data provided by the Fatality Analysis
Reporting System (FARS) showed that from total police reported motor vehicle crashes
(5,500,000), fewer (30,797) than one percent resulted in death (1%) [44].

Unfortunately, the best practices for resampling have not been explored in crash severity injury
prediction. The evidence of the existing gap in resampling strategies to deal with rare events

among crash data is illustrated by the next four studies.

1. Xie et al. analyzed driver injury for data obtained in Florida for the time period 2002 to 2006
using logit regression methods. In this study, the percent of fatal crashes was 1.71% and
0.78% for rural and urban roads respectively [93].

2. Pakgohar et al. applied CART and logistic regression for the analysis of crash severity in a
data set where injuries were 8% and fatalities were 1% among the data [46].

3. Li developed a crash severity index comprehensive models using for 267 injury crashes
and 67 fatal crashes [100]. Models validation was performed with new crash data, 337
injury crashes and 18 fatal crashes. The author recognized that the size of the sample
could not be large enough to validate developed model [100].

4. Only Kononen et al. had shown concern with the imbalance classes between the non-injury
cases and the injury cases [43]. This study using National Automotive Sampling System
Crashworthiness Data System (NASS-CDS) data the overall probability of injury cases was
2.8% [43].

Despite of above highlighted imbalance data sets with disproportion between severe and non-
severe observations, those authors have not shown resampling strategies. As a consequence,
issues of sample size and balancing have been neglected within road safety expertise as a topic of
study. Thus, the gap in sample balancing for crash severe events studies, lead the development of
an own strategy in this study to overcome the challenge imposed by imbalance between severe
crashes and non-severe crashes in the Portuguese collected data [120]. Also, this is the first
research conducted in Portugal that integrates vehicles technical characteristics with crash data
analysis [120-122]. Chapter 3, dedicated to Safety Analysis Methodology, will present the

balancing approach developed for the analysis of the Portuguese crash sample.
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2.6 Trade-off of Vehicle Safety, Fuel Efficiency and Emissions

The trade-off between vehicle’s safety and fuel economy has been a controversial issue since the
energy crisis of the 1970s. In 2007 and 2009, the EU regulations set CO, emissions performances
targets for manufacturer’'s new car sales moved the technological trade-off in favor of increased
fuel efficiency. First, CO, emissions limits measures are discussed. Second, research on the

vehicle’s safety and fuel efficiency trade-off analysis is outlined.

2.6.1 CO, emissions measurements

Fontaras and Dilara investigated how vehicles characteristic affects real world emissions
performance [123]. The difference between real world performance and the certified test was
estimated in 15-20% [123]. The authors claimed that NEDC does not take into account other
important factors affecting vehicles’ emissions such as: use of air conditioning, vehicles
accessories, and reduction of tyre pressure [123]. Leduc et al. compared CO, emissions and
energy use under real world conditions with those under the NECD and found that NECD had
lower emissions by 14% [124]. Zervas recommended that NEDC CO, emissions should account for

annual mileage [4].

Franco et al. revised emission measurements techniques for road vehicle emissions [125]. There
are models that only required mean travelling speed to estimate emissions (e.g. COPERT), models
that need traffic situations to express emissions (e.g. HBEFA), and others that require second-by-
second engine data (e.g. PEMS, MOVES, VSP) to originate emission information for the driving
profile [125]. The author argued that emissions measures under real-world conditions (such as in
tunnel or on-board measurements (PEMS)) are usually less precise and repeatable than those
performed in an engine and chassis dynamometer studies, due to the absence of a standard test
cycle and the presence of additional sources of variability such as environmental or traffic
conditions, driver behaviour or highly transient operation [125]. This study suggested that the
selection of the appropriate emission method depends on the application considered [125].
Bampatsou and Zervas claimed that specific CO, emissions are measured on the NEDC for all
PCs, but all PCs do not have the same annual traveling distance. The authors have shown the
average annual mileage of new gasoline and diesel passenger cars, is a function of segment and

model year of the vehicle [126].

2.6.2 Are CO, emissions standards compromising the trade-off analysis
between fuel efficiency and vehicle safety?

Thought automakers must comply with emissions regulations, consumers’ preferences influence
the market share by selecting vehicle attributes, such as car segment, fuel type, mass/size, and

engine power. Kok has assessed the effects of consumer preferences and technological advances
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on sales-weighted average CO, emissions of new passenger cars [72]. Until 2007, the results
showed that consumers preferences shifts towards larger and less fuel-efficient car segments and
also towards larger, heavier and more powerful cars within the same car segment [72]. From 2007
to 2011, this trend decline reflecting consumer preferences shifts toward smaller car segments [72].
Between 2000 and 2007, 56% CO, reduction from technological advances had been covered by an
increase in larger vehicles sizes. Though from 2008 to 2011 purchasing trends reduced CO, by

31% over those from technological advances [72].

Despite of the air emissions regulations, some criticism have been addressing the standards for
CO, emissions and fuel economy, which are based on vehicles attributes. The mass-based
vehicle, (almost half of the world automobile market), apparently seem to be logical choice for the
regulatory structure, because vehicle mass is a fundamental determinant of vehicle efficiency. In
addition to mass, rolling resistance, powertrain efficiency, and aerodynamics have been improved

during the last decade and they have been contributing to expressively reduce emissions.

However, Lutsey argued that “vehicle mass reduction technology (advanced materials, mass-
optimized designs) is a major technology strategy for increasing vehicle efficiency” [127]. Thus, “by
using a mass-based standard structure, the core efficiency technology of mass-reduction is
essentially neutralized” [127]. Bampatsou and Zervas criticized the regulatory emissions of the
exhaust CO, exhaust emissions from PCs in the EU by the Regulation [EC] No. 443/2009,
previously introduced in section 1.1.3, [126]. This study highlighted four critical points.

First: “the regulation proposes a limit on exhaust CO, emissions based on the average emissions
of each manufacturer sales and not a limit for each passenger car” [126]. Thus if a car
manufacturer sells a number of PCs with CO, emissions higher than the limit, it must sell a number

of passenger cars with CO, emissions lower than the limit to compensate the difference [126].

Second: the regulation allows the manufactures to create groups of car makers which applied an
average value of CO, for the entire group [126]. This “transference of CO, emissions limit through
car groups” is based on the principle of “flexibility to the compliance” [126]. However, other
regulations/directives concerning emissions and safety of passenger cars are not flexible but they
have specific targets such as the Euro5/Euro 6 limits imposed by the EU Regulation (EC) No.
715/2007 and cars safety features established by the EU (EC) Regulation No. 19/2011, [126, 128].
This “flexibility” has implications in the ethical point of view, “as the “polluter-pays” principle

becomes “someone who can pay, can pollute” principle” [126].

Third: the Regulation [EC] No. 443/2009 proposed a penalty proposed for CO, emissions
exceeding the average upper limit (95 euro per exceeding gram of CO, g.km'1 per vehicle) [126].

This penalty will be included in the final price of the vehicle rather than for the car maker.

Forth and last: the critical point is related to the proposed 959.km'1 for 2020 which could be a very
ambitious target. Average EU15 CO, emissions decreased from 186.6 g.km"1 to 153 g.km'l,

between 1995 and 2008, which corresponds to a decrease of 17.67% during 13 years [126].
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Therefore necessary change to reach CO, 959.km'1 would be 49% [126]. Thus, from 2008 to 2020,

CO, emissions would require a decrease of 31.4% [126].

Zervas shown that the average CO, emissions by car firm selling volumes in the European market
[4]. Lamborghini, Ferrari, Porsche, they are required to overcome a higher challenge to reach the
proposed Regulation [EC] No. 443/2009 target [126]. Seat, Citroen, Renault, Peugeot and Fiat
have lower effort to reach target of 95 g.km™ by 2020. As proposition for the CO, regulations by
2020, the previous work study had suggested the same CO, limit of all new passenger cars without
derogations and penalties [126]. In the US, the problem with the current structure of fuel economy
standards for cars is that the target of 27.5 miles per gallon is applied to an automaker’s whole
fleet, no matter the mix of cars an individual automaker sells [58]. A cross-disciplinary cooperation
between different industry segments and political institutions is recommended for improvements

towards sustainable mobility.

2.6.3 The trade-off between fuel efficiency, emissions and vehicle safety

really exists?

Some studies have intended to discuss if there is a trade-off or not between fuel efficiency and

vehicles safety, as summarized below.

Wenzel suggested that the relationship between footprint (wheelbase x width) and casualty risk to
the drivers of individual vehicle models, including cars and light trucks is very week [129]. Vehicle
design, which can be improved by safety regulations, would be more effective on occupant safety
than fuel economy standards that are structured to maintain vehicle size and weight [129]. On the
other hand, Tolouei and Titheridge stated that in vehicle design, there is a trade-off between fuel
economy and secondary safety performance imposed by mass [64]. Even though mass imposes a
trade-off in vehicle design, between safety and fuel use, this do not mean that it imposes a trade-off
between safety and environmental goals in the vehicle fleet as a whole” [64]. The “secondary
safety performance of a vehicle depends on both its own mass and the mass of the other vehicles
with which it collides” [64].

Chen and Ren analyzed the relationship between vehicle safety ratings and fuel efficiency for 45
new vehicles models [37]. From 2002 and 2007, the relationship between vehicle safety ratings
and fuel efficiencies seem to have been mostly positive [37]. Zachariadis examined 192 car models
to investigate whether a safer car consumes more fuel than its less safe counterparts [62].
Enhanced safety of modern cars has a very small effect on vehicle mass and does not significantly
affect fuel consumption [62]. Safer cars are heavier by only a few kilograms and do not consume
more fuel than their counterparts with lower safety scores [62]. The author suggested that there is

almost no trade-off between better car safety and CO, emission reduction [62].

While the advocates of the new standards claim the benefits of energy and environment,

opponents argue that vehicle safety will be compromised with the new fuel standards. The current
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structure of fuel economy standards could encourage manufacturers to sell more smaller, lighter
cars to offset the fuel consumed by their bigger, heavier models [58]. “Automakers even sell the
smaller and less safe cars at a loss to ensure compliance with fleetwide requirements” [58].
Bampatsou and Zervas claimed that there are two ways to decrease real CO, emissions: to
decrease the mileage and to decrease the emissions per kilometer [126]. However, other study
argued that the main way to reduce CO, emissions is by reducing car weights, which means

downsizing vehicles, but this would cause conflit with occupants safety goals [58].

The application of lightweight design with thermoplastics offers a possibility to reduce the CO2
emission and fuel consumption [130]. The use of nanocomposites in vehicle parts and systems
potentially can to improve manufacturing speed, enhance environmental and thermal stability,
promote recycling, and reduce weight. Substituting reinforced polymers in vehicle body
components is a promising approach to weight reduction and fuel savings. An estimated 30%
improvement of roll-resistance, air-resistance, car-weight and powertrain might reduce the fossil
fuel consumption by 4%, 6%, 15%, or 28%, respectively [131]. Nanotechnology application into the
automotive industry leads to lighter car bodies without compromises stiffness and crash resistance
and results in less fuel consumption. General Motors (GM) produced the electric Chevy Volt that
uses 45.4 Kg of thermoplastics, including composites in the hood and doors, plus unreinforced
polymeric materials in the rear deck lid, roof and fenders [131, 132]. Volt model also incorporates
glass fiber reinforced composite for lightweight horizontal body panels. Tesla Roadsport electric

model uses innovative lightweight body panels of carbon fiber/epoxy composite [131, 132].
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2.7 Concluding Remarks

In technical literature, much attention is paid to vehicle type and its risk to drivers, but not to its
relation to crashworthiness. Vehicles’ speed collision was identified as one of the most important
fact influencing crash severity outcomes. During a crash, the change of velocity distribution
depends on the mass of the vehicle; hence the mass influences the impact of a severity. Thus,
vehicle mass was found to be a significant factor of crash severity, that not only influences the
vehicle crashworthiness and “agressivity”, but also impacts vehicle fuel use and air emissions.
However, vehicle’s mass alone is a “modest” predictor for injury risk. There is a lack of a
methodology to estimate the effect of vehicles characteristics on crash severity following vehicles

collisions.

Crash testing protocols provide a valuable tool in consumer guidance, but they cannot predict real-
life crash outcomes. During the last few years, improvements in vehicle’s safety have been
significant, and advanced safety technologies have been recognized to save lives. However,
despite of the potential safety features benefits, how the drivers will interact with those technologies

will influence the effectiveness of these avoidance systems.

A number of studies have attempted to correlate safety and vehicle design features. However this
relation is not fully understood. In addition, crash samples are highly imbalanced for minor injury vs.
serious injury and/or killed. Therefore, crash analysis faces a challenge when investigating crash
severe events, and no attempted has been made in the literature on how to approach the

imbalanced classes in real crash data.

Larger vehicles usually show an extra size and weight that enhance occupant protection in
collisions. Nevertheless small cars are more affordable; they use less gas and emit fewer
pollutants. The safety and environmental tradeoffs are still not fully explained and they impose a
challenge for the transportation and environmental authorities. The trade-off between vehicle’s
safety performance and environmental performance has been raising some debate. The few
existing studies on this trade-off analysis usually focus on the relationship between vehicle’s safety
and fuel consumption, targeting CO, emissions but other exhaust air pollutants are not covered.
Furthermore, previous research analyzed vehicle’s safety performance based on the individual

vehicle only, and they have not considered the risk of exposure in the fleet.
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CHAPTER 3

SAFETY ANALYSIS METHODOLOGY

This Chapter describes the methodology for the safety analysis of the Portuguese crash sample.
The motivation for this research was to focus on the light vehicle fleet (passenger cars and light
duty vehicles) technical characteristics and analyze which one, if any, has a stronger impact on
crash severity, expressed by the risk to drivers and passengers, based on real crash data. As an
outline of the designed methodology, first data preparation and variables definition are presented.
To overcome the challenge imposed by few rare events (severe crashes) in the sample, an
advanced strategy was developed to balance the distribution between severe and non-severe
events. In conclusion, CART and logistic regression modeling techniques are explained for the

crash severity classification and prediction.
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3.1 Research Domain

Crash severity was analyzed by exploring the contribution of vehicle related variables: auto brand
make, weight (mass), engine size (power), wheelbase, year of registration (age) and fuel type.
Crash severity is related to the occurrence of severe injuries and/or fatalities among vehicle’s
occupants, during the event of a crash involving light passenger vehicles and light duty vehicles. As
stated in Chapter 2, factors affecting the risk of increased injury level of occupants during a crash
include: demographic and behavioral characteristics of person, environmental factors, roadway
conditions and vehicle [45]. This research was not designed to understand the circumstances
under which the crash had occurred, such as presence of roadside obstacles, inattentive driver,
failure to press the braking system, and traffic volume among other causes. Further, this research
focused exclusively on post-crash consequences centered on the injury level outcomes, rather than
on pre-crash contributing factors to the event. It focused on the understanding of how technical
characteristics of the vehicle may affect the risk of severe injury and/or fatality among its
occupants. It is important to point out that, drivers’ characteristics, such as age, gender, and
agressivity, as well as socio-demographic factors were beyond the scope of this study. Although
vehicle’s speed at the moment of the crash had been identified as one of the most important
factors of injury risk [34, 42, 43, 74, 91, 92, 99], this information is usually not accessible.
Information on occupant’s seat belt use, airbag data, and vehicle protective systems, as well as
trauma management were not available at the Portuguese police crash reports. Figure 3.1
summarizes the steps undertaken to execute the general methodology followed in this study,

although this chapter focused the safety analysis methodology.

As discussed in the literature review, previous research generally has attempted to model overall
crash severity without taking into account the effect of the opponent vehicle [43, 85, 86, 91, 93, 98,
102, 104]. However, in multi-vehicle collisions the injury severity outcomes depends on the
attacking ability of striking vehicle as well as the protective ability of struck vehicle [63]. Some
studies have analyzed the effect of vehicle on crashworthiness (ability to protect its own occupants)
and “agressivity”, hazardousness that the subject vehicle imposes to the opponent vehicle [48, 49,
59, 61, 63]. However these studies focused only in risk to the drivers and largely they only have
analyzed the effect of vehicle type (category). In addition, those studies have not clarified how the
effect of the opponent vehicle was taken into account on the injuries prediction for the occupants of
the vehicle being analyzed. This gap in the previous research work, lead to the development
specific target variables to model not only the overall crash severity, but also to model crash

severity exclusively for the each vehicle involved in the collision.
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Figure 3.1 - Methodology overview.

For single-vehicle crashes, vehicle individual technical data, such as brand, model, age (vehicle
model year), engine size, weight and wheelbase were analyzed for their contribution to crash
outcomes. For two-vehicle collisions, in addition of vehicles individual technical data, differential
variables were created to express the quantitative difference between the characteristics of the

vehicles involved in the collisions (such as: age difference, engine size difference, weight
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difference and wheelbase difference) in order to analyze their contribution to crash severity. A
detailed explanation of response variables (derived from crash outcomes) and independent

variables (crash information and vehicle technical characteristics) is given in section 3.3.

3.2 Data Collection

This section describes the data collection process, limitations within the crash reports and

development of the crash database for the safety and environmental analyses.

3.2.1 Site description

During 2010, in Portugal the highest rates of crash fatalities occur for the districts of: Lisbon, Porto
and Aveiro, with 123, 108 and 88 road deaths, respectively [23]. The districts of Aveiro and Porto
were selected for this study because of two reasons: first, due to the higher rates of fatalities,
second, for data collection convenience, that would be performed in the proximity of TEMA/UA

where this study was developed. Figure 3.2a) signalizes the crash data collection area in Portugal.

For the selected region above, the accessed crash reports records involved accidents on roads
which are included on the 2000 National Roadway Plan, in the Northeast side of Portugal. The

reported crash records included the following road classes:

- Main Road (speed limit is 90 km.h™);
- Principal Itinerary (speed limit is 100 km.h'l);
- Complementary Routes (speed limit is 100 km.h'l);

- And Motorways/freeways (speed limit is 120 km.h™).

Figure 3.2b) signalizes some examples of those road classes for Porto metropolitan area, as

follows:

- Main Road (such as EN1, EN14);

- Principal Itinerary (such as IP1, IP4);

- Complementary Routes (such as IC1, 1C24);
- And Motorways/freeways (such as Al, A29).

It must be clarify that crash data collection was not controlled for those road classes. However, for

each crash observation, the road name ID was recorded, as explained in section 3.2.4.

46



Safety Analysis Methodology

Danmark
United (Do
Kingdom

\__ Isle of Man

S

Nederland'
(N

Deutschland
(Germany)

France

Italia
(italy)

SN Rdorra

Gibraltar

Figure 3.2 - Crash Site location for crash data collection: a) in Porto, Portugal, Europe; and b)

Porto metropolitan area.

Among the several road classes identified in the crash records and illustrated in Figure 3.2b), there
is A29 motorway, which is a toll road with high volume of traffic, selected often by drivers travelling
between Aveiro and Porto, and vice-versa. A29 is among the Portuguese roads with more black

spots (five or more severe crashes in 200 meters of the road length in question) [133].

3.2.2 Crash reports selection

Data for the crash severity models development were collected from the Road Traffic Division
(RTD) of the Portuguese Road Safety National Republican Guard (GNR) located in Porto and the
Portuguese Public Safety Police (PSP) located in Oporto and in Aveiro. From extensive crash
reports records data gathered by GNR and PSP, reports were selected based on the following

criteria.

1. Recorded crash reports involving property damage only were excluded because this
research was focused exclusively on crashes involving any level of injury.

2. Crashes with injuries and/or fatalities and involving light passenger vehicles and light duty
vehicles (such as passengers’ cars, sport utility vehicles (SUVs) vans and pick-up trucks)
were selected.

3. From those, crashes involving pedestrians and/or cyclists were excluded because the
designed analysis aimed to explore the relationship between vehicle characteristics and
occupants injury risk only.

4. Crash reports data were gathered for the time period of five years, 2006 to 2010.
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Following the selection criteria, a total of 2,270 reports were personally collected, as summarized in
Table 3.1. Initially crash data were gathered at PSP. Secondly, data were collected at the RTD of
GNR. In the first phase of this research, single-vehicle crashes and multi-vehicle collisions were
gathered from 2006 to 2008. On the second phase, additional crash data was gathered with focus

on two-vehicle collisions from 2008 to 2010.

Table 3.1 - Relevant crash frequencies gathered in the study for the time period 2006 to 2010.

Data Source 2006 2007 2008 2009 2010 Total by Data Source
GNR Porto, PT 298 548 508 161 184 1699
PSP Aveiro, PT - 65 65 - - 130
PSP Porto, PT - 166 275 - - 441
Total 298 779 848 161 184 2270

3.2.3 Challenges faced to developed the crash database

Several difficulties were faced previously to accomplish the full develop the crash database
investigated in this research, as presented in the next section. Following data collection, the
extracted information from each crash report was analyzed in more detail and criteria selection was
followed in order to develop a database adjusted to the objectives of this research. Contrary to
simple-easier researcher access to crash databases as exemplified in section 2.4.1, in
Portugal crash data access is quite different, since crash records are not available in digital

files and crash information is not centralized.

At national level, the crash database is managed by the ANSR. The Police Officers are responsible
for submitting selected information from the crash records reports on the 15 days basis to this
Authority using a form called “Boletim Estatistico de Acidentes de Viacdo (BEAV)". However, the
extracted information in the BEAV is brief and standardize, usually indicating the cause of the
crash, the outcomes, information on the day, and hour. The ANSR crash database does not
include any information on the vehicles involved in the crash, rather than vehicle category (such as
light vehicle or heavy vehicle). Thus, the strategy for this study was to personally collect the data at
the Police Road Traffic Divisions.

Some published studies in the U.S. had matched crash data with the vehicle identification number
(VIN), obtained from the Highway Loss Data Institute [43, 99]. In Portugal this procedure was
different. The one of the most challenging tasks of completing the Portuguese crash database
based it was to obtain legal permission to access the vehicle technical information derived from
vehicles’ registration license plate (RLP). Due to this difficulty, it was decided to focus on the GNR
records (1,699 observations) rather than the total 2,270 gathered crash observations. The reason
why the “priority” was given to GNR crashes GNR was related to the fact that this Police Force in
general is responsible for patrolling roads with higher speed levels, whereas PSP usually operates
in urban areas, where the legal speed limits are lower. Therefore, severe crashes are at higher

frequency at the GNR records.
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From the selected GNR 1,699 crashes, only 1,374 were manageable for further analysis. The

reasons why this research was centered on 60% (1374/2270) of the original collected data are

presented underneath.

1.

As result of the constraints to have legal access to vehicle specific technical data, from the
total of 2,270 gathered reports, priority was given to 1,699 collected reports at GNR.

From those 1,699 observations, multi-vehicle collisions with more than 2 vehicles were
eliminated because the individual vehicle contribution to the overall crash severity would be
masked by the interaction with other vehicles involved in the collision.

Observations including vehicles which the RLP did not match the Portuguese standard
label were excluded because no further information could be gleaned about its technical
attributes from international entities. In general the vehicles Portuguese plates follow the
partner: four numbers plus two letters, for a total of six digits. For vehicles from abroad is
not possible to request vehicles specifications.

Each vehicle’s information in the crash dataset was recorded following the order stated at
the Police record. As an example, the first vehicle (V1) in a collision report tends to be
related with the one that initially collided with the second vehicle (V2) and/or caused the
crash collision. However the vehicle order in the police records does not follow this protocol
uniformly and there was limited information to assume that vehicle V1 always hits vehicle
V2 or that vehicle V2 is always struck by vehicle V1. While for rear-end collisions
scenarios, it would be easier to identify the vehicle that hits the car in front of it, for the
general collisions this identification is more complex.

Report content may be unclear; sometimes information was missing or could show
inconsistent information and also human errors. For instance, crash reports identify the
vehicle type/category information as: light duty vehicle or light passenger vehicle. However,
when developing the database and matching vehicles’ RLP with technical information it
was noticed that the label light duty vehicle was either a heavy duty vehicle, or a non-road
vehicle (agricultural tractor). Other reports mislabel “light passenger vehicle” to designate a
scooter, or a motorbike. When such errors were detected, the crash record was eliminated

from further consideration.

Regarding to crash outcomes information accuracy, it is relevant to clarify the uncertainty which

could be associated with some injury levels reported at the crashes records. The Portuguese

Police Forces consider three level of injury risk: Light Injury (LI), Serious Injury (SlI) and Fatality (F).

In Portugal, a serious injured is reported if following the crash the individual required hospitalization

at least during 24 hrs. Status of seriously injured was not traced overtime, with the possibility that

the harm injuries would result in a death. As explained in Chapter 1, (section 1.1.2.2), until 2010,

Portuguese methodology did not apply the threshold of 30 days [7, 15, 23]. Also, in 2011, during

the second stage of crash data collection, which took place the Oporto GNR headquarters, a Police
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Officer inquired claimed that new methodology procedure was being implemented with difficulties,
and the required collaboration between hospital services and Police Forces was yet imperfect to
ensure the monitoring of the victims’ status in the 30 days basis. As far as the crash sample used
in this thesis analysis, it must be said that data collected for the years 2006 to 2009 did not follow
the 30 days methodology. For the 2010 crash data collection, fatalities were also recorded in the 24
hours basis, as they were registered in the crash reports by GNR Officers and to ensure

consistency with previous data on the crash sample.

3.2.4 Development of the crash database

The 1,374 records selected from the GNR source included single-vehicle crashes and two-vehicle
collisions resulting in injuries and fatalities. For each crash event, information extracted from each
report was as follows: a) road name and location, b) weather conditions, c) driver’s alcohol and/or
drugs test results, d) crash type, vehicles’ registration plate and registration year, and f) crash
outcomes, namely vehicle occupant’s injuries and/or fatalities. Appendix 3 shows a copy of a

severe crash report record, which outcomes resulted in a fatality, driver of vehicle V2.

At the crash reports, the technical information related to the registered vehicles was minimal,
mainly restricted to vehicle’s registration plate and vehicle’s registration year. Since one of the
major goals of this research was to analyze vehicle characteristics effects on the crash severity
outcomes, it was obligatory to fulfill vehicle information with exact technical data for each individual
vehicle, such as its specific weight, engine size (engine displacement) and wheelbase dimensions.
The vehicle technical features were obtained from the former Institute for Mobility and Inland
Transportation (IMTT), which is currently the new Institute for Mobility Transportation (IMT). IMTT
database allowed to match vehicle registration plate (VRP) (extracted from crash reports) to be
augmented with details such as the date of the first registration and specific vehicle’s make and

model technical data.

For each crash observation, vehicle registration plate was matched with the correspondent VIN,
which is equivalent to the “N.° Homologa¢éo Nacional” at “Folha de Aprovacdo do Modelo”, IMTT
sheet. As an example, a copy of this document is presented in Appendix 4 for a Toyota Corolla
E12T, 2005 vehicle model year, (vehicle’s registration plate was deleted on purpose for
safeguarding owner privacy). For this vehicle in particular, the characteristics acquired from IMTT

databases are listed below:

- Brand Name (Toyota),

- Model (Corolla E12T),

- Wheelbase (2600 mm),

- Length Size (Not available for this model),
- Curb Weight (1360 kg),

- Engine Size (1364 cm®),
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- Fuel (Diesel),

- Vehicle Registration Year (2005).

”

Successively, vehicles registration plates were matched with the “Folha de Aprovacdo do Modelo
in an Excel spreadsheet, which dataset contained the record of each crash observation. An
integrated database was developed where each crash record and technical characteristics for the
vehicles involved in the collision were combined into a unique crash event observation. Appendix 6
shows the code applied to the statistical analysis software (SAS) for reading all the data imported
from the Excel spreadsheet crash database (explained in section 3.2.4) and converting it into SAS
data source. Following, SAS crash data source was subject to data mining analysis with Enterprise

Miner (EM) software.

3.3 Structure of the Database and Variables Definition

This section explains the crash database subdivided by datasets and it defines the variables used
in the crash sample. For simplicity, three crash datasets were defined based on the number of

vehicles involved:

e All represents the total of the crashes observations including single-vehicle crashes and
two-vehicle collisions (N=1,374),
e Two represents the two-vehicle collisions (N=874),

e And Single represents the single-vehicle crashes (N=500).

The crash dataset includes two types of variables and three classes of variables. The two types of
variables including in this analysis were: categorical and continuous. The categorical has values
that function as labels rather than numerical information, and in some programs are called as
“nominal” variables, such as in data mining software. On the other hand, the continuous variables
have numeric values. In the crash dataset, examples of those types of variables are presented

next.

a) Categorical variables: crash type, speed level and weather conditions.
b) Continuous variables: vehicle weight, vehicle engine size, vehicle age and vehicle

wheelbase.

The two classes of variables used during the crash data modeling are presented as follows:

a) Target variable/dependent variable or response variable is the variable whose values
are modeled and predicted by other variables. An example is crash severity.
b) Predictor variable/independent variable or explanatory variable is a variable whose

values are used to predict the target variable. An example is vehicle weight.

The most widely adopted approach for predictive modeling of crash severity is to categorize the

data using dummy variables (which are an artificial variable created to represent an attribute with
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two or more distinct categories/levels). For example, alcohol and/or drugs test results, which
originally was recorded as a continuous variable was converted into a dummy variable having two
levels: “1” if the driver had alcohol content in the blood >0.5 g.L™ and/or the test for drugs were
positive, “0” if the driver was legal. Dummy variables provide a good linear approximation of the
non-linear features of the data. In this Thesis, binary targets were used to predict the crash severity

as explained next.

Regarding two-vehicle collisions, it is convenient to explain vehicle identification/order: vehicle V1
and vehicle V2, previously mentioned in section 3.2.3. Hard copy reports usually warn that their
contents includes crash witness’s description (if there is any), rather than providing much technical
and/or official explanation. Also, for a collision involving two vehicles usually is its unknown what
vehicle was responsible for the crash. Thus to avoid judgments, Officers just identified vehicles as
vehicle V1 and Vehicle V2. The order in the crash records does not obey a restricted and
predefined procedure. Similarly to Tolouei et al., vehicle V1 and vehicle V2 keep the same labels

as those in the original police crash reports and this order are believed to be arbitrary [65].

Table 3.2 identifies the independent (explanatory) variables that were analyzed to estimate and/or
predict their impact on crash severity outcomes. Table 3.2 also presents the derivative variables for
vehicles V1 and V2 differential characteristics. For instance, in a two-vehicle collision, the weight
differential between V2 and V1 as expressed by WTV2V1 (kg), which was obtained by subtracting
the weight of vehicle V1 from vehicle V2. The same procedure was applied for the vehicle’s engine
size, wheelbase, and age, leading to the following derived variables: ccv2Vv1, WBV2V1, and

AgeV2V1, respectively.
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Table 3.2 - Description of independent variables used in the analysis of crash database.

Variable Description Symbol
Age, Vehicle 1 AgeV1 (yr): year of the crash event -year of the first vehicle | AgeV1l
registration.
Age, Vehicle 2 AgeV2 (yr): year of the crash event - year of the first vehicle | AgeV2
registration.
Age Difference vehicle between (V2) AgeV2V1 (yr): age of vehicle V2 - age of vehicle V1. AgeV2vi
and (V1)
Alcohol and/or Drugs The Driver’s test for alcohol and or drugs is presented as: | AlcoholDrugs
Code=0, legal; Code=1, illegal
Number of vehicles involved The number of vehicles involved distinguish between single | NVehicles
vehicle crash and multi-vehicles collisions and it is coded
as follows:
NVehicles=1, if a single vehicle is involved in the crash
NVehicles=2, if two vehicles are involved in the crash
Crash Type RanOff=1, if crash type is RanOff Road, else RanOff =0 CrashCode
Rollover=1, if crash type is Rollover, else Rollover=0
RearEnd=1, if crash type is Rear End, else RearEnd=0
HeadOn=1, if crash type is Head-on, else HeadOn=0
Sideswipe=1, if crash type is Sideswipe, else Sideswipe=0
Other=1, if crash type is Other, else Other=0
Divided/ Existence or absence of physical median/barrier: DivisionCode
undivided Code=0, undivided
Code=1, divided
Engine Size Vehicle 1 Engine size of vehicle (V1) (cm°) ccVvl
Engine Size Vehicle 2 Engine size of vehicle (V2) (cm°) ccV2
Engine Size Difference between ccV2V1: engine size of vehicle V2 - engine size of vehicle | ccv2Vvil
vehicles (V2) and (V1) V1, at crash observation (cm?).
Road Class Based in the number of lanes and coded as follows: RoadClass
Code=0, two lanes
Code=1, multi-lanes
Code=2, motorway
Speed Level SpeedLevel=1, if Speed Limit > 90 km.h™, else, | SpeedLevel
SpeedLevel=0
Wheelbase Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1
Wheelbase Vehicle 2 Wheelbase of vehicle (V2) (mm) WBV2
Wheelbase Difference between WBV2V1: wheelbase of vehicle V2 - wheelbase of vehicle | WBV2V1
vehicles (V2) and (V1) V1 at crash observation (mm).
Weight Vehicle 1 Weight of vehicle 1 (V1) (kg) WTV1
Weight Vehicle 2 Weight of vehicle 2 (V2) (kg) WTV2
Weight Difference between vehicles WTV2V1 stands for weight of vehicle V2 minus the engine | WTV2V1
(V2) and (V1) size of vehicle V1 at crash observation (kg).
Weather Conditions Weather conditions at the moment of the crash: WeatherCode
Code=0, Clear and/or dry pavement
Code=1, rain and/or wet pavement

Table 3.3 identifies four categories for the dependent variables (response variables or targets)
used during the statistical modeling. The dependent variables categories were defined by
performing calculations and aggregations with the original crash outcomes, namely the number of
light injuries (LI), serious injuries (SI) and killed (K) in a crash record. As an example, the
dependent variable labeled “SIK” was created to signify the sum of the number of serious injuries

and fatalities in a crash.

For the single-vehicle crashes, the response variable was crash severity expressed by the
variable FatalSIK, which represents the probability of serious injuries and/or fatalities

among the occupants of the vehicle being studied following the crash.
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For two-vehicle collisions, the safety analysis included not only the contribution of each individual
vehicle in the overall crash severity, but also explores the individual impact of each vehicle in the
protection of its occupants and risk imposed to the occupants of the opponent vehicle. Thus, for

the two-vehicle collisions, three response variables have been defined as follows.

1. The overall crash severity is expressed by the variable FatalSIK, which represents
the probability of serious injuries and/or fatalities among the occupants of the two
vehicles involved in the collision, regardless of the vehicle’s identification.

2. Crash severity for the studied vehicle is defined by FatalSIKV1, which represents the
probability of serious injuries and/or fatalities among the occupants of the studied
vehicle, vehicle V1.

3. Crash severity for the opponent vehicle is defined by FatalSIKV2, which represents
the probability of serious injuries and/or fatalities among the occupants of the
vehicle V2.

Thus, FatalSIKV1 takes into account the protective effect of vehicle V1 and the risk imposed by the
vehicle V2 into the severity sustained by the occupants of V1. On the other hand, FatalSIKV2 takes
into account the protective effect of vehicle V2 and the risk imposed by vehicle V1 into the severity
sustained by the occupants of V2.

Table 3.3 - Description of dependent variables for crash data set modeling.

Variable Description Symbol
Number of Killed (K) plus Serious SIK: sum of occupants serious injured (SI) + sum of occupants SIK
Injured (SI) killed (K) in a crash event.

Serious injured and/or killed in the FatalSIK: categorical response for a crash outcome used to FatalSIK

crash (with one vehicle or two vehicles | predict either a serious injury, or fatality in a crash event.
involved)
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0

Serious injured and/or killed in vehicle FatalSIKV1: categorical response for a crash outcome used to FatalSIKV1
V1 occupants predict either a serious injury, or fatality or both for occupants in
vehicle 1 in a crash event.

FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0

Serious injured and/or killed in vehicle FatalSIKV2: categorical response for crash outcome for a crash FatalSIKV2
V2 occupants outcome used to predict either a serious injury, or fatality or to
both for occupants in vehicle 2 in a crash event.

FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0

Following data description and variables definition, the next sections of this Chapter explain the

approach developed for the crash data analysis.
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3.4 Vehicle Brand Severity Ratio Analysis

The individual vehicle analysis aims to infer severity index at the crash sample with the overall
severity index at national fleet. Also, it gives attention to the vehicle brand representatively the in

sample and the severity ratio for the crashes involving the vehicle’s auto brand being analyzed.

The Portuguese crash database covers all the police injuries and fatalities registration records
segregated by light injured, serious injured and killed, for crashes involving one single vehicle or
two vehicles involved. For these crashes matching the criteria established in this study (in section

3.2.2) the overall severity index (OSI) was defined by the equation above:

SIK pr Equation 3.1

0SI (%) = 100
8 = s, v Ko

Where “OSI” is the overall severity index for the national fleet, “SIKp1” is the sum of the number of

serious injured and killed, and “Llpt+Slpr+Kpt” is the sum of all the injuries and killed for the
national fleet. The OSI was estimated for the time period 2006-2010 and individually for single
vehicle crashes and two-vehicle collisions, in order to allow the comparison with the crash data
sample used in this study. Following, a crash severity index (CSI) was calculated for each crash

dataset: Single and Two, as established on Equation 3.2:

Equation 3.2

CSI(%) = 100

LI+SI+K

Subsequently, for each crash dataset, the vehicle brands that showed a higher frequency in crash
involvement were investigated for the numbers of occupants distributed amongst the injury level. A

brand severity ratio (BSR) was defined as follows:

K; Equation 3.3

BSR;(%) = ———
i) = s v K

100

Where “” is the Auto Brand, “BSR/” is the brand severity ratio, “SIK;” represents the sum of number
of serious injured and killed for crashes involving that brand, and “LI+SI;+K;” is the total number of
injured and killed in the crashes where that brand was involved. Firstly, for Single and Two
datasets, BSR; for the most frequent brands was compared with the corresponding CSI. Secondly,

each BSR; was evaluated by comparing with OSI.

For the inference of individual vehicle brand injury severity ratio with the injury severity level at the
Portuguese fleet, specific road safety data was requested to ANSR in order to estimate the OSI.
Then, those brands were analyzed base on their share in the Portuguese fleet. Brands sales
information and annual number of vehicles register at the National fleet were obtained from the
Portuguese Automobile Association (ACAP) [134, 135]. Then, BSR; was discussed taking into
account brands exposure on the national fleet based on brans sales annual percentage by

numbers of vehicles annually registered.
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3.5 Analysis Strategy for Imbalance Crash Data

In this study, the main constrains of the crash dataset modeling were related to small sample size,
and disproportion between severe and non-severe events. The safety analysis methodology
identifies which factors are determinant for crash severity prediction. With regard to binary data
classification (such as severe or non-severe crashes), analysis of data containing rare events or
imbalance class distributions poses a great challenge to the machine learning community [114].
There is the need to have an algorithm method that would provide high accuracy for the minority
class, without making vulnerable the accuracy of the majority class [106]. Previous authors (see
section 2.5.4) have not shown any strategy to deal with the problem of imbalanced classes in crash
analysis. This gap in previous research leads to the greatest challenge of this work: design an
approach to resampling crash events in order to allow further modeling analysis with adequate
degree of accuracy. First, proof of original crash imbalanced data is presented. Second, the

strategy to balance the original crash data is explained.

3.5.1 Imbalance data within the original crash sample

From a total of 1,374 crashes selected for this study, only 5.1% had resulted in serious and/or fatal
crashes. Thus, for a binary target classification, this means that there were 70 severe crashes
(events being “1”) and 1,304 non-severe crashes (events being “0”). The overall sample crash
severity proportion of 5.1% proves a clear imbalance distribution between severe and non-severe
events. Consequently modeling the original imbalance sample would lead to high accurate
predictions for non-severe crashes, but poor predictions for the severe crashes, since they
represent the minority class. As a result, there was the need to have an algorithm method that will
provide high accuracy for the minority class, without making vulnerable the accuracy of the majority

class.

3.5.2 Balancing strategy- Stratified random sample

This section explains the balanced strategy which was applied to both predictive methods: CART
and logistic regression. Random sampling often does not provide enough targets to train a
predictive model for rare events. Since the response rate was very low it was necessary to include
all the responders available and only a random fraction of non-responders [117]. Studies have
shown that for several classifiers, a balanced data set provides improved overall classification
performance when compared to an imbalanced data set [83, 106]. However studies do not imply
that classifiers cannot learn from imbalanced dataset [83]. As a matter of fact, some studies have
shown that classifiers applied to certain imbalanced dataset are comparable to classifiers induced

from balanced datasets [106, 110]. In balanced sampling, the attempt is to draw samples from a
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population but with the composition of the dependent variable in the sample being different from

that in the original population [136].

For balancing the crash data for predictive modeling a resampling strategy was applied [89, 103,
117, 118]. To deal with the overrepresentation of non-severe crashes (target with outcome being
“0”) a resampling approach was applied. Instead of randomly sampling cases from the modeling
sample, cases from each outcome level were separately sampled. Since the number of the cases
of interest (target “1”) was especially small, all available severe cases were selected, and then,

they were matched with one non-severe case (target “0”), which was randomly selected.

To model rare events with SAS® Enterprise Miner™, all the observations having the rare event
(severe crash) were included, but only a fraction of the non-event (non-severe crash) was included
[103, 117]. The fraction of the non-event (or majority class) was randomly selected. At the EM
interface, the sample was configured for stratified random sampling properties, by omitting cases of

the common classes in the trading dataset.

Each crash dataset, (All, Two and Single), was stratified to the target proportion 0.5, leading to
training samples were the proportion of target level “1” (severe crash) was equal to the target level
“0” (non-severe crash). However this procedure biases the sampling to provide enough target
events to effectively train a predictive model, leading to overrepresentation of target level “1”
(severe crashes), which is the response level of interest for this research. Thus, the models
developed from the balanced sampling would be biased unless a correction is made for the bias
caused by over-representation of the target “1”. The approach followed to correct this bias was
different for each predictive modeling technique, since the algorithms sensitivity to the balancing
samplings is different. For logistic regression, the balancing applied to datasets appears to be of
minor importance. However, the other methods demonstrate a greater sensitivity to balancing,
particularly CART [83]. For logistic regression the solution include adjusting the decision threshold
by adding a cutoff node function, as going to be explained in section 3.7.2. For the decision
prediction modeling (decision trees) the approach used to correct the bias introduce by balancing
by adjusting prior probabilities, as explain in the next section. The predictive models were
developed using SAS® Enterprise MinerTM 7.1 [84, 89, 117].

3.6 CART Methodology

Decision trees provide an excellent introduction to predictive modeling and are useful to predict
new cases, select useful inputs and optimizing complexity [84, 89, 118]. Tree prediction algorithms
can be applied for distinct predictions types, namely decisions, rankings and estimates. This
section explains the modeling approach with CART methodology. First, the reasons why decision

trees are sensitive to relative high imbalanced classes are presented. Then, the strategy
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implemented to correct the bias introduced by balancing the crash data is explained. Following

decisions trees development and assessment are explained.

3.6.1 CART methodology selection

Trees as predictive algorithms do not assume any association structure, they simply isolate

concentrations of cases with like-valued target measurements [89].
CART methodology was selected for the following reasons.

1. Traditional statistics have limited utility in the task of variable selection for multiple variable
comparisons. Apart from identifying the variables that improve classification accuracy, the
methodology also identifies clearly the variables that are neutral to accuracy, and also
those that decrease it [137].

2. Predictor variables are rarely satisfactorily distributed and decisions trees can deal with
missing data [46, 86, 138]. Fortunately, at the crash data set, there were no missing inputs
for any of the variables included in this analysis.

3. Complex interactions may exist amongst the explanatory variables, such as vehicle engine
size, vehicle weight, crash type and weather conditions. CART has the potential to
“uncover complex interaction between predictors which may be impossible to uncover
using traditional multivariate techniques” [86].

4. It is a powerful method to deal with prediction and classification problems, mainly when
there is a large amount of data with many independent variables [104].

5. CART output is almost intuitive and offers an easier comprehension between the target

and the explanatory variables.

3.6.2 Decision trees structure

The decision tree represents a segmentation of the data that is created by applying a series of
rules, resulting in a hierarchy of segments within segments. The hierarchy is called a tree, and
each segment is called a node (or a leaf). A simplified decision tree is illustrated in Figure 3.3. The
original segment contains the entire data set and is called the root node of the tree. Then, the root
node is divided into child nodes (also called tree leafs) on the basis of an independent variable
(splitter in Figure 3.3), which creates the best purity in the way that the data in the child note is
more homogeneous than in the upper parents node [104]. For each leaf, a decision is made and
applied to all observations in the leaf. This process will last until all data in each node have as

much as possible homogeneity, leading to the terminal nodes or terminal leafs.
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Figure 3.3 - General structure of a decision tree [104].

Therefore, a decision tree split, for a binary class, can be expressed by a confusion matrix. The
parent node contains positive and negative examples, by splitting, one node will carry the true and
false positive observations and the other node will carry the true and false negative observations
[139]. CART provides an advance methodology for predictive modeling, the decision is simply the
predicted value [89]. To select useful inputs, trees employ a split search algorithm. The split search
selects an input for partitioning the training data. If the input was coded as an interval variable (for
instance, vehicle weight), each unique value serves as a potential split point for the data. If the
input is categorical (for instance, speed level), the average value of the target is used [89]. For a

selected input, two groups are generated, resulting in two leafs (or child node).

If input values are less than the split point are said to branch left. If input values greater than the
split point are said to branch right. The groups, combined with the target outcomes, form a 2x2
contingency table with columns specifying branch direction (left or right) and rows specifying target
value (0 or 1). For the slipping rules, the criterion is based on either a statistical significance test,
namely a F test or a Chi-square test, or on the reduction in variance, Gini index [89]. The
significance level specifies the maximum acceptable p-value for the worth of a candidate splitting
rule, and by default was configured for 0.2 [84, 140]. The F test and Chi-square test accept a p-
value input as a stopping rule [89]. A Pearson chi-square statistic is used to quantify the
independence of counts in the table’s columns. Large values for the Chi-square statistic suggest
that the proportion of zeros and ones in the left branch is different than the proportion in the right
branch [89, 117]. A large difference in outcome proportions indicates a good split. The p-value
indicates the likelihood of obtaining the observed value assuming identical target proportions in
each branch [89]. For large data sets, these p-values can be very close to zero. For this reason,
the quality of a split is reported by logworth = -log(chi-squared p-value). At least one logworth must
exceed a threshold for a split to occur with that input. A threshold corresponds to a chi-squared p-
value of 0.20 or a logworth of approximately 0.7 [89]. Hence, the best split for an input is the split
that has the highest logworth. For more details of the tree algorithm, the paper by Das is

recommended [87].
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The Decision Tree analysis provides information for the output selected variables based on their
relative importance. The relative importance of an input variable in subtree denotes the primary or
surrogate splitting rule using that input in a way the node assures the reduction in sum of squares
errors (SSE) from the predicted values. It must be noticed that the variables relative importance
may or may not follow the order of the variables selected by the tree for the split. The split is based
on logworth. Hence, input variables that have a larger -log(chi-squared p-value) are selected first.
On the other hand, the variable importance choses as most important the variable that will
minimize the SSE associated with the other independent variables. The variable importance
measure (VIM) is one of the CART method output that is helpful for the analysis of which variables
are more important to classify or predict the target [87, 89, 104]. More information on the variable
importance score algorithm can be found at Das and Kashani [87, 104]. VIM is very helpful for
variables selection and will be used in the discussion of the decision trees modeling results
(Chapter 5).

3.6.3 Decision trees- Strategy to handle the imbalanced data

CART is one of the most popular algorithms in decision tree induction, however splitting criteria is
considered to be skew sensitive, because splitting criteria as the skewness increases, the
information gain will become poorer [139, 141]. This occurs because the sampling methods prior to
the decision tree induction alter the class distribution driving the bias towards the majority or
positive class [139]. The objective functions used by the classifiers methods typically tend to favor
the larger, less important class in the analysis of imbalanced datasets [139]. Thus, the predictive
accuracy might not be appropriate when the data is imbalanced and /or the cost of different errors
vary significantly [111]. With imbalanced datasets it is useful to incorporate the prior of the positive
class to smooth the probabilities so that the estimates are shifted toward the minority class base
rate [106].

Following the balanced strategy (section 3.5.2), the solution to correct the bias imposed by the
imbalanced crash data was to adjust the probabilistic estimates at the tree leaf [109, 117, 140]. The
bias introduced by over representing level “1” was corrected by adjusting the predicted probabilities
with prior probabilities, allowing the model to predict the original distribution of target “1” for the
original crash data. The adjustment of prior probabilities was performed with a decision node. As
explained, the original portability of a severe crash was: 0.051, 0.037 and 0,073 for All, Two and
Single crash datasets, respectively. To balance the bias by stratified 0.5 level training samples
generation, the prior probabilities were adjusted for the original proportion of target level “1” and
“0”. For instance, for the two-vehicle collisions dataset, the stratified sample procedure has
generated a training sample including all the severe crashes (32 events) and equal proportion of
non-severe crashes (which were randomly selected). Then the prior probability of 0.5 was adjusted

for the original probability of 0.963, and 0.037, for targets levels “0” and “1, respectively. Table 3.4
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summarizes the adjusting prior probabilities for the stratified training samples used in the trees

model development.

Table 3.4 — Stratified Training Samples adjust prior probabilities for the original crash dataset.

Data set Stratified Levels Prior Probabilities Adjusted Prior
Level Count
All 1 70 0.5 0.051
0 70 0.5 0.949
Two 1 32 0.5 0.037
0 32 0.5 0.963
Single 1 38 0.5 0.076
0 38 0.5 0.924

It must be pointed out that in this study the 0.5 stratified level was chosen under the constrain of
the available observations for the minority class (rare event), so that all random samples would
contain all the rare events (severe crashes), since the sample size was small and imbalanced for
the crash severity distribution. In addition, with small or moderate data sets, data splitting would be
inefficient; the reduced sample size can reduce the fit of the model training and validation [43, 89,
103]. However, the conventional split between training data and testing data was not applied in this
study, due to sample constrains. Thus, for decision trees assessment significance test analysis (to

be explained in section 3.6.5) was applied.

3.6.4 Decision trees development

The process flow diagram for the decisions trees was created as follows. Each input dataset, All,
Two and Single, were imported into the software interface. The sample node allowed to extract a
sample from crash input data source. Then each tree node was connected to the decision node.
The trees were created with the assessment method and assessment measure set for decisions
because decision trees were applied to produce only a class decision, such as severe crash or
non-severe crash, in this study. Table 3.5 shows the variables that were used as inputs for each

tree development, as well as, the dependent variable used as a target.
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Table 3.5 — Description of input variables and targets in CART modeling.

Variable role
Variable Description Abbreviation
Input Target
Age of Vehicle 1 AgeV1 (yr)was calculated based on the year of the crash | AgeV1 Figures 5.1 to -
event minus the year of the first vehicle registration. 5.8
Age of Vehicle 2 AgeV2 (yr)was calculated based on the year of the crash | AgeV2 Figures 5.1, 5.2, -
event minus the year of the first vehicle registration. 5.4,5.5,5.7 and
5.8
Age Difference between AgeV2V1 (yr) stands for age of vehicle V2 minus the age | AgeV2Vl Figures 5.1, 5.2, -
vehicles (V2) and (V1) of vehicle V1, crash observation. 5.4,5.5,5.7 and
5.8
Alcohol and/or Drugs The Driver’s test for alcohol and or drugs is presented AlcoholDrugs Figures 5.1 to -
as: Code=0, legal; Code=1, illegal 5.8
Crash type for single Ran off road RanOff Figures 5.3 and -
vehicles 5.6
Rollover Rollover -
Crash type for collisions Rear End RearEnd Figures 5.1, 5.2, -
Head-On HeadOn 5.4,5.5,5.7 and
Sideswipe Sideswipe 5.8
Other Other -
Divided/undivided Existence or absence of physical median: Code=0, DivisionCode Figures 5.1 to -
undivided 5.6
Code=1, divided
Number of vehicles Number of vehicles involved in the crash: NVehicles Figure 5.1 -
Code=1, if only one vehicle was involved
Code=2, if two vehicles were involved
Serious and/or killed in FatalSIK is a categorical response for a crash outcome FatalSIK - Figures
the crash (involving one used to predict either a serious injury, or fatality in a 5.1t05.6
vehicle or involving two crash event.
vehicles) FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0
Serious and/or killed at FatalSIKV1 is a categorical response for a crash FatalSIKV1 - Figure
vehicle 1 (V1) occupants outcome used to predict either a serious injury, or fatality 5.7
or both for occupants in vehicle 1 in a crash event.
FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0
Serious and/or killed at FatalSIKV2 is a categorical response for crash outcome FatalSIKV2 - Figure
vehicle 2 (V) occupants for a crash outcome used to predict either a serious 5.8
injury, or fatality or to both for occupants in vehicle 2 in a
crash event.
FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0
Speed Level The speed level was coded as follow: SpeedLevel Figures 5.1 to -
If Speed limit<90 km.h*, then code=0 5.7
If Speed limit>90 km.h™, then code=1
Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm). WBV1 Figures 5.1 to -
5.8
Wheelbase of Vehicle 2 Wheelbase of vehicle (V2) (mm). WBV2 Figures 5.1, 5.2, -
5.4,55,5.7and
5.8
Wheelbase Difference WBV2V1 stands for wheelbase of vehicle V2 minus the WBV2V1 Figures 5.1, 5.2, -
between vehicles (V2) wheelbase of vehicle V1, at crash observation, (mm). 5.4,55,5.7 and
and (V1) 5.8
Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg). WTV1 Figures 5.1 to -
5.8
Weight of Vehicle 2 Weight of vehicle 2 (V2) (kg). WTV2 Figures 5.1, 5.2, -
5.4,55,5.7 and
5.8
Weight Difference WTV2V1 stands for weight of vehicle V2 minus the WTV2V1 Figures 5.1, 5.2, -
between vehicles (V2) engine size of vehicle V1, at crash observation (kg). 5.4,5.5,5.7 and
and (V1) 5.8
Weather Conditions Weather conditions at the moment of the crash: WeatherCode Figures 5.1 to -
Code=0, Clear and/or dry pavement 5.7
Code=1, rain and/or wet pavement
Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm®). ccVl Figures 5.1 to -
5.8
Engine Size of Vehicle 2 Engine size of vehicle (V2) (cm®). ccvV2 Figures 5.1, 5.2, -
5.4,55,5.7 and
5.8
Engine Size Difference ccV2V1 stands for engine size of vehicle V2 minus the ccvavl Figures 5.1, 5.2, -
between vehicles (V2) engine size of vehicle V1, at crash observation, (cm3). 5.4,5.5,5.7 and
and (V1) 5.8

The CART methodology for decisions classification of target FatalSIK was performed for each

crash dataset based in two procedures: imbalance sample (original sample distribution of severe

and non-severe crashes) and balance sample (stratified sample with equal proportion of severe

and non-severe crashes). For an advanced analysis of the vehicles’ effect on crashworthiness and
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risk imposed to the other car involved in the collision, two additional target variables were explored:
FatalSIKV1 and FatalSIKV2 (as explained in section 3.3). These response variables have few
observations for the target level “1”; 21 and 14 for FatalSIKV1”1”, and FatalSIKV2”1”, respectively.
Due to the limited number of the target with the level of interest, the resampling approach was not
performed, otherwise the stratified random sample procedure (randomly removing the majority
class to a balanced proportion) would lead to small training samples: 42 observations to model
FatalSIKV1 and 28 observations to model FatalSIKV2. As it was explained in section 3.4.2.1,
decision trees are very sensitive to the sample size and small leafs (i.g, small number of
observations in the tree node). Therefore, for the two-vehicle collisions, decision trees modeling
were developed with the distribution (0.037, and 0.963 for severe and non-severe collisions,

respectively).

3.6.5 Decision trees significant test analysis

Chi-square statistics is widely employed to ensure the accuracy of risk factor identification [87,
100]. In this study, to examine whether there is an association between the predictor variables
selected at the trees’ leafs and the target, Chi-square test (Chi-Sq) was conducted. Chi-Sq test
measure the difference between the observed cell frequencies and the cell frequencies that are
expected if there is no association between the variables. If the p-value is small (less than 0.05)
there is enough evidence at 5% significance level to reject the null hypothesis. If the association
test results in a significant Chi-Sq statistic, there is strong evidence that an association exists
between the variables. The value of the Chi-Sq statistic only indicates how confident the researcher
can be to reject the null hypothesis. This test does not show the magnitude between the variables
being analyzed. When more than 20% of the cells (nodes at the tree) have expected frequencies of
less than 5, the Chi-Sq test might not be valid [89]. This happens with the crash data sample used
in this study, since there are a limited number of observations. For small samples, exact p-value is
useful, however sometimes it might requires a prohibit augment of time and computing memory for
the EXACT statement in SAS® v9.2. The exact p-value reflects the probability of observing a table
with at least the same evidence of an association as the one actually observed, given there is no
association between the variables. Therefore, Fisher's exact test was used to ensure the accuracy
of severe crash factors identification, for the situation where the Chi-Square test was not valid at

the 5 % significance level (for those cells that had expected counts less than 5) [89].

3.7 Logistic Regression Methodology

Regression offers a different approach to prediction modeling compared to decision trees [61, 89].
Regressions, as parametric models, assume a specific structure between inputs (predictors) and
target. Whereas trees as predictive algorithm, do not assume any association structure, they simply

isolate concentrations of cases with like-valued target measurements. A great advantage of logistic
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regression technique comparing to CART technique is that regression provides valuable
information on the parameters estimates, their standard error and their significance. Logistic
regression method was selected to predict the probability that the binary target will acquire the
event of interest as a function of the independent inputs. First, this section provides a background
of logistic regression analysis. Second, the developments of logistic models are explained. Third,

logit regression models validation approach is presented.

3.7.1 Logistic regression background

The logistic regression is widely used for predictive modeling of binary targets. The binary logistic
regression model was developed primarily by Cox and Walter and Duncan [103]. The odds of an

event can be expressed by the probability of that event as Equation 3.4:

0dd P Equation 3.4
s=G=p
Where “P” is the probability of the event. In logistic regression, the dependent variable responds to

a logit, which is the natural log of the odds, (Equation 3.5), that is:

P Equation 3.5
log(odds) = logit (P) = log <m)

The logit transformation in the logistic regression model is described by the following equation:

logit(P) = log (%) — B0 + BL#*xL+...+ Bk *xk Fauation 3.6

Equation 3.6 expresses a linear relation between the odds and X in terms of probability. The
logistic function is the inverse of logit function. A logistic regression applies a logit transformation (a
natural log of the odds) to the probabilities and ensures that the model generates estimated
probabilities between 0 and 1. At this function, x has an unlimited range while P (Probability) is
restricted to range from 0 to 1. The preceding Equation 3.6 could be transform to probabilities by
applying the natural log by sides of the above equation and solving for “P”. Subsequently the above

equation in terms of probability it can be rewritten as Equation 3.7:

_exp(B0 + Blxx1+...+ Bk xxK) Equation 3.7
(1 +exp(B0 + B1*x1 +...+ Bk * xk))

Where “B0" is the intercept, “B1" is the estimated for the parameter “x1”, and the same for “Bk * xk”.
The logistic mathematical model assumes a linear relationship between predictors and the logit for
the response variable. The slope coefficient in the logistic regression model represents the change
in the logit for a change of one unit in the independent variable “x” [85]. Unlike linear regression,
the logit is not normally distributed and the variance is not constant. Hence, the least squares
estimation is abandoned in favor of maximum likelihood estimation. The logistic regression requires

a more complex estimation method than the linear regression, called maximum likelihood to
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estimate the parameters. For the logistic regression analysis the function chosen to measure the fit
of the model is the maximum likelihood. The likelihood function is the joint probability density of the
data related as function of the parameters. The Likelihood is a conditional probability (P|X), the
probability of Y given X. Hence in model selection the parameters that will be chosen are the ones
that yield to the greatest likelihood computed. The estimates are called maximum likelihood
because the parameters are chosen to maximize the likelihood of the sample data. The logistic
regression finds the parameters estimates that are most likely to occur given the data [89]. This
procedure is achieved by maximizing the likelihood function that expresses the probability of the

observed data as function of the unknown parameters [84, 89].

3.7.2 Logistic regression modeling

The modeling process flow was developed with application of specific functions of the EM program:
such as drop, transformation, regression and cutoff nodes. Appendix 5 provides detailed
information for the logistic models development using SAS®Enterprise MinerTM 7.1 [84, 89, 117].

During the training process, four selection methods for variables input in the model were used:

e Backward - begins with all candidate effects (inputs) in the model and removes effects until
the stay significance level is met. It creates a sequence of models decreasing complexity.

e Forward- begins with no candidate inputs in the model and adds inputs until the entry
significance level is met. In contrast with backward selection creates a sequence of models of
increasing complexity.

e Stepwise- begins as in the forward selection but may remove inputs already in the model.
This procedure sequentially adds inputs with the smallest p-value below the entry cutoff. As each
input is added, the algorithm re-evaluates the statistical significance of all included inputs in the
model. If p-value of the selected inputs exceeds a stay cutoff, the input is removed from the model.

¢ None- When none of the above selections methods are selected, the regressions use all

the available inputs to fit the model. Usually, it generates models with higher complexity

since all the predictor variables stay in the model.

As result of the input selection methods, several candidate models were developed, some
incorporating all the input variables (when “none” method was selected), others candidate models

with several or few inputs.

Following the development of several models candidates, the best model to predict the target was
selected based on the goodness of fit of the model to the crash data. Following the selection of the
best model, cutoff, score and SAS code nodes were added to the diagram for further assessment

of the prediction accuracy.
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The cutoff function provides graphical information to determine the appropriate probability cutoff
point for decision making with binary target models. The establishment of a cutoff decision point
entails the risk of generating false positives and false negatives, but an appropriate use of the
cutoff node can help minimize those risks. During the models training, the optimal cutoff value was
obtained for 0.69. This value was found by taking into account which cutoff would result in a higher

overall classification rate and the prior probabilities for the severe crashes in the data set.

The score function creates predictions using the best model selected based on the model
comparison node, described above. To evaluate the performance of the selected model from the
training procedure, a new data source must be dragged into to diagram workspace. While for the
training models development the data set’s role was set to “raw”, for the score stage, the data set
was set to “score” role. This attribute allows the score node to use the data set to generate

predicted values for a data set that might not contain a target.

Finally, at the end of the models development process, sas score code function was linked to the
score node. This function allows to programing code to generate an output for the model
performance when evaluating its prediction accuracy with the original data. The generated report
output creates the scores results for the classification assessment, (that will be discuss in the next

section).

3.7.3 Models assessment and validation

The most frequent metrics for models assessment are accuracy and error rate [106]. By convention
the class label of the minority class is positive, and the class label of the majority class is negative
[107, 108]. Given a classification model (also called classifier) and a response, there are four
possible outcomes. If the response is positive and it is classified as positive, it is counted as a true
positive; if it is classified as negative, it is counted as a false negative [142]. If the response is
negative and it is classified as negative, it is counted as a true negative; if it is classified as positive,
it is counted as a false positive [142]. Given a classifier and a set of responses, a two-by-two
confusion matrix (also called a contingency table) can be constructed representing the dispositions
of the set of responses, with the true class on the columns and the predicted class on the lines.
This matrix forms the basis for many common metrics and provides information on the performance
of the model [106-108, 142].

In this study, the event classification table (metric provided by Enterprise Miner) is used to measure
the assessment score rankings for the model, showing the predicted probabilities of the observed
response (target being modeled). Binary targets can be classified as event or non-event. Predicted
and observed targets results follow into four classification categories: False Negative, True

Negative, False Positive, and True Positive.
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Thus, the event classification analysis classifies the response output accuracy for the target being

modeled as:

- False Negative (FN), which means that the target was predicted as “0” when it was “1” in
reality.

- True Negative (TN), which indicates that the target was correctly predicted as “0”.

- False Positive (FP), which means that the target was incorrectly predicted as “1” when it
was in reality “0”.

- And True Positive (TP), which means that the target was correctly predicted as “1”.

Table 3.6 shows the measures classification approach developed based on the Enterprise Miner
software for the assessment score and confusion matrix for a binary classification; in this case
FatalSIK. Table 3.6a) shows the assessment of the training model evaluation. The TN category
refers to the observations where a crash was non severe (actual value was FatalSIK”0") and it was
predicted as non-severe (FatalSIK”0”). When a crash was severe (actual value FatalSIK”1”) and it

was predicted as severe crash (FatalSIK”1"), this observation follows into the category TP.

Table 3.6 - Assessment of FatalSIK prediction based on event classification table.

Model Assessment Score

a) Assessment of selected model with the training sample/balanced sample

Target False Negative (FN) True Negative (TN) False Positive (FP)  True Positive (TP)
Predicted FatalSIK"0” FatalSIK"0” FatalSIK"1” FatalSIK"1”

Actual FatalSIK”"1” FatalSIK"0” FatalSIK"0” FatalSIK"1”

b) Assessment of selected model with the original sample/imbalanced data

Target True Positives (TPs) False Positives (FPs) True Negatives (TNs) False Negatives (FNs)
Predicted FatalSIK"1” FatalSIK"1” FatalSIK"0” FatalSIK"0”

Actual FatalSIK"1” FatalSIK"0” FatalSIK"0” FatalSIK"1”

The accuracy of the model measures the fraction of cases where the decision matches the actual
target value. The accuracy rate (AR) in the training model is equivalent to the percentage of the
cases predicted right by the model within the training sample. Equation 3.8 shows the calculation of
“Accuracy Rate” as:

(TP +TN) Equation 3.8
(FN+TN +FP +TP)

Accuracy RateTraining sample =

On the other hand, the misclassification measures the fraction of cases where the decision does

not match the actual target value. Equation 3.9 shows the misclassification rate:

(FN + FP) Equation 3.9
(FN+TN +FP +TP)

Misclassification =

The validation process of a model is an important step to confirm that the developed model is likely
to perform as expected in the field. The standard strategy in predictive modeling is the data

splitting. Thus, a proportion would be used for fitting the model, which is the training data. The
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remaining data would be used for empirical validation. However, with small or moderate data sets,
data splitting is inefficient; the reduced sample size can severely degrade the fit of the model [43,
89]. Kononen et al. stated that “splitting-sample validation results in the validation of the model fit to
a “training” dataset, but does not validate the model fit to the complete dataset, the objective of a
predictive model” [43]. Computer-intensive methods, such as cross-validation and the bootstrap

methodologies can be used for both fitting and honest assessment [83, 84, 89, 103].

Validation process relies on model assessment to predict new cases. However, for the selected
model during the training process, the model was scored based on the training sample (with a
stratified distribution of severe vs. non-severe cases). Firstly, the final selected model was score
not only for the stratified sample (balanced proportion of severe and non-severe crashes), Table
3.6a). Secondly, it was scored using the original crash data (with original distribution of severe vs.
non-severe cases). Table 3.6b) shows the assessment measure for the selected model score with
the original sample. To predict new cases using the original imbalanced sample, the classification
measures are as follows: True Positive (TPs), False Positives (FPs), True Negatives (TNs) and

False Negatives (FNs).

Similarly to Equation 3.8, the performed accuracy for the final model was expressed as the
percentage of the cases predicted right by the selected model when scoring the crash population.
The accuracy rate within the entire crash dataset was calculated by Equation 3.10 and percentage
of predicted right cases was derived from the accuracy rate*100% and the accuracy rate was in

this case determined as:

(TPs + TNs) Equation 3.10
(TPs + FPs + TNs + FNs)

Accuracy Rate Original sample =

The selected model (final model) was evaluated for the prediction accuracy performance. The
procedure developed to ensure a valid and reliable validation of the selected models is based on

the k-fold cross validation from Crone and Finlay and Xie et al. [83, 93].

For the purpose of this study, and to ensure valid and reliable estimates of the experimental results
despite small sample sizes, a resampling K random cross-validation was employed for the
selected, essentially replicating each random sample k = 10 times (i.e., resampling). The
resampling k random cross validation is to some extent different from k-fold cross validation by
Crone and Finlay. For the Portuguese crash data analysis, a stratified random sampling was
applied, with the events “1” (severe crashes) and events “0” (non-severe crashes) sampled with
equal proportion. The crash dataset was segmented into k sections of equal size, with an equal
proportion of severe crashes and non-severe crashes, within each fold. For the two-vehicle
collisions (N=874), 10 stratified random samples (N=64) were developed including all severe

crashes (32 events “1”) and equal number of non-severe crashes (32 events “0”). For the validation
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of the best selected models for the single dataset, 10 stratified random samples (N=76) were
developed including all the severe crashes (38 events “1”) and equal number of non-severe

crashes (38 events “0”).

The resampling k random cross validation is presented next, through step 1 to step 3.
Step 1: Stratified random samples cross validation

To create each stratified sampled subset, observations were randomly excluded from the majority
class (the non-severe crashes) until they equal the observations number of the minority class
(severe crashes). Hence, 10 samples with balance classes were generated from the full dataset.
The 10 stratified random balancing samples were chosen taking into account: time consuming,
computing requirements and the need to obtain a reasonable number of samples, under the

constrain of the available observations.

Step 2: Model Score with stratified random samples

In Crone and Finlay k-fold cross validation approach, the stratified samples were used to construct
k models for each cumulative percentage of the population [83]. Then for each model, all the N/k
observations in the validation section were used to evaluate the model performance. In this
research, the performance of accuracy prediction of the final model was evaluated by comparing
the model score rates for the original crash dataset with the model score for each of those 10
stratified random samples. Hence, the final model was evaluated 10 times by score the final model
with each of those 10 stratified samples subsets. Then, the model accuracy prediction rates for

each of those subsets were recorded and the average of those 10 accuracy rates was estimated.

Step 3: Final Model Accuracy Rate Assessment Performance

To conclude, the accuracy rate derived from the model application to the original crashes sample
was compared with the model accuracy rate derived from the model application within the 10
stratified samples. Each accuracy rate obtained for each subset was subtracted from the accuracy
rate of the final model (with the full sample). This procedure allowed evaluating the stability of

accurate prediction rate of the final model through the 10 subsets (10 stratified random samples).

The experimental approach designed to evaluate the goodness-of-fits with: training sample, original
sample (OS) and finally, validation with 10 stratified random samples (SS), is outlined in Figure 3.4.
Figure 3.4 illustrates the resampling K random cross-validation developed in this study for the

assessment of models performance and validation for the two-vehicle collisions.
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Two-vehicle collisions
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Figure 3.4 - Crash severity modeling using logistic with resampling strategy: training models

assessment and validation for the two-vehicle collisions.
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On the left top right of Figure 3.4, all the input variables are shown, as well as the original sample
size. The “1”s squares in red illustrate the severe crashes which were less frequent than the non-
severe-crashes, blue squares, in the original sample (0OS) (N=874). Without the resampling
approach, preliminary model training with the OS showed a poor fitting due to the high
disproportion between target “1” and target “0”, bottom left side of Figure 3.4. Thus, a resampling
approach, yield to training samples of equal proportion of sever crashes vs. non severe crashes
(same proportion of red and blue square, on the top right of Figure 3.4. Subsequently, the model
prediction accuracy was evaluated with the OS and then, validation was performed with the 10
stratified random samples S;; (N=42 and N=28 for FatalSIKV1l and fatalSIKV2 models
assessment, respectively), on the bottom right of Figure 3.3. For example, the prediction accuracy
rate for a selected model (developed with a balanced training ample) and then scored with the
original sample is represented by “AR,os ga”, Shown at the bottom of Figure 3.4. For FatalSIKV2 the
structure would be the same, with category FatalSIK replaced by FatalSIKV1 or FatalSIKV2,

depending on the target of interest. For the single-vehicle crashes the process is similar.
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3.8 Concluding Remarks

The main constraint of the Portuguese crash sample was the limited number of observations (small
sample size). In addition, a particular challenge was found when handling the imbalanced classes
in the crash dataset, as result of the minority class of severe crashes in the sample. Due to the
small dataset, data splitting would be inefficient, since the reduced sample size could reduce the fit
of the model training and validation. The modest number of severe events (which were the target
with interest for the modeling) generated an opportunity for a new modeling strategy: resampling

and 10-fold cross validation procedure.
The safety analysis methodology presented in this chapter pursues the research goals as follows.

¢ Individual vehicle analysis to compare crash sample severity ratio with overall severity
index for the national fleet.

e CART modeling to identify which variables are important to predict injury severity.

e Logistic regression modeling to evaluate the effect of vehicles attributes (risk factors) in

injury severity prediction.
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CHAPTER 4

CRASH DATA DESCRIPTIVE STATISTICS
AND SEVERITY INDEX WITHIN THE
PORTUGUESE FLEET

In this Chapter, initially descriptive statistics are presented for the crash sample with main focus on
vehicles technical characteristics. Secondly, risk of exposure in the sample is presented based on
injury severity and vehicle’s engine size category. Thirdly, vehicle’s individual brand analysis is
discussed taking into account its involvement in crash severity outcomes. Then, brand’s severity
risk is compared with the overall severity within the Portuguese fleet. Main remarks are

summarized.
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4.1 Crash Data Descriptive Statistics

This section presents descriptive statistics for the crash sample comprising a total of 1,374
observations involving single-vehicle crashes and two-vehicle collisions. Whereas for single-vehicle
crashes, the vehicles were defined as vehicle V1 only, for collisions, vehicles were register as
vehicle V1 and vehicle V2, following the police record information (as explained in section 3.3).

Descriptive statistics for All, Single and Two datasets are next.

4.1.1 General statistics

The crash sample revealed 22 crashes involving a drunk and/or drugged driver. Crash frequency
distribution by road speed limit was as follows: 67.6%, 4.7%, 27.1% and 0.5, for 120 km.h™, 100
km.h, 90 km.h*and 50 km.h™, respectively. Crashes registered at roads where the legal speed
limit is the lowest, 50 km.h™, did not result in any severe case. On the other hand, crashes register
in motorways, 120 km.h™, showed the highest percentage of severe observations, 3.4% (48/1374).
This finding is consistent with previous studies that identified road speed as a key factor for crash
severity risk [42, 43, 49, 91, 98].

The crash sample covers a total of 2,248 vehicles. The most frequent vehicle category was light
passenger vehicles, which represented 74.3% of the vehicles, whereas light duty vehicles account
for 25.7%. Diesel engines were the most common, corresponding to 58.9% of the analysed
vehicles, following by the gasoline engines representing 40.7%. At a significant lower frequency:
LPG (“GPL” at the Portuguese designation) and hybrid vehicles accounting only for 0.3% and

0.1%, respectively.

Regarding to vehicle technical characteristics, the mean values and its standard deviation (S.D.) for
all the vehicles in the sample, vehicles’ weight, engine power, wheelbase and age were: 1238.1kg
(S.D. 347.2), 1665.2 cm® (S.D. 504.4), 2591.9 mm (S.D. 270.2) and 8.5 yr (S.D. 5.1).

Relating to individual vehicles analysis, as V1 and as V2, descriptive statistics of continuous design
variables with focus on vehicles characteristics is presented in Table 4.1. The oldest vehicle
involved had 38 years, whereas the newest cars had one year, corresponding to 1972 and 2010
vehicle model year, respectively. Also, the heaviest vehicle in the crash dataset weighted six times
more than the lighter passenger car, a 3500/584 weight ratio. Also, the largest vehicle’s wheelbase
was almost three times larger than the smallest one, a 4325/1625 wheelbase ratio. Thus, results in
Table 4.1 reflect a wide range of vehicles’ dimensions (weight, engine size and wheelbase) and
vehicle model year (associated to vehicle’ age), as well. Therefore it is fundamental to take into
account vehicle individual information for road safety analysis, since real crashes occur without any
control among the vehicles categories and/or segments involved in the collision. In this Chapter,
the statistics motivate the designed methodology to account for vehicle individual analysis, rather

than the standard information, mainly restricted to vehicle type and vehicle model year, [43, 59-61,
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85, 87, 93, 98]. Previous studies attempted to model overall crash severity without taking into
account the effect of the opponent vehicle [43, 85, 86, 91, 93, 98, 102, 104]. Nonetheless, in multi-
vehicle collisions, injury severity outcomes depend not only on the risk of the other vehicle

involved, and also on the protective ability of the subject vehicle.

Table 4.1 - Descriptive statistics for vehicles selected variables in the crash dataset.

Symbol N Mean S.D. Minimum Maximum
WTV11(K%;) 1374 1222.34 334.98 640 3200
ccV1¥(em®) 1374 1662.65 491.67 599 4104
WBV1 (mm) 1374 2581.02 256.47 1625 4325
AgeV1‘(yr) 1374 8.48 5.06 1 25
WTV2°(kg) 874 1262.85 364.46 584 3500
ccv2® gcm3) 874 1700.94 522.18 698 4104
WBV2' (mm) 874 2609.00 289.88 1812 4100
AgeV2%(yr) 874 8.54 5.26 1 38
WTV2V1°(mm) 874 28.65 519.87 -2165 2860
ccv2v1©(ecm?®) 874 34.98 719.72 -2905 2909
WBV2V1H(mm) 874 10.84 396.80 -2213 1918
AgeV2Vvi*¥(yr) 874 <1 7.42 -20 28

1 Weight of Vehicle V1; 2 Engine size of Vehicle V1; 3 Wheelbase of Vehicle V1; 4 Age of vehicle V1; 5 Weight of Vehicle
V2; 6 Engine size of Vehicle V2; 7 Wheelbase of Vehicle V2;8 Age of vehicle V2; 9 Weight Differential between V2-V1, in
two-vehicle collisions; 10 Engine size differential between V2-V1, in two-vehicle collisions; 11 Wheelbase Differential
between V2-V1, in two-vehicle collisions; 12 Age Differential between V2-V1, in two-vehicle collisions.

At the crash reports, crash outcomes are classified in three injury levels: light injury (LI), serious
injury (SI) and killed (K). Table 4.2 shows injury level distribution by number of vehicles involved
and by vehicle recorded as V1 or V2, in the crash. Table 4.3 shows the frequency of severe
observations expressed by the sum of serious injured and killed (SIK) by crash event.

Table 4.2 — Injury level distribution by vehicle position in the crash.

Datasets Vehicle V1 Vehicle V2 Total

N* LI S| K LI S| K LIZ SI® K* SIK®
Single 500 590 31 16 - - - 590 31 16 47
Two 874 643 14 9 732 16 2 1375 30 11 41
All 1374 1233 45 25 732 16 2 1965 61 27 88

1 Number of crashes observations; 2 Sum of light injuries; 3 Sum of serious injuries; 4 Sum of killed; 5 Sum of serious
injured and/or killed.
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Table 4.3 - Frequency of severe observations by number of severe injuries and/or killed and by
vehicles involved.

Dataset N* SIK “1”2 SIK “27° SIK «3”* Total SIK®
Single 500 31 5 2 38
Two 874 25 5 2 32
All 1374 56 10 4 70

1 Number of crashes observations; 2 Number of crashes having 1 occupant serious injured and/or killed; 3 Number of
crashes having 2 occupants serious injured and/or killed; 4 Number of crashes having 3 occupants serious injured and/or
killed; 5 Total Number of observation having a severe crash (either SI>0 and/or K>0)

Relating to crash severity risk of exposure in the sample, severe cases are presented based on
vehicle involvement in single-vehicle crashes and vehicle involvement in two-vehicle collisions as
V1 or as V2. Severe cases are related to an event that has resulted at least in a serious injured
and/or killed among the occupants of the vehicle. For example in a severe collision, a severe injury
can happen at one of the vehicle involved, or it can happen in both vehicles involved
simultaneously. Table 4.4 shows the risk of exposure based on severe cases by the number of
vehicles involvement and vehicle’s age and engine size categories. Vehicle’s age was grouped by
5 categories: 1<Age<5yr, 5Age<10yr, 10<Age<15yr, 15<Age<20yr and Age=20yr. Engine size
was grouped into three categories: c.c.<1400 cm?® 1400<c.c.<2000cm® and c¢.c.22000 cm®. For
single-vehicle crashes, the majority of vehicles fell in the engine size category c.c.<1400 cm?®,
followed by the category 1400<c.c.<2000 cm?, with 219 vehicles involved in 13 severe crashes and
218 vehicles involved in 18 severe crashes, respectively, as shown in Table 4.4. Although the most
frequent category was the vehicles in the small engine size category, it was in the middle engine
size category that severe crashes were higher.

For two-vehicle collisions, vehicles V1 in the engine size category 1400<c.c.<2000 cm?®, were the
most frequent, with 390 vehicles involved in collisions that have resulted in 14 severe cases for the
occupants of vehicle V1, Table 4.4. For vehicle V2, the most frequent engine size category was
also 1400<c.c.<2000 cm®, 379 vehicles with three serve crash outcomes. However, for V2, the
higher ratio of severe crashes was found for vehicles in the smaller engine size category, with 334
vehicles involved in collisions that had resulted in eight severe cases for its occupants. Appendix 7

provides information on Pearson correlation coefficients for all the variables in the crash dataset.
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Table 4.4 — Crashes severe cases by: vehicles involvement in single-vehicle crashes or two-vehicle collisions, engine size and age categories.

Two-vehicle collisions
Vehicle categories Single-vehicle crashes
As V1 As V2 V1+V2
Eggtlgg osr';e Age category N Severe Cases N Severe Cases N Severe Cases N Severe Cases
1<Age<5yr 63 60 76 199
5<Age<10yr 77 121 99 297
s 10<Age<15yr 48 93 98 239
€.€.<1400 cm
15<Age<20yr 27 67 50 144
Age=20yr 4 5 11 20
Total 219 13 346 5 334 8 680 13
1<Age<byr 68 100 114 282
5<Age<10yr 81 138 133 352
. s 10<Age<15yr 46 98 94 238
1400 cm’<c.c.<2000 cm
15<Age<20yr 18 42 31 91
Age=20yr 5 12 7 24
Total 218 18 390 14 379 3 769 17
1<Age<b5yr 12 40 37 89
5<Age<10yr 32 52 66 150
5 10=Age<15yr 16 33 35 84
c.c.2 2000 cm
15<Age<20yr 3 10 17 30
Age=20yr 0 3 6 9
Total 63 7 138 2 161 3 299 5
N 500 38 874 21 874 14 1,648 35
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The overall crash severity was 5.1% (70/1374), reveling an unequal distribution of severe crashes
compared to non-severe crashes, which were the most common events in the crash sample,
showing a frequency of 94.9%. For the two-vehicle collisions, the ratio of the common event (non-
severe crash) to the rare event (severe crash) was 26 (842/32). Thus, the non-severe crashes
happened 26 times more frequently than the severe ones, yielding to an over represented of
crashes with minor injuries. Therefore this crash data qualifies for imbalanced data. Whereas the
percentage of severe crashes in two-vehicle collisions was 3.7% (32/874), for single-vehicle
crashes the severity was 7.6% (38/500). Apart from unequal distribution of severe non-sever
crashes, it is interesting to note that the overall severity was twice as higher for single-vehicle
crashes than for the two vehicles crashes.

This disproportion between non-severe crashes and severe crashes imposed a challenge during
the crash severity prediction. Next Chapter presents the approach designed in this research to

handle imbalanced data.

4.1.2 Single-vehicle crashes descriptive statistics

In the Single dataset, the percentage of crashes involving drunk and/or intoxicated drivers was
2.0% (10/500). From those, three crashes that involved drunk and/or intoxicated drivers resulted in
severe outcomes. As far as crashes distribution by road class speed limit, the frequency was: 375,
29, 95, and 1, for 120 km.h™*, 100 km.h™, 90 km.h™"and 50 km.h™, respectively. The roads that
appeared more often were motorways: A4, A28, A3 and A29, with the frequency: 96, 86, 55, 55,
respectively. A map with the identification of these roads was previously highlighted in Figure 3.2b).
Crashes type distribution was as follows: 333 ran off road and 67 rollovers. The mean values for
vehicle V1 technical characteristics were as follows. 1201.6Kg (S.D. 292.1), wheelbase of vehicle
V1 was 2551.1mm (S.D. 205.0), for weight, engine size, and wheelbase, respectively. The mean

vehicle’s age was 7.8yr (S.D. 4.9).

Histograms are presented in Figure 4.1 to illustrated vehicles technical characteristics (independent
variables) frequency distribution with crash severity (dependent variable). As shown by the
histogram a), in Figure 4.1, the category 5<AgeV1<10 is the most frequent and severe crashes
were also more frequent for this category. For the majority of the vehicle’s involved in single-vehicle
crashes, had engine sizes in the categories ccV1<1400 cm® and 1400<ccV1<2000 cm®, which
were also linked to more severe outcomes, histogram b), in Figure 4.1. Vehicles in the weight
category, 1000sWTV1<1499 kg, were clearly the most frequent and also showed higher number of
severe crashes, histogram c), in Figure 4.1. The two most frequent categories for vehicle’s
wheelbase were: 2000sWBV1<2499 and 2500<sWBV1<2999 and with a higher number of crashes

resulting in severe outcomes as well, histogram d), in Figure 4.1.
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Figure 4.1 - Frequency distribution of vehicles’ characteristics with crash severity, in single-vehicle

crashes: a) AgeV1 category; b) ccV1 category; c) WTV1 category; d) WBV1 category.

4.1.2 Two-vehicle collisions descriptive statistics

In the Two dataset, the percentage of crashes involving drunk and/or intoxicated drivers was 1.4%
(12/874), and three of them have resulted in severe collisions. The roads with higher frequency of
collisions involving any type of injuries where: A4, A28, A3 and EN15, with 121, 112, 88 and 88
counts, respectively. A map with the identification of these roads was previously shown in Figure
3.2b). Regarding to the frequency of collisions by road class speed limits, the distribution was: 6,
278, 36 and 554, for 50km.h™, 90 km.h™, 100 km.h™ and 120 km.h™, respectively. Crashes
distribution by collision type was as follows: 311, 89, 67, and 407, for rear end, sideswipe, head on
and others, respectively. The mean values for vehicles V1 and V2 weight were as follows: 1234.2
Kg (S.D. 356.8) and 1262.9 Kg (S.D. 364.5), respectively. The mean engine size for vehicle V1 and
V2 was: 1665.0 cm® (S.D. 510.0) and 1700.9 cm® (S.D. 522.2), respectively. The mean wheelbase
for vehicle V1 and V2, was: 2598.2 mm (S.D. 280.4) and 2609.0 mm (S.D. 289.9), respectively.
The mean vehicle V1's age was 8.9 yr (S.D. 5.1), whereas, the mean vehicle V2's age was 8.5 yr
(S.D.5.3).

Comparison between Single and Two datasets, with 500 vehicles and 1,784 vehicles, respectively,
is summarized next. The mean vehicles weight was 1248.5 Kg (S.D. 360.0) and 1201.6 Kg (S.D.

292.1), for Two and Single datasets, respectively. The mean engine size was 1683.5 cm?® (S.D.
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516.3) and 1601.6 cm® (S.D. 455.5), for Two and Single, respectively. The mean wheelbase was
2603.6 mm (S.D. 285.1) and 2551.1 mm (S.D. 205. 0.4), for Two and Single, respectively. The
mean vehicles’ age was 8.7 yr (S.D. 5.1) and 7.8 yr (S.D. 4.9). Despite of the difference in the
number of observations for those datasets, it was noticeable that in average, vehicles involved in
single-vehicles crashes were slightly lighter, with smaller engine size and smaller wheelbase, and

almost one year younger than the vehicles involved in collisions.
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Figure 4.2 - Frequency distribution of vehicles’ characteristics with crash severity, in two-vehicle

collisions: a) AgeV1 category; b) AgeV2 category; c) ccV1 category; c) ccV2 category; d) WTV1

category; d) WTV1 category; e) WTV2 category; f) WBV1 category and f) WBV2 category.
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4.2 Inference of Auto Brands in the Sample with the Portuguese
Fleet

The vehicle’s make individual analysis gives attention to the vehicle’s auto brand distribution in the
sample and the severity index for the crashes involving that specific brand being analyzed. First, it
compares auto brand severity index with the sample severity index. Second, it compares the auto

brand severity index with the overall severity at national level.

4.2.1 Vehicles brand severity ratio analysis in single and two-vehicle

collisions and within the Portuguese fleet

The single-vehicle crashes included 500 vehicles representing 35 auto brands. Using the crash
outcomes in Table 4.2 the crash severity index was 7.4% (47/639). The national level, road safety
data for the single-vehicle crashes involving light vehicles only and during the period 2006 to 2008
showed the following injury distribution: 9,451 light injured, and 889 serious injured and Killed,

leading to an overall severity index of 8.6% (889/10341).

Table 4.5 shows the auto brands with the highest frequency at the crash sample. The brands
involved in the single-vehicle crashes with higher frequency were: Renault (15.8%), Opel (9.2%),
and Fiat (8.8%). Crashes involving a Renault had resulted in an increment of almost 1% in the
severity ratio when compared to the overall severity at the sample: BSR for Renault was 8.3%,
whereas the overall severity index at the crash sample was and 7.4%. However, when comparing
this vehicle brand severity ratio with the overall severity index, it was slightly lower, 8.3% and 8.6%,
for Renaults’ BSR and Portuguese fleet, respectively. Based on the crash sample, Renault vehicles
could be linked to lower lower protectiveness to its occupants since the severity index was 0.9%
higher compared to the sample index. However, when Renaults’ BSR is compared with OSI, it was
0.6% lower, thus suggesting that this brand provides better protection to its vehicle’s occupant’s

than the average brand involved in the same crash type at national level.

Table 4.5 — Vehicle’s brand severity ratio analysis across the crash sample for two-vehicle

collisions and single-vehicle crashes

Vehicle Analysis by Brands Frequency LIt SI? K® BSR*

Two-vehicle collisions

Renault 14.7% 218 8 3 4.8%
Opel 10.8% 160 2 3 3.0%
Volkswagen 7.3% 105 0 0 0%
Single-vehicle crashes

Renault 15.8% 99 6 3 8.3%
Opel 9.2% 53 1 2 5.36%
Fiat 8.8% 61 0 0 0%

" Number of light injured at vehicle’s auto brand; © Number of serious injured at vehicle’s auto brand; * killed at vehicle’s auto

brand; * brand severity ratio for the vehicle’s brand.
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The two-vehicle collisions sample in this study included 1,748 vehicles representing 41 auto
brands. The crash outcomes for those collisions by injury level were as follows: 1,375 light injured,
and 41 serious injured and killed, leading to a crash severity index of 2.9%, (41/1416). On the other
hand, the overall severity index for the two-vehicle collisions involving light vehicles in the

Portuguese fleet was 4.8%.

Table 4.5 shows the brands with the highest frequency for the two-vehicle collisions sample:
Renault (14.7%), Opel (10.8%), and Volkswagen (7.3%). The two-vehicle collisions involving a
Renault had resulted almost twice in the severity ratio for the overall crash sample, 4.8%, and 2.9%
respectively. However this finding could not be used o drive a conclusion that the Renault brand
showed a poor crashworthiness performance in general at the Portuguese roads. In fact, Renault’s
BSR when compared with the OSI (for the same type of crashes) showed the same severity ratio,
4.8%.

4.2.2 Expanding brand severity ratio analysis within the Portuguese fleet
Expanding the analysis of vehicles brand severity ratio with Portuguese overall severity index
required an evaluation of those brands representativeness across the Portuguese fleet. For
instance, if a brand has BSR higher than the OSI and their vehicles sales are low in the Portuguese
fleet, it would suggest that probably the brands models would offer a poor crashworthiness. On the
other hand, if a brand had a lower BSR than the OSI, and its vehicles sales are high in the nation;
this brand could reflect good crashworthiness across the fleet. Based on the brands annual sales,
each top brand identified earlier were normalized by the total number of light passenger vehicles
and light duty vehicles registered at the annual calendar year, using data was provided by ACAP
[134, 135].

In the case of Renault, it was the most common brand in the sample, this vehicles’ brand were also
the most exposure in the sample, hence increasing the risk of crash involvement. Therefore, it was
also important to consider the share of Renault vehicles in the Portuguese fleet. This brand is in the
top sales in Portugal, and, across the Portuguese fleet it would be expected more vehicles register
under the Renault brand as in fact it is, as illustrated in Figure 4.3. BSR information does not
support the statement about Renault vehicles crashworthiness because it is the most sale
carmaker in Portugal; Renault vehicles have a higher probability to be involved in a crash because
they are also more frequent at the fleet. In addition, the analysis presented in this study is limited to
an analysis of average brand severity ratio, and different models of the same brand may perform

differently.
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Figure 4.3 — Vehicle brand sales by the total vehicle, within the period 2006 to 2010.

However, it was interesting to notice that Volkswagen and Fiat vehicles, even though were found
among the most popular brands in the Two and Single datasets, these brands crash involvement
did not result in any severe consequences, since number of serious injured and/or killed was zero.
The inference of these brands with the national fleet, also revealed that they are between the most
representative in the vehicle fleet, in Figure 4.3. Despite of Volkswagen and Fiat high frequency in
the fleet, its crash risk was smaller than for Renault. Based on the crash sample used in this study,
the number of observations involving those vehicles was small to established further conclusions.
Nevertheless, these differences in brand severity ratio among the most common brands are
consistent with other study, which found Ford and Toyota as the most popular brands in Florida

[143]. Even though the risk of exposure was the same for both brands, Ford showed better self-

protective ability than Toyota [143].
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4.3 Concluding Remarks

The results presented in this Chapter showed descriptive statistics of continuous design variables
and vehicles characteristics, for the vehicles involved in two-vehicle collisions and single-vehicle
crashes. The average weight and size of vehicles involved in the two-vehicle collisions was slightly
larger than the average for the vehicles involved in single-vehicle crash. Regarding to crash
outcomes, the overall crash severity was 5.1%, with high disproportion between non-severe
crashes and few observations of severe crashes. Thus the crash sample qualifies for imbalanced
data.

In this chapter, the most remarkable finding was related to the crash sample severity (either a
serious injured and/or killed) distribution for the single-vehicle crashes and two-vehicle collisions:
7.6% and 3.7%, respectively. These findings are consistent with previous work which had stated
that in crashes involving one car, the vehicle crashworthiness may be offset by the driver behavior
that could be speeding, and thus increasing the risk of serious crash outcomes [49, 61, 99]. In
addition, inference of sample severity index with the Portuguese overall severity index (serious
injured and killed by the total number of injuries and killed) shows consistent values. At national
level, for crashes involving one vehicle, the severity index was 7.4% and 8.6%, for the single-
vehicle crash sample and population, respectively. For the crashes involving two vehicles, the
severity index was 2.9% and 4.8%, for the two-vehicle collisions sample and population,

respectively.

Regarding vehicles brand analysis, the most frequent brands were: Renault, Opel, Volkswagen and
Fiat, with Renault showing the highest severity ratio. On the other hand, Volkswagen and Fiat,
although among the most frequent brands, did not show any involvement in severe crashes.
However, the inference of this brand with the Portuguese fleet showed that Renault’s severity ratio
was similar to the National overall severity index. For single-vehicle crashes, the brand severity
ratio was 8.3% and the national crash severity ratio was 8.6. Furthermore, Renault brand has been
in the top sales during the time period covered in this analysis, thus increasing the risk of exposure.
It must be pointed out that severity risk reported in this vehicles’ brand severity ratio analysis does
not account for the total number of occupants in the vehicle, neither for the differences in annual
kilometers driven, nor driver age or gender. In conclusion, the brands severity ratio inference
analysis must be approached with care and always attending to the brands representativeness
within the national fleet.

85






CHAPTER 5

DECISION CLASSIFICATION TREES ANALYSIS
FOR CRASH SEVERITY PREDICTION

One benefit of decision tree compared to other modeling techniques is that these models provide
decisions by making the answer “if-then” questions efficiently [104]. Researcher and traffic
engineering can easily predict the injury likelihood of an accident simply by determining the value of
splitters and tracing a path down the tree to a terminal node. The trees not only give the variables
of importance, but also help to better interpret the results. The targets being predicted by CART
models were: FatalSIK, FatalSIKV1 and FatalSIKV2, all of them having a categorical measurement

level, “1” or “0” and therefore, the type of the prediction is a decision: severe or non-severe crash.

This Chapter is organized as follows. First, CART models are presented for all crashes, two-vehicle
collisions and single-vehicle crashes, based on the original sample. Second, following a resampling
procedure, CART models are presented for all crashes, two-vehicle collisions and single-vehicle
based on balanced datasets. Third, CART models targeting individual vehicle injury severity
classification are shown for the original sample distribution of two-vehicle collisions. Remarkable

findings of crash severity analysis with CART methodology are also highlighted.
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5.1 CART Analysis for FatalSIK with the Original Crash Sample-

Imbalanced Datasets

In the beginning of this section, the decision tree is presented in a way that it will help to interpret
the following trees in this Chapter. The trees’ grow reflects a hierarchical group of relationships.
Each branch is split further using the classes or categories of the other predictor variables. This
process, known as recursive partitioning, continues until a stopping rule is satisfied, such as the
minimum number of cases in the terminal leaf (5 counts). It must be noted that the root node split
for each tree structure shows a branch that is highlighted bold, which shows the split with the larger
number of cases. One of the two connecting lines showing the predictor split also displays the term
“missing” for one of the categories. However it must be clear that this term appears by default at
the CART diagrams. Fortunately in this study, there was no missing data, since all the predictor
variable values were available for all the observations in the crash database. Also, the leaves’
Node ID do not show an organized order. However, Node ID do reflect a decreasing order from the
root node (which is always identified as Node ID:1). Each leaf/node contains information about the
number of cases in the particular leaf, denoted by “count” term in the node. CART methodology
was applied using SAS®v9.2 and SAS®Enterprise Miner™7.1 (EM7.1) software.

Following, the decision trees are discussed as prediction models for the crash severity target with
interest for each dataset: All, Two and Single (as defined in section 3.3.). Figure 5.1 to Figure 5.8
show the decision trees models for the binary classification for crash severity.

In this section, section 5.1, CART results are discussed for the original sample distribution, which
means that the proportion of the severe crashes (FatalSIK’1”) vs. the non-severe crashes

(FatalSIK”0”) was kept the same as the original sample.
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Figure 5.1 — Classification tree model for FatalSIK with all crashes using the original imbalanced sample.
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5.1.1 CART for FatalSIK with all crashes- Imbalanced dataset

The original distribution of severe crashes in the crash sample was as follows: 5.1% of severe
cases (corresponding to target FatalSIK“1”) and 94.9% of non-severe cases (corresponding to
target FatalSIK”0”). Figure 5.1 shows the output of the CART prediction for FatalSIK using all
crashes, including single-vehicle crashes and two-vehicle collisions. Twenty three independent
variables (predictors) and one dependent variable (target) were defined for CART modeling, and
these variables used as inputs and the target being modeled were identified in Table 3.5, Chapter
3.

The first selected variable for the decision tree split was alcohol and/or drugs, with the category for
illegal drivers (alcohol or drugs use) associated with higher percentage of severe crashes, 27.3% of
FatalSIK”1”. This node, node ID 16, was split by the differential of wheelbase between the vehicles
involved in the collision, WBV2V1. As previously mentioned, crashes involving illegal driving
(AlcoholDrugs “17), and involving vehicles in the category WBV2V1 < -112.5 mm, were associated
to the highest percentage (40%) of FatalSIK “1”. [87, 92, 93]. This decision tree model shows that
alcohol and or drugs use plays a major role in increasing severity risk of crashes, despite of vehicle

crashworthiness or collision type, and is in agreement previous research [92].

On the right branch of the tree, the category of crashes involving legal drivers (no alcohol or drugs
use) was split by the weight of vehicle V2, WTV2. Then, crashes for legal drivers, with heavier
vehicle V2 category, WTV221751 kg, and involving a lower age differential (AgeV2V1<1.5 yr)
showed the highest count (36) of crashes involving severe injuries or killed, node ID 26. This node
showed 6.7% of severe crashes, which was higher than the overall rate at the crash sample, 5.1%.
However, for the category AgeV2V1=1.5yr the percentage of FatalSIK*1” was higher, 31.8%. The
category of crashes involving a lighter vehicle V2, WTV2<1751kg, crash type other than sideswipe,
were split by the age of vehicle V2. The category of newer vehicles V2, AgeV2<1.5yr presented
higher percentage of FatalSIK’1”, node ID 24. A lower percentage of severity for cases involving
newer vehicles models would be expected, but it must be noticed that the severe injured and killed
were more frequent among occupants of vehicle V1; SIK distribution was as follows: 79.5% (70/88)
and 20.5% (13/88), vehicle V1 and V2 respectively. Mendez et al. claimed that newer vehicle
models have increased “agressivity”. Thus, it is possible that newer vehicle V2 models imposed
more risk for occupants of V1. Whereas in two-vehicle collisions involving older V2 models, the
impact on the compartment area of V1 could be less intrusive, leading to lower risk of severe
injured. Thus, the risk imposed by newer vs. older V2 models could be a possible explanation for
the differential concentration of severe crashes at the terminal nodes: node ID 24, and node ID 25,

7.7% and 5.5, respectively.

To assess the classification decision tree model for FatalSIK with all crashes, the Fisher's exact

test was conducted once some categories had less than five counts (node ID 19 showed zero
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cases of target level “1” as observed in Figure 5.1). The p-value<1.267E ™ denotes the significance
level at which the terminal nodes affect the binary target being predicted, crash severity expressed
by FatalSIK.

In addition to the graphical display, CART technique also provides information on the variable
importance for all the variables in the decision tree model. The variables importance score
indicates whether the presence or absence of a variable in the model (decision tree) will improve or
degrade the efficiency of the model. For the FatalSIK decision tree model with all the crashes from
the original sample, the variables relative importance score is as follows: AgeViv2 (1),
AlcoholDrugs (0.91), WTV2 (0.78), WBV2V1 (0.76), Sideswipe (0.49) and finally, AgeV2 (0.42).
The most scored effects were the age difference between the two vehicles involved (AgeV1V2) and
the effect of alcohol and/or drugs. The effect of AgeV1V2 can be explained when the vehicles
involved in the collision differ by model year, it means that the vehicles structure may be different,
and the safety equipment will also differ as well. It would be expected that newer vehicles models
would be equipped with better safety equipment’s, hence providing a better protection to its
occupants. These findings are coherent with Das, whose work found the use of alcohol and/or
drugs use as the most important variable [87].

5.1.2 CART for FatalSIK with two-vehicle collisions- Imbalanced dataset

Figure 5.2 shows CART output for FatalSIK prediction using two-vehicle collisions. The original
distribution of the Two dataset was as follows: 3.7% of severe cases (FatalSIK*1”) and 96.3% of
non-severe cases (FatalSIK”0”). Twenty independent variables (predictors) and one dependent
variable (FatalSIK) were defined for CART modeling. These variables used as inputs and the target

being modeled are identified in Table 3.5, Chapter 3.
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Figure 5.2 - Classification tree model for FatalSIK with two-vehicle crashes using the original imbalanced sample.
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Figure 5.2 shows that the effect of alcohol and/or drugs was the first explanatory variable selected
by CART methodology to split the 874 two-vehicle collisions. As shown in Figure 5.1, alcohol

and/or drugs was also selected for the split of the original dataset containing all the crashes.

Crashes in which drivers were sober and involving a heavier category of vehicle V2, WTV2= 1751
kg, combined with the category of higher age differential, AgeV2V1=1.5 yr, had a high
concentration of severe crashes, 31.8% of FatalSIK”1”. For the category AgevV2V1< 1.5 yr, severe
cases were much less frequent, 2%. This finding suggests that the collision that involves vehicles
of different ages, vehicles’ crashworthiness and “agressitivy” performance also will be different.
Newer vehicles models are better equipped with safety features, offering better protection to its
occupants, but on the other hand, they may also imposed a higher risk for the towards the
occupants of the other vehicle involved. This finding is consistent with [49, 61] that found increasing
risk imposed by newer models. For collisions involving a lighter category of vehicle V2, WTV2<
1751 kg, the percent of severe crashes was lower (2.7%) than when V2 belonged to a heavier
category (11.1%), as observed at nodes ID 7 and 8, respectively. This fining is consistent with
previous research that found for collisions involving two cars of different masses, the fatality risk
ratio of the heavier to the lighter car increases as a power function of mass ratio [53, 64]. Following,
the node ID 7 was split by sideswipe crash type. The sideswipe collisions resulted in a higher
concentration of severe crashes than a non-sideswipe collision, 8.6% and 2%, in nodes ID 9 and
10, respectively. This finding is consistent with other research, that found sideswipe impacts as the
most serious crashes and substantially more likely to result in serious injury [43, 48, 144]. For the
non-sideswipe crashes, the tree split by the age of vehicle V2, leading to a higher concentration of
severe crashes (7.7%) when AgeV2< 1.5 yr, compared to 1.4% of severe collisions when category
AgeV2=1.5 yr was involved. This finding is consistent with Bédard et al. results that indicated an
increased risk of fatalities [91]. Others, claimed that recent models are safer [57]. Newer vehicle
models definably they offer better protection to its occupants, and when the other vehicle involved
is an older model, probably its occupants face a greater risk. Thus, caution must be present in the
interpretation of this finding because discrepancies between previous studies are likely explained

by adopted methodology, variables use and samples.

Turning to the right side of the tree, for the collisions involving driving under the influence of alcohol
and/or drugs, and a vehicle V1 newer than 7.5 yr, the risk of severe crash outcome was the
highest, 60% for FatalSIK“1”. On the other hand, collisions involving vehicle V1 with more than 7 yr
only showed non-severe crashes, 100% for FatalSIK’0”, node ID 6. As previously explained for the
effect of AgeV2, this finding could seems counterintuitive since it would be expected that in general
newer vehicles models show better safety performance than older models. One possible
explanation would be that younger drivers usually underestimate the risk associated with alcohol
and/or drugs use and driving faster. Kockelman and Kweon have stated that “young drivers
involved in single-vehicle crashes are driving much more recklessly than middle-age drivers,

leading to sufficiently more severe crashes that benefits of youth are outweighed by crash severity”
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[92]. If this statement would be proven, it could be extended to two-vehicle collisions because
younger driver keeps in a centrally way the same driving profile. Also, Kuhnert et al. classification
tree model have identified drivers younger than 27 yr as the age group associated with higher

concentration of severe crashes.

Since some of the categories had less than five counts, Fisher's exact test was performed for the
eight terminal leafs showing a p-value <6.516E"°. At the 5% significance level, the target FatalSIK

and the above categories related to the tree terminal leafs cannot be considered independent.

For the classification tree model for FatalSIK with two vehicle-collisions with the original
imbalanced dataset, the variables that have a major importance in predicting this target are as
follows: AgeV2V1 (1), AgeV1 (0.87), AlcoholDrugs (0.64), WTV2 (0.59), Sideswipe (0.48), AgeV2
(0.41) and last, ccV2 (0.36). Similarly to the classification tree model for FatalSIK with all crashes,
vehicles age differential, AgeV2V1, was the most important variable for the model. These results
are consistent with Kockelman and Kweon that found vehicle’s age significant to predict crash
severity for two-vehicle collisions [92]. As mentioned in the previous subsection, alcohol and drugs
use have been identified as important factors related to increasing severity by several authors [87,
92, 137, 144]. Also, vehicles weight it is known as significant factor not only to address risk to
occupants of vehicle, but also it affects the risk to the occupants of the opponent vehicle [53, 59,
64, 87].

5.1.3 CART for FatalSIK with single-vehicle crashes- Imbalanced dataset

This CART model to predict the target FatalSIK for single-vehicle crashes is discussed in this
section. The original distribution of the Single dataset was as follows: 7.6% of severe cases
(FatalSIK*1”) and 92.4% of non-severe cases (FatalSIK’0”). CART output for this model is
presented in Figure 5.3. Ten independent variables (predictors) and one dependent variable
(target) were defined for CART modeling, and these variables used as inputs and target are
identified in Table 3.5, Chapter 3.
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Figure 5.3 — Classification tree model for FatalSIK within single-vehicle crashes using an
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imbalanced sample.

Similar to what was found for the previous CART modes presented in sections 5.1.1 and 5.1.2, the
initial split of node ID 1 was based on the alcohol and/or drugs use, and consistent with previous
work [87, 137]. Subsequently, crashes involving illegal drivers, resulted in the highest percentage
for severe crashes, 30% for FatalSIK’1”, in node ID 3. These three severe crashes have already
been analyzed in Figure 5.3. CART output for FatalSIK with single-vehicle crashes revealed that
the presence of alcohol and/or drugs itself was linked to a higher crash severity, despite of vehicle
characteristics. However only three severe cases were observed in node ID 3, hence caution must
be presented in the previous statement. Whereas for the crashes where the effect of alcohol and/or
drugs was not involved, the percentage of severe cases was lower, 7.1% in node ID 4.
Subsequently, this node was split by the weather code, and the trees branch taking the value of 1

(meaning “bad” weather conditions) lead to a terminal node with lower percentage of severe

95



Chapter 5

crashes (4%) compared to the good weather conditions (8.9%), nodes ID 6 and 5, respectively.
This could seem counterintuitive since under bad weather conditions (due to rain, smog, and ice)
crashes frequency is expected to increase because vehicles require longer distances to break.
However, the higher proportion of severe crashes for good weather conditions is consistent with
previous classification models [87, 104]. “Drivers could be less attentive when driving in good
weather and road conditions” [87]. Then, node ID 5 was split by the age effect of the vehicle,
predominantly recent models (AgeV1<5.5 yr) and older models (AgeV125.5 yr.). It is interesting to
notice that sober drivers, under good weather conditions and driving an older vehicle, (with 5.5 yr
or more), showed the highest number of severe crashes (23 counts), node ID 8. On the other hand,
keep the same conditions constant (no alcohol and/or drugs and good weather), when driving a
vehicle model newer than 5.5 yr, the number of crashes resulted in severe consequences was

smaller, 5 cases, terminal node ID7.

To test the association between the four terminal categories of the tree model discussed above and
the target FatalSIK, Fisher's exact test was used showing p-value<0.002. Thus, the null hypothesis
is rejected and FatalSIK and its association with the presented categories of the tree terminal leafs

cannot be considered independent.

Regarding to the variables importance for the classification tree model for severity prediction in
single-vehicle crashes with the original dataset, the variables that have a major importance in
predicting this target FatalSIK are as follows: AlcoholDrugs (1), AgeV1 (0.85) and WeatherCode
(0.72). These findings are consistent with other researchers. The importance of alcohol and/or
drugs in increasing severity is consistent with other studies [87, 92, 137, 144]. On the other hand,
the importance of vehicle’s age and weather conditions has been also indicated by other research
[57, 87].

5.2 CART Analysis for the FatalSIK with Resampling Approach

This section presents the CART analysis results for crash severity prediction using a balancing
approach, leading to equal distribution between target levels. The resampling approach was
applied to CART modeling more as an academic interest. Each crash dataset (All, Two and
Single), had been balanced in order to include equal proportion of severe crashes and non-severe
crashes. As previously explained in Chapter 3, the bias introduced by the resampling approach
was correct by adjusting the prior probabilities within the crash subsets. As is going to be noticed in
the graphical representation through the decision trees discussed in this section, the initial root
node will reflect the original crash sample distribution, where the severe crashes were found at
much lower proportion than the severe crashes. The predictor variables used in these models are
the same used when modeling FatalSIK with the original crash sample, and those inputs are
identified in Table 3.5, Chapter 3.
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5.2.1 CART for FatalSIK with all crashes- Balanced dataset

The classification tree model for crash severity for all crashes presented in this section is presented
in Figure 5.4. During the modeling phase, a resampling procedure was applied to the original crash
sample, leading to a balanced dataset with equal proportion of target level “1” (70 counts for severe
crashes) and target level “0” (70 counts for severe crashes), resulting in a total of 140 observations,
as observed in the root node of the tree, node ID 1. As mentioned above, the decisions predicted
with this tree model were corrected for the original sample distribution. Thus, seven counts in the
root node, denoted the original 5.1% of severe cases (FatalSIK “1”) in the original crash sample,

and the remaining 133 represented the original 94.9% for non-severe cases (FatalSIK"0”).
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Figure 5.4 — Classification tree model for FatalSIK with all crashes for balanced sample.

CART output displayed in Figure 5.4 shows that the weight of vehicle V2 (WTV2) was the first
variable used to split the observations at the root node. Collisions involving heavier vehicles for V2,
WTV221743.5 Kg, were associated with a higher percentage (9.3%) of severe crashes, node ID 4.
On the other hand, crashes involving collisions with a vehicle V2 which follows into the lighter
category, WTV2<1743.5 Kg, show a lower percentage of severe crash, 2.7%, node ID 3. This

finding is consistent with previous research that indicates increasing risk of severity when the
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weight of opponent vehicle increases [53, 56]. In addition, the category presented by node ID 4,
can denote the effect of incompatibility between vehicles. The higher severity found for collision
involving opponent vehicles having a weight = 1743.5 kg can represent a collision involving a
passenger car with a pick-up truck, thus higher severity may be expected for car occupants. This
finding is consistent with Fredette at al. research that stated “drivers colliding a pickup truck rather
than a car are 2.72 times more likely to die” [48]. Node ID 3 was further split by vehicle crash type,
leading to sideswipe collisions to a higher percentage of severe crashes (11.1%) and non-
sideswipe collisions with smaller percentage of severe crashes (2.1%), nodes ID 16 and 15,
respectively. As previously mentioned for the tree model discussed in section 5.1.1, sideswipe
collisions are known to increase the risk of severity. However, only one severe case is observed at
each terminal node, nodes ID 15 and ID 16, and caution is needed in the interpretation of results
relaying in few observations. The strength of association between the predicted target FatalSIK and
the categories denoted by three terminal nodes was evaluated by Chi-sq test. Since two cells had
expected counts less than 5, (1 observation for target level’1” in nodes ID 3 and ID 4), Fisher’s
exact test was selected. Fisher's exact p-value< 0.0164 and it implies that the FatalSIK cannot be
considered independent from the weight of vehicle V2 and the collision type. The classification tree
model indicates that the weight of vehicle V2 (WTV2) and crash type, were selected to classify a
crash as severe FatalSIK”1”, or non-severe, FatalSIK “0”.

CART information for variable importance for the predictors included in decision tree model with a
balanced dataset was as follows: WTV2 (1) and Sideswipe (0.66). As already explained, these

predictors were also found important for modeling crash severity by other studies [48, 144].

5.2.2 CART for FatalSIK with two-vehicle collisions- Balanced dataset

The predictive decision tree model for two-vehicle collisions using a balanced dataset is presented
in Figure 5.5. The resampling procedure lead to a balanced dataset with 0.5 ratio between the
target level “1” (32 counts for severe crashes) and target being level “0” (32 counts for non-severe
crashes), resulting in a total of 64 observations. To correct the bias from the over-representation of
the target level “1”, prior probabilities were adjusted for the original dataset distribution, as
observed in the root node o Figure 5.5. Thus, 2 counts represent the 3.7% of FatalSIK “1”, and 62

counts denoted the 96.3% of FatalSIK”0” for the original dataset distribution.
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Figure 5.5 — Classification Tree for FatalSIK for two-vehicle crashes with a balanced sample.

The above classification tree shows that when the collision involved a lighter V1, WTV1<1000.5kg,
98.9% of the crashes were estimated non severe, node ID 21. On the other hand, collisions
involving heavier vehicles V1, WTV1=1000.5kg, were associated with a higher percentage of
severe crashes (5.6%), node ID 22. Then, this node containing more severe crashes was split by
speed level, showing that higher speeds (left branch with number 1”) are associated with a higher
proportion of severe crashes, leading to 8.6% for FatalSIK “1”. On the other hand, collisions
registered at roads with lower speed limits (right branch with number “0”) showed a lower
proportion of severe crashes, 2.5% for FatalSIK’0”. These results are consistent with previous
research that had identified the dominant effect of weight in increasing crash risk when a collision
involves two cars of different weights [43, 53, 63, 64, 87]. Regarding to speed effects, the result is
consistent with other research that had identified speeding as increasing risk of injury level [42, 43,
91, 93, 98]. This classification tree model has predicted the highest probability of 8.6% for severe
crashes resulting from collisions involving heavier vehicle class and driving at higher speed level.
Tracing the path down the tree to this terminal node, it can be noticed that the graphical
representation of this model supports the Newtonian mechanism explored by Evans to evaluate
injury risk based on mass ratio and changes in the velocity for the two vehicle involved [53, 145].
For this classification model, the strength of association between crash severity and the categories

illustrated by the terminal nodes is proven by Fisher's exact test. The p-value< 1.7E™ indicates
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that the FatalSIK cannot be considered independent from the weight of the vehicles involved in the

crash neither from the speed level.

CART output for variable importance for the classification model discussed above was as follows:
WTV1 (1) and Speed Level (0.71). As already explained, these predictors were also found
important for modeling crash severity by other studies mentioned earlier [42, 43, 53, 64, 91, 93, 98,
145].

5.2.3 CART for FatalSIK with single-vehicle crashes- Balanced dataset

The predictive decision tree model for single-vehicle crashes using a balanced dataset is presented
in Figure 5.6. The resampling procedure was applied to obtain a balanced dataset with equal
proportion of target level “1” (38 counts for severe crashes) and target being level “0” (38 counts for
non-severe crashes). Hence a total of 76 observations were used as training sample for the
decision tree development. To correct the bias from the over-representation of target level “1”
(FatalSIK “17”), prior probabilities were adjusted for the original dataset distribution, as observed in
the root node of Figure 5.6. Thus, 6 counts represent the 7.6% of FatalSIK “1”, and 70 counts
denoted the 92.4% of FatalSIK”0” for the original dataset distribution.
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Figure 5.6 — Classification tree model for FatalSIK for single-vehicle crashes with a balanced
sample.

The initial split at node ID 1 is based on the variable of weather conditions: crashes that happen
under rain and/or bad weather conditions (variable taking up the value “1” at the right tree branch)
showed a lower (4.2%) proportion of severe cases, node ID 4. On the other hand, crashes
occurring under good weather conditions (variable taking up the value “0” at the left tree branch)
showed a higher proportion of severe cases (9.3%), node ID 3. This node was split by vehicle’s
engine size. Crashes involving lower vehicles engine size, ccV1<1588 cm®, showed a lower crash
severity, 4.8%. On the other hand, when vehicle with larger engine was involved, ccV1=1588 cm®,
displayed a higher proportion of severe crashes, 27%, node ID 6. Following, node ID 5 in the left
breach was split by vehicle’s weight into two terminal nodes. Crashes involving heavier vehicles,
WTV12845 kg, were linked to smaller proportions of severe injuries (3%) than crashes involving
lighter vehicles, WTV1< 845 kg, which was associated with 100% proportion of severe crashes
based on the balanced dataset for single vehicle-crashes. Following down the path from node ID 6
(in the right), wheelbase of vehicle was used to split, leading two additional terminal categories as
follows. Crashes including vehicles with larger wheelbase, WB= 2701.5 mm, revealed lower

proportion of severe injuries, 5.8% (node ID 10). While crashes involving vehicles in the smaller
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category of wheelbase, WB< 2701.5 mm, were predicted to result in severe injuries, 100%, node
ID 9.

Fisher's exact test revealed a p-value 6.15E™%, showing that the FatalSIK cannot be consider
independent from those four terminal categories. Comparison of this decision tree model with
earlier studies, shows that good weather conditions have been linked to a higher incidence of
severe crashes, as previously mentioned [87, 92, 144]. A possible explanation is that sunny days
may result in higher speeds and more driver confidence [87]. For crashes involving lighter vehicles
(WTV1< 845 kg) the probability of a severe crash was significantly higher than for the heavier
vehicles. This finding supports the argument that any crash involving a vehicle with low mass will
mostly be severe [53, 64, 145]. Very important to notice that, though vehicles with larger engines
(ccV121588 cm®) suggests a higher probability of involvement in severe crashes, if those vehicles
follow into the category of larger wheelbase distances (WBV1=2701.5 mm), the injury risk could be
reduced. This finding is consistent with Bédard et al. that suggested “25 cm increase in wheelbase
translates into 10% reduction in the odds of a fatality” [91]. This model supports the protective

value of larger vehicles independent of their drivers.

CART information for variables importance was as follows: ccV1 (1), WTV1 (0.93), WBV1 (0.78),
and Weather (0.49). For the classification model discussed in this section, it is interesting to notice
that vehicle technical characteristics were found significantly more important for FatalSIK prediction
rather than crash information, denoted by the selection of only one variable ( weather conditions)

and its importance is less relevant than the variables linked to vehicles’ technical data.

5.3 CART for FatalSIKV1 and FatalSIKV2 for Two-Vehicle Collisions- Original
Sample

This section presents CART results for the innovative modeling strategy targeting the severity risk
prediction for the occupants of each individual vehicle, in a two-vehicle collision. The original crash
sample included a limit number of severe cases for FatalSIKV1 (21 observations) and FatalSIKV2
(14 observations). Therefore, the resampling strategy, as followed in section 5.2 for FatalSIK
prediction, was not applied for FatalSIKV1 and FatalSIK2 modeling, since it would produce small
balanced datasets: 42 and 28 observations, respectively. For these targets modeling, the original
sample for two-vehicle collisions was used and results are presented next. For both models, the
inputs were the same (20 independent variables), those variables, and targets are identified in
Table 3.5, Chapter 3.
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5.3.1 CART for FatalSIKV1 in two-vehicle collisions- Imbalanced dataset

This section presents CART results for crash severity prediction in the subject vehicle, (vehicle V1),
by addressing the effect that the characteristics of opponent vehicle V2 might impose to the
occupants of V1, and by taking into account the subject vehicle capability to protect its occupants
(crashworthiness). The probability of serious injuries and/or fatalities within the occupants of
vehicle V1 is expressed by FatalSIKV1. Classification tree model for FatalSIKV1 is shown in Figure
5.7.

cc\-’!

=2789 5 or Mlsslng ==2789,5

0 % (Count) 83,8%(31)
1 %(Count) 1&,2% (&)

MNode ID: 13
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Figure 5.7 — Classification tree model for FatalSIKV1 in two-vehicle collisions with the original

sample.
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The engine size of vehicle V2, ccV2, was the first explanatory variable selected to split the original
sample of 874 crashes. Collisions involving vehicle V2 with smaller engine size, ccV2< 2789.5 cm®,
showed a lower proportion of severity for occupants of vehicle V1 (1.8%), than when V2 had a
larger engine size, ccV22 2789.5 cm® (16.2%). Following, the type of crash and then by the
presence of drivers tested for alcohol and/or drugs were used for the tree split. The terminal nodes
at the left side of the tree clearly show that collisions involving a sideswipe collision or a head on
have higher risk of severity for occupants of vehicle V1, 5.7% and 6%, in nodes ID 16 and 18,
respectively. This finding is consistent with previous work that had identified these crash types as
the most severe [43, 48, 61, 144]. Also, the effect of alcohol and/or drugs use is consistent with a
large number of studies [87, 92, 99].

Following the right branch of the above tree, collisions where engines size of V22 2789.5 cm® and
AgeV2V1< 1.5 yr resulted in non-severe crashes (100% for FatalSIK’0” as observed in node ID
14). On the other hand, collisions involving AgeV2V121.5 yr, were linked to the highest proportion
of a severe outcome in the subject vehicle was the highest, 40% (in node ID 15). This analysis
suggests that the characteristics of the opponent vehicle (vehicle V2) have an effect on the
increased risk of serious and/or killed injuries in the subject vehicle V1. The association between
the above categories and severe outcomes in vehicle V1 is confirmed by Fisher’s exact test, which
p-value <1.96™% suggested that the FatalSIKV1 and the above selected categories cannot be

considered independent at the 5% significance level.

In addition to the graphical display for the classification tree model for FatalSIKV1, CART also
provides helpful information on the variables importance. For this model, variables importance was
as follows: AgeV2V1 (1), ccV2 (0.72), HeadOn (0.33), Sideswipe (0.32) and AlcoholDrugs (0.26).
Very interesting to notice that when predicting the probability of a severity for occupants of vehicle
V1 involved in a collision with the counterpart vehicle V2, vehicles’ characteristics play a more
important role than variables relaying in crash type and presence of alcohol and/or drugs.

5.3.2 CART for FatalSIKV2 in two-vehicle collisions- Imbalanced dataset

This section presents CART results for crash severity prediction in the opponent vehicle, (vehicle
V2), by addressing the effect that the characteristics of subject vehicle V1 might impose to the
occupants of vehicle V2, and taking into V2 capability to protect its occupants. The probability of
serious injuries and/or fatalities within the occupants of vehicle V2 is expressed by FatalSIKV2.
Classification tree model for FatalSIKV2 is shown in Figure 5.8.
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Figure 5.8 — Classification tree model for FatalSIKV2 in two-vehicle collisions with the original

imbalanced sample.

The differential of wheelbase distance between the two vehicles, WBV2V1, was the first variable
selected to split the crash. For collisions where the wheelbase of vehicle V2 was 1523 mm shorter
than the wheelbase of the other vehicle involved, WBV2V1< -1523 mm, had resulted in higher
proportion of severity for occupants of vehicle V2, 20% (in node ID 3). On the other hand, for
collisions involving vehicles were WBV2V1=> -1523 mm, the proportion of severe cases among
vehicle V2 was smaller, 1.5% (node ID 4). Subsequently, the variable alcohol and/or drugs splits
this node, and collisions involving this effect lead to a higher proportion of severity in vehicle V2,

8.3% (in node ID 5). For collisions where WBV2V1= -1523mm and involving sober drivers, the
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proportion of severe cases in vehicle V2 was smaller, 1.4% (node ID 6). Following, this node was
split by the engine size of vehicle V2, leading to two terminal nodes. Collisions where vehicle V2
follows in the category ccV2< 996 cm?®, were associated with higher proportion of severe cases
than for vehicles in the category ccV22 996 cm?®, (10% and 1.2%, respectively). Vehicles with larger
engine size often are heavier; hence it would be possible to offer a better protection to its
occupants. Even though the vehicles weight was not select for the tree development, it is possible
that effect of vehicle’s weight could be in a certain way reflected in vehicle’s engine size
categories. The results presented by this model are consistent with previous research that had
associated vehicle crashworthiness with its size and mass [53, 60, 87, 145]. In the interpretation of
this model, it must be aware that the training sample only had 14 cases for the target level with
interest, FatalSIKV2"1”. However, Fisher's exact test showed a p-value <0.0016, denoting that
FatalSIKV2 and the differential of wheelbase, engine size and presence of alcohol and/or drugs

cannot be considered independent, at the 0.05 significance.

As far as variables importance for the above model, it follows as: WBV2V1 (1), ccV2 (0.94), and
AlcoholDrugs (0.57). Similarly to the previous model, for crash severity prediction, vehicle’s
characteristics for both involved in the collision were found more important predictors than

variables relaying in crash information.

5.3.3 Comparison of FatalSIKV1 and FatalSIKV2 decision tree models

For both decision trees models For FatalSIKV1 and FatalSIKV2 (sections 5.3.1 and 5.3.2) vehicles’
characteristics suggest to be more relevant for the injury severity prediction than variables related
to crash information. It is noticed than for both models, vehicles differential for “specific” technical
characteristic was found the most important predictor, denoting that it is important not only to
consider vehicle’s individual characteristics but also, its differential between the vehicle involved in
the collision. The engine size of vehicle V2 was important for both targets prediction: severity
among occupants of vehicle V1 and V2. A possible explanation why ccV2 was selected for both
classification tree models could be related to the fact that mean values for engine size of vehicle V2
was larger than for vehicle V1, 1700.94 cm?® (S.D. 522.18) and 1665.96 cm?® (S.D. 509.98),
respectively. In addition, it is conceivable that this variable contains the effect of vehicle weight; as
a matter of fact, descriptive statistics seems to support this statement because the weight of
vehicle V2 was also slight larger than the weight of vehicle V1, 1262.85 kg (S.D. 364.46) and
1234.20 kg (S.D. 356.82), respectively. In two-vehicle collisions, vehicle V2 due to its larger size
and weight would raise the risk for occupants of the opponent vehicle, therefore larger vehicles
categories of ccV2 would increase the severity risk for occupants of vehicle V1, as it was
suggested with highest proportion for FatalSIKV1°1” (in node ID 15 inFigure 5.7). On the other
hand, vehicle V2 would probably offer a larger compartment area to absorb the impact of the

collisions, and they would decelerate more slowly following the impact, decreasing the risk of
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injuries. Accordingly, collisions involving larger categories for ccV2 would decrease the severity risk
for occupants of vehicle V2, (as observed in node ID 8 in Figure 5.8). For both models, the effect of
alcohol and/or drugs use was linked to a higher proportion for severe cases. Information on crash
type, even though those predictors were scored as important inputs for FatalSIKV1 prediction, they
were irrelevant for FatalSIKV2 predication. An acceptable explanation for this difference is due to
the fact that only 14 severe events cover target FatalSIKV2, while there were 21 severe events for
target FatalSIKV2 modeling. Last, variables importance within the classification tree models for
FatalSIKV1 and FatalSIKV2 prediction suggest that vehicles’ characteristics play a more relevant

role comparatively to other crash information.
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5.4 Concluding Remarks

This Chapter presented CART results for crash severity prediction using two approaches: original
imbalanced sample and balanced datasets. For the imbalanced approach (based on the original
sample), the presence of alcohol and/or drugs was a common risk factor identified across all the
classification decision tree models. These models showed evidence that alcohol and/or drug use
play a major role in increasing crash severity risk, despite of vehicle crashworthiness and/or
collision type. For single-vehicle crashes, this variable was found the most important for crash
severity prediction, suggesting that crashes outcomes could be more influenced by drivers’
behavior than vehicles’ characteristics. For the balanced approach (following a resampling
strategy), CART output revealed that the input alcohol and/or drugs was not present in any of the
classification tree models. Severity prediction decision tree for two-vehicle collisions identified the
effect of vehicle’s weight as the most important predictor, suggesting an increasing proportion of
severe crashes when one of the vehicles involved is heavier. For single-vehicle crashes, engine

size was the most important factor for FatalSIK prediction.

The comparison of the two approaches, decision trees developed with the original sample and with
the balanced sample, revealed that in general the application of the decision trees with the
imbalanced sample resulted in larger trees, due to the larger number of observations used for the
tree development. Thus, this approach resulted in trees with more splits, yielding to the
identification of more risk factors for the classification of a crash event as sere or non-severe. On
the other hand, the decision models developed with the balanced approach had resulted smaller,
because fewer observations were used. Very interesting it was the finding that alcohol and/or drugs
were identified as common risk factor across all crashes, two-vehicle collisions and single-vehicle
crashes. Also, the age of the vehicles involved in the crash was identified as an important risk
factor for all the decision trees models. However, when modeling the balanced sample, this risk
factor was not selected by the decision tree models. Following the resampling approach, the weight
of the vehicle was identified as an important risk factor across all the decision trees models, for: all

crashes, two-vehicle collisions and single-vehicle crashes.

Regarding the individual vehicle injury severity analysis, classification tree models for FatalSIKV1
and FatalSIKV2 were developed using the original sample (imbalanced data). Owing the limited
number of severe events in each vehicle involved (28 severe events in V1 and 14 events in V2),
the resampling method was not applied. Decision trees also identified the effect of alcohol and/or
drugs, although here the effect of alcohol and/or drugs was the less important variable for crash
severity modeling. For FatalSIKV1, the most important risk factor was the age differential for the
two vehicle involved in the collision. On the other hand, for FatalSIKV2, the most important risk
factor was the wheelbase differential between the two vehicle involved. These findings suggest that
for crashworthiness evaluation, it is important not only to consider vehicle’s individual

characteristics but also, its differential characteristics between the vehicles involved in the collision.
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LOGISTIC MODELS FOR SEVERITY
PREDICTION IN SINGLE-VEHICLE CRASHES

This chapter discusses the injury severity risk sustained by the occupants of a vehicle involved in a
single motor vehicle crash. For logistic regression models analysis, while the coefficients estimates
provide a good interpretation for continuous independent variables, the odds ratio will be used for

the interpretation of the categorical variables in the model.

Chapter 6 is organized as follows. Firstly, a model developed based on the original crash sample
(imbalanced data) is presented. Secondly, the best models for FatalSIK prediction based on
balanced approach are presented. Selected models are examined for its fit statistics and evaluated
for prediction accuracy with the training sample and original sample, 10 stratified random sample
used for validation. Finally, a recommended model for FatalSIK prediction is presented. Models
presented in this chapter were developed with SAS® v9.2 and SAS®Enterprise Miner™7.2
software [84, 89, 117, 136].
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6.1 Logistic Regression Analysis for FatalSIK with the Original

Single Crash Sample- Imbalanced Data

This beginning section aims to exhibit the problem of prediction accuracy linked to logistic
regression models using imbalanced data, rather than discussing the model itself. As previously
explained in section 2.5, modeling rare events, such as sever crashes, imposes a challenge
because the logit model would predicted right the most common event (non-sever crash) and will
miss the prediction for the rare event (severe crash). As presented in Chapter 4, for single-vehicle
crashes overall severity was 7.6%, thus yielding to 92.4% of non-severe crashes in the sample.
The logistic model developed to predict FatalSIK using the original crash sample is presented in
Table 6.1. This model exhibits the problem of prediction accuracy when dealing with imbalanced
classes’ distribution at the Portuguese crash sample. Thus it supports the need to perform logistic

regression modeling for the Portuguese crash data, based on a balanced training sets.

Table 6.1 - Imbalanced-Model-S results for FatalSIK prediction with logistic regression performed

for the original single-vehicle crashes sample.

Imbalanced- MODEL-S

Fit Statistics

Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio

Null Hypothesis

DF Pr<ChSq | Parameter DF Estimate SE' Pr>ChiSq | OR® 95% CI°

4 0.0015 Intercept 1 2.0201 2.6143 0.4397 (-3.1039_ 7.1441)
AlcoholDrugs (0) | 1 -0.8263 0.3665 0.0242 0.192 (-1.5446_-0.1080)
WBV1 1 -0.00233 0.0011 0.0415 0.998 (-0.0046_-0.0001)
WeatherCode 1 0.4269 0.2175 0.0496 2349 (0.0007-0.8532)
() '
ccVl 1 0.0012 0.0004 0.0032 1.001 (0.0004_ 0.0020)

Obs. 500

ASE 0.07

MISC 0.07

Accuracy Performance

Accuracy Rate with Training Sample (N=500)

FN’ TN FP° TP’

37 462 0 1

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive.

As observed in Table 6.1, the model predicted right all the cases of non-severe crashes, (TN=462).
However, only one severe crash was correctly predicted, whereas the remaining severe ones were
incorrectly predicted as non-severe (FN=37). Thus, without a resampling strategy, model training
prediction accuracy for the severe crashes would be unsatisfactory, 2.7% (1/37). Next, logistic
regression models results for crash severity prediction based on the resampling strategy are

presented.
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6.2 Logistic Regression Analysis for FatalSIK with Resampling

Approach

This section presents the logistic regression modeling results for the probability of a serious injury
and/or fatality given a single-vehicle crash. Several candidate models were developed based on a
balanced training sample and the best candidate models were selected for further accuracy
performance evaluation. During the modeling stage, four models were selected for FatalSIK
prediction in single-vehicle crashes: Model-IA-S, Model-IB-S, Model-IC-S and Model-ID-S. For
single-vehicle crashes there is only one target, FatalSIK, denoted by “I”, and the alphabetic terms
“A, B, C and D” are used to indicate the best four candidate models, and “S” stands for single-
vehicle crashes. Model-1A-S and Model-IB-S were selected to be presented and discussed in this

section. Model-IC-S and Model-ID-S are provided in Appendix 8.

Independent variables used as models inputs are identified in Table 6.2. Models results for single-
vehicle crashes are discussed based on hypothesis testing for the selected variables (model
parameters estimates). The parameters (predictors) that are statistically significant at 0.05 level are

ke

shown with an “*”. Lower and upper bound of 95% confidence interval of estimates are shown in
brackets. The ASE and MISC are of most interest in model fit statistics. The ASE measures the
difference between the prediction estimate and the observed FatalSIK value. Also, misclassification
measures the fraction of cases where the decision does not match the actual target value, as
defined in Equation 3.9 and Equation 3.10. For the selected best models candidates, accuracy
performance was evaluated as follows. Firstly, each selected model was evaluated based on its
prediction accuracy with the original sample (500 observations). Secondly, each of the selected
models was evaluated using 10 stratified random samples (76 observations), based on the K-fold

cross validation explained in section 3.7.4.
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Table 6.2 — Description of design variables (inputs) and targets when modeling crash severity for
single-vehicle crashes with logistic regression.

Variable Description Abbreviation Model Identification

Independent Variables Used as Inputs

Age of Vehicle 1 AgeV; (yr) was calculated based on the year of the crash AgeV1 Model-IA-S, Model-IB-S,
event minus the year of the first vehicle registration. Model-IC-S and Model-ID-S
Alcohol and/or Drugs The Driver’s test for alcohol and or drugs is presented AlcoholDrugs Model-IA-S, Model-IB-S,
as: Code=0, legal; Code=1, illegal Model-IC-S and Model-ID-S
Crash type Ran off road RanOff Model-IA-S, Model-IB-S,
Model-IC-S and Model-ID-S
Rollover Rollover -
Divided/undivided Existence or absence of physical median: Code=0, DivisionCode Model-IA-S, Model-IB-S,
undivided Model-IC-S and Model-ID-S
Code=1, divided
Speed Level The speed level was coded as follow: SpeedLevel Model-IA-S, Model-IB-S,
If Speed limit<=90 km.hr'l, then code=0 Model-IC-S and Model-ID-S
If Speed limit>90 km.hr”, then code=1
Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1 Model-IA-S, Model-IB-S,
Model-IC-S and Model-ID-S
Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg) WTV1 Model-IA-S, Model-IB-S,
Model-IC-S and Model-ID-S
Weather Conditions Weather conditions at the moment of the crash: WeatherCode Model-IA-S, Model-IB-S,
Code=0, Clear and/or dry pavement Model-IC-S and Model-ID-S
Code=1, rain and/or wet pavement
Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm®) ccVl Model-IA-S, Model-IB-S,

Model-IC-S and Model-ID-S

Dependent Variable used as Target

Serious and/or Killed FatalSIK is a categorical response for a crash outcome FatalSIK Model-IA-S, Model-IB-S,
used to predict either a serious injury, or fatality in a Model-IC-S and Model-ID-S
crash event.

FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0

6.2.1 Model-IA-S Analysis

Model-IA-S was developed using logistic regression for FatalSIK prediction in crashes involving
one single vehicle, with forward selection for the inputs signalized at Table 6.2. As already
mentioned forward selection method begins with no candidate inputs in the model and adds inputs
until the entry significance level is met. For this model design, the entry level was set 0.1, similarly
to Li modeling research [100], the p-values less than or equal to the 0.1 level of significance are
considered.

Table 6.3 summarizes Model-1A-S fitting results and performance evaluation. The test for the global
null hypothesis shows that at least one of the predictor’s regression coefficient is not equal to zero
in the model, p-value<0.0004. From a total of nine inputs (in Table 6.2), the final model has four
predictors: AgeV1, WBV1, ccV1l and WeatherCode. All these predictors are statistically significant
at 0.1 level. Model intercept was not found statistically significant at 0.1 level, p-value<0.30. “Too
much focus on statistical significance can lead to the false conclusion that a variable is “important”
explaining “Y”, even though its estimated effect is modest” [146]. In addition, for smaller size, some
authors are willing to use larger significance levels, reflecting the fact that it is harder to find
significance with smaller sample sizes ( the estimators are less precise) [146]. For instance, at one
of the models developed by Li to predict crash severity in work zones, a larger criterion of 0.3 was

set [100]. On the other hand, focus only in the predictors at the model, with exception for the
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wheelbase of the vehicle, (p-value<0.0593), all the selected predictors in the model were found to
be statistically significant at the 0.05 level (p-value<0.0144, p-value<0.0418, and p-value<0.0031,
for AgeV1, WeatherCode(0) and ccV1, respectively. The model fit statistics yield an ASE of 0.187
and MISC of 0.237.

Table 6.3 - Model-lA-S results for FatalSIK prediction with logistic regression performed for a

balanced dataset of single-vehicle crashes.

MODEL-IA-S
Fit Statistics
Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio
Null Hypothesis
DF Pr<ChSq Parameter DF Estimate SE" Pr>ChiSq OR® 95% CI°
4 0.0004 Intercept 1 5.1730 5.0151 0.3023 (-4.6565_15.00)
AgeV1l 1 0.1519 0.0621 0.0144* 1.164 (0.0302_0.2736)
WBV1 1 -0.0045 0.0024 0.0593 0.996 (-0.0092-0.0002)
WeatherCode 1 0.6879 0.3380 0.0418* (0.0255-1.3504)
) 3.958
ccvl 1 0.00297 0.0010 0.0031* 1.003 (0.0010_0.0049)
Obs. 76
ASE 0.187
MISC | 0.237
Prediction Accuracy Performance
Prediction Accuracy
Accuracy Rate with Training Sample (N=76) Accuracy Rate with Original Sample (N=500) for 10 Stratified
Random Samples
FN* TN FP° TP’ AR%% | TPs® FPs™ TNs™ FNs™ AR"™% | Mean%™ | S.D.”
10 30 8 28 76.3 17 97 365 21 76.4 62.0 2.3

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate;
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified
random samples; *Statistically significant at 5% level.

The logistic regression equation developed for Model-1A-S is presented below.

P (FatalSIK = 1) Equation 6.1

_ exp(5.1730 + 0.1519 =« AgeV1 — 0.0045 + WBV1 + 0.6879 x WeatherCode(= 0) + 0.00297 * ccV1)
" 1+exp(5.1730 + 0.1519 * AgeV1 — 0.0045 * WBV1 + 0.6879 * WeatherCode(= 0) + 0.00297 * ccV'1)

The interpretation of the Model-IA-S shows a positive relationship between vehicle engine size and
age and good weather conditions with the probability of severe crashes, FatalSIK”1”. Therefore, the
model parameters: AgeV1, WeatherCode and ccV1 show positive sign at the above equation,
Equation 6.1. On the other hand, as the vehicle wheelbase increases there is a decrease in the
probability of a FatalSIK*1”. Thus the parameter WBV1 shows a negative sign on Equation 6.1.
Crashes occurring under good weather condition are associated with a significant increased risk of
crash severity, as shown by the odds ratio. In Table 6.3, odds ratio of a severe crash increases in
good weather condition almost by four compared to the bad weather conditions. Graphical

representation for this model FatalSIK prediction equation, Equation 6.1, is illustrated in Figure 6.1.
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Figure 6.1 — Probability of a serious injury and/or killed by Model-IA-S for single-vehicle crashes

with: a) age of the vehicle; b) engine size of vehicle; and c) wheelbase of the vehicle.
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In Figure 6.1a), FatalSIK probability is predicted a function of the age of the vehicle, controlling for
vehicle wheelbase and the engine size (at 2551 mm and 1602 cm® average wheelbase
(AvgWBV1) and engine size (AvgccV1), respectively). A similar approach was used for Figure
6.1b) and c). Figure 6.1a) shows that as the age of the vehicle increases, the probability of a
FatalSIK also increases. This model finding supports previous conclusions that recent cars protect
their drivers better than older cars [49, 59, 60, 85]. Figure 6.1b) shows that as the engine size of
the vehicle increases, the probability of a FatalSIK also increases. The effect of the engine size
may be interacting with travel speed, since drivers of more powerful cars tends to accelerate more.
This finding also supports previous studies that argued “higher engine performance and power
could be associated with greater speeds and greater injury risk” [64]. Figure 6.1c) shows that as
the wheelbase size of the vehicle decreases, the probability of a FatalSIK also increases. The size
of vehicle’s wheelbase in the decreasing risk of a serious and/or fatal crash may be interpreted by
the fact that one of the vehicles attribute most related to the injury severity level is vehicle size [53,
91]. A larger vehicle, offers a greater area for the energy dissipation following the crash impact
force, hence reducing the energy change to which occupants in the compartment area may be
exposed, thus reducing the risk. This finding is consistent with previous research which suggested
that “25 cm increase in wheelbase translates into 10% reduction in the odds of a fatality” [91]. For
the risk factors explained above, crashes occurring under the good weather conditions are worsen,
the probability of FatalSIK is higher than for bad weather conditions, as observed by logit curves
blue and red, respectively. Comparison with earlier crash severity prediction models, good weather
conditions have been linked to a higher incidence of severe crashes, as previously mentioned [87,
92, 144].

The assessment of the Model-lIA-S shows a good performance, as observed in Table 6.3. The
accuracy rate when running the model with the training sample, which was stratified in 38 severe
crashes and 38 non-severe crashes, correctly predicted 76.3% of the cases. In the training sample,
the model correctly predicted 28 severe crashes (TP) and 30 non-severe crashes (TN). When
compared with the previous model in Table 6.1, Imbalanced-Model-S, it is clear the improvement in
model accuracy prediction. The model developed with the original imbalanced sample predicted 37
severe crashes as non-severe, leading to unsatisfactory results for TP, (TP=1). On the other hand,
Model-1A-S performed with the balanced approach, was able to predict right 28 severe crashes (out
of 38). When assessing the performance of this model with the original crash sample, the
prediction accuracy, was also good, 76.4%. From a total of 500 crashes events, Model IA-S
correctly predicted 17 severe crashes out of 38. In addition, the model correctly predicted 365 of
the non-severe events out of 462 non-severe events at the entire sample. The model predicted
right more severe crashes in the training sample, than in the original dataset, 28, and 17,
respectively. However, it is noted that the model overall accuracy within the original sample was

slightly higher than in the training sample, 76.4% and 76.3%, respectively. The evaluation of the
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model overall performance with 10 stratified random samples was very satisfying; 62% (S.D. 2.3)

prediction accuracy rate. EM output for Model-IA-S is provided in Appendix 8.

6.2.2 Model-IB-S Analysis

Model-IB-S is an alternative to FatalSIK prediction for single-vehicle crashes. This model was
developed using logistic regression for FatalSIK prediction in crashes with backward selection for
the inputs signalized at Table 6.2. As explained in Chapter 3, backward selection begins with all
candidate effects (inputs) in the model and removes effects until the stay significance level is met.

For this model design, the entry level was set 0.05.

Table 6.4 summarizes Model-IB-S fitting results and accuracy performance evaluation. The test for
the global null hypothesis shows that at least one of the predictor’s is not equal to zero in the
model, p-value<0.0013. From a total of nine independent variables entered as inputs, only two
were selected by the model: AgeV1 and ccV1. These predictors are statistically significant at 0.05
level: p-value<0.0079 and p-value<0.0229, Age and ccV1, respectively. The model fit statistics
shows ASE of 0.206 and MISC of 0.276, respectively.

Table 6.4 - Model-IB-S results for FatalSIK prediction with logistic regression performed for a

balanced dataset of single-vehicle crashes.

MODEL-IB-S

Fit Statistics

Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio

Null Hypothesis

DF Pr<ChSq | Parameter DF Estimate SE" Pr>ChiSq OR*® 95% CI°

2 0.0013 Intercept 1 -3.4443 1.1651 0.0031 (-5.7279_-1.1607)
AgeV1 1 0.1572 0.5922 0.0079* 1.164 (0.0411_0.2732)
ccvVl 1 0.00139 0.0006 0.0229* 1.003 (0.0002_0.0026)

Obs. 76

ASE 0.206

MISC | 0.276

Prediction Accuracy Performance

Prediction Accuracy
Accuracy Rate with Training Sample (N=76) Accuracy Rate with Original Sample (N=500) for 10 Stratified
Random Samples
FN’ TN FP° TP’ AR%% | TPS® FPs™ TNs™ FNs™ AR"% | Mean%™ | S.D.”
10 27 11 28 72.4 14 96 366 24 76.0 58.0 3.1

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate;
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified
random samples; *Statistically significant at 5% level.

The logistic regression equation developed for Model-IB-S is presented below.

exp(—3.4443 + 0.1572 * AgeV1 + 0.00139 * ccV'1) Equation 6.2
1+ exp(—3.4443 + 0.1572 » AgeV1 + 0.00139 * ccV'1)

P (FatalSIK =1) =
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The positive regression estimates for AgeV1 and ccV1 shows a positive effect of vehicle engine
size and vehicle age on crash severity risk, FatalSIK"1”. Graphical representation of the logit curve
for FatalSIK prediction with Equation 6.2, is illustrated in Figure 6.2. Figure 6.2 shows the
probability of a serious injury and/or fatality predicted by Model-IB-S for single-vehicle crashes with

engine size of the vehicle and taking into account the effect of vehicle’s age consecutively.
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Figure 6.2 — Probability of a serious injury and/or fatality predicted by Model-IB-S with engine size

of the vehicle and age of the vehicle, for single-vehicle crashes.

Figure 6.2 clearly shows that the probability of a severe crash increases as the engine size
increases. As explained in Chapter 4, the engine size for the 500 vehicles in the Single dataset has
minimum of 796 cm® and a maximum of 3387 cm®. On the other hand, the newest vehicles in the
crash data had 1yr old, while the oldest vehicle model was 24 years old. The color lines at the chart
not only illustrate the age, but also the frequency of vehicles at that age level. Following this
explanation, it is easy to follow the effect of vehicles age, as the engine size increases, resulting in

a higher probability of a severe crash outcome.

Model-IB-S results, which have identified vehicles age and engine size as significant predictor of
crash severity, are consistent with other research. The effect of vehicle’s age have been widely

discussed for single and two-vehicle collisions analysis that claimed that recent cars protect their
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drivers better than older cars models [49, 59, 60, 85]. Comparing to vehicle age, vehicle’s engine
effect on crash severity have not been so widely explored. However, previous research have
mention that larger engine size (as a proxy of vehicle power) could be associated with greater
speeds and thus, severity risk [58, 64]. It is possible that the injury severity risk associated to
engine powerful cars would reflect the way that vehicles are driven, rather than to inherent

characteristics of vehicles engine themselves.

The assessment of the Model-IB-S confirms a good performance, as observed in Table 6.4. When
using the training sample, the model correctly predicted 72.4% of the cases. In the training sample,
the model correctly predicted 28 severe crashes (TP) and 27 non-severe crashes (TN). When
assessing the performance of this model with the original crash sample, the prediction accuracy,
was even better than for the training sample, 76%. From a total of 500 crashes, Model IB-S
correctly predicted: 14 severe crashes (out of 38) and 365 non-severe events (out of 462). The
evaluation of the model overall performance accuracy rate with 10 stratified random samples was
also satisfactory; 58.0% (S.D. 3.1). EM output for Model-IB-S is provided in Appendix 8.

The comparison of selected Models for FatalSIK analysis in single-vehicle crashes is presented
next. Both models, Model-IA-S and Model-IB-S had identified the effect of vehicle’s age and engine
size in crash severity analysis. Models prediction accuracy for the original sample was almost the
same for models, 76.4% and 76.0%, for Model-1A-S and Model-IB-S, respectively. However, when
evaluating prediction accuracy with 10 stratified random samples, Model-1A-S was slight better than
Model-IB-S, 62.0% (S.D. 2.3) and 58.0% (S.D. 3.1), respectively. Regarding to the other two
additional models developed for FatalSIK prediction, a brief comparison is presented as follows.
Considering, model complexity and comprehensive interpretation, accuracies rates and average
estimated values, Models-IA-S and Model-IB-S were better than Model-IC-S and Model-ID-S
(Appendix 8). Model-IC-S and Model-ID-S, accuracy rate evaluation with the original sample was
also very satisfactory, (76.4% and 79.2%) respectively. Models performance assessment for the 10
stratified random sample was also good: 65.3% (S.D. 2.6) and 56.6% (S.D. 1.9) for Model-IC-S and
Model-ID-S, respectively. Despite of these two alternative models had achieved good performance
accuracy, they are more complex and hence they would be more complex to apply for real world

crash scenarios prediction.
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6.3 Concluding Remarks

The presented models for FatalSIK prediction in single-vehicle, Model-IA-S and Model-IB-S,
crashes had identified vehicle’s characteristics associated with crash severity risk. Model-1A-S with
four degrees of freedom and p-value< 0.0004 selected the effect of vehicle’s inherent
characteristics (age, engine size and wheelbase) and also crash circumstances (linked to weather
conditions) for crash severity prediction. All these selected predictors were statistically significant at
0.05 level, with exception for wheelbase (p-value<0.0593) and the intercept (p-value<0.3023). On
the other hand, Model-IB-S with two degrees of freedom and p-value<0.0013 selected the effect of
vehicle’s age and engine size for crash severity prediction, with both predictors being statistically
significant at 0.05 level. Model-lA-S showed lower MISC rate than Model-IB-S, (0.237 and 0.276).
Models prediction accuracy for the original sample was almost the same for Model-IA-S and Model-
IB-S, (76.4% and 76.0%, respectively). However, when evaluating prediction accuracy with 10
stratified random samples, Model-IA-S was better than Model-IB-S, 62.0% (S.D. 2.3) and 58.0%
(S.D. 3.), respectively. For single-vehicle crash analysis, Model-IB-S is recommended for severity

prediction, owing to the three main reasons presented next.

1. This model, the association between the selected predictors (AgeV1l and ccV1) and
intercept is stronger than for Model-IA-S parameters, since for the first model all
parameters were statistically significant at 0.05 level.

2. Model overall prediction accuracy rate was slightly better for Model-IA-S, Model-IB-S
showed better prediction accuracy for the original sample, compared to the training
sample, (76.0% and 72.4%, respectively).

3. Model-IB-S is simpler to apply and easy to interpreter.

Comparison of crash severity prediction models using CART and logistic regression is summarized
next. Although the input parameters were the same for both techniques, CART model (Figure 5.6 in
pp 101) showed the contribution of vehicle characteristics and weather conditions in risk. Small
engine size with low weight vehicles and larger engine size in vehicles with smaller wheelbase
increased the likelihood of a severe crash. On the other hand, the logistic Model-IB-S (pp 116)
identified the age and the engine size of the vehicle as important factors for crash severity

prediction. Similarly to CART, larger engine size vehicles were linked to an increased risk.

Often, the selection of statistical models is recommended based on models purpose objective,
hence this model provides a good way to judge the practical (as opposed to the statistical)
importance of the model in the target of interest prediction [89]. Both models support the conclusion
that, for single vehicle crash severity analysis vehicle engine size and age are statistically
significant for crash severity prediction. Models results clearly show that recent vehicles protect
their occupants better than older vehicles models in the event of a crash. In addition, both models
showed good overall prediction accuracy for the original imbalanced data, despite of crash sample

limitations.
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CHAPTER 7

LOGISTIC MODELS FOR CRASH SEVERITY
PREDICTION IN TWO-VEHICLE COLLISIONS

Logistic regression modeling results for the probability of serious injuries and/or fatalities in a crash
involving two vehicles is discussed next. Important inputs are ascertained by parameters estimates
and odds ratio. The best model to predict the overall crash severity (conveyed as FatalSIK) in two-
vehicle collisions was identified as Model I-T. Model II-T was designed to estimate the probability of
a serious injured and/or killed in vehicle V1 (expressed by FatalSIKV1). On the other hand, Model
II-T was developed to estimate the probability of a serious injured and/or killed in vehicle V2
(defined as FatalSIKV2). This modeling strategy for two-vehicle collisions differentiates from
previous modeling approaches mainly for two reasons. Firstly, it integrates new design variables to
express the differential of technical characteristics for the two vehicles involved. Secondly, these
models were able to model simultaneously and independently the contributing effect of each
individual vehicle in the risk of severity sustained by the occupants of the vehicle being analyzed.
Models were developed with SAS® v9.2 and SAS®Enterprise Miner™7.2 software [84, 89, 117].

Chapter 7 is organized as follows. First, presentation of best models to estimate the probability of a
serious injured and/or killed in the event of two-vehicle collisions. Second, models prediction
accuracy and performance assessment, and validation are discussed. Finally, main remarks are

summarized.
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7.1 Logistic Regression Analysis for FatalSIK with the Original

Crash Sample- Imbalanced Data

To prove the problem of prediction accuracy of logistic regression models using the imbalanced
sample for two-vehicle collisions, the Model-T is shown in Table 7.1. This model predicted right all
the cases of non-severe crashes, (TN=842). However, all the severe crashes were incorrectly

predicted as non-severe crashes (FN=32).

Table 7.1 - Imbalanced-Model-T results for FatalSIK prediction with logistic regression performed

for the original sample of two-vehicle collisions.

Imbalanced- MODEL-T

Fit Statistics

Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio

Null Hypothesis

DF Pr<ChSq | Parameter DF Estimate SE' Pr>ChiSq | OR 95% CI®

3 0.0013 Intercept 1 -4.7726 1.3192 0.0003 (-7.358_-2.187)
AlcoholDrugs (0) | 1 -1.1648 0.3507 0.0009 0.097 (-1.852_-0.477)
Sideswipe (0) 1 -0.5223 0.2258 0.0207 0.352 (-0.965_-0.08)
WBV1 1 0.0011 0.0005 0.0198 1.001 (0.0001_0.002)

Obs. 874

ASE 0.03

MISC 0.4

Accuracy Performance

Accuracy Rate with Training Sample (N=874)

FN* TN FP° TP’

32 842 0 0

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive ; 7 True Positive.

Owing to constrain of the Portuguese crash sample nature and size, the resampling strategy

described earlier was applied for the two-vehicle collisions crash severity prediction modeling.

7.2 Logistic Regression Analysis for FatalSIK with Resampling

Approach

This section presents the logistic regression modeling results for the probability of a serious injury
and/or fatality given any level of injuries in a vehicle crash involving two vehicles. As previously
explained in sections 3.7.2 and 3.7.3 of the Safety Analysis Methodology Chapter, several
candidate models were developed based on a balanced training sample and three of the best
candidate models were selected for further accuracy performance evaluation: first with the original
sample (874 observations) and then, using 10 stratified random samples (64 observations). The
best three models to predict the overall crash severity in two-vehicle collisions is labeled as: Model

IA-T, Model IB-T, and Model IC-T. This model labels are explained as: “I”, designs the model
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number for the target of interest, “A, B, and C” indicates the three best model candidates for the

target being predicted, and “T” stands for two-vehicle collisions. Among the tree best candidate

model to predict FatalSIK, only the recommended model is presented in this section, Model 1A-T.

The other two best models for FatalSIK prediction, Model-IB-T and Model-IC-T are shown in

Appendix 9. Independent variables used as inputs and models’ targets are identified in Table 7.2.

Table 7.2 — Description of design variables (inputs) and targets when modeling crash severity for

two-vehicle collisions with logistic regression.

Variable

Description

Abbreviation

Model Identification

Independent Variables Used as Inputs

Age of Vehicle 1 AgeV1 (yr) was calculated based on the year of the crash AgeV1l Model-IA-T, Model-IB-T, Model-
event minus the year of the first vehicle registration. IC-T, Model-1l and Model-III-T

Age of Vehicle 2 AgeV2 (yr)was calculated based on the year of the crash | AgeV2 Model-IA-T, Model-IB-T, Model-
event minus the year of the first vehicle registration. IC-T, Model-1l and Model-III-T

Age Difference between AgeV2V1 (yr) stands for age of vehicle V, minus the age AgeV2vil Model-IA-T, Model-IB-T, Model-

vehicles (V2) and (V1)

of vehicle V; crash observation.

IC-T, Model-Il and Model-IlI-T

Alcohol and/or Drugs

The Driver’s test for alcohol and or drugs is presented
as: Code=0, legal; Code=1, illegal

AlcoholDrugs

Model-IA-T, Model-IB-T and
Model-IC-T

Crash type for collisions Rear End, Head-On, Sideswipe or Other RearEnd Model-IA-T, Model-IB-T and
Model-IC-T
HeadOn Model-IA-T, Model-IB-T and
Model-IC-T
Sideswipe Model-IA-T, Model-IB-T and
Model-IC-T
Other -
Divided/undivided Existence or absence of physical median: Code=0, DivisionCode Model-IA-T, Model-IB-T and
undivided Model-IC-T
Code=1, divided
Speed Level The speed level was coded as follow: SpeedLevel Model-IA-T, Model-IB-T, Model-
If Speed limit<=90 km.h?, then code=0 IC-T, Model-Il and Model-IlI-T
If Speed limit>90 km.h™, then code=1
Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV; Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-1lI-T
Wheelbase of Vehicle 2 Wheelbase of vehicle (V2) (mm) WBV, Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-IlI-T
Wheelbase Difference WBV2V1 stands for wheelbase of vehicle V2 minus the WBV2V1 Model-IA-T, Model-IB-T, Model-
between vehicles (V2) wheelbase of vehicle V1, at crash observation, (mm). IC-T, Model-1l and Model-1II-T
and (V1)
Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg). WTV1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-IlI-T
Weight of Vehicle 2 Weight of vehicle 2 (V2) (kg). WTV2 Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-IlI-T
Weight Difference WTV2V1 stands for weight of vehicle V2 minus the WTV2V1 Model-IA-T, Model-IB-T, Model-
between vehicles (V2) engine size of vehicle V1, at crash observation (kg). IC-T, Model-1l and Model-1II-T
and (V1)
Weather Conditions Weather conditions at the moment of the crash: WeatherCode Model-IA-T, Model-IB-T and
Code=0, Clear and/or dry pavement Model-IC-T
Code=1, rain and/or wet pavement
Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm?). ccVl Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-1lI-T
Engine Size of Vehicle 2 Engine size of vehicle (V2) (cm?). ccv2 Model-IA-T, Model-IB-T, Model-
IC-T, Model-Il and Model-1lI-T
Engine Size Difference ccV2V1 stands for engine size of vehicle V2 minus the ccvavi Model-IA-T, Model-IB-T, Model-
between vehicles (V2) engine size of vehicle V1 at crash observation, (cm®). IC-T, Model-1l and Model-1II-T
and (V1)
Dependent Variables used as Targets
Serious injured and/or killed FatalSIK is a categorical response for a crash outcome used to FatalSIK Model-IA-T, Model-IB-T, Model-IC-T,
predict either a serious injury, or fatality in a crash event. Model-Il and Model-IlI-T
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0
Serious injured and/or killed FatalSIKV1 is a categorical response for a crash outcome used to FatalSIKV1 Model-II-T
for vehicle 1 (V1) occupants predict either a serious injury, or fatality or both for occupants in
vehicle 1 in a crash event.
FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0
Serious injured and/or killed FatalSIKV2 is a categorical response for crash outcome for a crash FatalSIKV2 Model-1lI-T

for vehicle 2 (V2) occupants

outcome used to predict either a serious injury, or fatality or to both
for occupants in vehicle 2 in a crash event.
FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0
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Regarding to Model-IA-T design, it was developed using logistic regression for FatalSIK prediction
in crashes involving two-vehicle collision, with forward selection for the inputs signalized at Table
7.2. During the forward selection, the modeling begins with no candidate inputs in the model and
adds inputs until the entry significance level is met. Table 7.3 summarizes Model-IA-T fitting results
and performance evaluation. The test for the global null hypothesis shows that at least one of the
predictor’s regression coefficient is not equal to zero in the model, p-value <0.0054. From a total of
19 potentially explanatory variables exanimated with forward selection method, only two of them
are found to be statistically significant at 0.05 level. Age of vehicle V1 (AgeV1) and non-head-on
collisions are significant factors to estimate the crash severity; p-values 0.0084 and 0.0346,
respectively. In this model, as the age of vehicle V1 increases, the risk of a severe crash outcome
is lower. Also, crashes rather than head-on collisions were associated with a decrease in crash
severity. In the sample, just 7.6% of the crashes were as head-on collisions (67/874). The
remaining 808 observations were distributed as follows: 311 were rear end collisions, 89 were
sideswipe collisions and 408 were reported as other. Those head-on collisions have resulted 12%
(4/32) of severe events in the crash dataset. The model fit statistics shows the following values of
0.211 and 0.328, for the ASE and MISC, respectively.

Table 7.3 - Model-IA-T results for FatalSIK prediction with logistic regression performed for a

balanced dataset of two-vehicle collisions.

MODEL-IA-T
Fit Statistics
Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio
Null Hypothesis
DF Pr<ChSq | Parameter DF Estimate SE' Pr>ChiSq | OR® 95% CI°
2 0.0054 Intercept 1 2.6230 0.9736 0.0071 (0.7147 _4.5312)
AgeV1l 1 -0.1769 0.0671 0.0084* 0.838 (-0.3084_-0.0454)
HeadOn (0) 1 -1.3964 0.6610 0.0346* 0.061 (-2.6920_-0.1008)
Obs. 64
ASE 0.211
MISC | 0.328
Prediction Accuracy Performance
Prediction Accuracy
Accuracy Rate with Training Sample (N=64) Accuracy Rate with Original Sample (N=874) for 10 Stratified
Random Samples
FN’ TN® FP° TP’ AR*% [ TPS’ Fps™ TNs™ FNs™ AR"% | Mean%™ | S.D.B
10 21 11 22 67.2 8 148 694 24 80.3 54.4 1.7

NOTA: T Standard Error; 2 Odds Ratio Estimate; ° 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True
Positive; 8 Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of
Accuracy Rate; 14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of
the 10 stratified random samples; *Statistically significant at 5% level.

The logistic regression equation developed for Model-IA-T is presented next.

exp(2.623 — 0.1769 * AgeV1 — 1.3964 * HeadOn(= 0)) Equation 7.1
1+ exp(2.623 — 0.1769 x AgeV1 — 1.3964 * HeadOn(= 0))

P (FatalSIK = 1) =

The interpretation of the Model-IA-T with the odds ratio, in Table 7.3, shows that the odds of a

FatalSIK crash in a non-head-on collision is 0.061 the odds in a head-on collision. In other words,
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the odd of a severe crash increases by 16 times for head-on collisions. Also, the odds for the
continuous variable AgeV1, 0.838, shows that an increased risk of a FatalSIK is associated with
the decrease for the age of vehicle V1. Figure 7.1 shows a graphical representation of crash
severity prediction estimates logit curve using Model-IA-T equation. As observed, the logit curve for
the estimated probability of FatalSIK for head-on collisions is higher than the estimated target

values for all the others crash types, such as, rear-end and sideswipe.
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Figure 7.1 — Probability of a serious injury and/or fatality with age of vehicle V1, in two-vehicle

collisions, using Model-IA-T.

Model-IA-T shows a positive effect of head-on collision in crash severity risk (or a negative effect of
non-head on collisions), which is supported by several other works which found head-on collision
contribution to more severe injuries levels [48, 92, 144]. The most severe crash configuration is
front-to-side impact, which imposes a higher risk of being killed in the side-impacted vehicle [49].
On the other hand, as the age of the vehicle V1 increases, the overall crash severity tends to
decrease. Some studies have related newer vehicle models with an increased risk for the accounts
of the other vehicle involved [49, 59, 60, 85]. Thus, as age of V1 increases, it would be possible
that the vehicle would be less “aggressive” during the event of a collision. Hence, the occupants of
the other vehicle involved would face a lower risk, and it could contribute to a decrease in the

overall crash severity.

The assessment of the Model-IA-T shows a good performance, as observed in Table 7.3. The
accuracy rate when running the model with the training sample, which was stratified in 32 severe
crashes and 32 non severe crashes, correctly predicted 67.2% of the cases. In the training sample,

the model correctly predicted 22 severe crashes (TP) and 21 non severe crashes (TN). When
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compared with the previous model in Table 7.1, Imbalanced-Model-T, it is straightforwardly to
notice the improvement in model accuracy prediction. The model developed with the original
imbalanced sample predicted all the severe crashes as non-severe, leading to unsatisfactory
results for TP, which were none. On the other hand, Model-IA-T performed with the balanced
approach, was able to predict right 22 severe crashes, out of 32. When assessing the performance
of this model within the original crash sample, it shows high prediction accuracy, 80.3%. From a
total of 874 crashes observations, Model IA-T correctly predicted 8 severe crashes out of the 32
severe collisions. In addition, the model correctly predicted 694 of the non-severe out of the
observed 842 non-severe events in the entire dataset. The model predicted right more severe
crashes in the training sample, than in the original dataset, (22 and 8, respectively). However, it is
noted that the model overall accuracy within the original population was higher than the model
accuracy within the training sample, (80.3% and 67.2%, respectively). The evaluation of the model
performance with 10 stratified random samples was also satisfactory; the mean prediction accuracy
rate was 54.4% (S.D. 1.7). EM output for Model-IA-T is provided in Appendix 9.

Model-IA-T, when compared with the FatalSIK prediction candidates, Model-IB-T and Model-IC-T
(Appendix 9) showed slight lower prediction accuracy, 80.3%, 82.6% and 82.8%, respectively.
Model-IA-T was selected because its prediction accuracy was good and since it is easier to
interpret, its application in real world crash scenarios could be more helpful.

7.3 Logistic Regression Analysis for FatalSIKV1 and FatalSIKV2
with Resampling Approach

The original crash sample included a limit number of severe cases for FatalSIKV1 (21 cases) and
FatalSIKV2 (14 cases). Whereas the resampling strategy was not applied for CART modeling of
those targets due to this technique sensitivity to sample size (as explained in Chapter section 5.3),
the resampling approach was applied for the logistic modeling.

To model FatalSIKV1 and FatalSIKV2, the design variables focus in each individual vehicle
characteristics, and differential of vehicle characteristics. In addition, the variable SpeedLevel was
also used as input during the modeling stage, since speed is known as increasing risk of injury
level [42, 43, 91, 93, 98]. It must be mentioned that only the best models for FatalSIKV1 and
FatalSIKV2 are presented. During the modeling stage several candidate models were developed
using the same design variables, a total of 19 predictors, as they were used for FatalSIK modeling,
such as AlcoholDrugs, DivisonCode, WeatherCode and variables related to crash type. However
those models showed a poor performance and only the best models for each target are discussed
in section 7.3. For FatalSIKV1 and FatalSIKV2 models, the inputs were the same, 13 independent
variables, and models’ targets, are identified in Table 7.2. Interpretation of FatalSIKV1 and

FatalSIKV2 logistic models: Model-II-T and Model-1lI-T, respectively, is next.
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7.3.1 Model-II-T Analysis

Model-II-T was developed using logistic regression for FatalSIKV1 prediction models with a
balanced training sample, which was stratified in 21 severe crashes and 21 non severe crashes, for
two-vehicle collisions. Forward method was used for selection of the inputs in Table 7.2. Forward
method was used for selection of the inputs in Table 7.2. Since the model development was based
on sample training containing a limited number of observations (42 crashes), the 5% level was not
applied, but 10% level. Therefore, model entry level was set to 10% (p-value<0.1). Statistical

support is provided bellow.

Some researchers argued to use smaller significance levels as the sample size increases, partly to
offset the fact that standard errors are getting smaller. Some authors feel comfortable using 5%
level when is a few hundred, thus they might use 1% level when n is a few thousand [146].
Additional information for Model-II-T is provided in Appendix 9. As previously mentioned in the
previous chapter (section 6.2.2), for samples with smaller size, some authors are willing to use
larger significance levels, reflecting the fact that it is harder to find significance with smaller sample
sizes ( the estimators are less precise). For small sample sizes, it can be use a larger p-value, as
0.2, but there is no hard rules [84, 146].

Table 7.4 summarizes Model-1I-T fitting results and performance evaluation. As explained above,
due to the small training sample size (N=42), a larger p-value is used, p-value<0.1. The test for the
global null hypothesis shows that at least one of the predictor’s regression coefficient is not equal
to zero in the model, p-value <0.0594. From a total of 13 variables entered as inputs during the
modeling stage, only the engine size of the opponent vehicle is statistically significant at 0.10 level,
p-value<0.0762.
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Table 7.4 - Model-II-T results for FatalSIKV1 prediction with logistic regression performed for a

balanced dataset of two-vehicle collisions.

MODEL-II-T

Fit Statistics

Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio

Null Hypothesis

DF Pr<ChSq | Parameter DF Estimate SE' Pr>ChiSq | OR® 95% CI°

1 0.0594 Intercept 1 -2.0657 1.1961 0.0842 (-4.4101_0.2786)
ccvV2 1 0.00108 0.0006 0.0762 1.001 (-0.0001_0.0023)

Obs. 42

ASE 0.239

MISC 0.357

Prediction Accuracy Performance

Prediction Accuracy
Accuracy Rate with Training Sample (N=42) Accuracy Rate with Original Sample (N=874) for 10 Stratified
Random Samples
FN* TN® FP° TP’ AR*% [ TPS’ Fps™ TNs™ FNs™ AR®% | Mean%™* | S.D.”
10 16 5 11 64.3 6 41 812 15 93.6 61.2 24

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate;
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified
random samples; *Statistically significant at 10% level.

The logistic regression equation developed for Model-II-T is presented next.

exp(—2.0657 + 0.00108 * ccV'2) Equation 7.2

P (FatalSIKV1 = 1) =
(FatalSIKV1 = 1) = 4 2 0657 + 0.00108 » ccV2)

The signs of coefficient estimates are directly related to their influence on probability of the target
being modeling. As can be observed in Table 7.2, the estimate for ccV2 has a positive sign
(0.00108). Graphical representation Equation 7.2 for Model-II-T is illustrated in Figure 7.2, showing
that as the engine size of vehicle V2 increases, the probability of severe injury sustained by the
occupants of vehicle V1 also increases.
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Figure 7.2 —Estimated probability of a serious injury and/or killed among the occupants of vehicle

V1 with the engine size of the opponent vehicle, ccV2, in two-vehicle collisions, using Model-II-T.

In the interpretation of Model-II-T revealed that when analyzing the risk that occupants of the
subject vehicle V1 are exposed, the model did not select any variable related to this vehicle
crashworthiness, rather a variable that seems to be related to the “risk agressivitive” imposed by
the other vehicle involved in the collision. The engine size of the opponent vehicle increases the
probability of major injuries and/or fatalities among the occupants of the subject vehicle. It is
possible that effect of mass of the opponent vehicle could be reflected in vehicle’s engine size.
Often, vehicles with larger engine size are heavier; hence it would be expected higher risk following
the collision. Model-II-T results are supported by previous work which agree that in a two-vehicle
collisions severity risk rises with size and mass of the other vehicle involved [53, 60, 87, 145].

The assessment of the Model-II-T shows a good performance, as observed in Table 7.3. The
accuracy rate when running the model with the training sample, correctly predicted 64.3% of the
cases. In the training sample, the model correctly predicted 11 severe crashes (TP) and 16 non
severe crashes (TN). When assessing the performance of this model within the original crash
sample, it shows great prediction accuracy, 93.6%. From a total of 874 crashes observations,
Model II-T correctly predicted 6 severe crashes out of the 21 severe collisions. In addition, the

model correctly predicted 694 of the non-severe out of the observed 842 non-severe events in the
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entire dataset. As expected, the model predicted right more severe crashes in the training sample,
than in the original dataset, 11, and 6, respectively. However, the model overall accuracy within the
original population was higher than the model accuracy within the training sample, 93.6% and
64.3%, respectively. It must be pointed out that this model was able to predict six out of the 21
severe cases in vehicle V1 for the entire sample containing 853 non-severe cases and only 21
severe cases. As a matter of fact, at the original sample, the non-severe outcomes for individual
vehicle V1 were almost 41 times more frequent than severe outcomes (853/21). As a validation
approach for the model discussed in this section, the evaluation of the Model-1I-T performance with
10 stratified random samples is also satisfactory; showing a mean prediction accuracy rate of
61.2% (S.D. 2.4).

7.3.2 Model-llI-T Analysis

Model-1lI-T was developed using logistic regression for FatalSIKV2 prediction models with a
balanced training sample stratified in 14 severe crashes and 14 non severe crashes, for two-
vehicle collisions. Backward method was used for selection of the inputs in Table 7.2. Additional
information for Model-llI-T is provided in Appendix 9. Table 7.5 summarizes Model-1lI-T fitting
results and performance evaluation. The test for the global null hypothesis shows that at least one
of the predictor’s regression coefficient is not equal to zero in the model, p-value <0.0201. From a
total of 13 variables entered as inputs during the modeling stage, only the engine size of the

opponent vehicle is found to be statistically significant at 0.05 level, p-value<0.0387.

Table 7.5 - Model-llI-T results for FatalSIKV2 prediction with logistic regression performed for a

balanced dataset of two-vehicle collisions.

MODEL-III-T

Fit Statistics

Test for Global Analysis of Maximum Likelihood Estimates and Odds Ratio

Null Hypothesis

DF Pr<ChSq | Parameter DF Estimate SE' Pr>ChiSq | OR® 95% CI°

1 0.0201 Intercept 1 -3.5969 1.78 0.0433 (-7.0856_-0.1082)
ccVl 1 0.00205 0.0010 0.0387 1.002 (-0.0001_0.0040)

Obs. 28

ASE 0.231

MISC | 0.286

Prediction Accuracy Performance

Prediction Accuracy
Accuracy Rate with Training Sample (N=28) Accuracy Rate with Original Sample (N=874) for 10 Stratified
Random Samples
FN’ TN® FP° TP’ AR%% | TPS® FPs™ TNs™ FNs™ AR"™% | Mean%™ [ S.D.”
4 10 4 10 71.4 5 133 727 9 83.8 40.5 2.1

1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate;
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified
random samples; *Statistically significant at 10% level.
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The logistic regression equation developed for Model-III-T is presented next.

exp(—3.5969 + 0.00205 * ccV1) Equation 7.3
1+ exp(—3.5969 + 0.00205 * ccV1)

P (FatalSIKV2 =1) =

The signs of coefficient estimates are directly related to their influence on probability of the target
being modeling. As can be observed in Table 7.5, the sign of ccV1 estimate has a positive sign,
showing that its effect is associated with an increase probability for FatalSIKV2. Graphical
representation for this Model-IlI-T equation (Equation 7.3) is illustrated in Figure 7.3, showing that
as the engine size of vehicle V1 increases, it raises the probability of severe injuries in the

occupants of vehicle V2 also increases.
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Figure 7.3 — Estimated probability of a serious injury and/or fatality among the occupants of vehicle

V2 with the engine size of the opponent vehicle, ccV1, in two-vehicle collisions, using Model-III-T.

Similarly to Model-1I-T, Model-llI-T shows the effect of a predictor that seems to express the risk
imposed by the other vehicle involved in the collision, ccV1. As previously mentioned, Model-IlI-T
fining supports other research that had identified the size of the opponent vehicle (which
encompasses vehicle mass, engine size and length) as a risk factor for serious injuries and/or
fatalities among the occupants of the other vehicle involved in the collision [53, 60, 87, 145].

The assessment of the Model-IlI-T shows a great performance, as observed in Table 7.5. The
accuracy rate with the training sample, correctly predicted 71.4% of the cases. In the training
sample, the model correctly predicted 10 severe crashes (TP) and 10 non severe crashes (TN).
When assessing the performance of this model within the original crash sample, it shows good

prediction accuracy, 83.8%. Based on the 874 collisions observations, it is important to notice that
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Model-IlI-T was able to predict 5 out of the 14 severe cases of the original sample containing only
1.6% cases for severe crash outcomes in vehicle V2. In addition, the model correctly predicted 727
of the non-severe cases out of the observed 842 non-severe cases in the entire sample. As
expected, the model predicted right more severe crashes in the training sample, than in the original
dataset, since the first was a balanced dataset; the second was the original sample that was highly
imbalanced. As a validation approach for Model-lll-T, the evaluation performance for the 10
stratified random samples was also suitable; showing a mean prediction accuracy rate of 40.5%
(S.D. 2.1).

Following the discussion of Model-II-T for FatalSIKV1 prediction and Model-11I-T for FatalSIKV2,
the consistency of both models is analyzed. As previous explained each of these models targets to
predict the probability of a serious injured and/or killed in the subject vehicle, by modeling this
vehicle crashworthiness simultaneously with the opponent vehicle risk. Both models found the
engine size of the opponent vehicle as a significant factor contributing towards an increased risk of
severity injuries sustained by the occupants of the vehicle being analyzed. Figure 7.4 integrates the

effect of engine size in crash severity risk for each vehicle involved in a two-vehicle collision.
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Figure 7.4 — Effect of engine size of the opponent vehicle in the probability of a serious injury

and/or fatality among the occupants of vehicle being analyzed, in two-vehicle collisions.

In Figure 7.4, the logit curve for Model-1I-T is presented in red and denotes an increasing in crash

severity risk for V1 as the engine capacity of the other vehicle involved increases. Whereas, for
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Model-11l-T several curves illustrates how crash severity risk for V2 varies with several categories of
opponent vehicles engine size, ccV1 in series. It must be noticed that, since this methodology
strategy design takes into account not only own vehicle protection, but simultaneously, the risk
caused by the opponent vehicle, it cannot be “directly” compared with previous research because
in the literature few studies have considered the effect of the other vehicle involved and those did
not integrate simultaneously each individual vehicle contribution. However, the findings for these
models support previous work, that in a two-vehicle collisions severity risk rises with size and mass
of the other vehicle involved [53, 60, 87, 145].

Regarding to Model-1I-T and Model-1lI-T fit statistics to the crash sample, it was notice that the first
model the parameters were significant at 10% level, even though it had a larger training sample
size (N=42). On the other hand, for Model-lll-T, the parameters were found significant at 5%
significant level, even though the training sample was very small, only 28 observations. Despite of
the smaller sample size (with only 14 severe events for the target being predicted), Model-III-T
showed a lower misclassification rate than Model-II-T, (0.286 and 0.357, respectively). Even
though both models showed a good prediction performance, care must be present in the
interpretation of these models because logist regression modeling was performance with very small

samples.
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7.4 Concluding Remarks

This Chapter presented logistic regression results to examine the probability of a serious injured
and/or killed as an outcome of two-vehicle collisions. Logistic regression performed with the original
imbalanced sample, Imbalanced-Model-T, revealed poor accuracy performance (with none true
positive (TP) for crash severity prediction). On the other hand, re-sampling procedure adopted for
the logistic modeling (by randomly removing the majority class of non-severe cases to a balanced
proportion of severe cases) has resulted in improvements in TP without increasing significantly the
FP. Some training information is lost, but it is counterbalanced by the improvements in the minority

class accuracy, i.e, crash severity prediction.

Following logistic models presentation, the Model-IA-T is recommended to predict the overall crash
severity following a collision. Regarding to Model-IA-T findings, it shows that when a collision
involves an older vehicle, the risk of a severe crash outcome decreases. Newer vehicles models
are known to show improved crashworthiness, however they also have been linked to impose
higher “agressitivity” towards the occupants of the other vehicle involved in the collision. As
expected, head-on collision contribute to more severe injuries levels. When analyzing the risk of
severity to each individual vehicle involved in two-vehicle collisions, Models-1I-T and Models-III-T
are recommended. Model-1I-T targets the prediction of a serious injuries and/or fatality for
occupants of vehicle V1. Model-IlI-T targets the prediction of a serious injuries and/or fatality for
occupants of vehicle V2. Both models are consistent and both reinforce the finding that the engine
size of the opponent vehicle involved in the collision is a significant variable in explaining crash

severity suffered by the occupants of the vehicle being analyzed.
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VEHICLE EMISSIONS MODELING

This Chapter aims at the analysis of the vehicle’s emissions and fuel consumption. Based on this
analysis, the vehicle environmental performance will be developed for further application in vehicle
integrated analysis presented in Chapter 9.

Firstly, it briefly summarizes the methodology applied for pollutant emissions and fuel consumption
estimation. Secondly, it centers on pollutant vehicle’s emissions modeling. It begins by explaining
the design methodology to fit emissions estimations results to linear regression models. Then, it
highlights the most relevant trends for pollutant vehicles’ emissions and fuel use for the vehicles
included in the crash database. Thirdly, it presents vehicle’s emissions models for selected
pollutants. Main remarks present key findings for vehicle’s emissions models developed based on

the sample explored in this Thesis.
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8.1 Methodology

This section summarizes the methodology applied to estimate pollutant vehicle emissions and fuel
consumption for the vehicles included in the crash dataset. For the purpose of this research, the
CORINAIR methodology was applied [147], which is based on the European emission standards
that are related to the acceptable limits for emissions of new vehicles sold in EU member states
Since the crashes in the sample occurred in main roads and motorways, it was assumed that
engines were in stabilized operation. Thus, CORINAIR methodology was used to estimate “hot”
emissions, which better reflect the driving conditions for the vehicles registered in the crash dataset
since the majority of sample represents highway or motorway driving. For the environmental
performance analysis of the vehicles included in the crash database, carbon monoxide (CO),
nitrogen oxide (NO,) and particle matter (PM) were selected. In addition to the above pollutants,
CORINAIR methodology was also applied to estimate the fuel consumptions, based on the CO,
emissions. The PM emissions factors refer to PM, 5 coarse fraction. This choice is justified because

this fraction travel deeper in the lungs and are more toxic, so these can have worse health effects.

8.1.1 Vehicles classification
As explained earlier in Chapter 3, this research focuses exclusively on the analysis of crash reports
involving light vehicles. For the estimations of emissions and fuel consumption for light passenger
vehicles (LPV) and light duty vehicles (LDV) based on CORINAIR methodology, the following
inputs were used:

- Vehicle category;

- Fuel type;

- Engine size category;

- Technology level (Emission standard);

- Average speed;

- And driving share.

The above inputs are explained as follows.

Henceforth, CORINAIR methodology was applied to the following two vehicles categories in the
dataset: LPV and LDV which weight is lower than 3.5 tons. For these vehicles fuel type are
subdivided into: gasoline (G), diesel (D), liquefied petroleum gas (LPG) and hybrid (H). The LPV
with gasoline are then subdivided by the engine size (c.c.) into three categories, whereas LPV with

diesel are subdivided into two categories.

Following CORINAIR methodology, road vehicles are usually classified according to their level of
emission control technology, which is actually defined in terms of the pollutant emission legislation
with which they are compliant. Table 8.1 summarizes the vehicle technology (emissions standards)
based on CORINAIR methodology [147] used in this work. The nomination “ECE” and “Euro”
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reflect the legislative regulation, and “Improved conventional” or “conventional” refer to applied
technology. In 1992, “Euro” standards became mandatory in all Members States.

Table 8.1 — Vehicles legislation technology adopted by CORINAIR [147].

Vehicle Category Fuel type Engine Size Legislation/Technology
ECE 15/00-01
ECE 15/02
ECE 15/03
ECE 15/04
Gasoline <1.4L Improved conventional
1.4-2.0L Euro 1 91/441/EEC
>2.0L Euro 2 94/12/EC
Euro 3 98/69/EC Stage 2000
Euro 4 98/69/EC Stage 2005
Euro 5 EC 715/2007
. . Conventional
Light Passenger Vehicle Euro 1 91/441/EEC
Diesel <2.0L Euro 2 94/12/EC
>2.0L Euro 3 98/69/EC Stage 2000
Euro 4 98/69/EC Stage 2005
Euro 5 EC 715/2007
Euro 1 91/441/EEC
Euro 2 94/12/EC
LPG - Euro 3 98/69/EC Stage 2000
Euro 4 98/69/EC Stage 2005
Euro 5 EC 715/2007
Hybrid <1.6L Euro 4 98/69/EC Stage 2005
Conventional
Euro 1 93/59/EEC
Gasoline <3.5¢ Euro 2 96/69/EC
Euro 3 98/69/EC Stage 2000
Euro 4 98/69/EC Stage 2005
Light-duty vehicles Euro 5 EC 715/2007
Euro 1 93/59/EEC
Euro 2 96/69/EC
Diesel <3.5t Euro 3 98/69/EC Stage 2000
Euro 4 98/69/EC Stage 2005
Euro 5 EC 715/2007

Euro 1 was officially introduced by Directive 91/441/EEC in July 1992. In the subsequent years,
new legislatives steps leads to Euro 2 to Euro 5 and Euro 6, with more restrictions in emissions
levels and succeeding pollutants reductions. Euro 5 emissions standards came into effective in
September 2009, leading to further 25% reduction NO,, compared to Euro 4. Euro 6 was not
represented in the above table since the vehicle in the crash database were previous to the

introduction of this European emission standard.

Emissions control-technology for LDV follows the technology for LPV with a delay of one or two
years. For LPG category, vehicles were grouped as conventional for those vehicles prior to
91/441/EEC. Otherwise, the same Euro norms were applied as those relating to gasoline and
diesel cars. The legislation classes for hybrid vehicles comply with the Euro 4 and Euro 5 European
Emissions Standards [147].
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Another, required input in the CORINAIR methodology is the average speed, however, since the
vehicle real speed is unknown, the legal speed limit was used as a proxy of vehicle speed (see
more details on Chapter 4). The speed profile was obtained since the police reports provide
information for the road name and road type. Input speed values were: 50 km.hr, 90 km.hr™, 100
km.hr' and 120 km.hr' for vehicles involved in crashes at: urban roads, main roads,

complementary roads and motorways.

8.1.2 Emission and fuel consumption estimation

Vehicle emissions are strongly dependent on the engine operation conditions. Emissions depend
on several factors, such as: distance that the vehicle travels, its speed, road type, vehicle’s age,
vehicles engine size and weight. Vehicle speed has a major influence on exhaust emissions as well
as in the fuel consumption. Equation 8.1 represents the formula for estimating hot emissions (g.km’

') for a generic pollutant [147].

m) Equation 8.1

Emission (g) = EmissionFactor (i) * number of vehicles(vehicles) » mileage per vehicle (vehicle

km

The CO, was obtained directly from the fuel consumption. Further detail for each selected pollutant
and its emissions factors based on the vehicle category covered in this study are found in the
CORINAIR methodology [147].

8.1.3 Modelling vehicle’s environmental performance

Subsequently, to the application of CORINAIR for emissions estimation, the obtained data was fit in
order to develop models for further application in vehicle’s environmental performance, as part of

the vehicle’s integrated analysis, presented in Chapter 9.

Although CORINAIR methodology is valuable, it requires specific iterations and are time
consuming. Therefore, vehicle’s environmental performance evaluation would benefit from having
access to straight forward mathematical equation models for emissions estimation. As a starting
point, emissions data was obtained for the 2,248 vehicles included in the dataset. Following, for
each vehicle category and fuel type (section 8.1.1) a methodology approach was used to develop
estimation models for the selected targets: CO,, CO, NO, and PM and fuel consumption, using as
inputs vehicle’s engine size category, speed and Norm, among others. Since those targets

pollutants are continuous variables, linear regression was selected for modelling [146].
A linear regression model is described by the following equation:
Y =080 + Bl*x1+...+Bk=xk Equation 8.2

Where Y is the response variable (target being modelling), B0 is the intercept, 1 is the estimate for

the parameter x1, and so one. The linear regression is broadly used for estimations modelling of
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continuous targets. Since all these targets (selected air pollutants) were continuous variables,
linear regression modelling was selected [84, 89, 146]. The estimation modelling with linear
regression approach is explained next, through step 1 to step 4. Models were developed using
SAS® v9.2 and SAS®Enterprise Miner™7.2 software [84, 89, 117].

Step 1: Setting Emissions Training Database

At the original emissions estimation database covering a total 2,248 vehicles, some vehicles’
categories were represented by few observations and where be removed in order to avoid bias
[146]. Hence, models training were performed based on a database which covered the emissions
estimation values for 2,236 vehicles.

Step 2: Reorganizing Training Database by Vehicle Category and Fuel Type

Training data was organized by vehicle category and fuel type. Hence the training database from
step 1 (N=2,236 vehicles) was split yielding to the following groups:

- Light Passenger Gasoline Vehicles (LPGV): N=889 vehicles;
- Light Passenger Diesel Vehicles (LPDV): N=769 vehicles;

- Light Duty Diesel Vehicles (LDDV): N=556 vehicles;

- and Light Duty Gasoline Vehicles (LDGV): N=22 vehicles.

The dataset referring to LDGV has only 22 vehicles and was not used due to the insufficient limited
number of observations. Following, each dataset was addressed for model the most relevant
pollutants associated with vehicles category. Despite of improvements due to catalytic converters,
gasoline engines have been associated with higher CO emissions. On the other hand, diesel
engines have been associated with significant emissions rates for NO, and PM than gasoline
engines [125, 148]. Diesel engines generally produce larger amounts of NO, than gasoline engines
due to higher combustion temperatures. Also, they emit greater amounts of PM. Since CO results
from the incomplete combustion of vehicle fuels, gasoline engines emit a lighter proportion of CO
than diesel engines, due to the lower combustion temperatures. Thus, the LPGV dataset was used
to model CO emissions, whereas, LPDV and LDDV datasets were used to model NO, and PM
emissions. On the other hand, for CO, emissions modeling, the three datasets (LPGV, LPDV and

LDDV) were used in order to address fuel consumption for those categories.

Step 3: Linear Regression Modeling

The response variables (targets) with interest for this study were: CO,, CO, NO,, and PM. The

explanatory/predictor variables (inputs) used during the modeling stage were: engine size category
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(cc), wheelbase (WBV1), weight (WTV1), technological level (Norm) and speed limit (SpeedLimit,
was used as a proxy of traveling speed). For each pollutant, several candidates’ models were
developed and the best models were selected using the goodness-of-fit measures to the three

datasets mentioned in step 2.

Step 4: Assessment of explanatory variables belonging to the model

For the final model assessment, adjusted R-Square (Adj R-Sq) parameter was used for evaluation
of goodness-of-fit and the analysis of the maximum likelihood estimates (AMLE) for evaluation of
parameters and to test its statistics significance in the model [89]. As an example, the Enterprise
Miner output for CO, modeling based on LPGV dataset is illustrated in Figure 8.1. The analysis of
variance and effects showed p-value<0.0001. Model fit statistics revealed Adj R-Sq explained
94.2% of the variation in the CO, estimations. However, the AMLE displays a non-statistically
significant value for the parameter Euro 4 (Euro IV in the Figure 8.1), p-value <0.3799. Thus, any
variable/parameter that is not statistically significant must be analyzed individually in order to keep
that parameter in the model or removed it from the model. The factor that should determine
whether an explanatory variable belongs in a model is whether the explanatory variable has a
nonzero partial effect on “Y” in the population, which means, its population coefficient is zero [146].
During the modeling phase some variables were dropped from the model, those that were not
adding useful information to the variability of the response variable [85]. Following Wooldrige,
Tolouei and Al-Ghamdi, the observations related to LPGV with Norm 4 were dropped from LPVG
dataset because they were not statistically significant [64, 85, 146]. The new model is displayed in
Figure 8.2. Even though the size of the training sample was reduced (N=817), the model revealed
good performance, with all the parameters in the model being statistically significant at 5% level, as
observed in AMLE in Figure 8.2. In addition, Adj R-Sq (used for evaluation of goodness-of-fit)
shows a very satisfying value, 0.9473. In fact, Adj R-Sq slightly improved after dropping Norm 4
observations, 0.9426 and 0.9473, for model goodness-of-fit with and without Norm 4, respectively.
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Analysis of Wariance

Jum of
Source DF Sruares Mean Soquare F Walue Fr > F
Model 10 282844 282564 1455.02 <.0001
Error 875 17033 19, 399235
Corrected Total 885 298377
Model Fit Statistics
R-Suare 0,943z 4dj B-S5g 0.94:26
ATC Z647.0241 BIC 2649, 3425
3EC Z699,7151 Cip) 9.3013

Type 3 Analysizs of Effects

Sunm of
Effect DF Squares F Walue Pr > F
Norm 5 192346574 195.30 <. 0001
Speedlimit 3 130805, 505 3106. 80 <.0001
co z 75401. 5491 1343, 42 <.0001

Analysis of Mawiwum Likelihood Eztimates

Standard 95% Confidence

Parameter DF Estimate Error t ¥alue Pr > L] Limits

Intercept 1 172.6 0.7183 240.24 <, 0001 171.2 174.0
Norm ECELlL5-00/04 1 8.6837 0. 5869 14.80 <.0001 7.5334 9,5341
Norm Euro I 1 J.6542 0.5189 7.07 <, 0001 Z.6411 4, 8672
Norm Euro II 1 -5.5133 0.49933 -11.04 <, 0001 -G.4919 -4, 5347
Norm Euro III 1 -3.0805 0. 50zZ0 -G.14 <, 0001 -4, 0646 -2.0970
Norm Euro IV 1 -0. 5431 0.6182 -0.88 0 -1.7549 0.6688
SpeedLimit 100 1 -Z.6833 0.6511 -4.12 -3.9595 -1.4072
Speedlimit 120 1 21.2175 0. 4545 45, 66 20,3262 22,1088
Speedlimir 50 1 -8.1685 1.1585 -6.57 -10. 4959 -5. 583587
co 1.4-2. 1 -5.0139 0.4459 -17.87 -G.5575 =7.1401
co <1l.41 1 -24.0533 0.3985 -60.635 -24, 5309 -23. 2756

Figure 8.1 — Linear regression output for CO, modeling with LPGV dataset using SAS®Enterprise

Miner™7.2 software.
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Analysizs of Wariance

Sum of
Source DF Souares Mean Souare F Value Pr = F
Model a 275323 30591 1529.581 <, 0001
Error a7 15147 13.769931
Corrected Total 5l6 290470
Model Fit Statistics
B-Square 0.9479 Adj BE-5g 0.9473
ATC 2405, 5916 BIC 2407, 5740
5BC 2452, 6480 Cipl g.6095

Type 3 dnalysis of Effects

Sum of

Effect DF Suares F Value Pr = F

Norm 4 194328927 255.53 <.0001

Gpeedlinit 3 178939, 681 317707 <.0001

oo 2z T1E82.6248 1005, 54 <.0001

Analysiz of Maximum Likelihood Estimates
Standard 95% Confidence

Parameter DF Estimate Error t Value Pr > |t| Limits
Intercept 1 172.2 0.7574 2z27.40 <. 0001 170.7 173.7
Norm ECEL5-00/04 1 8.7155 0.6271 13.%20 <.0001 7. 4865 9,3450
Norm Euro I 1 3.6156 0.5710 .33 <. 0001 2.4964 4,7348
Norm Euro IT 1 -5, 5574 0.5576 -9.97 <, 0001 -G. 6502 -4, 4544
Norm Euro ITT 1 -3.2152 0.5595 -5.74 <, 0001 -4.3124 -2.1179
SpeedLimit 100 1 -3.2140 0.&510 -4.86 <. 0001 -4, 5096 -1.9183
Gpeedlinit 120 1 21.6372 0.4525 47,82 <, 0001 20.7503 22,5240
SpeedLimit 50 1 -7.9800 1.1705 -G.582 <. 0001 -10.2741 -5.65859
oo 1.4-2. 1 -8.33584 0. 4431 -18.82 <, 0001 -0.2069 -7.4700
cc <1.41 1 -23.7741 0.3923 -50. 60 <, 0001 -2d4. 5430 -23.0053

Figure 8.2 — Linear regression output for CO, modeling following the removal of Euro 4

observations from the LPGV dataset, obtained with SAS®Enterprise Miner™7.2 software.

For CO, NO, and PM modeling, the procedure was similar. Following the optimization of the
estimation models with removal of not statistically significant parameters, the training size datasets
are shown in Table 8.2. The model for NO, estimation for LPDV revealed all the parameters being
significant at 5% level, hence there was not need to remodel and therefore the training sample was
kept at the original size for the LPDV dataset, 769 with “*” in Table 8.2.
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Table 8.2 — Training sample size by vehicle category for selected pollutants modeling

Training Sample Size (N)
Model Dataset _ _ _
Previous Following Optimization

LDGV 889 817

Modeling CO, LPDV 769 344
LDDV 556 335

Modeling CO LDGV 889 847
. LPDV 769 769*
Modeling NO LDDV 556 535
. LPDV 769 731
Modeling PM LDDV 556 533

* All the parameters were found statistically significant without need to remove any parameter from the training set.

After dropping the variables that were not useful for the models, Adj R-Sq was very satisfactory for
final models and all the parameters in the models were statistically significant. Final models are
presented next.

8.2 Results

This section presents the most significant trends for emissions estimation of the selected pollutants
and fuel consumption for the crash dataset (see section 8.2.1). Then, it presents the results for
fitting the emissions database into linear regressions models for CO, and local pollutants emissions

estimation, as basis for vehicle’s environmental performance analysis.

8.2.1 Emissions and fuel consumption trends

Based on the crash sample explored in this study with 2,248 vehicles, trends on the emissions for
the selected pollutants using CORINAIR methodology can be summarized as follows. The mean
CO emissions were higher for gasoline than diesel engines: 2.07 g.km'1 and 0.40 g.km'l, for a
sample with 914 gasoline vehicles (LPGV and LDGV) and 1,325 diesel vehicles (LPDV and LDDV),
respectively. On the other hand, PM emissions were significantly higher for diesel than gasoline
engines, 0.109 g.km™ and 0.002 g.km™, respectively. For NO, emissions estimation, diesel engines
also revealed a mean value higher than for gasoline engines, 1.04 g.km™ and 0.53 g.km™,
respectively. Regarding to CO, emissions, it appears to be higher for the diesel engines than for
gasoline engines in the crash sample, 241 g.km™ and 164 g.km™, respectively. The effect of engine
size is relevant for the interpretation of these results in the crash sample, since diesel vehicles has
a higher engine size. The mean engine size was: 1912 cm?® (S.D. 471) and 1309 cm?® (S.D. 295) for
the 1325 diesel vehicles and 914 gasoline vehicles in the sample. While the majority of gasoline
vehicles in the sample fells in the category c.c.<1400 cm?®, diesel vehicles are very closer to 2000
cm?®, and the disproportion of engine size may affect CO, emissions results for the sample used in
this study.
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8.2.2 Environmental performance analysis

This section presents the results for fitting the emissions database into linear regressions models.
Models equations are presented for each selected pollutant based on vehicle category. Emissions
models are identified as “Model-E-i+1" were “E” stands for emissions and “i+1” identifies the model
number. Results for models fit statistics and analysis of maximum likelihood estimates are
summarized in Table 8.3. Though, engine size categories appear in L units in the CORINAIR
methodology, in this study be consistent with previous sections, engine size categories were

converted to cm® for model equation presentation.
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Table 8.3 — Emissions estimations models results for selected pollutants using a linear regression approach.

Vehicle Emissions Analysis

Model | Target (\:/gt:';f; Pr>|i\/|ode| :('jtj SRt_Zt;S“CS ASE Analysis of Maximum Likelihood Estimates
Standard 95% Confidence
Parameter DF Estimate Exror t Value Pr = |t] Linits
Intercept 1 17z2.2 0.7574 227.40 <. 0001 170.7 173.7
s Norm ECE15-00/04 1 §.7158 0.6271 13.90 <. 0001 7.45866 9.9450
l".J Norm Euro I 1 3.6156 0.5710 6.33 <. 0001 2.4964 4.7345
d CO, LPGV <0.0001 0.9473 18.54 Horm Euro II 1 -5, 5574 0.5576 -3,37 Z.0001 -6.6502 -4.4646
8 Horm Euro III 1 -3.2152 0.55958 -5.74 <. 0001 -4.3124 -2.1179
=S SpeedLimit 100 1 =-3.2140 0.65610 -4.86 <. 0001 -4, 5096 -1.9153
SpeedLimit 120 1 21.6372 0.4525 47,82 <. 0001 20,7503 22,5240
SpeedLimit 50 1 =-7.9800 1.1705 -6.82 <. 0001 -1lo.2741 -5.6859
cc 1.4-2. 1 -5, 3354 0. 4431 -15.82 <. 0001 -9, 2089 =7.4700
cc <1.41 1 -23.7741 0.3923 -60.60 <. 0001 -24. 5430 -23.0053
Standard 95% Confidence
N Parameter LF Estimate Error t Value Pr > || Limits
LI:J I 1 187.5 1.3421 139.67 oool 1584.8 150.1
1 ntercept . . . <. . .
g CO. LPDV <0.0001 0.8643 145.34 Horm Conwventional 1 17.3330 1.a6l170 10.72 <. 0001 14.1637 Z0.5023
(@) Horm Euro III 1 =-7.9800 1.2766 -6.25 <, 0001 -10. 45821 -5.4780
= Speedlimit 120 1 15.5736 0.7643 Z4.30 <. 0001 17.0755 Z0.0716
cc <2.01 1 -29.95821 n.7704 -35.92 <. 0001 -31.4920 -25.4722
Standard 95% Confidence
Parameter DF Estimate Error t Yalue Pr > |tl Linits
™ Intercept 1 Ze8.1 2.0747 128.70 <. 0001 Z65.0 273.2
LIIJ Horm Conventional 1 31,1490 1.30468 23.88 <, 0001 28,5919 33,7060
u—'IJ co, LDDV <0.0001 0.9877 68.75 Horm Euro I 1 5.030L1 1.0357 4,86 <, 0001 F.0002 7.060L1
o) Horm Euro II 1 -2.7867 0.5793 -3.17 0.00Lla -4.5101 -1.0633
o Horm Euro III 1 -Z.6600 0.58352 -3.18 0.00L5 -4.2970 -1.0230
= Horm Eurao IV 1 -2, 7850 1.0089 -2.78 0, 0060 -4,7624 -0.8077
Speedlimitc 120 1 117.2 2.0141 58.18 <. 0001 113.2 1z1.1
Speedlimit 50 1 -76.67Z5 3.9636 -159.39 <. 0001 -54.6411 -659.1040
oo <2.0L1 1 -1,4347 0.3987 -3.72 0,000z -Z.2662 -0. 7032
Standard 95% Confidence
Parameter LF Ezstinate Error t ¥alue Pr > |tl Limits
< Intercept 1 1.5339 0.0251 54,53 <. 0001 1.4785 1.5820
L_I,‘J Horm ECELS-00/04 1 Z.8646 0.0243 117.69 <, 0001 Z.8169 Z2.9123
w co LPGV <0.0001 0.9762 0.03 Horm Euro I 1 0.5825 0.0213 27.34 <. 0001 0. 5410 0.62458
8 Horm Euro II 1 -0.8589 0.0z06 -41.64 <.0001 -0.5994 -0.8185
S Horm Euro III 1 -0.2333 0.0207 -11.25 <, 0001 -0.273%9 -0.1%926
Horm Eurao IV 1 -1.1593 0.02558 -45.00 <. 0001 -1.z2095 -1.1088
Speedlimitc 120 1 0.7568 0.0224 33.81 <, 0001 0.7130 0.8007
Speedlimit 50 1 -0.4766 0.0431 -11.07 <. 0001 -0.5610 -0.3922
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Vehicles Model Fit Statistics . . A .
Model | Target Category PIoF Adj R-Sq ASE Analysis of Maximum Likelihood Estimates
Standard 95% Confidence
Parameter LF Eztimate Error t Value Pr = |t] Limits
7o) Intercept 1 0.6569 0.0125% 52.68 <.0001 0.6325% 0.6813
L|:J Horm Conventional 1 0.2068 0.0104 19.81 <.0001 0.1564 0.2273
— Horm Euro I 1 -0.0293 0.00s00 -3.25 0.001z -0.0469 -0.0116
g NOx LPDV <0.0001 0.7941 0.01 Horm Euro II 1 0.01597 0.006876 Z.90 0.0038 0.0064L 0.0330
o Norn Euro IIT 1 0.1205 0.00575 z20.88 <.0001 0.10%2 0.131%
= Norn Euro IV 1 -0.0398 0. 00544 -6.15 <.0001 -0.0524 -0.0271
Gpeedlimit 100 1 -0.03683 0.0152 -2.39 0.0169 -0.0860 -0.00859
Gpeedlimit 120 1 0.2la0 0.01zz 17.78 <.0001 0.19z2 0,2399
Speedlinit 50 1 -0.1057 0.0342 -3.18 0.0015 -0.1757 -0.0417
drandard 95% Confidence
Parameter DF Estinate Error t Value Pr > |t Limits
© Intercept 1 L.12z0 0.05z0 21.57 <. 0001 1.0z00 1.2240
U.J Norm Conventional 1 0.4662 0.0325 14.32 <. 0001 0.4024 0.5300
d NOy LDDV <0.0001 0.7609 0.04 Norm Euro I 1 0.3659 0.0260 14.08 £.0001 0.3150 0. 4169
8 Horm Euro II 1 0.1399 0.0221 6.34 <. 0001 0.0966 0.1&831
S Horm Euro III 1 -0.0952 0.0z209 -4.74 <. 0001 -0.1402 -0.05582
Norm Euro IV 1 -0.39%94 0.0z252 -15.82 <. 0001 -0. 4455 -0.3433
Gpeedlimic 120 1 0. 4470 0.0505 g.85 <. 0001 0.3430 0. 5460
Speedlimit 50 1 -0.2474 0.0994 -2.49 0.0l32 -0. 4423 -0.0525
Standard 95% Confidence
Parameter LF Estimate Error £ Value Pr » Itl Limits
N~
i Intercept 1 0.0772 0.00101 76.70 <.0001 0.0752 0.o079z
2 Norm Comventional 1 0.1z286 0.00226 56.89 <.0001 0.1z24z2 0.1331
g PM LPDV <0.0001 0.8910 0.0001 Norm Eurno I 1 0.0594 0.00195 30.48 <000l 0.0555 0.06832
(@) Morm Euro II 1 -0.0208 0.00147 -13.98 <.0001 -0.0235 -0.0177
= Norm Euro IIT 1 -0.0304 0.001z4 -24.43 <.0001 -0.0325 -0.0z80
Norm Euro IV 1 -0.0500 0.00140 -35.75 <000l -0.0527 -0.0473
HGpeedlinit 120 1 0.0154 0.000714 21.52 <. 0001 0.0140 0.0168
Standard 95% Confidence
Parameter DF Estimate Error T Value Pr > Itl Limits
[ee)
LIIJ Intercept 1 0.1717 0.00z96 57.894 <.000l 0.1659 0.1775
A Norm Conwentional 1 0.z2006 0.00567 35.38 <.0001 0.1595 0.2117
g PM LDDV <0.0001 0.8639 0.0001 Norm Euro I 1 0.0815 0.00454 Z0.168 <.000l 0.052Z6 0.1004
o Norm Euro II 1 0.0198 0.00385 5.13 <.0001 0.0122 0.0273
= Norm Euro III 1 -0.0479 0.00364 -13.13 <.000l -0.0550 -0.0407%
Norm Euro IV 1 -0.1253 0. 00440 -28.50 <.0001 -0.1339 -0.11a7
SpeedlLimit 120 1 0.0491 0.001l68 Z9.268 <.0001 0.0458 0.0524
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8.2.2.1 Models for CO, Emissions Estimation

Model-E-1 estimates the emissions for CO, from LPGV. As observed in Table 8.3, the AMLE
shows that for LPGV category older vehicles models (ECE15-00/04) and/or driving at higher
speeds (120 km.h'l) significantly contribute to increase CO, emissions, estimates 8.7 and 21.6,
respectively. On the other hand, for the same vehicle category, when models have a small engine
size (c.c.<1400 cm®, labelled as category cc<l.4L in Table 8.3), CO, emissions decrease
considerably, due to the parameter value of 23.8. Also, all these predictor variables in the model
were statistically significant, p-value<0.0001. The linear regression equation developed for Model-

E-1is presented below.

€O, (g.km™) Equation 8.3
= 172.2000 + 8.7158 * (if NormECE15-00/04") + 3.6156

* (if"Norm Euro1")-5.5574*(if'NormEuro2")-3.2152*(if'"NormEuro3" )
—7.9800 * (if"SpeedLimit50") — 3.2140 * (if"SpeedLimit100") + 21.6372
« (if"SpeedLimit120™) — 23.7741 « (if"c.c.< 1400") — 8.384

* (if"c.c.1400 — 2000")

Where “if” implies a condition to be satisfied by the categorical variable (model parameter),
otherwise the term in the equation will be zero. Since the equations were developed for individual
vehicles, only one category for each component (Norm, engine size and speed) can be satisfied.
Additional information for Model-E-1 is provided in Appendix 10. The following example is
demonstrated. Considering a light passenger gasoline vehicle with 1300 cm?, complying with Norm

2 and driving at 120 km.h™?, Equation 8.4 will be simplified as:
CO,(g.km 1) = 1722+87x0+3.6*x0—-56%1—32+x0—8.0%0—3.2+0+21.6+1—23.8+1—83%*0

Thus for the vehicle in this example, CO, emissions would be estimated of 188.2 g.km'l.

Model-E-2 estimates CO, emissions for LPDV. As shown in Table 8.3, for LPDV category earlier
technological legislation (conventional) and/or driving at higher speeds (120 km.h"l) expressively
increase CO, emissions. On the other hand, these vehicles models when in the smaller engine size
category (c.c.<2000 cm3), CO, emissions decrease significantly. Also, all model predictor variables
were statistically significant, p-value<0.0001. The linear regression equation developed for Model-

E-2 is presented underneath.

€0, (g.km™1) = 187.5000 + 17.3330  (if "NormConventional)" — 7.9800 Equation 8.4
* (if"NormEuro3") + 18.5736 * (if "SpeedLimit120")
—39.9821 * (if "c. c. < 2000™)
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Model-E-3 estimates CO, emissions for LDDV. As shown in Table 8.3 for LDDV category earlier
technological level (conventional) and/or driving at 120 km.hr-1 expressively increase CO,
emissions. On the other hand, for the same category, vehicle with smaller engine size (c.c.<2000
cm?®) and/or driving slow (50 km.h™) significantly contribute towards CO, emissions reduction.
Model-E-3 equation is as follows.

C0O, (g.km™1) = 269.1000 + 31.1490 * (if "NormConventional") + 5.0301
* (if"Norm Eurol") — 2.7867 * (if "NormEuro2") — 2.6600
* (if "NormEuro3") — 2.7850 * (if "NormEuro4") — 76.8725
* (if"SpeedLimit50") + 117.2000 * (if"SpeedLimit120")
— 1.4847 * (if"c.c.< 2000")

Equation 8.5

Although in this Chapter, emissions estimation models are presented for LPVG, LPDV and LDDV,
in the following Chapter, vehicle’s safety, fuel efficiency and green integrated analysis is presented
for LPGV and LPDV. Thus, Model-E-1 and Model-E-2 were applied for the evaluation of these

vehicles’ fuel efficiency.

8.2.2.2 Models for local pollutants emissions estimation

This section presents the results for fitting the local pollutants emissions database into linear
regressions models. Model-E-4 estimates CO emissions for LPGV. Table 8.3 shows that for LPGV
category earlier technological level (ECE15-00/04) yields to an increase in CO emissions. All these
predictor variables in the model were statistically significant, p-value<0.0001. Model-E-4 equation
is presented below.

CO(g.km™') = 1.5339 + 2.864 * (if "NormECE15-00/04")+0.5828
* (if "NormEuro1") — 0.8589  (if "NormEuro2") — 0.2333
* (if "NormEuro3") — 1.1593 * (if "NormEuro4") + 0.7568
* (if"SpeedLimit120") — 0.4766 * (if"SpeedLimit50") + 0.8
* (if"SpeedLimit120")

Equation 8.6

Model-E-5 estimates NO, emissions for LPDV. Table 8.3 shows that for LPDV category earlier
technological level (Conventional) and/or driving at 120 km.h™ increase NO, emissions. As
expected, when driving at lower speed (50 km.h™) the emissions estimations for NO, decrease. All
predictor variables in the model were statistically significant, p-value<0.0001. Model-E-5 equation

is next.
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NO, (g.km™') = 0.6569 + 0.2069 * Norm(if "Conventional") — 0.0293 Equation 8.7
* (if "NormEuro1") + 0.0197 = (if "NormEuro2") + 0.1205
* (if "NormEuro3") — 0.0398 * (if "NormEuro4")0.1087
* (if"SpeedLimit50") — 0.0363 * (if"SpeedLimit100")
+0.2160 * (if "SpeedLimit120")

Model-E-6 estimates NO, emissions for LDDV. The analysis of maximum likelihood estimates in
Table 8.3 confirms that for LDDV category, earlier technological level (conventional and Euro 1)
and/or driving at 120 km.h™ contribute towards an increase of NO, emissions. On the other hand,
for those LDVD, newer models with Euro 4 and/or when driving slow (50 km.h'l), the emissions
estimations for NO, decrease. All predictor variables in the model were statistically significant, p-

value<0.0001. Model-E-6 equation is below.

NO, (g.km™1) = 1.1220 + 0.4662 * (if "NormConventional") + 0.3659 Equation 8.8
* (if"Norm Euro1") + 0.1399 * (if "NormEuro2") — 0.0992
* (if "NormEuro3") — 0.3994 « (if" NormEuro4") — 0.2474
* (if"SpeedLimit50") + 0.4470 = (if "SpeedLimit120")

Model-E-7 estimates PM emissions for LPDV. The analysis of maximum likelihood estimates
shows that convectional vehicles had the biggest impact in PM emissions. This result was
expected since vehicles with earlier technological level were not equipped with patrticle filters. On
the other hand, after Euro 2, there were refinements of fuel injection and LPDV started to be
equipped with particle filters, thus contributing to reductions in PM, as observed in Table 8.3. Also,
all these predictor variables in the model were statistically significant, p-value<0.0001. Model-E-7

equation is below.

PM(g.km™') = 0.0772 + 0.1286 * (if "NormConventional") — 0.0594 Equation 8.9
* (if"Norm Eurol1") — 0,0206 * (if "NormEuro2") — 0,0304
* (if "NormEuro3") — 0.0500 * (if"Norm Euro4") + 0.0154
* (if"SpeedLimit120")

Model-E-8 estimates PM emissions for LDDV, as shown in Table 8.3. Similarly to LPDV, for LDDV
models, earlier technological level (conventional) increases PM emissions. In addition, driving at
120 km.h™" also shows a positive effect in PM emissions. On the other hand, newer LDDV models
with Euro 4 contribute towards to PM reductions. Predictor variables in the model were statistically

significant, p-value<0.0001. Model-E-8 equation is below.

149



Chapter 8

PM (g.km™1) = 0.1717 + 0.2006 * (if "NormConventional") + 0.0915 Equation 8.10
* N(if" NormEuro1") + 0.0198 * (if "NormEuro2") — 0.0479
* (if "NormEuro3") — 0.1253 * N(if"Norm Euro4") + 0.0491
* (if"SpeedLimit120")

8.2.2.3 Assessment of vehicle’s emissions estimation models

As previously mentioned (in section 8.2.2.1), since in the vehicle’s safety, fuel efficiency and green
emissions analysis presented in Chapter 9, only light passenger vehicles are discussed, the
assessment of models goodness-of-fit is presented for LPGV and LPDV. For LPGV, CO, and CO
emissions estimation based on Model-E-1 and Model-E-4 explained 94.7% and 97.6% of data
variability, respectively as shown in Table 8.3. For LPDV, Model-E-2 showed a good fit to the CO,
emissions estimation data, with Adj R-Sq explaining 86.4% of the data, Table 8.3. Also for those,
NOx and PM emissions estimation based on Model-E-5 and Model-E-7 explained 79.4% and
89.1% of data, respectively. All these models revealed very satisfying results for goodness-of-fit,
and will be further apply for vehicle’s environmental performance evaluation. Although goodness-
of-fit models results are very promising, they are based on the crash sample explored in this study
with CORINAIR methodology. If a different sample was used, or if more vehicles information would
be added to the crash database, the emissions estimation models may change. More information

for the emissions models is found in Appendix 10.
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8.3 Concluding Remarks

In this Chapter, CORINAIR methodology was used to develop an emissions estimation database
for the vehicles included in the crash sample explored in this study. Then, the emissions data were
fit into linear regression models. The models were developed to estimate the most relevant
selected pollutants for gasoline and diesel vehicles. Emissions estimation models revealed very
satisfactory results for goodness-of-fit, as summarized next. For light passenger gasoline vehicles,
CO, and CO emissions estimation models, showed an adjusted R-square explaining 94.7% and
97.6% of the data emission, respectively. For light passenger diesel vehicles, CO,, NO, and PM
emissions estimation models, showed adjusted R-square values explaining 98.8%, 79.4% and
89.9% of the data, respectively. Thus, the developed models are helpful for further application on
the vehicle’s environmental performance evaluation, which is part of the vehicle’s integrated
analysis in Chapter 9.

Based on the developed emissions estimation models, its predictor variables and its estimate
values, the following statements can be drawn, focusing the effect of model predictor variables
(sign and magnitude of the predictor estimate) has on the model response, air pollutant. For all the
selected pollutants, CO,, CO, NO, and PM emissions models for gasoline and diesel engines there
is an increase of these pollutants emissions for earlier technological levels (as shown by the
positive sign associated to the former emissions regulation). Driving at higher speeds (120 km.h™)
contributes to a general increase for all the above air emission pollutants and fuel consumption.
NO, emissions models for diesel engines showed that earlier technology level (Conventional)
contribute to higher emissions, because vehicles were not equipped with emissions control
systems, such as exhaust gas recirculation and diesel oxidation catalyst. PM emissions models
had identified vehicles complying with earlier technological levels (Conventional and Euro 1) as
contributing to a significant increase on particulate matters, because few vehicles were equipped
with particle filters.

151



Chapter 8

152



CHAPTER 9

INTEGRATED ANALYSIS OF VEHICLE’S SAFETY,
EFFICIENCY AND GREEN PERFORMANCE

The main goal of this Chapter is to present a methodology which combines the vehicle’s safety and
environmental evaluation into an integrated analysis in order to provide a rate classification. SEG
(for Safety, Fuel Efficiency and Green) is the integrated indicator that was developed. This chapter
combines the results from Chapters 3, 6, 7 and 8 and is organized as explained next. First, the
methodology to develop the integrated analysis methodology is explained. Second, the results for a
scenario base analysis are presented. Third, final combined score, SEG itself, is discussed for

several vehicles categories. Finally, the most relevant findings are highlighted.
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9.1 Methodology

SEG integrated analysis examines the trade-off between a vehicle’s safety and its environmental
performance. As will be explained in this section the SEG methodology was designed to explore
the conflict that apparently seems to exist between larger and heavier cars with smaller and lighter
cars’ safety and environmental performances. Bigger and heavier cars are considered safer but
they use more fuel and emit more CO, among other air pollutants. On the other hand, smaller,
lighter cars are more affordable, they use less fuel, and thus, they earn higher environmental
performance, but they could do a relative poor job of protecting their occupants. To examine this
potential conflict, SEG rates the vehicle performance for each domain: safety, fuel efficiency and
emissions. Figure 9.1 illustrates the basic steps of SEG methodology overview for each of those

three domains.

Safety Analysis Efficiency Analysis Green Analysis

$1: Prob. single crash $2: Prob. collision $1: Estimation CO; 81: Emissions (g knn') estimation
(g.kmr?) - CO for LPGV
l - NOx and PM for LPDV

83: Prob. involvement with counterpart category

/N

\ §4: Single vehicle analysis 85: As Vehicle V1 analysis §6: As Vehicle V2 analysis ) $2: Fuel use evaluation

Y
i

S7: Overall Safety Score

Si Step i
Prob.: Probability
LPGV: Light Passanger Gasoline Vehilce

LPDV: Light Passanger Diesel Vehilce 88: Vehicle safety rating $3: Vehicle fuel efficiency rating 83: Vehicle green rating

$2: Emissions (g knr') evaluation
- CO for LPGV
-NOx and PM for LPDV

Figure 9.1 — SEG methodology overview.

As shown in Figure 9.1, safety analysis follows eight basic steps which comprise the probability of
the vehicle being involved in a single-vehicle crash and in a collision, step 1 “S1” and step 2 “S2”,
respectively. For two vehicle collisions, the probability of the vehicle being analyzed to be involved
with a counterpart vehicle with an engine size category is calculated, “S3”. Following, the risk of
severe crash outcome is evaluated for the crashes were only one vehicle is involved in the crash,
“S4” and for the collisions, where the vehicle is considered to be vehicle V1 and as V2, steps “S5”
and “S6”, respectively. Following, in step 7, “S7”, the vehicle overall safety score is calculated
based on each safety component derived from the steps “S4-S6”. Vehicles’ fuel efficiency analysis
covers three basic steps: mainly estimation of CO, emissions (g.km™), evaluation and rating,

represented by the steps “S1”, “S2” and “S3”, respectively.
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Finally, vehicle’s green emissions analysis start with emissions estimation, based on vehicle fuel
type, as illustrated in step 1, “S1”. Following, emissions estimations are evaluated at step 2 “S2”
and vehicle is rated for its emissions “S3”. Concluding, vehicles’ safety, fuel efficient and green

ratings are combined into a single score.

9.1.1 Methodology for a vehicle safety rating

Safety rating measures vehicle’s crashworthiness (capability to protect vehicle’s occupants) on a
qualitative scale. In this research, the procedure evaluates vehicle crashworthiness both in single-
vehicle and two-vehicle collisions. The overall safety score (OSS) evaluates the vehicle on both
risk of exposure and the probability that a crash would result in a severe outcome. Therefore OSS
is the product of the probability that certain vehicle categories would be involved in a crash and the

probability of crash injury severity itself.

Previous to the OSS methodology, crash severity distribution as presented earlier in Chapter 3
must be recalled for a better comprehension of the risk of exposure in the crash sample (previously
presented in section 4.1.1). Table 4.4, presented earlier, showed the distribution of vehicles by
number of vehicles involved in the crash, engine size category and crash severity outcomes for
each vehicle involved. For single-vehicle crashes, 43.8% of the vehicles fell in the engine size
category c.c.<1400 cm?®, and those vehicles were involved in 34.2% of the severe crashes. Also,
43.6% of the vehicles fell in the engine size category 1400<c.c.<2000 cm?® those were involved in

47.4% of the severe crashes in the single-vehicle crashes, as shown in Table 4.4.

For two-vehicle collisions, risk of exposure is also shown in Table 4.4. The example for vehicles in
the intermediate engine size category is presented. In Table 4.4, 44.6% of vehicles V1 fell in the
intermediate engine size category, 1400<c.c.<2000 cm?®, and those were involved in 43.8% of the
severe collisions. Also, for vehicle V2, the intermediate engine size category was the most
frequent, covering 43.4% of vehicle V2, but it accounted for a smaller proportion of involvement in

severe crashes, 9.4%.

Therefore, it must be pointed out that the risk of exposure is derived from the crash sample used in
this study. If a different crash sample were used, the distribution of vehicle involvement by crash
type, engine size and age would vary, and hence, the risk of exposure would be affected as well.
The method to determine vehicle safety rating can be updated as more crashes are added to the

current sample.

The OSS methodology is presented as follows. The OSS has mainly three components derived
from: the risk of an event involving the vehicle in a single-vehicle crash, the risk of a crash event in
a collision where the vehicle being analyzed is assumed to be as vehicle V1 and the risk
associated when the vehicle being analyzed is assumed to be as vehicle V2. OSS is performed

following step 1 through 7, as previously summarized in Figure 9.1. An example will be provided
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through these steps vyielding the overall safety score. A vehicle one year old and with an engine

size capacity of 1300 cm® is evaluated.

Step 1: Probability of involvement in a single-vehicle crash

The first step of the OSS is the estimation of the probability of exposure as a single vehicle
involved in the crash. Considering the vehicle mentioned above, 1 year old and 1300 cm?® engine,
and based on Table 4.4, the probability of this vehicle being involved in a single-vehicle crash is
0.028 (63/2248).

Step 2: Probability of involvement in two-vehicle collisions

Step 2 is based on the calculation of the probability of vehicle involvement in a collision and also
the probability of involvement with a counterpart engine size category. For the two-vehicle crashes
scenario, the probability that this vehicle is involved in a collision as vehicle V1 is 0.027, whereas

the probability to be involved as vehicle V2 is 0.034.

The probability that the vehicle is involved in a crash event with certain counterpart vehicle
category is determined based on the engine size category into which falls the other vehicle
involved in the collision. In this probability of event calculation, the engine size category for a
counterpart vehicle being V2 is considered, as well as the engine size category for a counterpart
vehicle being V1. The following example illustrates better the step 2 calculations using Table 4.4. In
the scenario when the vehicle being analyzed is assumed to be vehicle V1, the probability that is
going to be involved in a collision with a counterpart vehicle, vehicle V2, in the category of engine
size <1400 cm®is 0.146 (334)/2248. The probability that the vehicle being analyzed is involved with
a V2 in the engine size category 1400-2000 cm?®is 0.169 (379)/2248, and so forth. Similarly, the
vehicle being analyzed could be considered as vehicle V2, and thus the counterpart vehicle would
be V1. In this scenario, the probability that V2 is involved with V1 for each engine size category:
<1400 cm?®, would be (346)/2248=0.1540, and so forth.

Step 3: Probability of exposure-vehicle involvement in a crash with opponent category

The probability of exposure is the product of vehicle involvement in a collision and the probability of

involvement with a counterpart engine size category, both calculated in step 2.

Following the example, the probability of exposure for a vehicle 1 year old with 1300 cm® engine is
calculated, as explained next. The probability that this vehicle would be involved with a counterpart
vehicle, V2, with c.c.<1400 cm®is 0.0039 (0.027x0.146). The probability that the vehicle would be
involved with V2 with ¢.c.1400-2000 cm® and V2 with ¢.c.22000 cm®, are 0.0046 and 0.0019,
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respectively. The same procedure would be followed to cover the scenario where the vehicle being
analyzed would be vehicle V2 and the counterpart vehicle would be V1.

Step 4: Component from a single-vehicle crash event

For the single crash scenario, as discussed in Chapter 6, the probability of a serious injury and/or
fatality (FatalSIK”1”) is given by Model-IB-S, presented in Equation 6.2. Component for vehicle
overall safety score from a single-vehicle event is the product of the probability estimated in step 1
and the probability of FatalSIK.

Following the example, the probability of the vehicle being analyzed being involved in a single
crash is 0.028, as explained in step 1. The probability of FatalSIK using Model-IB-S for the vehicle
being analyzed, that is 1 yr old and with 1300 cm?®, is 0.1854. Thus, the component from a single-

vehicle crash event towards vehicle overall safety score is 0.520% (0.028x0.1854x100).

Step 5: Component from vehicle involvement, as vehicle V1, in collision with opponent V2

For a two-vehicle collision scenario, the subject vehicle can be either V1 or V2. Step 5 assumes the
subject vehicle is V1, and opponent vehicle as V2. As explained in section 7.3, Chapter 7 for
severe crashes prediction in two-vehicle collisions, for a subject vehicle V1 the probability of a
serious injury and/or fatality (FatalSIKV1”1”) is given by Model-II-T, presented in Equation 7.2.
Since V2 can fall in one of three engine size categories, this component integrates the probability
of a crash event for: ccV2<1400 cm?®, 1400<ccV2<2000 cm® and ccV222000 cm?.

Following the example, the probability for FatalSIKV1 when V2 with engine of 1300 cm? is involved
is 0.340. As the engine size of the other vehicle involved in the collision increases, the probability
FatalSIKV1 also increases since Model-II-T depends on ccV2 engine size only. For counterpart
vehicles with engine sizes of 1700 cm® and 2500 cm?®, the probability of FatalSIKV1 would be
0.4428 and 0.6535, respectively. The probability of exposure was already determined in step 3.
The contribution from this collision event is the product of the probability of exposure and the
probability of a severe crash outcome in V1. In this case, it is 0.0039x0.340, yielding a value of
0.135%. Similarly, the contribution from the collision event involving a counterpart vehicle with 1700
cm® is 0.199% (0.00449x0.4428x100). Finally, the contribution from a collision event involving a
counterpart vehicle in the largest engine size category, ccV2=2500 cm®, is 0.125%
(0.019x0.653x100).

Step 6: Component from vehicle involvement, as vehicle V2, in collision with opponet V1

Step 6 focuses on the subject vehicle as V2, whose safety score takes into account the probability

to be involved with an opponent vehicle, V1. When the vehicle being analyzed is V2, the probability
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of a serious injury and/or fatality (FatalSIKV2”1”) is given by Model-IlI-T, presented in Equation 7.3.
Similarly to step 5, this component integrates the probability of a crash event involving the vehicle
being analyzed with an opponent vehicle for each engine size category: ccV1<1400 cm?®,
1400=ccV1<2000 cm® and ccV1=2000 cm®.

Following the example, the probability for FatalSIKV2 the opponent vehicle has engine size of 1300
cm?® is 0.2825. For opponent vehicles with engine sizes of 1700 cm?® and 2500 cm®, the probability
of FatalSIKV2 would be 0.4720 and 0.8217, respectively. The probability of exposure was already
determined in step 3. The contribution from this collision event is the product of the probability of
exposure and the probability of a severe crash outcome in V2. The collision with a V1 in the
category of c.c.< 1400 cm?, is 0.147% (0.0052x0.2825x100). The collision with a V1 in the category
of 1.4<c.c.< 2000 cm® is 0.277% (0.0058x0.4720x100). The collision with a V1 in the category of
c.c.2 2000 cm® is 0.171% (0.0021x0.8217x100).

Step 7: Overall safety score
The overall safety score is the result of steps 1 through 6. OSS includes three components scores:

e risk associated with the vehicle being involved in a single-vehicle crash, estimated in step
4

e risk associated with vehicle being V1 and involved with the tree categories of engine size
of V2, estimated in step 5;

e and risk associated with vehicle being V2 and involved with the tree categories of engine

size of V1, estimated in step 6.

Using the same example, mentioned in the above steps, the overall safety score for a vehicle that
is with 1 yr old and with an engine size 1300 cm®capacity would be: 0.520% + 0.135% + 0.199% +
0.125% + 0.147% + 0.277% + 0.175%. Thus, the vehicle will achieve a score of 1.573%.

Step 8: SEG vehicle safety rating

Two approaches were established for SEG safety rating: one is based on the overall safety score
the other alternative is based on the vehicle severity risk score (SRS). The evaluation of
preliminary results reveled that safety rating was very dependent on the risk of exposure, which is
affected by the vehicle category distribution in the crash sample. SRS is part of OSS, however
does not take into account the risk of exposure, but focuses exclusively on vehicle
crashworthiness. SRS is calculated as the mean value for the probability of risk of severity for each
target component: FatalSIK, FatalSIKV1 and FatalSIKV2, as the subject vehicle is considered in

single-vehicle crash event, as vehicle V1 in a collision and as vehicle V2 in a collision, respectively.
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SEG rating based on OSS was defined as: good, if OSS is lower than 1.99%, moderate if OSS is
lower than 2.75% and poor if OSS is higher or equal to 2.75%. The criteria to establish the limit
values to differentiate between good and moderate and moderate and poor safety ratings were
established based on the maximum and minimum values of OSS using a training data scenario,
[0.887%; 3.915%]. The lowest value, 0.887%, is associated to the vehicle with best safety
performance, on the other hand, the highest value, 3.915%, is associated with the poorest safety
performance for the vehicles tested with the scenario based analysis. Hence, based on the OSS
range scale, the value of 1.99% was selected as cut off point for vehicle differentiation between
good and moderate safety ratings. The value of 2.75% was selected as cut point for vehicle
differentiation between moderate and poor safety ratings. As result, SEG safety rating based on
OSS was defined as good, if OSS is lower than 1.99%, moderate if lower than 2.75% and poor if

equal or higher than 2.75%.

A similar criteria set was established for SRS evaluation based in its training data scenario range
[0.457; 0.559]. SEG safety rating based on SRS was defined as: good, if SRS is lower than
0.503%, moderate if OSS is lower than 0.521% and poor if OSS is higher or equal to 0.521%. The
criteria to establish those values were based on the maximum and minimum values of SRS using a
training data scenario, [0.457%; 0.559%].

9.1.2 Vehicle’s fuel efficiency rating

SEG designed methodology for vehicle fuel efficiency evaluation is based on CO, emissions, since
they are a direct function of vehicles fuel use [32, 147]. Vehicle fuel efficiency evaluation was

performed following step 1 through 3.

Step 1: CO, estimation based on vehicle category

For each vehicle category, CO, emissions (g.km™) were calculated using Model-E-1 and Model-E-
2, which were developed in section 8.2.2.1. For LPGV CO, emissions were estimated using

equation 8.3, whereas for LPDV, CO, emissions were estimated using equation 8.4.

Step 2: CO, criteria for vehicle fuel efficiency rating

The criteria to assess vehicles CO, emissions were developed based on a recent study from Kok
[72], in which the author published CO, emissions by vehicle class (from mini cars to executive and
SUVs) and fuel type from 2000 to 2010 [72]. This data was further combined to develop Table 9.1.
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Table 9.1 — Criteria for CO, (g.km™) evaluation in the SEG vehicle efficiency rating.

Vehicle CO, (g.km™) by year

Category 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

LPGV 179 179 176 176 174 173 167 165 156 146 138

LPDV 159 158 161 163 161 161 163 163 158 152 128

For gasoline vehicles, the emissions values estimated from 2000 to 2004 were used to estimate an
average CO, emission value, 177 g.km'l, as shown in Table 9.1. As expected, older vehicle models
emitted more CO,. Thus, the value of 177 g.km'l was used to set the criteria for the lowest and
middle scores for fuel efficiency differentiation. On the other hand, advanced efficiency technology
in newer vehicles models is known to reduce CO, emissions and fuel use. Thus, the emissions
values from 2005 to 2010 were used to estimate the average CO, emissions, 158 g.km'l, as shown
in Table 9.1.

For diesel vehicles the procedure was quite similar. CO, emissions values from 2000 to 2005 were
used to estimate the average CO, emission value, 161 g.km™, as observed in Table 9.1. On the
other hand, the emissions values from 2006 to 2000 were combined into the average value of 153

g.km™, to differentiate a vehicle from being fuel efficient or not.

Step 3: SEG vehicle fuel efficiency rating

Vehicle fuel efficiency rating, based on estimated CO, average values (from Step 2 of section
9.1.2) were further explored to establish rating criteria as follows. For example, for gasoline
engines, a vehicle will reach a good rating for fuel efficiency if the CO, emissions are lower than
158 g.km™. A vehicle with CO, emissions equal or above 158 g.km™and lower than 177 g.km™, will
reach the moderate rating. On the other hand, a vehicle with emissions equal or above 177
gCO,.km™ will be scored as poor for fuel efficiency. A similar procedure was developed for diesel
vehicles fuel efficiency rating, based on the estimated CO, average values for a diesel vehicles
fleet. Diesel engines with CO, emissions lower than g.km"l will raise a good efficiency rating, CO,
emissions equal or above 153 g.km"l and lower than 161 g.km"l will reach a moderate rating and

CO, emissions equal or above 161 g.km'1 will reach a poor rating.

9.1.3 Vehicle’s Green Emissions Rating

SEG design methodology for vehicle green rating is based on the CO emissions for gasoline
vehicles and NO, and PM for diesel vehicles. Vehicle green evaluation is described through step 1

to step 3.

160



SEG_Integrated Analysis Results

Step 1: Selected pollutants estimation for each vehicle category

For each vehicle category, air emissions (g.km™) were calculated using Model-E-4, Model-E-5 and
Model-E-7 developed in section 8.2.2.2. For LPGV, CO emissions were estimated using Equation
8.6. For LPDV, NO, and PM emissions, estimations were obtained using Equations 8.7 and 8.9,

respectively.

Step 2: Criteria for green evaluation

The SEG rating for green evaluation is designed using emission factors for passengers cars and
light duty vehicles, extracted from CORINAR [147]. For the green rating criteria the emissions limits
are established taking as reference Euro 4 and Euro 2. Euro 4 vehicles benefit from advanced
engine technology and improvements in the after treatment monitoring (for NO, reduction and PM
oxidation) and control [147]. Thus, Euro 4 emission factors were chosen to differentiate between
good and moderate score. On the other hand, Euro 2 vehicles were equipped with three-way
catalyst but they were not equipped with particle filters [147]. Thus, Euro 2 emission factors were

chosen to differentiate between moderate and poor score.

For gasoline vehicles, the green evaluation focuses CO emissions. As an example of green rating
for a gasoline vehicle, let is imagining that the engine size is 1300 cm?®. Thus, the vehicle will fell in
the engine size corresponding to c.c.<1400 cm?®. For this engine size category and LPGV, if the
vehicle emits lower than 0.710g gCO.km'l, the vehicle is scored with good. For the same vehicle
category, if the emissions are between 0.710 g.km'lsCO<2.39 g.km'l, than the attributed score is

moderate. If CO 22.39 g.km'l, than the attributed score is poor.

For diesel vehicles, the green evaluation focuses on NO, and PM emissions, and for LPDV the
criteria evaluation values are independent of engine size, based on CORINAR [147]. Regarding to
NO, analysis, if emissions are lower than 0.601 g.km™, the vehicle is scored with good. If emissions
are between 0.601 g.km'lsNOX<0.726 g.km'l, than the attributed score is moderate. If NO, =0.726
g.km'l, than the attributed score is poor. Regarding to PM analysis, if emissions are lower than
0.0324 g.km"l, the vehicle is scored with good. If PM emissions are between 0.0342 g.km'l
<PM<0.0549 g.km™, than the attributed score is moderate. If PM 20.0549 g.km™, than the

attributed score is poor.

Step 3: SEG vehicle green emissions rating

For gasoline engines, the following ranges: <0.710 gCO.km™, 0.710g.km™<C0<2.39 g.km™, and
22.39 gCO.km'l, will lead to the attribution of good, moderate or poor green ratings, respectively.
However, for diesel engines, the vehicle green final rating is the combination of NO, and PM
emissions scores. Table 9.2 illustrates the final green rating for diesel vehicles evaluation, taking

into account the score attributed based on NO, and PM emissions values. If a vehicle has good for
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NO, emissions evaluation and good for PM emissions evolution, the final green score will be good.
However, in order to render the SEG rating more demanding, the following rule was established: a

“lower” score is dominant when combined with a “higher” score.

Table 9.2 — Light passenger gasoline and diesel vehicles final green emissions rating.

Vehicle type CcOo NOy PM Final green rating

Good - - Good

Gasoline Vehicle Moderate - - Moderate
Poor - - Poor
Good Good Good

Moderate Good Moderate

Poor Good Moderate

Good Moderate Moderate

Diesel vehicle - Moderate Moderate Moderate
Poor Moderate Poor

Good Poor Moderate
Moderate Poor Poor
Poor Poor Poor

9.1.4 SEG integrated rating

The criteria and rating score for SEG integrated analysis are summarized in Table 9.3. The best
rating corresponds to the brightest yellow (since yellow is the standard color for crash testing) and
is associated with the “Good” rating. Thus, the brightest yellow is adopted for all the three domains
(safety, efficiency and green) reaching “Good”. The medium rating is represented by middle
yellowish, following by orange (which denotes awareness), for “Moderate” and “Poor” ratings,
respectively. SEG rating leads to a qualitative classification of vehicle performance for each domain
being analyzed: safety, efficiency and green. The final output of the SEG analysis, described on
previous sections, is a combined score which transforms vehicle SEG rating into a quantitative

score, designed as SEG. SEG final combined score assumes two principles:

1. On a descending order, the lowest number corresponds to a better vehicle performance,
whereas the largest number relates to the poorest performance.

2. The combined score for a vehicle reaching the poorest rating for all the three domains will
end up being one, assuming that the weighting factor attributed to each domain is the

same.
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Table 9.3 — Ranting criteria for SEG integrated analysis based on vehicle category.

Evaluation
criteria

1 Light Passenger Vehicle; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Overall Safety Score; 5 Severity Risk Score; 6 Carbon Dioxide emissions in g/lkm; 7 Carbon Monoxide emissions in

g/km; 8 Nitrogen Oxides emissions in g/km; 9 Particulate Matter in g/km.
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Domain SAFETY EFFICIENCY GREEN
Vehicle LPV* LPGV? LPDV? LPGV? LPDV?
category
Target 0SS%* SRS%° CO° (g/km) CO’ (g/km) NO (g/km)® PM (g/km)®
c.c.< 1400 cm®: C0<0.710
0SS<1.99 SRS<0.503 CO,<158 CO,<153 1400<cc<2000 cm®; C0<0.658 NO,<0.601 PM<0.0342
c.c.> 2000 cm®: C0<0.549




Chapter 9

Table 9.4 shows the conversion of SEG quantitative rating into qualitative score. Similarly to OSS,

as SEG increases, vehicle’s performance decreases.

Table 9.4 — Converting SEG quantitative rating into a qualitative score.

SEG rating

Qualitative

Good

Quantitative

0.1

0.5

Equation 9.1 shows the generic calculations for SEG final combined score.

SEG =

_ SR*WFs + ER « WF; + GR x WF

WFs + WF; + WF,

Equation 9.1

Where: “SR” is the safety rating , “WFs” is the weighting factor attributed to the safety rating, “ER”

is the efficiency rating, “WF¢” is the weighting factor for efficiency rating and “GR” is the green

rating, “WFs” is the weighting factor for green rating. Since SEG aims to provide a flexible

classification tool for vehicle performance evaluation, the weighting factor attributed to each domain

can be changed, as illustrated in Table 1.1. In scenario 1, Sc.1, is assumed for a neutral

user/consumer which would tend to equate each evaluation domain with the same weight, 0.333. In

scenario 2, Sc.2, for a user more interested in vehicle safety evaluation, SEG combined score

could be calculated given a weighting factor of 75% to the safety rating and 12.5% to efficiency

rating and 12.5% to green rating, and so forth, as explained in Table 9.5.

Table 9.5 — Weighting factors for SEG final combined score applying different users profiles

SEG final combined score

User profile
WFs WFe WFg
Scl. Neutral user 0.333 0.333 0.333
Sc2. Safety-Conscious user 0.750 0.125 0.125
Scenarios
0.125 0.750 0.125
0.125 0.125 0.750

The final combined score, SEG, ranges from 0.1 to 1, or 10-100%. Similarly to OSS, as SEG
increases, vehicle’'s performance decreases. A vehicle achieving a SEG rating of “Good”, for

safety, efficiency and green performance, respectively, will lead to the quantitative scores: 0.1, 0.1,

and 0.1, yielding a SEG of 10%, assuming that weighting factor is 0.333. On the other hand, a

vehicle raising Poor performance for all the three domains will be scored with a SEG of 100%.
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9.2 Results

SEG rating results are integrated in to a scenario base analysis covering several situations. This
scenario base was carried out to allow conducting SEG evaluation for the vehicles categories
LPGV and LPDV, covering the three engine size categories and emissions standards from Euro 1
through Euro 5. Based on the levels of service standards (LOS) A and F from the Highway
Capacity Manual, two speed profiles were assumed for the Portuguese motorways: 120 km.hr
and 60 km.hr, [149]. Whereas 120 km.hr* would represent free flow conditions, and 60 km.hr*
would represent unusual traffic conditions on motorway and/or when the driver is taking the ramp

for exit, and the maximum allowed speed is 60 km.hr™.

The scenario base is presented as a matrix, where the variables/information added was as follows:
vehicle category, vehicle’s engine size and age, vehicle’s Euro norm, road speed, emissions for
selected pollutants, and vehicle’s safety analysis for vehicle involvement in a crash as a single
vehicle and vehicle involvement in two-vehicle collisions. Since engine size affects not only vehicle
emissions but its safety, scenarios were created to cover all engine size categories. Regarding the
safety analysis, crash severity was estimated for the situations were only the vehicle being
analyzed was involved in the crash event, and thus the effects of the vehicle belonging to smaller,
medium and larger engine sizes categories are model. In addition, for a scenario where the vehicle
was involved in a collision with another vehicle, crash severity was estimated taking into account
the possible combinations of engine size category for the counterpart. The resulting scenario base
matrix has 73linesx74 columns. Only selected scenarios are discussed in this section. First, SEG
results for vehicle safety analysis are discussed. Second, SEG results for Euro 1 and Euro 5
vehicles safety and environmental performances driving at 120 km.hr* vs 60 km.hr™ are presented.
Third, results for final combined score, SEG, are presented covering selected scenarios for

different users and/or consumers profiles.

9.2.1 Safety analysis

Vehicle safety score is presented for both alternative measures: SRS and OSS, (as explained in
section 9.1.1, step 8). SRS is the mean value for severity risk calculated for each target
component, FatalSIKV1 and FatalSIKV2. On the other hand, OSS is based on a conditional
probability that takes into account the risk of a serious and/or fatality in the vehicle being analysed
and also the risk of exposure to the crash event for the vehicles categories involved. For the final
combined score, vehicle safety rating is provided by OSS measure. Results for vehicle safety score
is presented in Table 9.6. Results are presented for vehicles at each engine size category and then

by decreasing order of vehicle age.

Vehicle safety rating would be the same for both driving scenarios, 120 km.h™and 60 km.h™, hence

results in Table 9.6 could be apply to those speed levels. It could be expected that vehicle safety
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performance would be poor at 120 km.h™, and it could, if vehicles were truly driving at 120 km.h™ at
the time of the crash. No doubt collision speed is a very important variable for crash severity
analysis; however speed data is not available from police crash records. For vehicle’s injury
severity risk modelling, legal speed limit was used, but this variable was not selected by the crash
severity prediction models. Even though speed would be selected by the models, that variable
would be a categorical variable informing on the legal speed limit only and not on vehicle’s driving

speed at the moment of the crash.
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Table 9.6 — SEG results for vehicle safety.

As V1 As V2
Subject As Single Safety score Safety rating
ccV2<1400cm®  1400<cc<2000cm®  ccV222000cm® | ccV2<1400cm®  1400scc<2000cm®  ccV222000cm®
cc(em®!  Age(y)® |FatalSIK® CS%* | FatalSIKV1® CS%° FatalSIKV1® CS%’ FatalSIKV1® CS%® [FatalSIKV2® CS%™ FatalSIKV2® CS%' FatalSIKV2® CS%* | SRS™®  0sSs“% SRS® oss*
14 0.637  1.361 | 0.340 0.209  0.443 0.309 0.653  0.194 0.283 0.190 0.472 0.357 0.822  0.220 0.521 2.839
10 0.484 1.033 | 0.340 0.209 0.443 0.309 0.653 0.194 0.283 0.190 0.472 0.357 0.822 0.220 0.500 2.511 Good
1.3 0.369  1.264 | 0.340 0.272  0.443 0.402  0.653  0.252 0.283 0.192 0.472 0.361 0.822  0.222 0.483 2.964 Good
4 0.267 0.749 | 0.340 0.135 0.443 0.199 0.653 0.125 0.283 0.147 0.472 0.277 0.822 0.171 0.469 1.803 Good Good
1 0.185 0.520 | 0.340 0.135 0.443 0.199 0.653 0.125 0.283 0.147 0.472 0.277 0.822 0.171 0.457 1.573 Good Good
14 0.754 1.543 | 0.340 0.220 0.443 0.325 0.653 0.204 0.283 0.182 0.472 0.342 0.822 0.211 0.538 3.028
10 0.620 1.269 | 0.340 0.220 0.443 0.325 0.653 0.204 0.283 0.182 0.472 0.342 0.822 0.211 0.519 2.754
1.7 0.505 1.819 | 0.340 0.310 0.443 0.458 0.653 0.287 0.283 0.257 0.472 0.485 0.822 0.298 0.503 3.915
4 0.389 1.176 | 0.340 0.225 0.443 0.332 0.653 0.208 0.283 0.221 0.472 0.415 0.822 0.256 0.486 2.833
1 0.284  0.859 | 0.340 0.225  0.443 0.332 0.653  0.208 0.283 0.221 0.472 0.415 0.822  0.256 0.471 2516
14 0.903 0.643 | 0.340 0.074 0.443 0.110 0.653 0.069 0.283 0.068 0.472 0.128 0.822 0.079 0.559 1.169
10 0.832 0.592 | 0.340 0.074  0.443 0.110 0.653 0.069 0.283 0.068 0.472 0.128 0.822 0.079 0.549 1.119
2.5 0.756 1.076 | 0.340 0.117  0.443 0.173 0.653 0.108 0.283 0.128 0.472 0.240 0.822 0.148 0.538 1.990
4 0.659 0.352 | 0.340 0.090 0.443 0.133 0.653 0.083 0.283 0.072 0.472 0.135 0.822 0.083 0.525 0.947
0.547 0.292 | 0.340 0.090 0.443 0.133 0.653 0.083 0.283 0.072 0.472 0.135 0.822 0.083 0.509 0.887

1 Engine size of vehicle being analyzed; 2 Age of vehicle being analyzed; 3 Probability of a serious injured and/or killed in the crash involving only the subject vehicle; 4 Component associated with the risk of a single

crash event; 5 Probability of a serious injured and/or killed in vehicle V1; 6 Component associated with the risk of V1 involvement with a counterpart with ccV2<1400 cm®; 7 Component associated with the risk of V1

involvement with a opponent with 14<ccV2<2000 cm®; 8 Component associated with the risk of V1 involvement with a counterpart with ccV222000 cm®; 9 Probability of a serious injured and/or killed in vehicle V2; 10

Component associated with the risk of V2 involvement with a counterpart with ccV1<1400 cm®; 11 Component associated with the risk of V2 involvement with a counterpart with 1400<ccV1<2000 cm?; 12 Component

associated with the risk of V2 involvement with a counterpart with ccV122000 cm®; 13 Severity Risk Score; 14 Overall Safety Score, (see ratings in Table 9.3).
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The highest OSS was 3.915, associated with 7 yr vehicles and 1700 cm?® engines, Table 9.6. On
the other hand, the best safety score, lowest crash severity and risk of exposure was at 0.887, for
the newest and larger engine size vehicle category, 1 yr vehicles with 2500 cm® engine. OSS
calculations are dependent on vehicles characteristics, but also in vehicles category distribution in
the sample. For OSS analysis, the worst safety performance was estimated for vehicles in the
categories: 1400<c.c.<2000 cm® and 5<Age<10 yr. The best safety performance was predicted for
vehicles in the categories: ¢.c.=2000 cm®and 1<Age<5 yr. For vehicles categories, 1400<c.c.<2000
cm® and 5<Age<10 yr, the probability FatalSIK was 0.505. However, these vehicles categories
represent the highest fraction at the sample, 15.7%. On the other hand, for the categories,
€.c.22000 cm® and 1<Age<5 yr, the probability FatalSIK was higher, 0.547. Nonetheless, these
vehicles categories represent the lowest fraction at the sample, 4.0%. Based on SRS analysis, the
highest severity risk, 0.559, was associated to the oldest vehicles in the largest engine size
category: 14 yr and 2500 cm?®, Table 9.6. The lowest severity risk, 0.457, was attributed to the
newest vehicle models in the smallest engine size category: 1 yr and 1300 cm®. The SRS results
clearly show that a better crashworthiness (lowest risk) is associated to the newest vehicle models,
showing that auto-industry have achieved significant improvements during the last years. These
results are consistent with previous work that claimed that recent cars protect their drivers better
than older cars [49, 59-61]. During the last years the auto industry has significantly improved
vehicles’ crashworthiness (secondary safety) but also, active safety. These technological
developments involve the structure of the vehicles, with progressive crumple zones and a more
rigid survival cell, restrain systems (as pretensioning seat belts) and impact absorption systems (as
airbags) [49].

Table 9.6 further illustrates the differences in SEG safety rating based on the SRS or OSS
measures. For instance, a vehicle with 2500 cm®and 14 yr old yield a poor safety rating using SRS,
but a good safety performance using OSS measure. As already discussed, older vehicles have
poorest crashworthiness. In addition, larger engine size vehicles are associated to more powerful
vehicles and they have been linked to potentiate speeding [64]. Hence, crashes involving that
vehicle category can increases the probability that its occupants would sustain severe injuries
and/or fatalities. In addition, they impose more risk the other vehicle involved in the collision.
However, SEG using OSS has rating that vehicle category, c.c.22000 cm?® and 1<Age<5 yr, with
good safety performance, mainly because the probability that as crash is going to involved that
category is low. Thus, the risk of exposure is reduced, and hence OSS takes benefit of that, as
explained above. It is important to mention that, as more crashes would be added to the crash
sample, the probability of crash severity and risk of exposure would become more stable and SRS

and OSS would be more accurate.
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9.2.2 Environmental performance

Vehicle’'s emissions models developed in Chapter 8 were applied to estimate emissions for
selected pollutants based on vehicles categories and driving scenarios. Following, SEG
methodology (see sections 9.1.2 and 9.1.3) was used in the environmental performance evaluation
of those vehicles categories. In addition to the analysis of vehicles by engine size and age
category, Euro Norms were added as a complement of vehicle’s age. Although environmental
performance results were obtained for all the vehicles categories discussed in section 9.2.1, for the
environmental analysis vehicle’s 14 yr old and 1 yr old categories are presented in order to allow
the discussion for the earlier and most recent Euro Norms. In Table 9.7, the results for vehicle
environmental performance are presented for selected vehicles categories complying with Euro 1
and Euro 5 emission standards, assuming free flow (120 km.h'l) and congested scenarios on

motorway (60 km.h™).

Regarding to fuel consumption and emissions, vehicles are clearly affected by the driving speed
scenarios using the emissions estimation models. For Euro 1 vehicles driving in free flow
conditions, 120 km.h™, fuel consumption was significantly higher compared to congestion (60 km.h
1). For example, fuel consumption, expressed in terms of CO, emissions, for a gasoline vehicle with
1.7 L and 14 yr old, was 189.11 g.km™ and 167.48 g.km™, at 120 km.h™ and 60 km.h™,
respectively, Table 9.7. On the other hand, for 1 yr old car complying with Euro 5, in the categories
mentioned above, fuel consumption was 159.25 g.km™ and 127.65 g.km™, at 120 km.h™* and 60
km.h™, respectively, Table 9.7.

Concerning emissions, for LPGV, a Euro 1 vehicle with 1.3L engine, driving at 60 km.h™*, CO
emissions were lower than at 120 km.h™, 2.117 g.km™ and 2.874 g.km™, respectively. The same
trend was found for Euro 5 vehicles under the same driving scenarios. Comparing CO emissions
for LPGV Euro 5 and Euro 1, there were a noteworthy reduction of this pollutant, 2.783 g.km™ and
0.885 g.km™, as shown in Table 9.7 at 120 km.h™. Similarly to LPGV, for LPDV emissions
reductions were also detected from the 120 km.h™ to 60 km.h™ driving scenarios and when
comparing older vehicle models with newer ones. Assuming that Euro 5 and Euro 1 vehicles were
driving under the same conditions, a Euro 5 vehicle would emit less 0.244 NO, g per kilometres
driven than a Euro 1 vehicle, 0.600 g.km™ and 0.844 g.km™, respectively
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Table 9.7 — Selected results for a scenario using Euro 1 and Euro 5 vehicles analysis in SEG methodology.

Subject Vehicle Characteristics Emissions (g.km™) for 120 (km.h™): Emissions (g.km™) for 60 (km.h™) Safety
Vehicle category Subiject vehicle Efficiency Green Efficiency Green
Norm*
LPGV? LPDV®  c.c(cm®* Age (yr)° co,° co’ NO® PM° co;’ co’ NO,® PM® SRS™ oss™
Euro 1 1 0 1.3 14 173.679 2.874 NA NA 152.042 2.117 NA NA 0.521 2.839
1 0 1.7 14 189.114 2.874 NA NA 167.477 2.117 NA NA 0.538 3.028
1 0 2.5 14 197.453 2.874 NA NA 175.816 2.117 NA NA 0.559 1.169
Euro 5 1 0 1.3 1 146.254 0.885 NA NA 127.646 0.559 NA NA 0.457 1.573
1 0 1.7 1 159.529 0.885 NA NA 140.921 0.559 NA NA 0.471 2.516
1 0 2.5 1 166.700 0.885 NA NA 148.092 0.559 NA NA 0.509 0.887
Euro 1 0 1 1.3 14 176.092 NA 0.844 0.152 157.518 NA 0.628 0.137 0.521 2.839
0 1 1.7 14 176.092 NA 0.844 0.152 157.518 NA 0.628 0.137 0.538 3.028
0 1 2.5 14 206.074 NA 0.844 0.152 187.500 NA 0.628 0.137 0.559 1.169
Euro 5 0 1 1.3 1 137.792 NA 0.600 0.005 120.265 NA 0.444 0.003 0.457 1.573
0 1 1.7 1 150.295 NA 0.600 0.005 132.768 NA 0.444 0.003 0.471 2.516
0 1 2.5 1 157.049 NA 0.600 0.005 139.523 NA 0.444 0.003 0.509 0.887

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed; 6 Carbon Dioxide emissions in g/km; 7
Carbon Monoxide emissions in g/km; 8 Nitrogen Oxides emissions in g/km; 9 Particulate Matter in g/km; 10 Severity Risk Score; 11 Overall Safety Score; NA Means that the pollutant was not applicable to the vehicle

category.
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9.2.3 SEG integrated ratings

In this section, SEG rating results are first presented as a qualitative evaluation of vehicles’
performance. Additionally, SEG final combined score, as quantitative score are also presented.
Since SEG aims to provide a flexible classification tool for vehicle performance evaluation based
on the user and/or consumer profile, vehicles’ performance is discussed based on different users

profiles and domain interests.

9.2.3.1 SEG rating

SEG ratings results are shown in Table 9.8. When comparing Euro 5 and Euro 1 vehicles,

significant differences in safety and environmental performances were found, as explained next.

First results are discussed for gasoline vehicles at 120 km.h™ driving scenario. In Table 9.8, for
vehicles in the older category (complying with Euro 1) with the smaller engine size category,
c.c.<1400 cm®, SEG rating was: poor, moderate and poor. On the other hand, Euro 1 vehicles with
€.c.22000 cm®, SEG rating was: good, poor and poor. While for the smaller engine size category,
vehicles reached moderate fuel efficiency performance, for the larger engine size, vehicles
revealed poor efficiency performance, since fuel consumption was larger. For vehicles complying
with Euro 5 with ¢.c.<1400 cm®, SEG rating was: good, good and moderate. For Euro 5 vehicles
with ¢.c.22000 cm®, SEG rating was: good, moderate and moderate. For newer vehicles, safety
improvements as well as environmental performance are evident. For the larger engine size
category, vehicle’s use more fuel for driving in the same conditions, as vehicles with the smaller
engine size. SEG results showed that newer models are safer, suggesting protecting its occupants
in ran off road or rollover crash, but also when involved in collision with other vehicle. SEG safety
findings supports other research that concluded that drivers of recent cars are better protected than
drivers of older vehicles [49, 59, 61, 99]. The improved vehicle efficiency when comparing the
earlier Euro 1 models with the recent Euro 5 models could be explained due to the fact that newer
vehicles when introduced in the market benefit from advanced engine technology and optimize fuel
injection leading to a better fuel efficiency. Improvements in the after treatment monitoring and
control yield to emissions reductions in general, such as on CO emissions, contributing to
improvements in environmental performance. These findings are consistent with previous research,
showing that during the last years, improvements in vehicles design have contributed to improve

green performance allowing significant reductions in exhaust emissions [37, 62].

Second, for diesel vehicles at 120 km.h™ driving scenario, no significance differences were found
between diesel and gasoline vehicles in the older vehicle category (Euro 1), with the exception that
for the smaller engine size category, c.c.<1400 cm?®, SEG rated gasoline vehicles as more efficient
than diesel vehicles, moderate and poor, respectively. For vehicles complying with Euro 5,

environmental performance was better than for gasoline vehicles. As mentioned, safety
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performance is the same as for gasoline vehicles, since safety was not influenced by fuel type. For
instance, while for gasoline vehicles, green performance was moderate for all the three engine size
categories, for diesel ones were good for the smaller and medium size categories. SEG finding is
consistent with previous work, revealing inherent efficiencies of diesel engines and higher energy
content of diesel [150]. For green performance, gasoline vehicles achieved a moderate rate for all
the three engine size categories, whereas diesel vehicles raised good performance for all
categories. Whereas none of the gasoline vehicles reached a good rating simultaneously for all the
three domains, diesel vehicles raised good rating for safety, efficiency and green, for the category

€.c.<1400 cm®.

Third, considering 60 km.h™ driving scenario, vehicles safety rating was the same as for the 120
km.h, as previously explained in section 9.2.1. However for vehicles environmental performance,
technological improvements were significant. For Euro 1 vehicles with c.c.<1400 cm?®, SEG rating
was: poor, good and moderate, whereas for ¢.c.22000 cm® SEG rating was: good, moderate and
poor, Table 9.8. For vehicles complying with Euro 5 with ¢.c.<1400 cm?®, SEG rating was: good,
good and good. For Euro 5 vehicles with c.c.22000 cm® SEG rating was: good, good and
moderate. Newer vehicles models with the smaller engine size category driving at lower speed

yield to a good rating for all the three domains.

For diesel vehicles, in general SEG ratings improved and more vehicle categories raised good
rating for safety, efficiency and green performance simultaneously. For example, vehicles
complying with Euro 5 and c.c.<1400 cm®, SEG rating was: good, good, good, for both driving
scenarios: 120 km.h™ and 60 km.h™, as observed in Table 9.8. As far as safety performance,
results were not affected neither by the scenario speed, neither by vehicle’s fuel type, since crash

severity prediction were not function of speed neither of fuel type.
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Table 9.8 — SEG rating results for Euro 1 and Euro 5 vehicle’s safety, fuel efficiency and green performances.

Vehicle Rating results for 120 (km.h™) Rating results for 60 (km.h™)
Norm" LPGV? LPDV® cc(cm)'  Age (y)° SAFETY SRS®|SAFETY 0SS’ |EFFICIENCY®
Euro 1 1 0 1300
1 0 1700 14
1 0 2500
Euro 5 1 0 1300
1 0 1700 1
1 0 2500
Euro 1 0 1 1300
0 1 1700 14
0 1 2500
Euro 5 0 1 1300
0 1 1700 1
0 1 2500

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed;6 Safety rating using Severity Risk Score; 7

Safety rating using Overall Safety Score.
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9.2.3.2 SEG final combined score

When evaluating vehicle’s performance with SEG combined score, results are similar to SEG
rating, although combined into a single score. Final combined score for SEG results are presented
in Table 9.9, using similar selected scenarios to the previous ones used for SEG rating. In addition,
based on Table 9.5 four profiles were added to differentiate vehicle performance evaluation
according to which the user/consumer favors or not: neutral, safety, efficiency or ecology. For
simplicity, results are shown for free flow conditions, 120km.hr?, considering normal traffic
conditions for Portuguese motorways. Although, driving scenarios in roads with different speed
limits are possible to be considered.

For gasoline vehicles, (LPGV), none vehicle had reached the best combined performance score,
0.100, in Table 9.9. For newer vehicles in the smaller engine size category, c.c.<1400 cm®, SEG
was very good, 0.150, either from the perspective of a safer profile, either from the perspective of
an efficient profile (whom may be concerning with vehicles fuel consumption). For an ecologist
user, the vehicles in this category could not be desirable since SEG was 0.400. However, for a
neutral user, SEG of 0.234 could be accepted as a sufficient vehicle performance.

For diesel engines, (LPDV), the newer vehicles complying with Euro 5 and in the small engine size
category reached the best SEG performance, achieving 0.100 for all the profiles, in Table 9.9. As
explained in section 9.1.4, the best score, maximum vehicle performance, is attributed to vehicle’s
reaching 0.100. Thus, vehicles in this category could result very appealing for any user style: the
safety-conscious, or eco-conscious user, and even for the neutral user. For a user to whom vehicle
safety performance would be the most important, either the above category, either Euro 5 vehicles
with the larger engine size category would be preferable, SEG combined scores of 0.100 and
0.150, respectively. For example, a safety-conscious consumer interested in a larger car for work
proposed or family comfort, and who seeks for safety as a priority, new diesel vehicles in the
engine size category c¢.c.22000 cm® would be recommend, since the SEG combined score for this
category was 0.150. However, for a user more interested in fuel consumption, efficiency-conscious
user, this category would not be so appealing, SEG combined score of 0.400. For the efficient user,
whom saving fuel is the most important, to would be recommended to shows between the following
categories: On the other hand, for an environmental-friendly user, Euro 5 vehicles in the
intermediate engine size category, 1400 cm? <c.c.<2000 ¢cm®, would result very appealing, due to
SEG of 0.150 for both efficiency-conscious user and eco-conscious user. Even though this vehicle
category would save fuel and emissions, a user and/or consumers in favor of safety, could not

consider this category so tempting due to 0.4 SEG score.

As presented above, vehicle’s performance evaluation using SEG combined score offers an easier
approach for faster user compression since vehicle evaluation is summarized into a single score.
On a different approach, SEG rating exhibits an individualized and separated evaluation of safety,

fuel efficiency and green performance.
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Table 9.9 — Selected combined score results for a scenario using vehicles Euro 1 and Euro 5.

Analysis for 120 (km.h™) Analysis for 60 (km.h™)
Vehicle SEG combined score SEG combined score
SEG quantitative score SEG quantitative score
User profile User profile
Norm'  LPGV® LPDV® c.c(cm®)® Age (yn)° Safety Efficiency Green| Sc1® | Sc2’ Sc3® Sc4® |Safety Efficiency Green | Sc1® | Sc2’ | Sc3® | sc4®
Euro 1 1 0 1300 1 0.5 1 0.833 0.938 0.625 0.938 1 0.1 0.5 0.533 | 0.825 0.263 0.513
1 0 1700 14 1 1 1 1 1 1 1 1 0.5 0.5 0.666 | 0.875 0.563 0.563
1 0 2500 0.1 1 1 0.700 0.325 0.888 0.888 0.1 0.5 1 0.533 | 0.263 | 0.5125 | 0.825
Euro 5 1 0 1300 0.1 0.1 0.5 0.234 0.150 0.150 0.400 0.1 0.1 0.1 0.100 | 0.100 0.100 0.100
1 0 1700 1 0.5 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.1 0.1 0.233 | 0.400 0.150 0.150
1 0 2500 0.1 0.5 0.5 0.366 0.200 0.450 0.450 0.1 0.1 0.5 0.233 | 0.150 0.150 0.400
Euro 1 0 1 1300 1 1 1 1 1 1 1 1 0.5 1 0.832 0.938 0.625 0.938
0 1 1700 14 1 1 1 1 1 1 1 1 0.5 1 0.832 0.938 0.625 0.938
0 1 2500 0.1 1 1 0.700 0.325 0.888 0.888 0.1 1 1 0.699 0.325 0.888 0.888
Euro 5 0 1 1300 0.1 0.1 0.1 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.100 | 0.100 0.100 0.100
0 1 1700 1 0.5 0.1 0.1 0.233 0.400 0.150 0.150 0.5 0.1 0.1 0.233 | 0.400 0.150 0.150
0 1 2500 0.1 0.5 0.1 0.233 0.150 0.400 0.150 0.1 0.1 0.1 0.100 | 0.100 0.100 0.100

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed; 6 Neutral user; 7 Safety-Conscious user; 8

Efficiency-Conscious user; 9 Eco-Conscious user.
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9.3 Concluding Remarks

Based on the crash sample, SEG major findings for a scenario base analysis are summarized as

follows.

As SEG rating, gasoline vehicles in an older category (complying with Euro 1) with the smaller
engine size category, c.c.<1400 cm?®, achieved: poor, moderate and poor. Euro 1 vehicle with
€.c.22000 cm®, achieved: good, poor and poor. Smaller engine size use less fuel then larger
engines. For these vehicles, although in the same age category, vehicles with larger engine size
revealed good safety performance, whereas vehicles in the smaller engine size showed poor
performance. Thus, larger vehicles (probably with more weight and extra length) seemed to offer
better protection to its occupants. Recent vehicles (complying with Euro 5) with c.c.<1400 cm?®
achieved a SEG rating as: good, good and moderate. Also Euro 5 vehicles, but with ¢.c.=2000 cm?,
SEG rating was: good, moderate and moderate. Thus, for newer vehicles, safety performance
seemed not to be affected by engine size category, but it affects fuel consumption. When
comparing the earlier vehicles with more recent vehicles in the crash sample, improvements in
vehicle design, and fuel injection moved vehicles towards performance optimization. For diesel
vehicles, SEG rating revealed better performance than the same age and engine size categories in
gasoline vehicles. Several categories reached good rating for all the three domains, whereas for
gasoline vehicles only Euro 5 vehicles with c.c.<1400 cm? raise good ratings for safety, efficiency
and green. As SEG final combined score, results vary between 1 to 0.100, for the worst and the
best vehicle performance, respectively. Recent gasoline vehicles with c¢.c.<1400 cm?®, achieved
0.150, either from the viewpoint of either a safety-conscious user or a efficiency-conscious user.
However, this vehicle evaluation under an eco-conscious user, yield to a final combined score of
0.400, and thus, this vehicle category would not be recommended. Newer diesel vehicles
complying with Euro 5 and in the smaller engine size category reached the best performance,

0.100 for all the users profiles. As a conclusion, main advantages of SEG are highlighted.

1. Is designed to be easy-to-use tool to assist consumers in vehicle’s selection based on
users profile style: neutral, safety-conscious, efficient-conscious or eco-conscious.

2. Allows the evaluation of vehicle’s safety performance for single-vehicle crashes and for two
vehicle collisions, as well as the comparison between vehicles above a 113 kg weight
range.

3. Allows the evaluation of vehicle’s efficiency and green performance ratings in a flexible
scale for different scenarios and taking into account vehicles’ engine size and age,
category.

4. Overall safety rating is for the first time provided for the analysis of single-vehicle crash but
also for the situation where the vehicle is involved in collision. It takes into account the
effect of vehicle characteristics in crashworthiness. In addition, it includes risk of exposure

for the vehicle category being analysed.
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CONCLUSIONS AND FUTURE WORK

Chapter 10 presents the key concluding remarks of the present research. It is organized as follows.
First, conclusions are presented based on the stated research objectives at the beginning of the
dissertation. Next, the major findings are highlighted, followed by the scope and limitations of the

methodology and findings. Finally, recommendations for future work are offered.
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10.1 Conclusions

The following main conclusions can be drawn in terms of meeting the research objectives, most of

which were fully accomplished.

The 1° objective was to determine if vehicles characteristics affect crash outcomes, and to identify

which factors are more significant in predicting crash injury severity.

This objective was fully achieved and research findings have shown the impact of vehicles
characteristics on crash injury risk. Mainly, vehicle’s age, engine size, weight, and wheelbase have
been identified as important predictors of crash severity. These findings were further explored, as

the subsequent objectives were accomplished, and are explained next.

The 2™ objective was to develop decision models to predict the probability of a serious injury
and/or fatality in single-vehicle and two-vehicle collisions, based on the technical characteristics of

the vehicles involved and crash information.

Based on the original crash sample, in single-vehicle crashes the presence of alcohol and/or drugs
was linked to a higher crash severity. A classification and regression tree analysis revealed that the
presence of alcohol and/or drugs was the most important risk factor, followed by the age of the
vehicle and weather conditions, yielding values of (1), (0.85) and (0.72), for variable importance,

respectively.

For two-vehicle collisions, the decision model for classifying overall crash severity prediction,
expressed by the binary target FatalSIK, identified the age differential between the two vehicles
involved as the most important factor in predicting crash severity, followed by the age of the vehicle
V1, alcohol and/or drugs and weight of vehicle V2, yielding values of (1), (0.87), (0.64) and (0.59),
for variable importance, respectively. When focusing on the crash severity sustained by the
occupants of the subject vehicle V1, expressed by the binary target FatalSIKV1, the decision tree
model also identified age differential between the two vehicles involved as the most important
factor for crash severity prediction, followed by the engine size of the opponent vehicle, yielding (1)
and (0.72) for variable importance, respectively. When analyzing the risk of severe injuries in the
opponent vehicle, expressed by binary FatalSIKV2, the most important risk factors were: (a)
wheelbase differences between the two vehicles involved, (b) engine size of vehicle V2 and (c)
presence of alcohol and/or drugs, yielding values of (1), (0.94), (0.57), for variables importance,
respectively. These findings confirm that it is important not only to consider vehicle’s individual
characteristics but also its differential between the vehicles involved in the collision. Also, the
variables importance within the classification tree models for FatalSIKV1 and FatalSIKV2 prediction
suggest that vehicles’ characteristics play a more relevant role comparatively to other crash

related variables. Indeed, it is interesting to note that the engine size of vehicle V2 was important
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for both targets prediction, thought the effect of this variable is the opposite for each target. For
FatalSIKV1, larger engine sizes of the opponent vehicle increased the probability of FatalSIKV1.
This suggests that occupants of vehicle V1 are at higher risk when the opponent vehicle has a
larger engine size. On the other hand, when predicting the probability of FatalSIKV2, the
involvement of a larger engine size of the subject vehicle, V2 in this case, in the collision were
associated with lower probability of a serious injury and/or fatality among its occupants. This finding
suggest that vehicles with larger engine size offer its occupants a better protection, however they

impose higher risk for the occupants of the other vehicle involved, occupants of vehicle V1.

The 3" objective was to develop advanced logistic regression models to predict the probability of
a serious injury and/or fatality in single-vehicle crashes and in two-vehicle collisions, based on the

technical characteristics of the vehicles involved.

Regarding crash severity prediction (expressed by FatalSIK) for single-vehicle crashes, Model-I1B-S
(pp 116) helps to explain the effect of vehicle’s characteristics on crash outcomes. This model
showed that the age of the vehicle and engine size were associated with an increase probability of
FatalSIK. Model predictors such as vehicle’s age and engine size were statistically significant, with
p-values<0.0079 and <0.0229, respectively. The auto industry has improved not only vehicles’
crashworthiness (secondary safety), but also active safety, thus occupants in a newer vehicle are

better protected than in an older vehicle. Model accuracy rate was estimated at 58.0% (S.D. 3.1)

For two-vehicle collisions, models were developed to predict injury severity risk for each individual
vehicle occupants taking into account not only the vehicle’s own capability to protect its occupants,
but also the risk posed by the opponent vehicle. When predicting crash severity in vehicle V1,
FatalSIKV1, Model-II-T (pp 128) suggests that the engine size of the opponent vehicle, vehicle V2,
increases the probability of major injuries and/or fatalities among the occupants of the subject
vehicle, vehicle V1. The engine size of the opponent vehicle was found to be significant at 10%
significance level. Model-1I-T yielded good performance with a mean prediction accuracy rate of
61.2% (S.D. 2.4). When analyzing crash severity for occupants in the other vehicle involved,
vehicle V2, Model-IlI-T (pp 131) predicted that the engine size of the opponent vehicle (vehicle V1)
heightened the probability of severe injury sustained by the occupants of vehicle V2. The engine
size of the opponent vehicle was a significant predictor, with a p-value<0.0387. Model-1lI-T shows
good performance, with mean prediction accuracy rate of 40.5% (S.D. 2.1). It is clear that the
consistency between Model-1I-T and Model-IlI-T magnifies the effect of engine size of the opponent
vehicle as a significant risk factor when predicting the injury severity suffered by the occupants of
the subject vehicle. As vehicle mass is highly correlated with engine size the same conclusion
between a collision involving a vehicle of heavier mass and crash severity to occupants of a lighter

vehicle can be drawn.
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Notwithstanding the constraint of using balanced training samples, final models performance was
evaluated using the original sample, where the imbalanced severity was distributed as: 92.4% of
non-severe crashes and 7.6% of severe crashes and 96.3% of non-severe crashes and 3.7% of
severe crashes, for single vehicle crashes and two-vehicle collisions, respectively. Prediction
accuracy for Model-IB-S, Model-lI-T and Model-1lI-T using the original crash sample was as
follows: 76.0%, 93.6% and 83.8%, respectively. Next, each model was validated using 10 stratified
random samples, and the mean prediction accuracy for Model-IB-S, Model-II-T and Model-llI-T was
satisfactory, (58.0%, 61.2% and 40.5%, respectively).

In summary, the proposed models’ mean prediction accuracy rates were good, simple to apply,
provide additional understanding about vehicles’ characteristics which contribute to crash severity
and they tend to support previous research results in the literature. Some studies seem to be more
concerned with the predictive accuracy and the traditional validation (using new data) but fail to
reflect other objectives such as interpretability and resource efficiency (in both time and costs),
which also determine the empirical adequacy of different algorithms in practice. Beyond balanced
approach, the interpretability of models presented in this research is often of even greater
importance. Still, further analysis with larger samples size is highly recommended to confirm the

validity of the models.

The 4™ objective was to attempt to contrast vehicle brands insofar as their severity involvement in

the crash sample occurred as well as within the larger Portuguese fleet.

This analysis resulted in the identification of vehicles from Renault as the most frequent auto brand
(14.7%) involved in collisions, among the 1,748 vehicles in the crash sample. The two-vehicle
collisions involving a Renault vehicle resulted in almost twice the severity ratio of the overall crash
sample, 4.8%, vs. 2.9%, respectively. At the national level, for the same time period (2006-2010)
the overall severity ratio for two vehicle collisions was 4.8%. Thus, the above findings could not
lead to the conclusion that the Renault brand has a poor crashworthiness performance. Instead,
Renault’s severity ratio is exactly the same as for the Portuguese two-vehicle collisions fleet. In the
case of single-vehicle crashes, Renault was also the most frequent, accounting for 15.8% of the
500 vehicles in the crash sample. Renault’s severity ratio was slightly above the severity ratio of
the crash sample, 8.3% and 7.4% respectively, which may not be statistically meaningful. However,
this brand inference with the Portuguese entire fleet was slightly lower, 8.6% and 8.3%,
respectively, but again probably within the margin of error. Because of the above comparisons,
brands severity ratio inference analysis must be viewed with extreme caution, and always
contrasted in terms of representativeness within the national fleet. In fact, different models of the

same brand may perform differently within the fleet.
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The 5™ and last objective was to develop a safety, efficiency and environmental performance
combined score (herein termed the SEG score) to estimate the impact of vehicle characteristics

from the perspectives of crash severity, fuel consumption and pollutants emissions, respectively.

The accomplishment of the last objective allowed a full successful integration of all the domains
covered by this research: vehicle’s injury severity risk prediction and vehicle’s safety performance,

emissions estimation and vehicle’s fuel efficiency and green performance.

The most relevant differences in vehicle’s SEG rating were found between older vehicle models
and newer ones and between newer vehicle models using gasoline and diesel fuel, under 120
km.h™* driving scenario. For the smaller engine size category, c.c.<1400 cm?®, SEG rating was: poor,
moderate and poor, and good, good, and moderate (for safety, efficiency and green performance),
for Euro 1 and Euro 5 gasoline vehicles, respectively. For the larger engine size category,
€.c.22000 cm®, SEG rating was: poor, poor and poor and good, moderate, and moderate (for
safety, efficiency and green performance), for Euro 1 and Euro 5 gasoline vehicles, respectively.
When comparing vehicles in those categories, the age differential between those vehicles models
was around 13 years. Thus, improvements in vehicle’s stiffness structure, passive safety and active
safety features explained the good rating for vehicles safety performance for newer vehicles.
Similarly, vehicles’ fuel injection improvements have contributed to fuel efficiency and hence, CO,
emissions have been decreasing within same vehicle category. On the other hand, SEG rated
older vehicles category (Euro 1) as poor in terms of green performance for all the three engine size
categories. Euro 5 vehicles yielded moderate green performance for all the three engine size
categories. When comparing SEG ratings for diesel with gasoline vehicles in the older vehicles
category, those performances were similar. Diesel vehicles safety performance was the same as
gasoline vehicles since fuel type did not affect injury risk. However, major differences were found
between newer vehicles models using gasoline and using diesel. Considering a 120 km.h™ driving
scenario, among all tested categories, only Euro 5 diesel vehicles with c¢.c.<1400 cm? raised a
good SEG rating for all the three domains: safety, efficiency and green. Euro 5 diesel vehicles
achieved good efficiency performance for c.c.<1400 cm® and 1400<c.c.<2000 cm®. Also, green
performance was good for all the Euro 5 diesel engine size categories, whereas for Euro 5 gasoline
engine size categories, green performance was moderate based on SEG raking. The improved
vehicle efficiency is the result of advanced engine technology and optimized fuel injection leading
to a better fuel use. While vehicles of earlier model year were equipped with initial catalyst,
manufactures have installed in recent models: after treatment of exhaust emissions (such as NO,
reduction and PM oxidation), particle filters (in diesel vehicles) and more efficiency catalytic
converters (in gasoline vehicles). In a 60 km.h* driving scenario, vehicles’ performance was better,
and more vehicle categories achieved good rating for safety, fuel efficiency and green performance
simultaneously. Interesting to notice that reducing driving speed, newer vehicle models achieved

good efficiency performance despite of engine size category and fuel type. Thus, vehicle design
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matters, but the way vehicle is driven also plays an important role, in particular, in fuel

consumption.

SEG has the potential to provide an important selection base of information for consumers, the

general public, road transportation technicians and automotive engineers.

Concluding remarks based in the crash sample explored in this research are summarized below.

1.

Crash severity for single-vehicle crashes was twice as higher as the crash severity for two-
vehicle collisions. This finding may suggest that for crashes involving one car, vehicle
crashworthiness may be offset by the driver speeding behavior yielding an increased risk
of a severe crash outcome.

Engine size of the vehicle was identified as a significant predictor for crash severity across
all crash severity prediction models. The effect of this risk factor depends on the number of
vehicles involved in the crash. For two-vehicle collisions, as the engine size of the other
vehicle involved increases, the probability of severity injury increases for the subject
vehicle. Engine size seemed to suggest a protective effect for vehicle’s occupants and at
same time imposes an increased risk towards the occupants of the opponent vehicle. On
the other hand, for single-vehicle crashes, engine size may mask the effects of driver
behaviour. Larger engine size (as a proxy of vehicle power) could be associated with
greater speeds and thus, yielding an increased severity risk. This is especially true in the
case of luxury and sport cars. For two-vehicle collisions there is evidence that engine size
reflects the effect of vehicle characteristics on crash severity risk. For single-vehicle
crashes, although there is no factual evidence based on the crash sample, it could be
possible that engine size may emphasize driver aggressiveness.

Vehicle safety performance was dependent on the vehicle’ technical characteristics but
also on risk of exposure based on vehicle’s category frequency in the crash sample.
Additionally, the composition of the car fleet also will affect vehicle safety crashworthiness
in two-vehicle collisions.

SEG findings clearly confirm the progress achieved by the auto industry in vehicle design,
as well as the positive effects of law enforcement and emissions regulations for road
vehicles. Thus, the SEG results allow us to answer the question: “Is there a trade-off
between vehicle’s safety, efficiency and green performances?”. The simple answer is “No”.
The results presented in this research showed that newer vehicles are safer, use less fuel
and hence, fewer emissions, when compared with older vehicle models in the same weight
range. Mainly, advanced technology and improved vehicle design are very much reflected
in SEG ratings, and it is evident that newer vehicles achieve good performance on all three
criteria. Newer vehicles models, however, should not be downsized, but rather, take

advantage of new technologies of mass reduction and materials, such as aluminum and
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high-strength steel, to be lighter and resistant, not smaller. Vehicle size matters in
protecting vehicle occupants; but this should not impose a conflict with the goal of
improved fuel efficiency and emissions control technologies. What is required is decision
making and setting agreements to make advanced technologies accessible to auto brands
in order to improve the performance of car fleet. Safety goals and environmental goals

drive together and save lives.

10.2 Research Limitations

1. Police accident reports are used worldwide for crash analysis and road safety. However
several authors have claimed the misclassification of injury severity among road casualties
in police reports. Studies have claimed that police reports overestimate injury severity
significantly [95]. Whereas fatal casualties are quite clearly defined and well reported, non-
fatal casualties could be biased. In this research, injury level was recorded as stated in
crash reports. However the author is aware that injuries classification could possibly be
biased namely because the injury condition may change after the victims’ entrance in the
hospital. In addition, only in 2010 did Portugal start recording road victims on the 30 days
basis. Thus, crash outcomes collected from police records underestimate any fatality that
may have happened following 24 hours after the crash.

2. This research would be improved if crash report records would provide information on the
number of vehicle’s occupants, whether injured or not, vehicle kilometers driven, and the
speed of the vehicle at the moment of the crash. While speed has been identified as the
most important factor to affect crash severity outcomes, this key variable is not available on
Portuguese crash records. Hence for the crash severity prediction, the legal speed limit
has been used as a proxy of vehicle’s speed. Also for the emissions estimation, the
vehicle’s travelling speed was assumed to be the legal speed limit for the road where the
vehicle was traveling at the time that was involved in the crash. Incorporating additional
variables will improve models accuracies.

3. In Portugal, crash data are not available in digital files to download, which are easily
accessible across the globe. Instead, the author was required to manually collect data from
police crash records at the Police Office in Oporto. In addition, crash, vehicle and road
safety data are not centralized, depending on the type of information requested; at least
three key players are needed: Police Forces, IMT (former IMTT) and ANSR. Hence,
complementary data needed for the crash database development involved another
institution, IMT, that manages a database on vehicle technical features to match vehicle
registration plate (extracted from crash reports). In an earlier phase of this research,
vehicle technical features for two hundred of vehicles were obtained from the IMTT Oporto

in a voluntary act. Due to this nature, this assistance is much appreciated but was very

183



Chapter 10

time consuming and dependent on the goodwill of participants. The full crash database
development requested the access to model technical data for 2,248 vehicles in total. By
the end of 2011 cooperation with IMTT Lisbon made it possible to access to vehicles
technical details, and hence, the crash database was developed.

Finally, this research faced several challenges due to the sample size limitations. It would
be beneficial to have had access to larger samples, and having access to the population of
Portuguese collisions involving any level of injuries would be desirable. To be able to work
with a population of crashes the time needed to collect data would be infeasible under the
study program that the corresponding author is accomplishing. The final crash database
has been completed for 1,374 crashes and included a large number of vehicles, 2,248.
However the collected crash sample showed a very low proportion of severe relative to
non-severe events. It must be remembered that for the entire sample, only 70 observations
were related to severe events. Thus the targets with interest for crash severity modeling
were distributed as follows: 38 severe crashes for single vehicle analysis, 32 overall severe
crashes for two-vehicle collisions and among those, 21 resulted in severe outcomes for
vehicle V1 and 14 for vehicle V2. As result, modeling all the designed targets in this
research would benefit from a larger sample size which would provide more targets for

crash severity modeling.

10.3 Future Work

As a final remark of the conclusions section, driver's behavior was suggested as a factor potentially

influencing the risk of exposure to a crash and also, vehicle’s fuel consumption and emissions. This

finding motivates the following future work needs.

1.

Collecting a larger crash sample to improve the development of crash severity training
models. To meet international regulations, in 2010 Portugal started to record road deaths
on the basis of 30 days-definitions. Collecting a larger sample of crashes will significant
improve prediction models robustness. On the other hand, it will allow the portioning of the
data for training, testing and validation. In addition, collecting a new sample with crashes
after 2010 will reduce the bias associated with the possible misclassification of injury level
by police forces.

Analyzing the Portuguese drivers’ heterogeneity using, a driving simulator. This lab
experiment could support data collection on driver's performance and behavioral factors

affecting crash involvement and crash severity.
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Obtaining vehicle technical features from IMTT, in a similar manner to this Doctoral
Research. In addition, adding new variables will allow a better comprehension of vehicle’s
technical dimensions, safety equipment and maintenance conditions. For example,
including vehicles kilometers traveled, will improve risk analysis as well as emissions
estimation.

The severity of occupant injuries is subject to the restraint devices and impact absorption
by airbags (if available), structure of the vehicle, position of the occupants in the vehicle
and their individual ability to withstand the impact. Future work would benefit using through
the use of simulated crash scenarios on high-performance computers to ensure accurate
and robust models for crash severity prediction.

CORINAIR is one of the most popular tools to estimate vehicles emissions but has some
limitations. It does not consider, for instance accelerations that increase energy use and
emissions. SEG integrated analysis for vehicles’ safety, efficiency and green performance
should be developed using Al methods to conduct a multi-objective analysis. This will
enable the analyst to assess how vehicles’ technical characteristics can be optimized in
order to promote vehicles performance for the three domains: safety, fuel efficiency and

green emissions reduction.
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Appendix 1: Approaches for risk factors linked to road traffic

injuries

Pre-crash Crash Information
prevention Attitudes
Impairment
Police enforcement
Crash Injury prevention Use of restraints
during the crash Impairment
Post-crash Life sustaining First-aid skill

Access to medics

RONMEN]

Roadworthiness Read design and road layout
Lighting Speed limits
Braking Pedestrian facilities
Handling

Speed management

Occupant restraints
Other safety devices
Crash protective design

Crash-protective roadside objects

Ease of access Rescue facilities

Fire risk Congestion

Figure 1 The Handdon matrix [11].
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Figure 2 System approach to analysis the risk factors for road traffic injuries [11, 12]. .
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Appendix 2: Advanced safety technologies

Electronic Stability Lane Departure Warning

Control (ESC): Maintains vehicle control (LDW): Monitors lane markings on the
road and cautions driver of unintentional
lane drift

Forward Collision Warning (FCW):
Detects vehicles ahead and cautions driver of impending collisions

Figure 3 - Vehicle safety technology for crash avoidance, adaptation [151].

Advanced Head Restraints: Advanced Frontal Air Bags:
Reduce potential head/neck Protect in frontal crashes by shielding the driver's
injuries in crashes and front passenger's head, neck, and chest

Side Air Bags and Curtains:
Protect in side crashes by
shielding an occupant's head,
neck, chest, and pelvis

Safety Belt Load Limiter and Safety Belt Pretensioner:
Absorb crash energy and tighten belts to restrain occupants

Figure 4- Vehicle safety technology for crash protection, adaptation [151].
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Appendix 3: GNR crash report

PARTICIPACAO DE ACIDENTE D& VIAGAD

30: 10-03-2010 13:44:00

Data Acidente 09-03-2010 Hora Acidente 00H45
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Appendix 4: Vehicle specific technical information

Vehicle Specific Technical Information extracted from “Ficha Homologagao” which was provided by
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Appendix 5: Logit models development using Enterprise Miner

SAS Institute defines data mining as the process of Sampling, Exploring, Modifying, Modeling, and Assessing (SEMMA). At
the Enterprise Miner software, a graphical user interface (GUI) provides an advance use for the SEMMA data mining

process:

a) Sample the data by creating one or more data tables.

b) Explore the data by searching for anticipated relationships, unanticipated trends, and anomalies in order to gain
understanding and ideas.

¢) Modify the data by creating new variables, selecting, and transforming the existent variables to be included in the
model.

d) Model search for a combination of the data that reliably predicts a desired outcome.

e) Assess the data by evaluating the reliability of the findings from the modeling process.

The crash data mining analysis at the Enterprise Miner interface, started by importing each data sets, Two and Single, into
the process flow workplace. Then, the data mining process was developed, including all the above SEMMA steps, and
some were necessary to repeat one or more of the steps several times before a satisfied result were obtained. At the end of
the assess phase of the SEMMA process, the best models were scored to new data.

The diagram process flow was developed by applying the following tools for Sample, Modify, Model and Assess phases of
the SEMMA process. Since a previous correlation analysis amongst the response variable (FatalSIK) and the independent
variable was performed withSAS9.2 PROC CORR procedure, the Explore phase of SEMMA process was applied previously
to the models process flow diagrams to generate graph reports and summary association statistics for the training subsets.
The logistic regression models presented in this dissertation were developed by the application of specific features of the
EM software, as explained next though step 1 to step 10.

Step1l: Input data source node

The data table generate at SAS 9.2 was launched to Enterprise MinerTM 6.2. Metadata was specified for the data set. For
each variable used in the modeling process the role was set as input or target, and the measurement level was selected as:
Interval for continuous variables, Nominal for category variables and binary for the target variable. Then the input data node
was used as training data to estimate the parameters of the model. Two inputs data source were imported into each EM
diagram process flow: Two input data source (containing the data set for two-vehicles collisions) and Single input data
source (containing the data set for single vehicles crash).

Step 2: Sample node

A sample node, which is part of the Sample from the SEMMA data mining process, it was connected to the input data to
create a stratified random training sample. The selected stratified criterion was “Level Base” and the sample proportion 50.0.
As a result, the new subset used during the training included all the observations of minority class being predicted,
FatalSIK”1”, and an equal proportion of the majority class, FatalSIK’0”, which was randomly selected. The stratified random
sample for each data set was described Chapter 3 of the Thesis. The subsets samples had the following proportion. The
training sample for Single included 38 observations of FatalSIK”1” and 38 observations of FatalSIK”0”. The training sample

for Two included 32 observations of FatalSIK”1” and 32 observations of FatalSIK"0”.

Step 3: Drop node

Drop node, which is part of the Modify phase of SEMMA was used as an optional path for some models candidates and it

was connected to the Two training sample to hide variables from the metadata. The effect of the differential characteristics
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of the vehicles involved in the collision was explored by using the following inputs: AgeV2V1, ccV2V1, WTV2V1 and
WBV2V1. On the

other hand, using the drop node allowed hiding the individual vehicle characteristics as follows: AgeV1, AgeV2, ccV1, ccV2,
WTV1, WTV2, and WBV1 and WBV2.

Step 4: Transformation node

The transform variables node, which is also part of the Modify phase of SEMMA, it enables to create new variables and also
enables to transform class variables and to create interaction variables. Transformations are useful when the researcher
want to improve the fit of a model to the data, (SAS EM7.1 Reference Help, 2010). For example, transformations can be
used to stabilize variances, remove nonlinearity, improve additivity, and correct non-normality in variables (SAS EM7.1
Reference Help, 2010). The transformation node was set to bucket. This option allows creating by dividing the data into
evenly spaced intervals based on the difference between the maximum and minimum values. For the models path that
including a transformation node, four bins were create for those variables mentioned above: AgeV1, AgeV2, ccV1, ccV2,
WTV1, WTV2, WBV1, WBV2, AgeV2V1, ccV2V1, WTV2V1 and WBV2VL1. If the path included a drop node, the bins were
only created for the variables: AgeV2V1, ccV2V1, WTV2V1 and WBV2V1. For those interval inputs, the default

transformation method, bucket, was applied.

Step 5: Regression node

The modeling phase of SEMMA was performed with the incorporation of regression nodes into the workspace. At each
regression node properties the logistic regression type and logit link function were selected. The logit option specifies the

inverse of the cumulative logistic distribution function. During the training, four selection methods were chosen, as follows:

e  Backward- begins with all candidate effects (inputs) in the model and removes effects until the Stay Significance
Level or the Stop Criterion is met. Inputs are sequentially removed from the model with the highest p-value. The sequence
terminates when all the remaining inputs have a p-value in excess of the predetermined stay cutoff. It creates a sequence of
models decreasing complexity, SAS Institute Inc., 2009.

e  Forward- begins with no candidate inputs in the model and adds inputs until the Entry Significance Level or the
Stop Criterion is met. In contrast with backward selection creates a sequence of models of increasing complexity, SAS
Institute Inc., 2009. Improvement is quantified by the measurement of significance, p-value. A small p-value indicates a
significant improvement. The forward selection procedure terminates when no p-value is below a predetermined entre
cutoff, SAS Institute Inc., 2009.

. Stepwise- begins as in the forward model but may remove inputs already in the model. This procedure
sequentially adds inputs with the smallest p-value below the entry cutoff. As each input is added, the algorithm re-evaluates
the statistical significance of all included inputs in the model. If p-value of the selected inputs exceeds a stay cutoff, the input
is removed from the model, SAS Institute Inc., 2009. This procedure terminates when all the inputs available for addition in
the model have a p-value in excess of the entry cutoff, SAS Institute Inc., 2009.

e None- all inputs are used to fit the model.

During the models training, at the EM process flow diagrams, several regression nodes were used in the training and all the
above four input selection criteria were explored. If one of these methods were chosen: forward, backward or stepwise, the
selection criteria for the model comparison can be specified. Misclassification rate was used to select the model from the
several candidate models being developed at the EM process flow. Hence the model comparison node selected the model
with the smallest misclassification rate. Some regressions nodes for the selections methods described above were run with
the default setting entry significance level, which is 0.05. Others regression nodes were training with the entry significance

level of the regression node was specified for 0.1 to add variables in forward and stepwise regressions.

Step 6: Cutoff node
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Cutoff node belongs to the Assess category in the SAS data mining process SEMMA. The node provides graphical
information to determine the appropriate probability cutoff point for decision making with binary target models, (SAS EM7.1
Reference Help, 2010). The establishment of a cutoff decision point entails the risk of generating false positives and false
negatives, but an appropriate use of the Cutoff node can help minimize those risks, (SAS EM7.1 Reference Help, 2010).
During the models training, the optimal cutoff value was obtained for 0.69. This optimal cutoff value selected by taking into
account which cutoff value would result in a higher overall classification rate and the prior probabilities for the severe

crashes in the data set.

Step 7: Control point

Control point node was used to simplify the distribution of connections between process flow steps that have multiple
interconnected nodes. The control running a process flow diagram from the Control Point node will run or update all

preceding paths, and this tool was very helpful during the diagrams development.

Step 8: Model comparison node

The Model Comparison node belongs to the Assess category in the SAS SEMMA and enables to compare the performance

of competing models using various criteria. For binary targets the Model Comparison node provides information about:

-Classification Measures, which include the Receiver Operating Characteristic (ROC) charts and corresponding area under

the curve, and classification rates.
-Data Mining Measures, which include lift and gain measures and profit and loss measures.

-Statistical Measures, which include Bayesian Information Criterion (BIC), Akaike's Information Criterion (AIC), Gini

statistics, and Kolmogorov-Smirnov statistics, among others.

Several measures can be used to choose the best model out of a group of several candidate models. The comparative
measures types of analysis are: statistical, classification, and data mining. The selection of those three measures types
depends on the preference of who evaluates the training modes. An illustration example is extracted from the SAS EM7.1
Reference Help, 2010: “while statisticians might be more familiar with stopping measures such as Mallows' Cq, analysts
might be more comfortable using ROC chart analysis to choose the best model, and direct marketers might prefer using lift

and gains tables to benchmark model performance”.

Step 9: Score Node

The Score node is part the end process of the Assess phase of SEMMA data mining process. This node creates predictions
using the model deemed best by the Model Comparison node, described above. Alternatively, the score node into the
diagram workspace at EM can be directly link to any desired model. To evaluate the performance of the selected model
from the training procedure, new a data source must be dragged into to diagram workspace. Hence the the original data set,
containing the original crash population, was dragged again into the diagram and connected to the score node was well.
While for the training models development the data set’s role was set to “raw”, for the score stage, the data set was set to
score role. This attribute allows the score node to use the data set to generate predicted values for a data set that might not

contain a target.

Step 10: SAS Score Code Node

Finally, at the end of the models development path, a sas score code node was linked to the score node, (as explained in
step 9). This tool was used to generate a new sas code into the process flow diagram to create a customized scoring data

output. At the SAS code node's properties panel from the code editor, a sas code was written to generate report output for
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the score node predicted results. The generated report output creates the scores results for the classification assessment as
follows: True Positives (TPs), False Positives (FPs), True Negatives (TNs), and False Negatives (FNs). The specific sas
code was written for this specific crash analysis in order to assist with the models evaluation. This sas code enable an
easier comparison between the selected model classification measures, expressed by TN, FN, FP and TP, as explained
previously. and the assessment of the model performance score results, expressed by TNs, FNs, FPs and TPs (as

explained previously.

Selection of Best Models for Injury Severity Prediction

Following the development of several models alternatives, the best models to predict the target FatalSIK were selected
amongst the candidate models based on the goodness of fit of the model to the crash data. For the models selection, the
next analysis parameters were evaluated: model fit statists, test for the null hypothesis, type 3 analysis of effects and event
classification output.

The Model Fit Statistics provides the following information:

a) Akaike Information Criteria (AIC), which can be used for the comparison of nonnested models on the sample.
b) Schwarz Criterion (SC), which penalizes for the number of predictors in the model, (UCLA; 2012).

c) -2 Log L is the negative two times the log-likelihood, which is used in the hypothesis tests for nested models, however its

value is.

The Test of the null hypothesis (3=0) relies on three equivalent Chi-Square tests, and all them test against the null

hypothesis that at least one of the predictors’ coefficients is not equal to zero in the model. These three tests are presented
next.

a) The Likelihood Ratio Chi-Square test that at least one of the predictor’s coefficients is not equal to zero in the
model. The Likelihood Ratio Chi-Square statistic can be calculated by -2 Log L(model with intercept only) - 2 Log L(model
with Intercept and Covariates).

b) The Score Chi-Square Test that at least one of the predictors' regression coefficient is not equal to zero in the
model.
c) Wald Chi-Square Test tests that at least one of the predictors' regression coefficient is not equal to zero in the
model.

The Chi-Square test statistics for those tests provides the degrees of freedom (DF) and associated p-value (Pr>ChiSq)
corresponding to the specific test that all of the predictors are simultaneously equal to zero. The DF defines the distribution
of the Chi-Square test statistics and is defined by the number of predictors in the model. The Pr>ChiSq can be understand
as a specified alpha level, related to the acceptance of type | error, (usually 0.05 or 0.01). The small p-value from the all

three tests would lead to conclude that at least one of the regression coefficients in the model is not equal to zero.

The Type 3 Analysis of Effects tests the statistical significance of adding a new input to the model that is being developed.
The statistical significance measures range from <0.0001, which is associated to highly significant inputs, to 0,9997, which
means that the input is dubious, (SAS Institute Inc., 2007). This analysis output provides information for each effect (input

variable) in the model, its DF and the respective Pr>Chi-Square for the selected effect.

If decisions predictions are of interest, model fit can be evaluated by the misclassification. If estimates are of interest, model

fit can be assessed by the average square error. A small Average Square error shows a better model.
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The Analysis of the Maximum Likelihood Estimates (AMLE) output provides information for each parameter in the

model, intercept and input variables, (including BIN groups for those variables, if there were Bin transformations performed).

The AMLE also presents for each parameter its: estimates, DF, Standard error and Pr>Chi-Square.

a) The DF in this analysis define the Chi-Square distribution to test whether the individual regression coefficient is

zero, given the others predictors in the model.

b) Estimates are the binary logit regression estimates for the Parameters in the model. The logistic regression model
models the log odds of a positive response (for the target FatalSIK=1 in this research) as a linear combination of the

predictor variables. This is written as
where p is the probability that FatalSIK is 1, thus the crash would be severe.

The parameter estimates can be understood as follows: for a one unit change in the predictor variable, the difference in log-
odds for a positive outcome is expected to change by the respective coefficient, given the other variables in the model are

held constant.

c) Standard Errors are related to the individual regression coefficients. They are used in both the 95% Wald

Confidence Limits, and the Chi-Square test statistic.

d) The Chi-Square and Pr > ChiSq are the test statistics and p-values, respectively, testing the null hypothesis that
an individual predictor's regression coefficient is zero, given the other predictor variables are in the model. The Chi-Square
test statistic is the squared ratio of the Estimate to the Standard Error of the respective predictor, (UCLA, 2012). The Chi-
Square value follows a central Chi-Square distribution with degrees of freedom given by DF, which is used to test against
the alternative hypothesis that the Estimate is not equal to zero, (UCLA, 2012). The probability that a particular Chi-Square

test statistic is as extreme as, or more so, than what has been observed under the null hypothesis is defined by Pr>ChiSq.
e) The Effect refers to the predictor variables that are interpreted in terms of odds ratios.

f) The Point Estimate underneath are the odds ratio corresponding to selected Effects in the model. The odds ratio
is obtained by the estimate. The difference in the log of two odds is equal to the log of the ratio of these two odds. The log of
the ratio of two odds is the log odds ratio. Hence, the interpretation of Estimate-the coefficient was interpreted as the
difference in log-odds-could also be done in terms of log-odds ratio. When the Estimate, the log-odds ratio becomes the
odds ratio. We can interpret the odds ratio as follows: for a one unit change in the predictor variable, the odds ratio for a
positive outcome is expected to change by the respective coefficient, given the other variables in the model are held

constant.

9) The 95% Wald Confidence Limits is the Wald Confidence Interval (Cl) of an individual odds ratio, given the other
predictors are in the model. For a given predictor variable with a level of 95% confidence, the interpretation is as follows:
there is 95% confident that upon repeated trials, 95% of the Cl's would include the “true" population odds ratio. The Cl is
equivalent to the Chi-Square test statistic: if the Cl includes one, it would fail to reject the null hypothesis that a particular
regression coefficient equals zero and the odds ratio equals one, given the other predictors are in the model. An advantage
of a Cl is that it is illustrative; it provides information on where the "true" parameter may lie and the precision of the point
estimate for the odds ratio.Additionally, the Enterprise Miner logistic output provides a list with all the fit statistics labels used

statistical analysis, such as the following examples:

. -AIC (explained previously)

. -ASE (Average Squared Error)

. -MSE (Mean Squared Error)

. -RMSE (Root Mean Squared Error)
. -SBC (explained previously)

e  -SSE (Sum of Squared Error)

. -MISC (Misclassification Rate).
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Appendix 6: SAS Code

SAS Code created for Crash Data Analysis

**ReadhllCrashes.=as CRALSH DATAPET;
libname crash ".";
-ldata crash.2ll;

infile "Zll.csv' d=sd firstobs=2 missover lrecl=500;

Input Record § RoadName § Location $ LocalSpeedLimit

RoadClass $§ LanesSD LanesOD

DivisionCode $ SpeedlLimit SpeedS0kmHr $§ Speed%0kmHr $ Speedl00FmHr 5 Speedl20kmHr $

VehiclesInvolved WeatherCode § ZlcoholDrugs $
RanCff § Rollover $ RearEnd § HeadOn $§ Sideswipe $ Ot
(PlateVl BrandVl ModelVl) (:5$16.) CategoryVl :51. WTV1
(PlateV2 BrandV2 ModelV2) (:516.) CategoryV2 :51. WIV2
(PlateV3 BrandV3 ModelV3) (:516.) CategoryVv3 :51
LightInjuryVl SeriocusInjuryVl Killedvl
LightInjuryV2 SericusInjuryV2 Killedv2
LightInjuryv3 SeriocusInjuryV3 Eilledv3
SUMLI SUMSI SUMF. SEVERITY :52. CostCrashSeverity
WTD1iff ccDiff WBDiff LengthDiff AgeDiff ;

run;

slproc print data=crash.zll ;

run;
e e e e e e e e e e e e e e e e e e e

w4+ *DEPENDENT VARIABLES%%*
e e e e e e e el e e el ke ke e e

-ldata crash.21l; =set crash.2ll;

if (SeriousInjuryVl >0 or KilledVl >0) then FatalSikVl =
else FatalSikVl = 0;

1f (SeriousInjuryV2 >0 or EKilledv2»0) then FatalSikvZ = 1
else FatalSikVv2 = 0;

if (SeriousInjuryV3 >0 or EilledV3 >0) then FatalSikV3 =

SIFE = SUMSI + SUME;

if (BUMSI > 0 or SUME > 0) then FatalSik = 1;
else FatalSik = 0;

if SUMFE > 0 then FatalF = 1;

el=ze FatalE = 0;

SIFRatio = SIE/(SIK + SUMLI);

SocietyCost = CostInjuriesSeverity/3366388;
If 3IFRatio = 1 then FatalSIKRatioc = 1;

Else FatalSIEKRatio = 0;

if SpeedLimit > 90 then SpeedLevel = 1;
else SpeedLevel = 0;

rum;
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ccV1l WBV1 LengthVl FuelvVl
ccV2 WBVZ Lengthv2 FuelvVi
ccV3 WBV3 LengthV3 FuelV3

CostInjuriesSeverity

1;

B

1;

MileageVl YrVl RgeVl
MileageV2 YrV2 RgeV2
MileageV3 YrV3 RgeV3



Appendix 7: Variables Correlation

For single-vehicles crashes dataset

Pearson Correlation Coefficients

Prob > |r| under HO: Rho=0

Number of Observations

WTV1 ccvl WBV1 Yrvi AgeVl SIK Fatal SIK
WTV1 100.000 | 0.78814 0.74717 0.31989 -0.30815 0.02101 0.01743
<.0001 <.0001 <.0001 <.0001 0.6393 0.6973
500 500 500 500 500 500 500
ccvl 0.78814 100.000 | 0.64347 0.01273 -0.00418 0.08133 0.08153
<.0001 <.0001 0.7765 0.9257 0.0692 0.0685
500 500 500 500 500 500 500
WBV1 0.74717 0.64347 100.000 | 0.10844 -0.09973 -0.02459 -0.03141
<.0001 <.0001 0.0153 0.0257 0.5833 0.4834
500 500 500 500 500 500 500
Yrvi 0.31989 0.01273 0.10844 100.000 | -0.98898 -0.10393 -0.09870
<.0001 0.7765 0.0153 <.0001 0.0201 0.0273
500 500 500 500 500 500 500
AgeV1l -0.30815 -0.00418 -0.09973 -0.98898 100.000 | 0.09057 0.08044
<.0001 0.9257 0.0257 <.0001 0.0429 0.0723
500 500 500 500 500 500 500
SIK 0.02101 0.08133 -0.02459 -0.10393 0.09057 100.000 | 0.91198
0.6393 0.0692 0.5833 0.0201 0.0429 <.0001
500 500 500 500 500 500 500
FatalSIK | 0.01743 0.08153 -0.03141 -0.09870 0.08044 0.91198 100.000
0.6973 0.0685 0.4834 0.0273 0.0723 <.0001
500 500 500 500 500 500 500
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Variables Correlation for two-vehicles collisions dataset

Variables WTV1 | ccvl WBV1 | AgeVl | WTV2 | ccv2 WBV2 | AgeV2 | FatalSik | FatalSikV1l | FatalSikv2 | WTV2V1 | ccV2Vl | WBV2V1 | AgeV2Vil
100.000 | 0.77864 | 0.79309 | 0.38996 | 0.03888 | 0.02414 | 0.00736 | 0.04873 | 0.04169 | -0.00156 0.05564 0.37721 | 0.23207 | 0.35636 | -0.06405
WTV1
<.0001 <.0001 <.0001 0.2508 0.4760 0.8281 0.1500 0.2182 0.9634 0.1002 <.0001 <.0001 <.0001 0.0584
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.77864 | 100.000 | 0.68193 | 0.08996 | 0.02998 | 0.02770 | 0.01008 | 0.05194 | 0.04502 | 0.00120 0.07448 0.26921 | 0.29787 | 0.28430 | -0.03470
ccVvl
<.0001 <.0001 0.0078 0.3760 0.4135 0.7660 0.1250 0.1836 0.9717 0.0277 <.0001 <.0001 <.0001 0.3055
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.79309 | 0.68193 | 100.000 | 0.22840 | 0.00619 | 0.03709 | 0.03193 | 0.01286 | 0.07679 | 0.01498 0.09135 0.31161 | 0.21265 | 0.47075 | -0.03950
WBV1
<.0001 <.0001 <.0001 0.8550 0.2734 0.3458 0.7042 0.0232 0.6583 0.0069 <.0001 <.0001 <.0001 0.2434
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.38996 | 0.08996 | 0.22840 | 100.000 | 0.05290 | 0.02279 | 0.04196 | 0.02169 | 0.07285 | -0.04212 -0.05146 -0.00007 | 0.00985 | -0.05374 | 0.15078
AgeV1l
<.0001 0.0078 <.0001 0.1181 0.5011 0.2153 0.5219 0.0313 0.2135 0.1285 0.9983 0.7711 0.1124 <.0001
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.03888 | 0.02998 | 0.00619 | 0.05290 | 100.000 | 0.79150 | 0.80250 | 0.36028 | 0.05388 | 0.08872 -0.02544 0.39900 | 0.27249 | 0.34747 | 0.02160
WTV2
0.2508 0.3760 0.8550 0.1181 <.0001 <.0001 <.0001 0.1114 0.0087 0.4525 <.0001 <.0001 <.0001 0.5236
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.02414 | 0.02770 | 0.03709 | 0.02279 | 0.79150 | 100.000 | 0.65409 [ 0.07678 | 0.06629 | 0.11583 -0.04438 0.30482 | 0.35106 | 0.25770 0.05206
ccv2
0.4760 0.4135 0.2734 0.5011 <.0001 <.0001 0.0232 0.0501 0.0006 0.1900 <.0001 <.0001 <.0001 0.1241
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.00736 | 0.01008 | 0.03193 | 0.04196 | 0.80250 | 0.65409 | 100.000 | 0.22826 | 0.05016 | 0.09713 -0.04350 0.32149 | 0.19470 | 0.43747 0.02081
WBV2
0.8281 0.7660 0.3458 0.2153 <.0001 <.0001 <.0001 0.1385 0.0041 0.1988 <.0001 <.0001 <.0001 0.5389
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.04873 | 0.05194 | 0.01286 | 0.02169 | 0.36028 | 0.07678 | 0.22826 | 100.000 | 0.01771 | -0.03175 -0.02697 -0.06525 | 0.02591 | -0.08716 [ 0.17126
AgeV2
0.1500 0.1250 0.7042 0.5219 <.0001 0.0232 <.0001 0.6012 0.3485 0.4258 0.0538 0.4442 0.0099 <.0001
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.04169 | 0.04502 | 0.07679 | 0.07285 | 0.05388 | 0.06629 | 0.05016 | 0.01771 | 100.000 | 0.80485 0.65448 0.01746 | 0.04173 | 0.04089 [ 0.01938
FatalSik
0.2182 0.1836 0.0232 0.0313 0.1114 0.0501 0.1385 0.6012 <.0001 <.0001 0.6062 0.2178 0.2272 0.5671
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.00156 | 0.00120 | 0.01498 | 0.04212 | 0.08872 | 0.11583 | 0.09713 | 0.03175 | 0.80485 100.000 | 0.15852 0.02908 | 0.04665 | 0.00359 | 0.01796
FatalSikV1
0.9634 | 0.9717 | 0.6583 | 0.2135 | 0.0087 | 0.0006 | 0.0041 | 0.3485 | <.0001 <.0001 0.3905 0.1682 0.9156 0.5960
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.05564 | 0.07448 | 0.09135 | 0.05146 | 0.02544 | 0.04438 | 0.04350 | 0.02697 | 0.65448 | 0.15852 100.000 | -0.02661 | -0.01722 | 0.03951 | 0.02593
FatalSikVv2
0.1002 | 0.0277 | 0.0069 | 0.1285 | 0.4525 | 0.1900 | 0.1988 | 0.4258 | <.0001 | <.0001 0.4320 0.6112 0.2433 0.4439
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.37721 | 0.26921 | 0.31161 | 0.00007 | 0.39900 | 0.30482 | 0.32149 | 0.06525 | 0.01746 | 0.02908 -0.02661 100.000 | 0.60990 | 0.67570 | 0.13338
WTV2V1
<.0001 | <.0001 | <.0001 |[0.9983 | <.0001 | <.0001 | <.0001 | 0.0538 | 0.6062 | 0.3905 0.4320 <.0001 <.0001 <.0001
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.23207 | 0.29787 | 0.21265 | 0.00985 | 0.27249 | 0.35106 | 0.19470 | 0.02591 | 0.04173 | 0.04665 -0.01722 0.60990 | 100.000 | 0.48223 | 0.01562
ccvavil
<.0001 | <0001 |<.0001 |[0.7711 |<.0001 | <.0001 | <.0001 | 0.4442 |0.2178 | 0.1682 0.6112 <.0001 <.0001 0.6447
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.35636 | 0.28430 | 0.47075 | 0.05374 | 0.34747 | 0.25770 | 0.43747 | 0.08716 | 0.04089 | 0.00359 0.03951 0.67570 | 0.48223 100.000 | 0.05789
WBV2V1
<.0001 | <.0001 |<.0001 |0.1124 | <.0001 | <.0001 | <.0001 | 0.0099 [ 0.2272 | 0.9156 0.2433 <.0001 <.0001 0.0872
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
0.06405 | 0.03470 | 0.03950 | 0.15078 | 0.02160 | 0.05206 | 0.02081 | 0.17126 | 0.01938 | 0.01796 0.02593 0.13338 | 0.01562 | 0.05789 100.000
AgeV2vi
0.0584 | 0.3055 | 0.2434 | <.0001 | 0.5236 | 0.1241 | 0.5389 | <.0001 | 0.5671 | 0.5960 0.4439 <.0001 0.6447 0.0872
874 874 874 874 874 874 874 874 874 874 874 874 874 874 874
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Appendix 8: Models for Crash Severity Prediction - Single

Model-IA-S

|«..- ____________________________________________________________ we
User: mina

Date May 23, Z201Z

Time 05:35:43

B e e e e e L'

Variskle Summary

Measurement Fraquency
Bole Level Count
INPUT INTEEVAL 4
INPUT NOMINAL =
REJECTELD INTEEVAL 13
REJECTELD NOMINAL g
TARZET BINARY 1

Model Events

Number
Measuremsnt of

Target Event Level Levels Order Label
Fataldik 1 BINLRY z Deacending
Predicted and decision variables
Type Varizkble Lebel
TLREGE Fatal3ik
FREDICTED P FatalSikl Pradicted: Fatal3ik=1
RESIDUATL R _Fatalgikl Besidual: FatalSik=1
FREDICTED P FatalSikd Pradicted: Fatal3ik=0
RESIDUATL R _FatalSik0 Besiduzl: FatalZSik=0
FRCM F FatalsSik From: FatalSik
INTO I FatalSik Into: Fatal3Sik
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The DMREZ FProcedurs

Model Information

Training Data Set EMWSZ0.3MPLZ DATA.DATR
CMDB Catalog WORE .REGT_DMDB

Target Variable Fatzlsik

Target Measurement Level Ordinal

Number of Target Categories b

Error MBernoulli

Link Function Logit

Number of Model Parameters 11

Number of Chzervations TE

Target Profile

Total

FatalsSik Frequency

1 2a

Z ] 3a
Faorward Sslection Procedurs

Step 0: Intercept entersd.

The DMREG Procedure

Newton-Raphson Ridge Cptimization

Without Parameter Scaling

FParameter Estimates 1
Cptimization Start

Zotive Constraints 0 Objective
Max Zks Gradient Element 0
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The selected model is the model trained in the last =tep (3tep 4). It con

Intercept AgeVl WBV1 WeatherCods ccVl

Likelihood Ratic Test for Glokal Null Hypothesis: BETZ=0

-2 Log Likelihood Likelihood

Intercept Intercept & Ratioc
Cnly Covariates Chi-Squars DF Pr > ChiZg
105.3358 B4.650 Z0.708Z 4 0.0004

Type 3 hnalysis of Effects

Wald
ffect DF Chi-Square Br » ChiSg

Lgevl 1 5.59839 0.0144
WBV1 1 3.3566 0.0353
WeatherCode 1 4.1424 0.04148
ooVl 1 8.7255 0.0031
Znalysi= of Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Sguare Pr > Chisg
Intercept 1 S.1730 5.0151 1.06 0.3023
LgeV 1 0.1515 0.0621 5.58 0.0144
WEV1 1 -0.00430 0.00238 3.56 0.055%3
WeatherCode 0O 1 0.&875 0.3380 4,14 0.0418
ooVl 1 0.00257 G.00100 5.73 0.0031

Odds Ratic Estimates

Toint

ffect Estimate
LgeVl 1.164
WBV1 0.55%¢
WeatherCode 0O ws 1 3.5958
ccWVl 1.003
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ffect Eztimate

=3

eVl

g
TEV1

¥
=R

=)
[ RN RN« T S

Lo o
[T e R 3 T S

WeatherCode O ws 1 3.595
ooVl 1.300

* Score Output

* Report Output

Fit Statistics
Target=FatalsSik

Fit
Statistics Statistics Label Train

630

.137

_RIC Zkaike's Informstion Criterion

REE

L
L

i

wwerage Sguared Error

_BVERE Lverage Error Function 0.357

DFE Degrees of Freedom for Error 71.000
:EFH: Mcodel Degrees of Freedom 5.000
_DET Total Degrees of Fresdom 76.000
DIV Diviscr for ASE 152.000
_ERR Error Function g84.650
_FPE_ Final Prediction Error 0.213

JEE Maximum Zbsolute Errcr 0.88%9
:MEE: Mean Square Error 0.200

MOBS Fregquenciss 7&.000

L of Estimate Weights 5.000
_RREE Lverage Sum of Squares 0.432
_RFEE Root Final Predicticon Error 0.482
_BFMBE Bocot Mean Squarsed Error 0.447
_8BC_ Schwarz'=s Bayesian Criterion 10&.204
_88E Sum of Squared Errors 25 .422
_ SUMW_ Sum of Case Weightsz Times Freg 152.000
_MI3C Misclassification Rate 0.237
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Classification Takls

Data Role=TRAIN Target Variakle=FatalsSik

arget
Target Cutcome PFercentags
o 0 75.0000
1 0 Z25.0000
O 1 22 .ZZ22Z2
1 1 TI.TFITE

Event Classification Takble

Data Role=TRAIN Target=FatalsSik

Fals= Trus False
Negatiwve Megatiws Fositive
10 30 2]

Percentags
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Cat

OIS

Trus

Fositive

%]

m

Fregusnoc:
Count

oW
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Model-IB-S

User: MIMNA
Date: 0z2-12-2012
Time: 2ZH07m

[ LY O Y A

s3]
*
—
i
fu
[
]
[
=]
[La]
o
o
+
s
o
=

10

11

12 Variakle Summary

13

14 Measurement Frequency

15 Role Level Count

le

17 INPUT INTEEVAL 4

18 INPUT NOMINAL

1% REJECTED INTEEVAL 13

20 REJECTED NOMINAL

21 TARGET BINARY

22

23

24

25

26 Model Ewvents

27

28 Number

29 Measurement of

30 Target Ewvent lLevel lLevels COrder
Lakel
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25
36
37
38
29
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
el
62
&3
£4
&5
&6
&7
&8

Predicted and decision wariables

Type Variable
TARCET Fatal5ik
EREDICTED P Fatalsfikl
RESIDUAL E FatalSikl
EREDICTED F FatalS5ik0
RESIDUAL E FatalSik0
FROM F Fatalsik
INTC I FatalsSik
The DMEEZ Procedure

Label

FPredicted: Fataliik=l
Fesidual: FatalSik=1
Predicted: FatalSik=0
Residual: FatalSik=0
From: FatzalSik

Into: FatalsSik

Model Informaticn

Training Data Set

DMDE Catalog

Target Variable

Target Measurement Level
HNumber of Target Categories
Error

Link Function

Humber of Model Parameters

Number of Obserwvations

Target Frofile
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WOREKE.EM DMREG.VIEW
WORE.REGZ_DMDE
Fatalsik

Ordinal

2

MEernoulli

Logit

10

76



1002
1003
1004

1005
1006
1007
1008
1009

1010
1011
1012
1013

1014
1015

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

1028

The selected model is the model trained in the last step (5

tep 7). It consists of the following effects:

Intercept AgeVl ccoVl

Likelihood Ratic Test for Global Null Hypothesis: BETA

=0
-2 Log Likelihood Likelihood
Intercept Intercept & Ratio
Only Covariates Chi-5quare DF Fr
» ChiSg
105.358 92.055 13.3037 2
0.0013
Type 3 Analysis of Effects
Wald
Effect DF Chi-Sguare Pr » ChiSsg
BgeVl 1 7.0485 0.0079
ccVl 1 5.1782 0.0229

Analysis of Maxim

um Likelihood Estimates
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1058 Fit Statistics

1059

1060 Target=FatalSik

1061

1062 Fit

1063 Statistics Statistics Label Train
1064

1065 _BATC Lkaike's Information Criterion 58.0E55
1066  _ASE Average Squared Error 0.206
1067 _AVERR Average Error Functicn 0.606
1068 _DFE_ Degrees of Freedom for Error T73.000
1069 _DFM_ Model Degrees of Freedom 3.000
1070 _DFT_ Total Degrees of Freedom 76.000
1071 _DIV_ Divisor for ASE 15z2.000
1072 _ERR_ Error Function 52.055
1073 _FPE_ Final Prediction Error 0.223
1074 _MRA¥ Maximum Absclute Error 0.887
1075 _MSE Mean Sguare Error 0.215
1076 _MNCOBS_ Sum of Fregquencies T6.000
1077 _NW_ Number of Estimate Weights 3.000
1078 _RASE Root Average Sum of Squares 0.454
1079 _RFPE_ Root Final Prediction Error 0.473
1080 _RMSE_ Root Mean Squared Error 0.463
1081 _SBC_ Schwarz's Bayesian Criterion 105.047
1082 _SSE_ Sum of Sqguared Errors 31.358
1083 _ SUMW_ Sum of Case Weights Times Freqg 152.000
1084 _MISC Misclassification Rate 0.276

Event Classification Table

Data Role=TRAIN Target=FatalSik

False True False True
Negative Negative Positive Positive
10 27 11 28
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Model-IC-S

Table for Model-IC-S Characteristics for Single-Vehicle Crashes.

Accuracy Rate with Training Sample (N=76)

Accuracy Rate with Original Population

MODEL IC-S
Fit Statistics
Test for Global Hy Analysis of Maximum Likelihood Estimates ASE MISC
DF Pr>ChSq Parameter DF Estimate Pr>ChSq
9 0.0051 Intercept 1 4.8806 0.3799 0.178 0.237
AgeV1l 1 0.1789 0.0261
AlcoholDrugs (0) 1 -0.5304 0.4713
DivisionCode (0) 1 -4.9235 0.9710
RanOff (0) 1 -0.2937 0.5539
SpeedLevel (0) 1 4.4550 0.9738
WBV1 1 -0.0047 0.1074
WTV1 1 0.0011 0.6687
WeatherCode (0) 1 0.7098 0.0485
ccvl 1 0.0025 0.0454
Odds Ratio Estimates
Effect Point Estimate
AgeV1l 1.196
AlcoholDrugs 0 vs 1 0.346
DivisionCode O vs 1 <0.001
RanOff O vs 1 0.556
SpeedLevel Ovs 1 999.000
WBV1 0.995
WTV1 1.001
WeatherCode O vs 1 4.136
ccVl 1.003
Accuracy Performance
Accuracy

Performance with

(N=500) 10 Stratified

Random Samples

FN! TN [S=K TP? % AR®> | TPs® FPs’ TNs® FNs’ %AR™ | %A AR™ | S.D.B
11 31 7 27 76.3 20 100 362 18 76.4 65.3 2.6

1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8
True Negavtivesl; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples;
12 Standard Deviation for the 10 stratified random samples.

The logistic regression equation developed to predict the probability of a FatalSIK in single-vehicle

crashes, Model-IC-S is presented next.

(P =1)
n(P(Y —0)

> = 4.8806 + 0.1789 * AgeV1 — 0.5304 * AlcoholDrugs(= 0) — 4.9235

* DivisionCode(= 0) — 0.2937 * RanOff (= 0) + 4.4550 * SpeedLevel(= 0) — 0.0047
* WBV1+ 0.0011 « WTV1 + 0.7098 * WeatherCode(= 0) + 0.0025 = ccV'1
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Model-ID-S

Table Model-ID-S Characteristics for Single-Vehicle Crashes.

MODEL ID-S
Fit Statistics
Test for Global Hyg Analysis of Maximum Likelihood Estimates ASE MISC
DF Pr>ChSq Parameter DF Estimate Pr>ChSq
4 0.0243 Intercept 1 0.0985 0.0798 0.216 0.368
BIN_AgeV1 low-5.75 1 -1.3175 0.0057
BIN_AgeV1 5.75-10.5 1 -0.2474 0.5718
BIN_AgeV1 10.5-15.25 1 0.5469 0.3361
DivisionCode (0) 1 -0.5421 0.0809
Odds Ratio Estimates
Effect Point Estimate
BIN_AgeV1 low-5.75 vs 15.25-high 0.097
BIN_AgeV1 5.75-10.5 vs 15.25-high 0.282
BIN_AgeV1 10.5-15.25 vs 15.25-high 0.624
DivisionCode 0 vs 1 0.338
Accuracy
. - Accuracy Rate with Original Population Performance with
Accuracy Rate with Training Sample (N=76) y (N=500)g P 10 Stratified
Random Samples
FN' TN’ FP® TP % AR° | TPs® FPs” | TNs® FNs® [ %AR™ | %A.AR" [ S.D.”
12 22 16 26 63.2 11 77 385 27 79.2 56.6 1.9

1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8
True Negavtivesl; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples;
12 Standard Deviation for the 10 stratified random samples.

The logistic regression equation developed to predict the probability of a FatalSIK in single-vehicle

crashes, Model-ID-S is presented next.

P(Y=1
In (ﬁ) = 0.0985 — 1.3175 = BinAgeV1(low — 5.75) — 0.2474 = BinAgeV1(5.75 — 10.5)
+ 0.5469 * BinAgeV1(10.5 — 15.25) — 0.5421 * DivisionCode(= 0)
12 - Estimated Probability of a Serious Injury and/or Fatality with
’ Age Categories of Vehicle V1, in two-vehicle collisions
1 .
-
0,8 - ® Undivided
)
©
©0,6 -
LL
20,4 -
%
20,2
e
o 0 -
low-5.75Yr 5.75-10.5yr 10.5-15.25yr
Age Categories of Vehicle V1 (Yr)

Figure 5 — Probability of a Serious Injury and/or killed in single-vehicle crashes, using
Model-IC-S.
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Appendix 9: Models for Crash Severity Prediction - Two

Model-I-A-T

User: Guilhermina
Date: 02 de Junheo de 2012
15H26m

LS N P B A
1
5
m

10

11

12 WVariable Summary

13

14 Measurement Freguency

15 Role Level Count

1e

17 INPUT INTERVAL 12

18 INPUT NOMINAL 7

19 REJECTED INTERVAL 18

20 REJECTED NOMINAL 14

21 TARGET BEINARY 1

22

23

24

25

26 Model Events

27

28 Number

29 Measurement of

30 Target Event Level Levels Order
Lakel

31

32 Fatalsik 1 BINARY 2 Descending
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
a0
al
52
a3
54
a5
o6
a7
o8
59
60
61
B2
B3
64
65
b6

Fredicted and decision wvariakles

Type

TARGET
PREDICTED
RESIDUAL
PREDICTED
RESIDUAL
FROM

INTO

The DMEEG Pro

Training Data
DMDE Catalog
Target Variab

Target Measur

Number of Target Categories

Error

Link Function

Humber of Model Parameters

HNumber of Obs

Variakle

FatalsSik

P _FatalSikl
F_FatalSikl
P_FatalSikO
E_FatalSikO
F_FatalSik
I FatalS5ik

cedure

Model Informaticn

Bet

le

ement Level

ervations

Lakel

Predicted: Fatal5ik=1
Fesidual: FatzalS5ik=1
Predicted: FatalSik=0
Residual: FatalSik=0

From:

Into:

EMWS4 . SMPLZ_DATA . DATA

FatalsSik
FatalsSik

WORK.REGS_DMDE
FatalSik
Ordinal

2

MBernoulli
Logit

20
64
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295
296

297

298
299
300

301
302
303
304
305

306
307
308
309

310
311

312
313
314
315
316
317
318
319
320
321
322

ChiSq

L0353

.01e3

AgeV1

HeadCn

1 4.4326

2 5.7721

The selected model is the model trained in the last step (S5t

ep 2). It consists of the following effects:

Intercept AgeV1l HeadOn
Likelihood Ratio Test for Glcbal Null Hypothesis:
o]
-2 Log Likelihood Likelihood
Intercept Intercept & Fatio
Only Covariates Chi-Square DF
ChiSg
88.723 TE. 2986 10.4269 2
0.0054
Type 3 Analysis of Effects
Wald
Effect DF Chi-Sqguare Pr » ChiSg
BgeVl 1 6.9495 0.0084
HezadOn 1 4.4624 0.0348
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354 Fit Btatistics

355
356
357
358
359
360
36l
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

400
401
402
403
404
405
406
407

Target=FatalS5ik

Fit

Statistics

_ATC_
_ASE_
_AVERE
_DFE_
_DFM_
_DFT_
_DIV_
_ERR_
_FPE_
_MAX_
_MS5E
_NOBS_

_NW_

Statistics Lakel

Akaike's Information Criterion

Average Sguared Error

Average Error Functicon

Degrees of Freedom for Error

Model Degrees of Freedom
Total Degrees of Freedom
Divisor for ASE

Error Function

Final Prediction Error
Maximum Absclute Error

Mean Sguare Error

Sum of Frequencies

Number of Estimate Weights
Root Average 5um of Sguares
Root Final Prediction Error

FRoot Mean Squared Error

Schwarz's Bavesian Criterion

Sum of Sguared Errors

Sum of Case Weights Times Freg

Misclassification Rate

Event Classification Table

Data Role=TERAIN Target=Fatalsik

False

HNegatiwve

10

Hegative

True False

Positiwve

21 11

223

True

22

Train

84.

bl.

B4,
128.

128.

Positiwve

296

211
.B12

oo

. 000

oo
ooo

. 296
232
.BE8
222
.0oo
]
.460
.482
L4471
LT3
L0039

ooo

.328



Model-IB-T

Table Model-IB-T results for FatalSIK prediction with logistic regression performed for a balanced
dataset of two-vehicle collisions.

MODEL IB-T

Fit Statistics

Test for Global Hy Analysis of Maximum Likelihood Estimates ASE MISC
DF Pr<ChSqg Parameter DF Estimate Pr>ChSq
18 0.0058 Intercept 1 12.7651 0.8660 0.142 0.234
AlcoholDrugs (0) 1 -19.9203 1.0000
BIN_AgeV2V1 low-4.75 1 3.3569 0.9646
BIN_AgeV2V1 4.75-9.5 1 3.0360 0.9680
BIN_AgeV2V1 9.5-14.25 1 -9.8549 0.9654
BIN_WBV2V1 low-419.25 1 -0.1480 1.0000
BIN_WBV2V1 419.25-837.5 1 0.2343 0.8242
BIN_WBV2V1 837.5-1255.75 1 -42.1122 0.9633
BIN_WTV2V1 low-718.75 1 -3.3030 1.0000
BIN_WTV2V1 718.75-1432.5 1 23.8886 0.9509
BIN_ccV2V1 low-626.5 1 8.3469 1.0000
BIN_ccV2V1 626.5-1253 1 7.8063 <0.0001
BIN_ccV2V1 1253-1879.5 1 -18.3480 0.9623
DivisionCode (0) 1 26.5263 <0.0001
HeadOn (0) 1 -1.2097 0.1159
RearEnd (0) 1 -0.2905 0.4956
Sideswipe (0) 1 -0.7549 0.1355
SpeedLevel (0) 1 -26.8774 1.0000
WeatherCode (0) 1 0.6189 0.1586
Odds Ratio Estimates
Effect Point Estimate
AlcoholDrugs Ovs 1 <0.001
BIN_AgeV2V1 low-4.75 vs 14.25-high 0.900
BIN_AgeV2V1 4.75-9.5 vs 14.25-high 0.653
BIN_AgeV2V1 9.5-14.25 vs 14.25-high <0.001
BIN_WBV2V1 low-419.25 vs 1255.75-high <0.001
BIN_WBV2V1 419.25-837.5 vs 1255.75-high | <0.001
Eilé\rl]_WBVZV1 837.5-1255.75 vs 1255.75- <0.001
BIN_WTV2V1 low-718.75 vs 2146.25-high 999.000
ﬁilgl\ll’]_WTV2V1 718.75-1432.5 vs 2146.25- 999.000
BIN_ccV2V1 low-626.5 vs 1879.5-high 469.675
BIN_ccV2V1 626.5-1253 vs 1879.5-high 273.541
BIN_ccV2V1 1253-1879.5 vs 1879.5-high <0.001
DivisionCode 0 vs 1 999.000
HeadOnOvs 1 0.089
RearEnd Ovs 1 0.559
Sideswipe Ovs 1 0.221
SpeedLevel Ovs 1 <0.001
WeatherCode 0 vs 1 3.448
Accuracy Performance
Accuracy

Accuracy Rate with Training Sample (N=64)

Accuracy Rate with Original Population

Performance with

(N=874) 10 Stratified

Random Samples

FN' TN FP® TP* % AR® | TPs® FPs” [ TNS® FNs’ %AR™ | %A.AR™ [ S.D.”
10 27 5 22 76.6 19 139 703 13 82.6 725 1.3

1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8
True Negavtivesl; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples;
12 Standard Deviation for the 10 stratified random samples.
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The final model has 18 explanatory variables which makes it very complex. The logistic regression
Model-IB-T equation developed to estimate the probability of Y =FatalSIK).

P (FatalSIK = 1) = (exp(12.7651-
19.9203*AlcoholDrugs(=0)+3.3569*BIN_AgeV2V1(=low-
4.75)+3.0360*BIN_AgeV2V1(=4.75-9.5) -9.8549*BIN_AgeV2V1(=9.5-14.25) -
0.1480*BIN_WBV2V1(=low-419.25)+0.2343*BIN_WBV2V1(=419.25-873.5) -
42.1122*BIN_WBV2V1(=873.5-1255.75) -3.3030*BIN_WTV2V1(=low-873.5)-
42.1122*BIN_WBV2V1(=873.5-1255.75)+8.3469*BIN_ccV2V1(= low-
626.5)+7.8063*BIN_ccV2V1(=626.5-1253)-18.3480*BIN_ccV2V1(=1253-1879.5)
+26.5263*DivisionCode(=0)-1.2097*HeadOn(=0)-0.2905*RearEnd(=0)-
0.7549*Sideswipe(=0)-26.8774*SpeedLevel(=0)+0.6189*WeatherCode(=0)))

/

(1+exp(12.7651-19.9203*AlcoholDrugs(=0)+3.3569*BIN_AgeV2V1(=low-
4.75)+3.0360*BIN_AgeV2V1(=4.75-9.5) -9.8549*BIN_AgeV2V1(=9.5-14.25) -
0.1480*BIN_WBV2V1(=low-419.25)+0.2343*BIN_WBV2V1(=419.25-873.5) -
42.1122*BIN_WBV2V1(=873.5-1255.75) -3.3030*BIN_WTV2V1(=low-873.5)-
42.1122*BIN_WBV2V1(=873.5-1255.75)+8.3469*BIN_ccV2V1(= low-
626.5)+7.8063*BIN_ccV2V1(=626.5-1253)-18.3480*BIN_ccV2V1(=1253-1879.5)
+26.5263*DivisionCode(=0)-1.2097*HeadOn(=0)-0.2905*RearEnd(=0)-
0.7549*Sideswipe(=0)-26.8774*SpeedLevel(=0)+0.6189*WeatherCode(=0)))
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Model-IC-T
Table - Model-IC-T results for FatalSIK prediction with logistic regression performed for a balanced
dataset of two-vehicle collisions.

MODEL IC-T
Fit Statistics
Test for Global Hy Analysis of Maximum Likelihood Estimates ASE MISC
DF Pr<ChSq Parameter DF Estimate Pr>ChSq
9 0.003 Intercept 1 9.1217 0.9778 0.167 0.234
AlcoholDrugs (0) 1 -6.2847 0.9728
BIN_WBV2 low-2347.5 1 -1.9391 0.9881
BIN_WBV2 2347.5-2883 1 -3.9748 0.9756
BIN_WBV2 2883-3418.5 1 -3.2695 0.9800
BIN_WTV2 low-1452.5 1 2.4477 0.9933
BIN_WTV2 1452.5-2135 1 3.8351 0.9895
BIN_WTV2 2135-2817.5 1 16.2879 0.9782
HeadOn (0) 1 -1.2460 0.0422
Sideswipe (0) 1 -0.8665 0.0358
Odds Ratio Estimates
Effect Point Estimate
AlcoholDrugs Ovs 1 <0.001
BIN_WBV2 low-2347.5 vs 3418.5-high <0.001
BIN_WBV2 2347.5-2883 vs 3418.5-high <0.001
BIN_WBV2 2883-3418.5 vs 3418.5-high <0.001
BIN_WTV2 low-1452.5 vs 2817.5-high 999.000
BIN_WTV2 1452.5-2135 vs 2817.5-high 999.000
BIN_WTV2 2135-2817.5 vs 2817.5-high 999.000
HeadOnOvs 1 0.083
Sideswipe Ovs 1 0.177
Accuracy Performance
Accuracy
Accuracy Rate with Training Sample (N=64) Accuracy Rate ‘(",f,tfggﬂf’ inal Population Peggnsnt?;%?e\émh
Random Samples
FN' TN? Fp’ TP* %AR® | TPs® [ FPs’” [ TNs® FNs® | %AR™ | ®%AAR™ [ S.D.”
5 22 10 27 76.6 13 131 711 19 82.8 60.6 5.6

1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8
True Negavtivesl; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples;
12 Standard Deviation for the 10 stratified random samples.

The logistic regression Model-IC-T equation to estimate the probability of Y (FatalSIK) is presented

below.

P (FatalSIK = 1) = (exp(9.1217-6.2847*AlcoholDrugs(=0)-1.9391*BinWBV2V1(=low-
2347.5)-3.9748*BinWBV2V1(=2347.5-2883)-3.2695*BinWBV2V1(=2883-
3418.5)+2.4477*BinWTV2V1(=low-1452.5)+3.8351*BinWTV2V1(=1452.5-
2135)+16.2879*BinWTV2V1(=2135-2817.5)-1.2460*HeadOn(=0)-
0.8665*Sideswipe(=0)))

/

(1+(exp(9.1217-6.2847*AlcoholDrugs(=0)-1.9391*BinWBV2V1(=low-2347.5)-
3.9748*BinWBV2V1(=2347.5-2883)-3.2695*BinWBV2V1(=2883-
3418.5)+2.4477*BinWTV2V1(=low-1452.5)+3.8351*BinWTV2V1(=1452.5-
2135)+16.2879*BinWTV2V1(=2135-2817.5)-1.2460*HeadOn(=0)-
0.8665*Sideswipe(=0)))
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Model-II-T

SAS Code for FatalSIKV1

Pibname models '.";

-ldata models.twofatal3ikvil;
infile "two.csv' dsd firstobs=2 missover lrecl=2000;

Input Record $ RoadName $
DivisionCode $ SpeedLimit $ SpeedLevel §
WeatherCode § BlcoholDrugs §

RearEnd § HeadOn % Sideswipe 5 Other §
(PlateVl Brandvl ModelVl) (:516.) Categoryvl :

$ WIV1 ccVl WBV1 Fuelvl :
(PlateV2 BrandvZ ModelVZ2) (:516.) CategoryVvZ :5

5 Yrvl RgeVl
WIVZ ccV2 WBVZ Fuelv2 :5

YrV2 RgeViZ

LightInjuryVl SeriocusInjuryVl EilledvVl
LightInjuryVz2 SeriousInjuryV2 EKilledvZ

SUMLT SUMSTI SUME SocietyCost ;

rumng

Ziproc print data=models.twofatal3ikVl;

-ldata models.twofatalSikVl; =et models.twofatalSikVi;

SIE = SUMSI + SUME;

if (SUMSI > 0 or SUME > 0) then FatalSikvivz = 1;
sl=e

FatalZikViv2 = 0;

if SUME > 0 then FatalE = 1;

el=ze FatalE = 0;

SIFKRatio = SIE/ (SIEK + SUMLI);

If 3IERatic = 1 then FatalZ3IERatioc = 1;

El=e FatalSIERatio = 0;

if (SeriousInjuryVl >0 or Eilledvl =0) then FatalsSik = 1;
else FatalSik = 0;

.

if (SeriousInjuryVZ >0 or Eilledv2>0) then FatalSikvZ = 1
else FatalSikVZ = 0;

WIVZVL = WTVZ-WTV1;
coV2V1l = ccVZ-ccoVl;
WEVZV1 WEVZ-WEVL;
RgeV2V1l =RgeVZ-RgeVl;

Y ¢

Slproc print data=models.twofatalSikvVl;

run g
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Model-II-T (Cont.)

EM output

Likelihood Batio Test for Global Null Hypothesis: BETA=0

-2 Log Likelihood Likelihood
Intercept Intercept = Ratio
Only Covariates Chi-3quare LF Pr > Chisg
55,224 54,670 3.5542 1 0.0594
Type 3 Analysis of Effects Odds Ratio

Type 3 Analysis of Effects Odd= Ratio Estimates

WMald Point
Effect DF Chi-Square p Effect Estimate
ccW2 1 3.1444 coWVa 1.001

Analsyis of Maximum Likelihhod Estimates
Analysizs of Maximum Likelihood Estimates

Standard Wald Standardized
Parameter DF Eztimate Error Chi-3quare Pr » Chiiq Esztinate
Intercept 1 -2.06857 1.1961 Z.98 0.0342
ccoWz 1 0.00105 0.000a10 3.14 0.0762 0.3454
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MISC

0.3571

Exp(E=t)

0.127
1.001

SSE

9.3983

05% Confid
Limirzs

-4,4101
-0.00011



Model-llI-T

SAS Code for FatalSIKV2

models ".";

libname
-ldata models.twofatalSikVZ;

infile "two.csv' dsd firstobs=2 missover lrecl=2000;
RoadName $
SpeedLimit § SpeedLevel §

AlcocholDrugs §

Input Record $
DivisionCode $
WeatherCode &

RearEnd $§ HeadOn $§ Sideswipe $ Other §
(PlateVl BrandVl ModelVl) (:516.) CategoryVl :§
(Platev2 Brandv2 ModelWV2) ( 5

.o

:516.) CategoryVZ :

LightInjuryVl
LightInjuryV2

SeriocusInjuryVl Eilledvl
SeriousInjuryV2Z EKilledvz
SUMLI SUMST SUME SocietyCost ;
run;

Zproc print data=models.twofatalSikVZ;

Jdata models.twofatalSikV2; set models.twofatalSikvVZ;

SIE = SUMSI + SUME;

if (SUMSI > 0 or SUME > 0) then Fatal3SikvivZ = 1;
else

FatalSikVliv2 = 0;

if SUME > 0 then FatalR = 1;

el=ze FatalEK = 0;

SIFKRatio = 8IK/ (SIE + SUMLI);

If 3IERatio = 1 then FatalSIERatioc = 1;

Else FatalSIERatioc = 0;

1f (SeriousInjuryVl >0 or EilledVl >0)
el=ze FatalSikV1l = 0;
if (SeriousInjuryvVZ >0 or Eilledv2>0)
el=ze FatalS8ik = 0;

WTVEV1 = WTVZ-WTV1;
cCoVEV1l = ccWVZ—ccVl;
WEBVZV1 = WBVZ-WEVL;

RgeWVeVl =RgeVZ-ZgeVl;

print data=models.twofatalSikVZ;
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2. WIV1 ccV1l WBV1
2. WIVZ ccV2 WBVZ

FuelVl
FuelVZz2

then FatalsSikvl

then FatalSik = 1

YrVl ZgeVl
Yrv2 RgeVZ

r

1

r



EM output for fatalSIKV2

Likelihood Ratio Test for (lobal Mull Hypothesis: BETA=0

-2 Log Likelihood Likelihood

Intercept Intercept & Ratio
Only Covariates Chi-%3quare IF Pr » Chilg
38.816 33.410 5.4061 1 0.0z201

Type 3 Analysiz of Effects

Wald
Effect ILF Chi-Square Pr » Chifg
ccWl 1 4, 2754 0.0387
Adnalysis of Maximum Likelihood Estimates
dtandard Wald Gtandardized 95% Confidence
Parameter DF Estimate Error Chi-Square Pr > Chifg Estimate ExpiEst) Limits
Intercept 1 -3.5969 1.7800 4,05 0.0433 0.027 -7.0856 -0.10582
cc¥l 1 0.00z205 0.000992 4,25 0.0387 0. 5563 1.002 a.ooo1ov 0. 00400
Odd=s Ratio Estimates

Point
Effect Estimate
cc¥l l.002
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Appendix 10: Models for Vehicles Emissions

MODEL CO, LPGV Emissions Estimation (N=817 Vehicles)

BE-Soquare
ATC
SBC

Effect

Haorm
Speedlinmit
cc

Parameter

Intercept
Horm

Horm

Horm

Horm
Speedlimit
Speedlinmit
Speedlimit
cc

co

ASE=18.54

Model Fit Statistics

0.2479
2405, 5916
245a, 6480

idj R-5q

EBIC
Cip)

Type 3 Analysis of Effects

DF

[ )

ECElL-00/04
Euro I

Euro II
Euro ITT
100

120

0

1.4-2.
<1.41

Sum of
Souares

1943E. 5927
178939, 651
TL538E. 0248

0.9473
2407.8740
g.6095
F WValue Pr > F
255.83 <. 0001
3177.77 «<.0001
1906, 84 <. 0001

Analyziz of Maximum Likelihood Estimates

=
=

R = = S

Eztimate

172.2
L7158
LBl56
L0374
L2152
L2140
LB3TE
L9300
L3384
L 774L

Ftandard

o oo o oo o g0

Error

L7574
L6371
L5710
« 5376
L5598
L6610
L4525
L1705
L4431
L3923
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T Value

za7.

13.
L33
97
.74
.86
82
.82
82
.60

40
a0

Pr >

A eI e e e e R R e N ]

Il

.0ool
.000l1
.0ool
.000l1
.0ool
.oool
.0ool
.oool
.0ool
.oool

s
2.
-G
-4,
-4,
Z0.
-10.
-9,
-24d.

95% Confidence

Limits

170.7

45866 El
4054 4
G50z -4,
3124 -2,
5096 -1.
7503 22,
2741 -5,
2069 -7,
5430 -23

173.7
. 9450
- 7348
4646
1179
9133
5z40
6859
4700
.0053



MODEL CO, LPDV Emissions Estimation (N= 344 Vehicles)

Sum of
Source DF Suares Mean Square F WValue
Model 4 322790 Goe9s 547.17
Error 339 49996 147. 482280
Corrected Total 343 372787
Model Fit 3tatistics
R-Smuare 0.8659 Adj R-35g 0.8643
AT 1722.7989 EIC 1724.8932
3EC 1742.00:21 Cip) 6.7807
Type 3 inalvysis of Effects
Sum of
Effect DF Squares F Value Fr = F
Norm Z 24365, 3576 GzZ.60 <, 0001
Gpeedlinmit 1 §7093. 51581 590. 54 <, 0001
co 1 Z233685.516 1514. 65 <, 0001
Aralysis of Maxinmum Likelihood Estimates

Ztandard
Parameter oF Estimate Error £ Walue Pr >
Intercept 1 157.5 1.3421 139.67 <
Norm Conwentional 1 17.3330 1.6170 10.72 <
Norm Euro III 1 =7.9500 1.2766 -5.25 <
Gpeedlimirc 120 1 15. 5736 0.7643 Z4. 30 <
co <Z.01 1 -258.9821 0.7704 -358.92 <
ASE=145.34

Anialwsis of Variance
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Fr > F

<.0001

It

.000l
.000l
.000l
L0001
L0001

95% Confidence

Limits
1534.8 190.1
14,1637 20,5023
-10.4821 -5.4730
17,0755 20,0718
-31.4920 -28.4722



MODEL CO LPGV Emissions Estimation (N= 847 Vehicles)

Sum of
aource DF Souares Mean Square F Walue
Todel 7 1137, 943396 162, 563342 40968, 61
Irror 839 27.450454 0.032718
Zorrected Total g4a 1145, 393850
Model Fit Statistics
2-Suare 0.9764 Adjy B-Sg 0.9762
LIC -2G888.6323 EBIC -2886. 4123
3EC -2850.6987 Cip) 4,4835
Type 3 Analysis of Effects
Sum of

iffect oF Smquares F Walue Pr = F
Jorm & 106G, 1997 6517, 50 <.0001
peedlinit 2 190, 2079 2908, 77 <. 0001

Analysis of Mawimuam Likelihood Estimates

Standard

Parameter DF Eztimate Error t ¥alue Pr >
Intercept 1 1.533%9 0.0281 54,53 <.
Jorm ECEl5-00/04 1 Z.0040 0.0243 117.69 <.
Jorm Euro I 1 0.5528 0.0213 27.34 <.
Jorm Euro IT 1 -0.5589 0.0z206 -4l.64 <.
Jorm Euro ITI 1 -0.2333 0.0207 -11.25 <.
Jorm Euro IV 1 -1.1593 0.0258 -45.00 <.
peedlLinit 120 1 0.7568 0.02z24 33.81 <
peedLimit 50 1 -0.4766 0.0431 -11.07 <.

ASE=0.03

Analysis of Variance
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Pr = F

<.0001

el

oool
oool
oool
oool
oool
oool

L0001

oool

95% Confidence

Limits

1.4788
2.8169
0.5410
L5994
L2739
L2098
0.7130
. ab610

. 2880
L9123
L6246
L8185
L1926
L10ES
L8007
L3R2z



MODEL NOyx LPVD Emissions Estimation (N=769)

Source

Model

Error

Corrected Total

Type 3 Analysis of Effects

DF

a
760
7ag

Analysis of VWariance

Type 3 Analysis of Effects

Effect IF
Horm ]
Speedlinmit 3

Sum of
Souares

G.3605
12,4049

Model Fit Statistics

Sum of
Soquares Mean Soquare F Value Pr = F
18. 261962 2.282745 37125 <. 0001
4,673134 0.005149
22.935096
Model Fit Statistics
F Walue Fr > F R-Zquare 0.7962
206, 55 . 0001 ATC -3906. 40735
572, 48 <.0001 3BC -3864. 6020

Analysis of Maximum Likelihood Estimates

Parameter

Intercept

Norm Conventional
Norm Euro I

Norm Euro II
Norm Euroc III
Norm Euro IV

SpeedLimit 100
SpeedLimit 120
SpeedLinmit 50

Frequency Distribution of Input Class Variables

Class Value
Conwventi
Euro I
Euro IT
Euro IIT
Euro IV
Euro ¥

Horm

100
1z0
50
an

Speedlimit

<2.01
»2.01

cC

ASE= 0,006057

onal

)
|

I T = = = = R Sy

inalysis of Maximum Likelihood Estimates

Estimate

0.6569
0.2069
L0293
0.0197
0.1205
L0395
L0363
0.2160
LL0E7

Total

46
&7
157
296
187
16

Gtandard
Error £ Value Pr =
0.0125 5Z2.68 <
0.0104 19.51 <
0.00900 -3.25 0
0.008738 Z.90 0
0.00573 Z0. 66 <
0.00646 -6.15 <
0.0152 -2.39 0
0.0122 17.76 £
0.0342 -3.18 0
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L0001
L0001
L0012
L0038
L0001
L0001
L0168
L0001
L00Ls

Ad3 BE-3g 0.7341
EIC -3904,1827
Cip) G.4599
95% Confidence
Linits
0.6325 0.6513
0.1564 0.2273
-0.04469 -0.0116
0.00641 0.0330
0.105%2 0.131%9
-0.0524 -0.0271
-0. 0660 -0.00659
0.1922 0.2399
-0.1757 -0.0417



MODEL PM LPDP Emissions Estimation (N=731)

Analvysiz of Variance

Jum of
Source DF Suares Mean 3Scquare F Value
Model & 1.652972 0.275495 995,51
Error 724 0. 200357 0.000277
Corrected Total 730 1.853330
Type 3 Analysis of Effects
Type 3 Analysis of Effects
RE-3mquare
Sum of AIC
Effect DF Suares F Walue Pr » F SBC
Horm 5 1.6079 1162.03 <. 0001
SpeedLinit 1 0.12582 463,24 <. 0001

Analysis of Maximum Likelihood Estimates

Ahalysis of Maxinum Likelihood Estimates

Standard
Parameter DF Estimate Error £ ¥Value Pr >
Intercept 1 0.0772 o.oo0lol 7670 <
florm Conwventional 1 0.1Z86 0.00ZZ6 26.89 e
Morm Euro I 1 0.05594 0.00195 30.45 <.
Morm Furo IT 1 -0.0206 o.oo0147 -13.96 <
Horm Euro III 1 -0.0304 0.00124 -24.43 <
Morm Euro IV 1 -0.0500 0.00140 -35.75 <
SpeedLinit 120 1 0.0154 0.000714 Z1.52 L

Fregquency Distribution of Input Class Variables

Class Walue Taotal
Horm Conwventional 44
Euro I 64
Euro II 146
Euro III 284
Euro IV 177
Euro ¥V 1a
Gpeedlimit 1z0 544
20 187
cc <£2.01 571
»a.01 160

ASE=0,000274
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Fr = F

<.0001

el

L0001
.0001

oool

L0001
.0001
L0001
L0001

0.5919
-59581.7101
-5949,_ 5492

-0.
-a.
-a.

Model Fit Statistics

Model Fit Ztatistics

Adj R-8g

EIC
Cip)

0.5910

-5979. 5706

95% Confidence

Limits

L0752
1242
L0555
0z35
0328
0527
L0140

L0792
L1331
L0632
L0177
L0280
L0473
L0168

6. 7822



