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resumo 
 

 

Nos últimos anos, o número de vítimas de acidentes de tráfego por milhões de 
habitantes em Portugal tem sido mais elevado do que a média da União 
Europeia. Ao nível nacional torna-se premente uma melhor compreensão dos 
dados de acidentes e sobre o efeito do veículo na gravidade do mesmo. O 
objetivo principal desta investigação consistiu no desenvolvimento de modelos 
de previsão da gravidade do acidente, para o caso de um único veículo 
envolvido e para caso de uma colisão, envolvendo dois veículos. Além disso, 
esta investigação compreendeu o desenvolvimento de uma análise integrada 
para avaliar o desempenho do veículo em termos de segurança, eficiência 
energética e emissões de poluentes. Os dados de acidentes foram recolhidos 
junto da Guarda Nacional Republicana Portuguesa, na área metropolitana do 
Porto para o período de 2006-2010. Um total de 1,374 acidentes foram 
recolhidos, 500 acidentes envolvendo um único veículo e 874 colisões. 
Para a análise da segurança, foram utilizados modelos de regressão logística. 
Para os acidentes envolvendo um único veículo, o efeito das características do 
veículo no risco de feridos graves e/ou mortos (variável resposta definida como 
binária) foi explorado. Para as colisões envolvendo dois veículos foram criadas 
duas variáveis binárias adicionais: uma para prever a probabilidade de feridos 
graves e/ou mortos num dos veículos (designado como veículo V1) e outra 
para prever a probabilidade de feridos graves e/ou mortos no outro veículo 
envolvido (designado como veículo V2). Para ultrapassar o desafio e 
limitações relativas ao tamanho da amostra e desigualdade entre os casos 
analisados (apenas 5.1% de acidentes graves), foi desenvolvida uma 
metodologia com base numa estratégia de reamostragem e foram utilizadas 10 
amostras geradas de forma aleatória e estratificada para a validação dos 
modelos. Durante a fase de modelação, foi analisado o efeito das 
características do veículo, como o peso, a cilindrada, a distância entre eixos e 
a idade do veículo. 
Para a análise do consumo de combustível e das emissões, foi aplicada a 
metodologia CORINAIR. Posteriormente, os dados das emissões foram 
modelados de forma a serem ajustados a regressões lineares. Finalmente, foi 
desenvolvido um indicador de análise integrada (denominado “SEG”) que 
proporciona um método de classificação para avaliar o desempenho do veículo 
ao nível da segurança rodoviária, consumos e emissões de poluentes. 
 
 



 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

  

  



 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

  

Resumo (cont.) 
 

 

Face aos resultados obtidos, para os acidentes envolvendo um único veículo, 
o modelo de previsão do risco de gravidade identificou a idade e a cilindrada 
do veículo como estatisticamente significativas para a previsão de ocorrência 
de feridos graves e/ou mortos, ao nível de significância de 5%. A exatidão do 
modelo foi de 58.0% (desvio padrão (D.P.) 3.1). Para as colisões envolvendo 
dois veículos, ao prever a probabilidade de feridos graves e/ou mortos no 
veículo V1, a cilindrada do veículo oposto (veículo V2) aumentou o risco para 
os ocupantes do veículo V1, ao nível de significância de 10%. O modelo para 
prever o risco de gravidade no veículo V1 revelou um bom desempenho, com 
uma exatidão de 61.2% (D.P. 2.4). Ao prever a probabilidade de feridos graves 
e/ou mortos no veículo V2, a cilindrada do veículo V1 aumentou o risco para os 
ocupantes do veículo V2, ao nível de significância de 5%. O modelo para 
prever o risco de gravidade no veículo V2 também revelou um desempenho 
satisfatório, com uma exatidão de 40.5% (D.P. 2.1). 
Os resultados do indicador integrado SEG revelaram que os veículos mais 
recentes apresentam uma melhor classificação para os três domínios: 
segurança, consumo e emissões. Esta investigação demonstra que não existe 
conflito entre a componente da segurança, a eficiência energética e emissões 
relativamente ao desempenho dos veículos. 
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CART, CORINAIR, emissions, fuel efficiency, logistic regression, rare events, 
safety, severity, single-vehicle crashes and two-vehicle collisions. 
 

abstract 

 
During the last years, the number of fatalities per million inhabitants in Portugal 
has always been higher than the average in the European Union. Therefore, at 
national level, there is a need for a more effective understanding of crash data 
and vehicles effects on crash severity. This research examined the effects of 
vehicle characteristics on severity risk, fuel use and emissions. The main goal 
of this research was to develop models for crash severity prediction in single 
vehicle-crashes and two-vehicle collisions. Furthermore, this research aimed at 
developing an integrated analysis to evaluate vehicle’s safety, fuel efficiency 
and emission performances. Crash data were collected from the Portuguese 
Police Republican National Guard records for the Porto metropolitan area, for 
the period 2006-2010. A total of 1,374 crashes were collected, 500 single-
vehicle crashes and 874 two-vehicle collisions. For the safety analysis, logistic 
regressions were used. For single-vehicle crashes, the effect of vehicle 
characteristics to predict the probability of a serious injury and/or killed in 
vehicle occupants (designed as binary target) was explored. For two-vehicle 
collisions, additional binary targets were designed: one target to predict the 
probability of a serious injury and/or killed in vehicle V1) and another target to 
predict the probability of a serious injury and/or killed in vehicle V2). To 
overcome the challenge imposed by sample size and high imbalanced data 
(only 5.1% were severe crashes), research methodology was developed based 
on a resampling strategy and 10 stratified random samples were used for 
validation. During the modeling stage, the effect of vehicle characteristics, such 
as weight, engine size, wheelbase and age of vehicle were analyzed. 
For the vehicle’s fuel efficiency and emissions analysis, pollutants were 
estimated using CORINAIR methodology. Following, emissions data were fit 
into linear regression models. 
Finally, an integrated analysis indicator (entitled “SEG”) that provides rating 
classification for the evaluation of vehicle’s safety, fuel efficiency and emission 
performances, was developed. 
Regarding these results, for single-vehicle crashes, injury severity prediction 
model identified age of the vehicle and engine size as statistically significant, at 
5% level. Model performance accuracy rate was 58.0% (S.D. 3.1). For two-
vehicle collisions, when predicting injury severity in vehicle V1, the engine size 
of the opponent vehicle (vehicle V2) increased the risk for the occupants of the 
subject vehicle (vehicle V1), at 10% level. Injury severity prediction model for 
vehicle V1 revealed a good performance with a mean prediction accuracy rate 
of 61.2% (S.D. 2.4). When predicting injury severity for the other vehicle 
involved (vehicle V2), the engine size of the opponent vehicle (vehicle V1) 
increased the risk for the occupants of vehicle V2, at 5% level. Injury severity 
prediction model for vehicle V2 achieved a mean prediction accuracy rate of 
40.5% (S.D. 2.1). 
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abstract (cont.) 

 
The results of the integrated analysis indicator, SEG, revealed that recent 
vehicle achieved better rating simultaneously for all the three domains: safety, 
fuel efficiency and emissions performances. Newer vehicles showed a better 
overall safety rating, were more fuel efficient (less CO2 emissions) and reduced 
emissions (more environmental friendly). This research relevance showed that 
there is no trade-off between safety, fuel efficiency and emissions. 
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“Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, 
but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not 

an act but a habit.” 
 

Aristotle 
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CHAPTER 1  

INTRODUCTION 

 

 

 

 

 

 

 

 

Worldwide, 1.3 million people die annually as a result of a road traffic accidents, leading to more 

than 3,000 deaths each day [1]. Between 20 to 50 million more people suffer non-fatal injuries, with 

many suffering a disability as a result of their injury level [2]. The World Health Organization (WHO) 

has estimated around the same rate, 1.3 million deaths per year, caused by urban air pollution [3]. 

During the last years, passenger vehicles have shifted towards two extremes: small and light 

vehicles and large and heavy vehicles [4]. As a result, vehicle fleet is now highly variable in terms 

of mass, engine power and vehicle size. The main goal of this Doctoral Thesis was to investigate 

the effect of vehicle characteristics in injury severity risk, fuel consumption and emissions. It 

considers if lighter and smaller vehicles represent a higher risk to its occupants. On the other hand, 

it explores if larger and heavier passengers’ vehicles decrease the risk towards its occupants, 

imposing at the same time, higher risk towards the occupants of a lighter and smaller vehicle 

involved in the collision. The research then combines those findings with vehicles emission 

estimations to address the important question if there is a trade-off between vehicle’s safety 

performance and its fuel efficiency and emissions performance.  

An introduction to the present work is carried out in this Chapter, which comprises: background for 

road safety and vehicles emissions, research motivation and main objectives. Finally, a structured 

reading guide for this Thesis is provided.  
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1.1 Background 

During the last two decades, the number of registered vehicles has increased exponentially 

worldwide leading to a significant increase in road emissions, as well fuel used by the 

transportation sector. For passengers travel, road transport dominates as it carries 79% of 

passenger traffic [5]. Between 1970 and 2000, the number of cars in the European Union (EU) 

increased from 62.5 million to nearly 175 million [5]. Since motor vehicles become a common 

means for transportation, traffic injuries are not the only major concern. Reduction of greenhouse 

gases (GHG) emissions and fuel consumption have also become a main issue to health, 

environmental and transportation authorities. As traffic volume is increasing, road transport alone 

accounts for 84% carbon dioxide (CO2) emissions attributable to transport [5]. 

Road safety progress depends to some extent on what one uses as a measure of exposure to risk 

(for example, population, registered vehicles, distance travelled). More than 90% of the world's 

fatalities on the roads occur in low-income and middle-income countries, even though these 

countries have approximately half of the world's vehicles [2]. In 1998 the ratio of the number of 

road deaths in Sweden and Portugal, two countries with comparable population, was 1 to 4.5 [6]. 

As the health and transport sectors developed their level of co-operation, fatalities per 100 000 

population is becoming more widely used [7, 8]. Fatalities over distance travelled have traditionally 

been preferred by road transport authorities as this implicitly discounts fatality rates if travel is 

increased [7].  

Along with the human suffering described above, road crashes have economic costs. In 2010, the 

United Nations (UN) and World Health Organization (WHO) reference the economic consequences 

of motor vehicle crashes as representing 1 to 3% of the gross national product (GNP) of the world 

countries, reaching over $500 billion [1]. The value of preventing one road fatality (VPF) has been 

estimated in 1.84 million Euros [9]. At the National level, in 2010, the economic and social cost of 

road accidents has been estimated at 1,890 thousand million Euros, representing 1.17% of the 

Portuguese GNP [10].  

 

1.1.1 Road accidents- contributing factors 

Road traffic accidents result from a combination of factors related to the elements of the system 

involving roads, environment, vehicles and road users, and the way they interact [11]. Some factors 

contribute to the occurrence of an accident and they could be part of crash causation as well. Other 

factors magnify the effects of the collision and thus contribute to severe outcomes.   

The risk factors involved in road crashes injuries are grouped into two categories [11, 12]: 

1) Risk factors influencing crash involvement: a) Inappropriate and excessive speed; b) Presence 

of alcohol and/or drugs; c) Fatigue; d) Being a young male; e) Inadequate visibility or poor weather 
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conditions; f) Vehicle factors (such as braking and maintenance); g) And defects in road design and 

inefficient maintenance. 

2) Risk factors influencing crash severity: a) Human tolerance factors (such as age, sex and health 

conditions); b) Excessive speed; c) Seat-belts and child restraints not used; d) Roadside objects 

not crash-protective; e) Presence of alcohol and other drugs; f) And insufficient vehicle protection 

for occupants and for those hit by the vehicle. 

In addition, there are also factors influencing the exposure to risk, such as economic factors and 

social deprivation, and risk factors influencing post-crash outcomes of injuries as difficulty in 

rescuing and delay in transport of those injured to the hospital. More information on popular 

analytical approaches to identify risk factors involved in road traffic injuries are provided at 

Appendix 1.   

 

1.1.2 Road safety in Europe  

Despite the improvement in road safety, road accidents and their consequences remain a serious 

social problem: on average 75 people lose their lives every day on European roads and 750 are 

seriously injured [13]. Road safety statistics for the EU and Portugal are presented.  

 
 

1.1.2.1 Road safety performance in the EU 

The number of road fatalities in the EU-27 fell during the decade between 1999 and 2009, from 

57,691 deaths to an estimated value of 34,500 deaths [14]. The year of 2001 was a reference year 

since the European Commission (EC) published the White Paper- “European transport policy for 

2010: time to decide”, which aimed to set an ambitious target of reducing the yearly number of road 

deaths by 50% by 2010 compared to 2001 [6]. Subsequently, the EU set an ambitious goal to halve 

the number of road deaths by 2010, expecting to save 25 000 lives [15]. As illustrated in Figure 1.1, 

the proposed target of halving road deaths between 2001 and 2010 was not achieved in the EU 

(30,500 deaths were above the target). 
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Figure 1.1 - Road fatalities in the EU since 2001 and targets objective from 2010 to 2020 [16]. 

 

Table 1.1 shows police-recorded road fatalities on the basis of death within 30 days for selected 

members of the International Traffic Safety Data and Analysis Group (IRTAD) [7]. Sweden was the 

country that have achieved the highest reduction in road fatalities (-52.0%) for the long-term (2010-

2001). IRTAD data, showed a reduction of 49.3% in road fatalities, for Portugal during the same 

long-term period. 

 

Table 1.1 – Selected European Countries Road Fatalities on the 30 days basis [7].  

Recent data Change trend 

Country 2010 2009 Annual change 2010-2009 Long-term change 2010-2001 

France  3992 4273 -6.58% -51.1% 

Germany 3648 4152 -12.1% -47.7% 

Portugal 937* 929* 0.9% -49.3% 

Sweden 266 358 -25.7% -52.0% 

United Kingdom 1905 2337 -18.5% -47.1% 

*Data for 2010 was previous to the National Road Safety Strategy 2008-2015 Midterm Review 

 

Comparison of road safety progress between 2001 and 2010 shows that EU achieved a reduction 

of 43% of road fatalities, from 54,302 to 30,900 road fatalities, respectively [17]. For the same 

period, Portugal have achieved a reduction of 50%, from 1670 in 2001 to 845 in 2010, using a 

basis of 24 hrs [17]. The results achieved for this period were published under the 5
th
 Road Safety 

Performance Index (PIN) Annual Report [18]. Latvia, Estonia, Lithuania, Spain, Luxembourg, 

Sweden, France and Slovenia all reached the EU 2010 target.  

Following the EU target between 2001 and 2010, EU has renewed its commitment to improving 

road safety by setting a target of reducing road deaths by another 50% by 2020, compared to 2010 
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levels. In 2011 more than 30,000 people died on the EU roads [19]. The current 6
th
 PIN Annual 

Report presents in the results of the first year of progress towards the EU target of halving road 

deaths between 2011 and 2020. Norway leads this ranking with a 20% reduction in road deaths. 

On the other hand, Portugal reached the 2010 target with just one year of delay [9]. The 3% 

reduction in road deaths in the EU in 2011 compared with 2010 is below the 5.7% average annual 

reduction observed for the 2001-2010 decade and also below the 6.7% annual reduction that would 

have been needed from 2010 to reach the EU 2020 target [9].  

 

1.1.2.2 Road safety performance in Portugal 

Portugal has adopted directives that aim safer roads, compulsory use of seatbelts, standardized 

driving licenses and roadworthiness testing of vehicles [6]. In 2003, the Portuguese Plan for the 

Prevention of Road Accidents (PPPRA) was approved in order to control the high level of road 

accidents [20]. The target adopted by PPPRA was a 50% reduction in the number of fatalities and 

serious injuries by 2009 in comparison to the average for 1998-2000 [20]. In 2007 the National 

Road Safety Authority (ANSR) was created under the Ministry of Internal Affairs. In 2009 the 

National Road Safety Strategy (NRSS) for 2008-2015 it was presented with the purpose to define 

10 strategic objectives, monitoring and assessing further actions [20]. The two major targets of 

NRSS for 2008-2015 are presented next. The first target, aims the reduction in the road mortality 

rate (expressed by the number of road deaths per population) [20]: 

 78 deaths per million inhabitants by 2011; 

 62 deaths per million inhabitants by 2015. 

The second target, intends to control the road deaths to 579 until 2015 [15]. Prior to 2009, fatalities 

were reported on the 24 hrs basis. Working groups have defined correction factors as a conversion 

coefficient to estimate the fatalities, so that comparisons on the basis of the 30 day-definition could 

be made with other countries. Until 1997 Portugal applied a conversion factor of 1.30 (shadow area 

in Figure 1.2) and starting in 1998, this value was updated by a working group to 1.14 [15]. In 2009, 

to meet international agreed definitions, the NRSS established a methodology to account the road 

deaths within 30 days, based on the government document “Despacho n.º 27808/2009” [21]. 

Between 1970 and 2010, the number of fatalities decreased by 48% while the number of vehicles 

was multiplied by seven [7]. Figure 1.2 illustrates that despite of the overall progress, after 1970 

(when motorization become more visible) the number of fatalities per million inhabitants have 

always been higher in Portugal, than the average in the European Union.  
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Figure 1.2 - Road fatalities in Portugal and the UE per million inhabitants: 1965 to 2009 [15]. 

 

Since 2000, the rate of decline has accelerated, with an average annual decrease of 7.3% between 

2000 and 2010 [7]. For the decade, 2000 to 2010, the decrease in fatalities was reduced by -54%, 

as shown in Table 1.2 [7].  

 

Table 1.2 - National reported road fatalities, injury crashes and rates in Portugal: 1970-2010* [7].  

Indicator 1970 1980 1990 2000 2009 2010 2010 change over 

2009 2000 1990 

Fatalities 1785 2850 2924 2053 929 937 0.9% -54% -68% 

Injury crashes 22662 33886 45110 44159 35484 35426 -0.2% -20% -21% 

Deaths/100000 population 20.6 30.6 31.2 20.0 8.7 8.8 0.8% -56% -72% 

Deaths/10000 registered vehicle 22.7 14.7 13.4 4.3 1.6 1.6 0.0% -63% -88% 

Motorize vehicles/1000 inhabitants 91 208 234 462 543 545 0.4% 18% 133% 

*Data for 2010 was previous to the National Road Safety Strategy 2008-2015 Midterm Review 

 

ANSR has available road fatalities on the 30 days basis since 2010. In 2010 there were 35,426 

injury crashes, which had result in 2,475 serious injured and 937 fatalities [22]. The latest ANSR 

annual report on road safety on the 30 days basis showed that during the year 2011, there has 

been a total of 32,541 crashes involving injuries and those resulted in 2,265 serious injured and 

891 fatalities [23]. In 2012, ANSR has released a term review document of the National Road 

Safety Strategy for 2012-2015 in order to improve statistics accuracy [24]. During this review 

process, the impact of the new methodology on assessing fatalities was visible in comparison with 

the records on the 24 hours following the road crash, for which an increment of 14% was been 
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applied pos 1998 [24].The real number of road deaths, within the 30 days, was 26% and 29% 

higher for 2010, and 2011, respectively [24]. Following this revision, for 2010, ANSR has updated 

the previous indicator of 88 deaths/(million inhabitant), in Table 1.2, to 92 deaths/(million 

inhabitants), much higher than 62 deaths/(million inhabitant) for the average in the EU-27 [23, 25]. 

Regarding to the strategic target set for 2011, 78 deaths.(million inhabitant)
-1

 was not reached, 

since there were 89 deaths.(million inhabitant)
-1 

[26].  

Previously to close the section, Road Safety in Europe, the economic crisis may had an impact in 

the positive road safety progress in the EU through a variety of effects in the society: a decrease in 

mobility, less inexperienced drivers with relatively higher risks, a reduction in leisure driving, and a 

safer driving behavior intended to save fuel [7]. However this relationship is not fully explained. If 

cost concerns may reduce individuals trips, hence reducing the risk of a crash exposure, on the 

other hand, vehicles owners tended to avoid spending money with vehicle maintenance. In 

addition, the increase of the unemployment rate and purchasing loss power force consumers to 

drive older cars.  

 

1.1.3 Trends in vehicle’s emissions and fuel use  

Transportation systems are vital to world’s prosperity, having significant impacts on economic 

growth, social development and the environment. Although the transportation sector accounts for 

about 7% of European GDP, its environmental cost offset 1.1% of GDP [27]. In 2010, transport 

sector account for 31.7% of the energy consumption in the EU-27, and road transportation in 

particular represented 82.1% of the total transportation consumption [25]. In 2010, gasoline/diesel 

oil accounted for 53% of the total consumption, reflecting an increase of 9% compared to 2000 

[28]. 

Transport greenhouse gases (GHG) emissions accounted for 24% of GHG emissions from all 

sectors in the EU-27, in 2010 [29]. In particular, road transport contributed to 71.1% of the 24% 

share in GHG emissions from the transportation sector. Transport GHG emissions (including from 

international aviation) as the target defined in the White Paper, were 26% above 1990 levels [29]. 

In 2010, transport emissions decreased by 0.4% compared to 2009 [29]. For 2011, a similar 

reduction of 0.4% was estimated [29]. The decline in GHG emissions from road transport since 

2009, can be mainly attributed to the decline in freight transport demand related to the economic 

recession and higher fuel prices [29].  

 

In the analysis of CO2 emissions among the EU car fleet, vehicle weight is a very important factor 

as more weight needs more energy to move the vehicle, thus, it increases the fuel needed for the 

same driving distance. During 1995 to 2003, diesel vehicles weight increased by 11.6% (140 kg), 

while the average gasoline vehicle by 15% (160 kg) [4]. Even if weight generally increases during 
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those years, CO2 emissions decrease was due to the increased combustion efficiency, leading to 

lower fuel consumption and thus, lower CO2 emissions. Generally, diesel and gasoline light 

passenger vehicles are shifted to the two extremes in the passenger vehicle fleet: very light and 

very heavy vehicles. As for vehicle weight, there was a general shift to smaller and bigger engines 

for both diesel and gasoline light passenger vehicles [4].  

 

 

Figure 1.3 - Average CO2 emissions for new cars (gCO2.km
-1

) in EU‑27 and targets for 2015 and 

2020 [29]. 

 

In general, CO2 emissions for passenger cars have been decreasing since 2000, as illustrated in 

Figure 1.3. The average passenger car emissions target of 130 g CO2.km
-1

 for the new car fleet by 

2015, and a target of 95 g CO2.km
-1

 from 2020 onwards are marked on orange and red colors 

respectively, in Figure 1.3. CO2 emissions from the new passenger car fleet in the EU‑27 

decreased from 140.2 g CO2.km
-1

 in 2010 to 135.7 g CO2.km
-1

 in 2011 [29]. In 2011, average CO2 

vehicle emissions for most carmakers were below target levels estimated for 2012. New cars in 

2011 were on average 3.3 % more efficient than those vehicles models registered in 2010 [30].  
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The progress done with EU regulations and emissions targets has been decreasing the average 

vehicle CO2 emissions. In 2009 the European Union adopted a Regulation [EC] No. 443/2009 to 

impose the CO2 emissions of 130 g.km
-1

 on the fleet average, by 2012 [31]. However, due to the 

economic recession worldwide and its effect on the automotive industry, the EU has shifted the 

CO2 emissions of 130g.km
-1

 target to be achieved by 2015. The target of 130 g.km
-1

 

(5.6 L.(100km)
-1

) for the average emissions of new cars was also phased-in by 2015 and 95 g.km
-1
 

(4.1 L.(100km)
-1

) by 2020 [31, 32]. Then, the EU is expecting that 2015 and 2020 targets will 

represent a reduction of 18% and 40% respectively compared with the year 2007 fleet average of 

158.7 gCO2.km
-1

 [32]. CO2 emissions and fuel consumption are closely related. To achieve 

Europe’s targeted 80% CO2 reduction by 2050 compared to 1990, oil consumption in the transport 

sector must drop by around 70% from nowadays [28]. 

Actions to reduce GHG emissions, pollutants and noise from vehicles will benefit from shifting from 

conventional modes to hybrid and electric vehicles, cleaner fuels and improved vehicle technology. 

This form should be complemented by better managing transport demand. Also, reduction of 

motorway speed limits from 120 to 110 km.h
-1

 would reduce fuel consumption by 12 % for diesel 

cars and 18 % for gasoline cars [29].  

During the last years, goals have been set for safer and more sustainable mobility. In 2010, the 

United Nations Road Safety Collaboration and the World Health Organization lunched the Global 

Plan for the Decade of Action for Road Safety 2011-2020 in more than 100 countries, with one 

goal: to prevent five million road traffic deaths globally by 2020 [1]. In 2011, the White Paper 

“Roadmap to a Single European Transport Area – Towards a competitive and resource efficient 

transport system” was published [33]. Concerning to road safety, the framework established the 

goal that by 2050, the EU must move closer to zero fatalities in road transport. This document 

defined ten goals for a competitive and resource efficient transport system benchmarks for 

achieving the 60% GHGs emission reduction target [33]. It sets the 'Europe 2020' strategy to 

achieve CO2 emissions reductions by 60 % by 2050 compared to 1990 levels [29, 33]. Hence it is 

required to cut the emissions in 68 % from 2010 to 2050 to meet this target. Concerning to road 

safety, the framework established the goal that by 2050, the EU must move closer to zero fatalities 

in road transport. On the other hand, the Horizon 2020 Transport challenge work program 

encourages research in areas such as: power train technology for law CO2 and polluting emissions, 

and traffic safety [13]. Is that possible an integrated approach towards vehicle safety and 

emissions? Thinking about an answer to this question leads to the motivation of this Doctoral 

research, stated in the next section.  
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1.2 Motivation 

A study amongst 21 European Countries has indicated that Portugal had the lowest road safety 

performance score, and suggested that Portugal should invest more in vehicle safety technology 

and in promoting new(er) cars [34]. During the last decennia there has been an increase in the 

amount of consumer interest in the vehicle safety performance and fuel economy. Consumers tend 

to equate vehicle safety with the presence of specific features or technologies rather than with the 

outcomes of vehicle crash safety/test or crashworthiness [35]. Crash testing is a valuable source 

for consumer regarding vehicle crash safety and credits a car manufacturer for focusing on safety. 

Under the EuroNCAP, the frontal impact takes place at 64 km.h
-1

, meanwhile the car strikes 

deformable barrier that is offset [36]. It simulates one car having a frontal impact with another car of 

similar weight. Hence, it can only be compared with vehicles in the same class and within a 113 kg 

weight range [37]. EuroNCAP discourage consumers from comparing ratings of cars from different 

segments, and in real crashes, there is obviously no control on the vehicle categories involved. 

Despite the scientific conditions under which crash tests are conducted, they have limitations as 

follows. First, they do not account for weight differential between the vehicles involved within the 

collision. Second, the speed of the crash impact frequently is higher than 64 km.h
-1

, which is the 

speed at the frontal impact takes place in crash testing [38-40]. Third, crash testing is only 

performed for selected models, whereas in real roads there is no control neither in vehicle body 

type, neither in the age of vehicles model year. EuroNCAP recognizes there is no capability to 

determine what would happen if cars of widely different masses impact each other [41]. Crash 

testing programs do not attempt to predict the real crash outcome, rather than provide an indication 

of safety best practices that had been implemented in individual vehicle models. During the last 

years, due to fuel economy and CO2 emissions targets, and global recession, manufacturers have 

increase the sales of smaller, lighter cars to offset the fuel economy by their bigger, heavier 

models. Minicars are more affordable, and they use less fuel and emit less pollutants, however the 

safety tradeoffs are a challenge. In a collision involving two vehicles that differ in size and weight, 

the occupants of the sampler lighter car will be in disadvantage? Would a consumer have to 

choose the heaviest on the road to gain safety benefits? But if it does, other road users could be at 

higher risk specially the ones travelling in a lighter car. On the other hand, if all new passenger cars 

would shift towards larger and heavier vehicles, then what would be the cost in fuel consumption 

and emissions? Addressing these questions yield to fourth main motivations for this research: 

1. In Portugal, there is a gap in incorporating vehicle characteristics in road safety analysis.  

2. Crash testing has limitations in prediction crash compatibility amongst vehicles of different 

segments. 

3. It is unclear if more environmental friendly vehicles impose a trade-off on its vehicles’ 

occupants.  

4. An integrated approach towards vehicle safety, energy and emissions should be available 

not only to policymakers but also to consumers. 



 

 
 Introduction 

 

 

11 
 

In road safety analysis three key elements are fundamental: vehicle, infrastructure and driver. 

Infrastructures design has been significantly improved over the decades. Driver behavior is 

complex, subjective and often unpredictable. Therefore the analysis of vehicles effects on severe 

crash outcomes plays a central role. Police records data is a valuable source for crash analysis. A 

better understanding of the severe crashes outcomes demands the analysis of complex data, 

which events are significantly less frequent compared with minor severe crashes resulting in light 

injuries and/or property damage only. Rare events are part of the nature of crash injury data: injury 

severity level has been estimated by the following distribution: 61.0%, 15.3%, and 2.8% for no 

injury, possible injury, evident injury, and severe/fatal injury, respectively [42]. Other sources have 

estimated the overall probability of injury cases at about 2.8%, hence there would be about 35 

times more probability for classifying a case as non-injury, than injury [43]. Data from the United 

States during the year 2010 reflects the imbalance between non-fatal crashes and fatal crashes; 

99% to 1%, respectively [44]. During 2010 and 2011, the ratio of fatal crashes has been estimated 

around 2.7% [23]. With regard to binary data classification (severe crash vs. non severe crash), 

analysis of data containing rare events, poses a great challenge to the machine learning 

community. When probabilistic statistical methods are used, such as logistic regression, they 

underestimate the probability of the rare events because they tend to be biased toward the majority 

class (non severe crashes), which has significantly higher frequency compared to the minority 

class (severe crashes). When modeling a rare event, which happens in a very low frequency, it is 

difficult for the algorithm to find a valuable split, because the model is already predicting right the 

common event. The topics of imbalance datasets and sample balance have not been subject to a 

formal study in crash analysis. The overall crash severity at the crash sample explored in this study 

was 5.1%. The greatest challenge faced by this study was due to the disproportionate class 

distributions of the non-severe and severe events being predicted. To overcome this challenge, a 

balanced sample was derived from the original crash sample and it was modeling using binary 

classification methodologies. 

This Doctoral research is part of the “SAFENV: Predicting the Trade-offs between Safety and 

Emissions for Road Traffic” (PTDC/SEN-TRA/113499/2009), project funded by the Portuguese 

Foundation for the Science and Technology (FCT). This is the first study conducted in Portugal 

which links vehicle specific characteristics with the crash outcomes. The analysis of crashes 

reports sample from the Oporto metropolitan area for the time 2006 to 2010, leads to important 

findings to address the contribution of the national car fleet in road safety progress. This research 

is intended to support decision-making for safe and sustainable transportation policy and mobility in 

Portugal. 
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1.3 Research Objectives 

The main goal of this research was to develop safety prediction models based on real world crash 

data, which was collected from the Portuguese Police crash reports records. The effect of vehicle 

characteristics, such as make and model, engine size, weight, wheelbase, registration year (age of 

vehicle), and fuel type, on crash outcomes, expressed by the number of injuries and fatalities 

among the passengers, is analyzed. It is important to notice that the study focuses on post-crash 

consequences rather than on pre-crash contributing factors to the event. In addition to the safety 

analysis, vehicles technical information was also used to quantify their impact on fuel consumption 

and emissions.  

The major objectives of this Doctoral Thesis are: 

1. Determine if vehicles characteristics affect crash outcomes and identify which factors are 

more significant to predict crash injury severity.  

2. Develop decision models to predict the probability of a serious injury and/or fatality in 

single-vehicle crashes and in two-vehicle collisions. 

3. Develop logistic regression models to predict the probability of a serious injury and/or 

fatality in single-vehicle crashes and in two-vehicle collisions. 

4. Identify which vehicles auto brands are more frequently involved in severe crashes and 

evaluate brand severity ratio involvement in the sample with the overall severity at 

Portuguese fleet. 

5. Develop an integrated analysis score to evaluate vehicle’s safety, fuel efficiency and green 

performances.  

This study addressed the following questions: is there any vehicle dimension important for the 

crashworthiness? Is vehicle size or size differential between the two vehicles involved fundamental 

to safety? Is it possible for designers of new vehicles to cut carbon emissions without negatively 

affecting their safety performance? Is there a trade-off between vehicle safety, fuel efficiency and 

emissions performance? Can manufacturers accomplish the European Commission goal to 

decrease CO2 emissions to 130 g.km
-1

 by 2015, and still achieve a better management of crash 

forces? 

In summary, this research is intended to support the decision-making process for transportation 

policy for safe and sustainable mobility in Portugal. The findings discussed in this Thesis will 

provide meaningful interpretations that can be used to identify potential correlations amongst crash 

analysis and vehicle characteristics effects in road severity risk. Further, the conclusions will 

provide a new assessment of the trade-off between safety and environment in the transportation 

research. It will also provide important information for automotive industry to produce low emission 

vehicles without compromising many of the basic vehicle functions of performance and safety. 
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1.4. Thesis Organization 

The present Thesis is organized in 10 chapters, including: introduction, literature review, safety 

methodology, descriptive statistics, safety analysis results for single-vehicle crashes and two-

vehicle collisions, emissions estimation and modeling, integrated analysis for vehicle’s safety, 

energy and environmental performance, and conclusions. A Thesis reading guide is presented in 

Figure 1.4.  

 
Figure 1.4 - Thesis reading guide fluxogram.  
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CHAPTER 2  

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

Since safety and environment are “transported” together through this Doctoral Dissertation, this 

Chapter highlights previous studies for crash injuries analysis and vehicle’s safety and 

environmental performance analysis. First, research in crash injury severity prediction modeling is 

presented. Second, it discusses statistical approach to deal with crash data complexity and 

unbalanced classes (among severe and non-severe observations). Third, it discusses the 

correlation of crash testing with real life crash outcomes. Fourth, studies addressing the trade-off 

between vehicle’s safety and environmental performance are presented. Finally, main remarks of 

the existing studies in this literature review are emphasized.   
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2.1 Road Safety Main Risk Domains and Drivers’ Behavior  

Traffic safety is a subject with complex interactions amongst these three main factors: human 

behaviour, road and vehicle. Delen et al. had identified the factors that affect the risk of increased 

injury of occupants during a crash: demographic, behavioral characteristics of person, environment, 

roadway conditions and technical characteristics of the vehicle, among others [45]. Hermans et al. 

identified the following risks for road safety outcomes: alcohol and drugs, speed, protective 

systems, infrastructure, vehicle, and trauma management [34]. Driver behavior and driver 

characteristics not only affect the probability to be involved in crash event, but also, how his body 

will sustain the impact and his condition following the crash [15, 46].  

Multiple socio-physiological factors may influence the injury and fatality outcomes in motor vehicle 

crashes. Awadazi et al. had investigated main risk factors for motor vehicle injuries and fatalities 

among younger and drivers 65 years of age or older [47]. The point of impact on a vehicle during a 

crash had increased risk of both injury and fatality for older drivers. Behavioral factors, such as 

alcohol involvement and lack of seatbelts, were likely to place all drivers at increased risk, with 

higher likelihood for crash fatalities [47]. The evidence shows major gender differences on the 

impacts of driver condition, seatbelt use and airbag deployment on injury severity risks. “Male 

drivers, older drivers, drivers who are not wearing safety belts, collisions occurring in a higher 

speed zone and head-on collisions significantly increase the risk of death” [48]. Airbag deployment, 

may impose a higher risk for female than for males [47]. Women and older drivers are more 

frequently killed than other groups under equivalent impact conditions [47-49]. As far as driver’s 

age effect, 16 and 17-year-old drivers pose more than twice as much risk to occupants of other 

vehicles as do drivers aged 85 and older [50]. In addition to vehicle mass and vehicle type, drivers 

characteristics, as well as the circumstances of the collision affected the drivers’ condition post-

crash [48]. Despite of the drivers’ conscious and/or unconscious behavior, Pompili et al. suggested 

that above 2% of the traffic accidents are suicide behaviors [51].  

Human factor comprehension on crash injuries and fatalities requires further research and more 

efficient cooperation between police makers and auto-industry. The injury prevention measures for 

fatal crashes may potentially benefit younger and older drivers alike [47]. Eleven thought younger 

drivers were linked to the highest risk of collision (manly younger males), individuals aged 50 and 

over become the largest segment of potential buyers of automobiles in the marketplace, accounting 

for more than 40% of all new cars purchase [52]. If the automotive manufactures want to remain 

competitive, particularly given the recent economic downtown in this sector, “understanding the 

needs of older consumers and incorporating them into the design of the automobile is important” 

[52]. The development, design, and marketing of crash avoidance and safety-related vehicular 

technology to consumers are critical to ensure the vehicle purchased is the best fit with their safety 

and driving needs.  
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2.2 Vehicles’ Size and Weight Effects on Occupants’ Injury Risk 

Evans explored vehicle mass and size basing his study on Newtonian mechanics. In this study, for 

crash between two cars of different masses, the fatality risk ratio of a lighter to a heavier car 

increases as a power function of mass ratio of the heavier to the lighter car [53]. Based on the law 

of the conservation of momentum, the change in the velocity for the individual vehicle is subject to 

the relative speed and mass proportions between the two vehicles involved in the collision [54]. 

Hence the mass influence the impact yielding to injury severity [54]. Vehicle mass and size 

variables are strongly correlated, which makes it difficult to determine the separate contribution of 

mass and size on crash risk [53]. Wood showed that in collisions between cars of similar size and 

in single vehicle crashes the fundamental parameters which determine the injury risk are 

associated to the size, i.e. the length of the vehicle [55]. However, in collisions between dissimilar 

sized cars the fundamental parameters are the weight and the structural energy absorption of the 

vehicle[55]. Wenzel and Ross found that mass alone is not an effective predictor of risk, on the 

basis of driver deaths per year per million registered vehicles for a given car model [56]. These 

authors suggested the quality of cars may be more correlated to risk than weight, but this 

correlation was not strong [56]. Robertson analyzed vehicles models from 2000-2005 and stated 

that although excess weight and horse power are adverse to other road users (cyclist and 

pedestrians), larger vehicle size is related to lower risk because “it gives occupants more room to 

decelerate in a crash” [57]. During 2007, the death rate in 1-3 year old minicars involved in 

multiple-vehicle crashes was nearly twice as high as the rate in very large cars [58]. Also for single-

vehicle crashes, the fatality risk in minicars was found high as well as in multiple-vehicle crashes 

[58]. Broughton showed that the driver casualty rate decreases with the size of his/her car, 

however the driver casualty increased with the size of the other car involved in the collision [59]. 

Newer cars are safer for their occupants and more aggressive to occupants of cars with which they 

collide [59]. The author claimed that these effects are partly due to an increase in the mass of new 

cars [59]. A further update to this work, showed that the mean risk of death for a car driver in a 

collision with a car registered in 2004–2007 is about 23% greater than in collision with a car 

registered in 1988–1991 [60]. In car-car collisions when modern cars are involved, it was found 

fewer casualties, suggesting that the overall benefits of improved secondary safety have clearly 

outweighed the disbenefits of increasing aggressivity [60]. A more modern car provides better 

protection to its occupants, mainly achieved by the design efforts that have been made to improve 

secondary safety (crashworthiness), also the tendency to greater mass [60]. Méndez et al. advised 

that vehicles aggressivity and crashworthiness were influenced by vehicles mass, size and 

structural properties [61]. Improvements on vehicles safety increased the injury risk on the 

occupants of the older vehicles [61]. Zachariadis suggested that mass seemed to play an important 

role in frontal crash tests only [62]. Distribution of mass among vehicles, and not mass per se, is 

largely responsible for injury risks [62]. Huang et al. suggested that crashworthiness and crash 

aggressivity significantly vary by vehicle type with the dominating effect of vehicle mass [63]. 
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Tolouei and Titheridge showed that increasing vehicle mass generally decreases the risk of injury 

to the driver [64]. The injury risk of occupants in the lighter car is higher than for heavier car, due to 

the greater velocity change during the collision [64]. More recently, Tolouei et al. confirmed that the 

probability of injury of the driver of vehicle 1 increases with speed limit and with increasing mass 

ratio (mass2/mass1), whereas the probability of injury of the driver of vehicle 2 increases with speed 

limit and with decreasing mass ratio [65]. Also, this study evokes that there is a protective effect of 

vehicle size above and beyond that of vehicle mass for frontal collisions [65]. 

Fredette et al. analysis showed that drivers of pickup trucks, minivans and sport utility vehicles 

were more aggressive than the drivers of others vehicles involved, while their vehicle provided 

ahead protection [48]. Keall and Newstead found that in single-vehicle crashes, SUVs are 

potentially harmful to their own occupants due to its high centre of gravity compared to the width of 

the wheel track, leading to greater instability and a higher risk of rollover [66]. When considering 

fatality rates by vehicle type, SUVs showed the highest rate per licensed vehicles [66]. However 

driver risk behavior was suggested as a strong contributor of this elevate risk [66]. Regarding to 

vehicles incompatibility between passenger cars and light trucks, motor-vehicle manufacturers 

have taken voluntary measures to reduce light truck aggressivity by adding crumple zones and 

reducing vehicle height [67]. When subject to a frontal crash, passenger vehicles are designed to 

absorb crash energy through deformation or crush of energy-absorbing structures forward of the 

occupant compartment. However, in collisions between vehicles of different body type, such as 

cars and light pickups or SUVs, the capacity of energy-absorption structures would not be fully 

utilized because mismatches often exist between the heights of these structures. Therefore, in 

2009 new light trucks were required to have the front structure (frame rails) low enough to interact 

with the primary structures in cars, which for most cars is about the height of the front bumper [68]. 

Baker et al. study suggested that the lower front energy-absorbing structure showed a benefit of 19 

% reduction in fatality risk to belted car drivers in front-to-front crashes crashworthiness has been a 

constant concern for road safety and vehicle design [68].  

 

2.3 Crash Testing and Vehicle Safety Performance in Roads 

The improvement in vehicles secondary safety (or crashworthiness) over the years has been 

proven by several studies [36, 49, 61, 69-71]. However, debating has been arising if the crash test 

results indicate the risk of fatality or injury in serious crashes. This section highlights studies on 

vehicles’ safety and crash tests reliability with real crashes.  

 

2.3.1 Perception of vehicles’ safety  

Once introducing model variations on the market, car manufacturers face trade-offs when choosing 

between interior volume, length*width, mass, maximum engine power, power-to-weight ratio, 
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acceleration, and fuel efficiency [72]. Understanding consumers’ preferences for safety is essential 

for designing safer vehicles, for encouraging safe driving behavior and to improve overall road 

safety. Several studies have been conducted in order to gain a better understanding about 

consumer’s perception of vehicle’s safety [35, 52, 67, 73]. Koppel et al. investigated the key 

parameters associated with ranking 'vehicle safety' as the most important consideration in the new 

vehicle purchase [35]. Safety-related factors (e.g., EuroNCAP ratings) were more important in the 

new vehicle purchase than other vehicle factors (e.g., price, reliability) [35]. Likewise, safety-related 

features (e.g., advanced braking systems, front passenger airbags) were considered as more 

important than non-safety-related features (e.g., route navigation systems) [35]. Vrkljan and Anaby 

found that consumer’s vehicle purchase is influenced by: crash test rating, cost, design, and 

reliability. In this study, safety, along with reliability, were considered most important if purchasing a 

vehicle amongst overall consumers [52]. Thus, studies have recommend a better understand of 

consumers’ perceptions of safety to make easier to plan more effective safety policies and safety 

campaigns” [67, 73]. Consumers need to understand the importance of seeking low aggressivity in 

the vehicles they are purchasing to minimize harm to other road users with whom they may crash 

[66]. 

 

2.3.2 Correlation of crash testing with real crashes  

There has been a long-standing debate about whether vehicle secondary safety is superior 

measured through real world crash analysis or controlled during laboratory testing. Lie and Tingvall 

focused on how do EuroNCAP results correlate with real-life injury risks, based on police reports 

crashes [54]. These authors claimed that Euro NCAP is not able to predict crash outcomes 

because start rakings system does not reflect the mass of the vehicles involved in the collisions, 

and mass has an important role in the impact severity distribution [54]. The results suggested that 

four-star cars seem to reduce the risk of a serious and fatal injury by more than 30% [54]. The 

importance of vehicle’s weight (mass) should not be underestimated, and while this factor is not 

taken into account in crash tests into fixed barriers, in a car-to-car impact a 100 kg more weight 

difference will decrease the risk of any level of injury by 7% [65]. On the other hand, in single 

vehicle crashes, the mass should not have any significant influence on safety [65]. Mendez et al. 

showed that the average score of EuroNCAP test of new cars sold in Europe rose from 2 starts in 

1988 to 4 stars in 2005. However this improvement on new cars safety rating did not translate into 

reductions of the risk of injuries faced by drivers in real traffic situations, because of the evolution of 

the car’s mass fleet [61]. Kullgren et al. compared injury risk measures between Euro NCAP 2 and 

5 Star cars with real-world injury outcomes using police and insurance injury data [74]. The 5-star 

rated cars were found to offer a superior safety performance over 2-star rated vehicles in the crash 

tests and real-world crash and injury performance. Contrary to the work of Lie and Tingvall, 

mentioned above, Kullgren et al. claimed that Euro NCAP crash tests were highly correlated with 

serious crash outcomes. These authors stated “though weights of new cars have gone up 
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substantially in recent years, the results of this study confirm that improved crashworthiness has 

been the primary factor in enhanced vehicle safety, rather than the increase in mass” [74]. 

Newstead et al. maintained that crash tests “do not account for vehicle mass effects in the real 

world and they only cover a limited range of crash types” [75].  

Based on the literature review, two major limitations are pointed to crash testing.  

First limitation is related to the crash testing impact speed. The speed of collision, the delta-v, has 

been identified by several authors as the most important variable to access crash severity 

outcomes [43, 53, 54, 61, 76]. For vehicle’s occupants involved in impacts with a delta-v ≥50 km.h
-

1
, the risk of severe injury is more than five times greater than for those in the lower delta-v [69]. 

However, EURO NCAP frontal impact testing protocol version 6.0 included a car impact speed of 

64 km.h
-1

resulting in a delta-v of approximately 32 km. h
-1

 for the occupants [69].  

Second limitation is related to the difficulty to compare vehicles safety ratings amongst different 

segments. IIHS endorse the consumers to not compare ratings across vehicle size groups because 

size and weight influence occupant protection in serious crashes [77]. “Larger, heavier vehicles 

generally afford more protection than smaller, lighter ones” [77]. On the other hand, Euro NCAP 

recommend that crash testing only can be compared with vehicles in the same class and within a 

113 kg weight range [37].  

 

2.3.3 Vehicles’ improvements: primary safety and secondary safety  

Some authors have study vehicles improvements over the years, others have discussed the 

benefits of improved car primary safety.  

Regarding vehicles improvements over the years, and following the studies presented in section 

2.2, Broughton demonstrated that the proportion of injured car drivers who were serious injured or 

killed in modern cars was clearly less than in older cars [70]. The author suggested that the 

benefits have been proportionately greater in accidents occurring on roads with speed limits of at 

most 40 mph [70]. However, it was not conclusive if those severe injuries were due to the efforts of 

regulators and manufacturers to produce safer vehicles, or weather independent factors had 

contributed to the observed reductions. Ritcher et al. results reveal a decrease in crash severity 

(based on collision speed) and injury severity during the 1990s compared to the 1970s. It would 

appear that improvements in vehicle design lead to a greater reduction in injury severity from 

decreased crash severity alone [69]. Lund stated that, whereas vehicle safety has continuously 

improved for vehicle occupants as a whole, it has worsened for many individual drivers who are not 

driving the newest vehicles [78]. The author recognized that improvements in occupants protection 

from vehicle design have been offset by an increasing risky environment, such as driving behaviors 

and higher aggressively of the opponent vehicle [78].  
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Regarding to advanced safety technologies, some examples are highlighted in Appendix 2. 

Electronic Stability Control (ESC) “was the most important innovation in reducing of vehicle-related 

mortality in decades, perhaps the single most effect innovation since the invention of seat belts” 

[57]. Farmer focused on the potential of five crash avoidance technologies: blind spot 

detection/warning, forward collision warning, emergency brake assist, lane departure 

warning/prevention, and adaptive headlights [79]. Of those technologies, the one with the greatest 

potential was the forward collision warning system could prevent 2.3 million crashes in the United 

States each year [79]. Similarly to Farmer’s research, Jermakian suggested that a combination of 

four current technologies (side view assists, forward collisions warning/mitigation, lane departure 

warning and adaptive headlights) could mitigate 149, 000 serious and moderate injury crashes and 

10,238 fatal crashes each year [80]. Also, forward collision warning was found by the author as 

having the greatest potential for preventing crashes of any severity.  

A report from IIHS published the results of the Highway Loss Data Institute (HLDI) that analyzed 

five existing features: antilock brakes, electronic stability control (ESC), driver frontal airbags, side 

airbags, and forward collision warning, introduction in the vehicles fleet [81]. The IIHS reports 

states that it takes typically three decades for a promising safety feature first introduced in few 

luxury cars to spread through the fleet [81]. Although US government began requiring frontal 

airbags installation in some vehicles in 1996, it won’t be until 2016 that 95% of all registered 

vehicles will have frontal airbags [81]. ESC was introduced in 1995 models and was standard on 10 

percent of 2000 models [81]. It is predicted that 95 percent of registered vehicles in 2029 will have 

ESC [81]. A newer report from IIHS stated that forward collision avoidance systems, particularly 

those that can brake autonomously, along with adaptive headlights, which shift direction as the 

driver steers, show the biggest crash reductions [82].  

Regardless of all their potential benefits, the success of crash avoidance technologies in preventing 

crashes depends on several factors, including driver acceptance as well as drivers understanding 

which could make them to inappropriately respond to the alerts [80, 81]. On the other hand, drivers 

with too much confidence in the vehicle safety features may be less observant or drive more 

aggressively, thus offsetting the potential benefits of those systems [80].  

 

2.4 Statistical Approaches on Crash Severity Analysis 

The development of effective countermeasures for road safety requires a thorough understanding 

of the factors that affect the likelihood of a severe injured given any injury level sustained by 

vehicles’ occupants following a crash. To gain such understanding, a wide variety of methodologies 

have been applied over the years, as discussed in this section.  
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2.4.1 Crash analysis- General review  

In crash severity prediction, the analysis focuses on the contribution of several factors and its 

relationship to the crash outcome. Logistic regression provides important information to discuss the 

correlation effect between the factors and response variable [83-85]. These factors are called 

independent variables or predictors variables, which may explain the response variable (also called 

dependent variable or target) [84]. Logistic methodology provides information on the parameters 

estimates (input factors), their standard error and their significance level and their confidence 

intervals and assumes independence among observations [84]. However, regression models have 

many assumptions and implicit underlie relationships between the dependent and independent 

variables [86, 87]. An advanced and powerful data mining technique is the Classification and 

Regression Trees Analysis (CART) [88]. CART methods do not require predefined causal 

relationship between the target and predictors. Decision trees provide an excellent starting point to 

predictive modeling and are useful to predict new cases, select useful inputs and optimizing 

complexity [84, 89]. CART is a flexible non-parametric technique which can provide more 

informative and smart set of models, and its application is a valuable precursor to a more detailed 

logistic regression analysis in crash injury data [86]. CART can provide higher prediction accuracy 

than the conventional binary logit model [88]. Due to the nature of CART, p-values and hence 

significance cannot be explicitly as in logistic regression. However, CART is based on a surrogate 

approach for selecting sets of significance variables, and the variable importance rankings could 

also act as a surrogate for significance [84, 89]. Thus, logistic regression remains the most popular 

method applied by practitioners working within financial services, industry, medicine, marketing and 

crash analysis, and it offers a suitable balance of accuracy, efficiency and interpretability [43, 47, 

83]. On the other hand, CART is also popular, due to the relative easy way in which models can be 

developed, their limited operational requirements, and particularly their interpretability [43, 46, 47, 

83].  

Savolainen et al. had reviewed statistical methods for motor-vehicle injury severities and the 

challenges that complex data imposes, such as endogeneity, when explanatory (predictor) 

variables are potentially influenced by injury-severity outcomes [90]. The authors give the example 

of a model that would use the presence of airbags as an explanatory variable in a model of injury 

outcome. In that case, drivers owing vehicles with airbags may also tend to be more risk 

homeostasis. Simply stated, the presence of the airbag releases the perceived risk by the driver, 

thus allowing him/her to be more aggressive and/or taking dangerous maneuver when overtaking 

on the road. Other example of endogeneity was identified by Méndez et al. when drivers may take 

advantage of design improvements and travelling at higher speeds, which translates in higher 

impact speeds and therefore, higher injury severity [61]. 

In crash severity prediction modeling, usually researchers look to several classes of targets, which 

sometimes make difficult the comparison results among different studies. Some researchers have 

inspected the injury severity of crashes by considering the injury level of the driver only [42, 61, 91-
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93]. Others have included in the analysis the injury-severity of the most severely injured occupant, 

whereas, others have included multiple injury levels per crash event [42, 92, 93]. Therefore, 

comparison of results among crash severity prediction studies must be made with prudence 

because those results are significantly influenced not only by the class of target being modeling, 

but also by the data source. Police accident reports are used worldwide for crash analysis and road 

safety. However several authors have claimed the misclassification of injury severity among road 

casualties in police reports. Hauer claimed that Police miss near to 20% of injuries that require 

hospitalization [94]. Tsui et al. study claimed that police reports overestimate injury severity 

significantly [95]. This study identified that victims’ age, the Injury Severity Score (ISS), and the 

position of the victim significantly determine the likelihood of police injury misclassification [95]. 

Amoros et al. stated “Police crash data, which are the basis for safety research in most countries, 

are incomplete and biased” [96]. Whereas fatal casualties are quite clearly defined and well 

reported, non-fatal casualties could be biased [96, 97]. Al-Ghamdi stated that police reports “do not 

describe injuries in much detail because of the lack of police qualifications and training as well as 

facilities needed to perform complex examinations”, and “medical reports are hard to obtain 

because police accident data and medical data are not kept together” [85]. Despite of the above, 

Police accident reports are the main source for crash analysis and prevention. 

 

As far as crash data access worldwide, examples are provided for some of the studies under 

discussion in this Chapter. In Austria, Boufous et al. data was obtained from a Traffic Accident 

Database System (TADS) [98]. In U.S., Bédard et al. and Jermakian used data from Fatality 

Analysis Reporting System (FARS) [80, 91]. Also in US, Kockelman and Kweon and Chen and 

Kockelman had access to the National Automotive Sampling System General Estimates System 

(NASS GES) [92, 99]. Kononen el. al. examined data from National Automotive Sampling System 

Crashworthiness Data System (NASS-CDS) [43]. Das et al. used crash data from the Crash 

Analysis and Reporting (CAR) system [87]. 

 

2.4.2 Crash severity prediction models- A review of previous studies 

Previous studies related to crash analyses have used a broad spectrum of statistical models to 

reach conclusions. For example, statistical regression models have been widely used for analyzing 

contributing factors to injury severity [37, 85, 91, 98-101]. Often, researchers combine different 

methods in order to extract partner relationships between variables and to overcome data 

complexity [83, 92, 102, 103].  

Boufous et al. used multiple linear regression analysis to evaluate factors affecting injury severity 

[98]. Results showed that road type, the presence of complex intersections, road speed limit as 

well as driver's error, speeding, and use of seat belt were significant predictors of injury severity 
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[98]. Bédard et al. used a multivariate logistic regression to identify the independent contribution of 

driver, crash, and vehicle characteristics to fatal injuries sustained by drivers [91]. Older drivers, 

female gender, blood alcohol concentration (greater than 0.30), driver-side impacts, speeds in 

excess of 111 km.h
-1

 prior to the crash, and no seat belt use were related to higher fatality ratios 

[91]. Al-Ghamdi applied logistic regression to accident data to examine the contribution of several 

variables to accident severity [85]. Accident location (intersection or not) and cause were found 

significant to predict a fatal crash [85]. Kockelman and Kweon applied ordered probit models to 

examine the risk of different injury levels sustained under all crash types, two-vehicle crashes, and 

single-vehicle crashes [92]. Pickup-trucks and SUVs were less safe than passenger cars under 

single-vehicle crash conditions. However, in two-vehicle crashes, these vehicle types were 

associated with less severe injuries for their drivers and more severe injuries for drivers of their 

collision partners [92]. Abdel-Aty studied driver injury severity levels using the ordered probit 

models [42]. Models results showed the significance of driver's age, gender, seat belt use, point of 

impact, speed, and vehicle type on the injury severity level [42]. Das et al. used random forests, 

which were ensembles of individual trees grown by CART algorithm [87]. This methodology has 

identified alcohol/drug use and higher posted speed limits as contributing factors to severe crashes 

outcomes [87].  

Kuhnert et al. combined non-parametric models (such as CART) with logistic regression to 

determine if “risk-taking” was a significant contributor to crashes resulting in serious injury or death 

[102]. These combined techniques had identify age, driving experience, sex, and seatbelts as the 

major contributors to serious injury resulting in hospitalization from motor vehicle accident [102]. 

Kashani et al. used CART methodology to identify the most important factors which affect injury 

severity of vehicles drivers [104]. The results reveled that seat belt use, improper overtaking and 

speeding were the most important factors associated with drivers injury severity [104]. Sobhani et 

al. developed a kinetic model of two-vehicle crash injury severity using generalized linear 

regression model. Mass ratio and speed limit had positive effect on the injury severity score of the 

crash [105]. Martin and Lenguerrand estimated driver protection provided by passenger cars for 

French vehicles fleet using a conditional Poisson regression [49]. “Recent cars protect their drivers 

better than older cars in the event of a collision” [49]. However, for the single-car crashes the 

advances in secondary safety were not apparent, “probably because of higher impact speeds” [49]. 

Méndez et al. evaluated the crashworthiness and the aggressiveness of the Spanish car based on 

car’s year of registration by applying two types of regressions: logistic models for single-crashes 

and generalized estimation equation (GEE) models in tow-crash crashes [61]. Crashworthiness 

had improved in two-car crashes, and drivers of cars registered before 1985 had a significantly 

higher probability of being killed or seriously injured than drivers of cars registered in 2000–2005 

[61]. Also, for single-car crashes, the improvements in crashworthiness were also very slight [61]. 

Chen and Kockelman used a heteroscedastic ordered prohibit model to differentiate the effects of 

vehicle weight, footprint (defined as the product of wheelbase and width) on the severity of injuries 
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of vehicle occupants [99]. The impact of vehicle’s attributes was also found more significant in one-

car crashes than in two-car crashes. For single-vehicle crashes, larger footprint vehicles seemed to 

reduce the risk of serious injuries; while in a two vehicle collision those same vehicles attributes 

seemed less crashworthy [99]. Also, heavier vehicles were expected to be more crashworthy 

regardless of crash type [99]. Kononen et al. used logistic regression model for predicting serious 

injuries associated with motor vehicle crashes [43]. Delta-V, seat belt use and crash impact 

direction were found the most important predictors of serious injury [43]. Xie et al. focused on the 

analysis of driver injury severity in rural single vehicle crashes using both the multinomial logit 

(MNL) model and the latent class logit model (LCL) to find out the relationship between injury 

severities and related traffic factors [93]. Driver age, DUI, seat belt usage, points of impact, lighting 

condition, speed, which were found to be closely related to driver injury severity levels [93]. 

Newstead et al. estimated the risk of death or serious injury based on a total secondary safety 

index developed with logistic regression model [75]. Crashworthiness and risk impose to another 

vehicle were largely independent, with a slight correlation with vehicle mass, which tends to 

improve crashworthiness but increases “agressivity” [75]. Total secondary safety rating was found 

to be the best for medium vehicles size, whereas, light cars showed the poorest [75]. 

Table 2.1 highlights the main important studies in the technical literature for crash severity risk 

factors modeling and injury severity prediction. For each study, data source, sample description, 

selected statistical methods, key findings and research limitations are outlined. 
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Table 2.1 – Studies for risk factors analysis and crash injury severity prediction.  

AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS 

Abdel-Aty (2003) 
Crash data for the 
Central Florida, from 
1996 and 1997. 

Ordered probit models for multinomial variables 
(injury severity levels) which were inherently 
ordered. 

Driver's age, gender, seat belt use, point of impact, speed, 
and vehicle type were significant on the injury severity level. 

Only focus on driver’s injury risk. 
For vehicle information only use the 
vehicle type, as being PC or not. 

Al-Ghamdi (2002) 

Traffic police records 
from 1997 to 1998 
Total of 560 crashes 
selected in a systematic 
random process from all 
accident records in Saudi 
Arabia. 

Logistic regression was used to classify 
accidents being fatal or non-fatal. 
During the modeling phase some variables were 
dropped from the model, those that were not 
adding useful information to the variability of the 
response variable. 

After dropping some variables location and cause of the crash 
were found significant. 
For two-vehicle collisions, driving a heavy duty trunk seemed 
to offer better protection.  
For two and single-vehicle crashes, vehicle age and alcohol 
were positively associated with injury level. 
The odds of being in a fatal accident at a non-intersection 
location are 2.64 higher than those at an intersection. 

Vehicle information only relied on 
vehicle body type classification. 
Only 560 serious crashes were 
examined and this sample mix 
pedestrians, cyclist and vehicle 
collisions. 
 

Baker et al. (2008)  

FARS was used for two-
vehicle crashes between 
2000 and 2003.  

Driver fatalities in struck passenger cars were 
grouped by crash configuration (front-to-front or 
front-to-driver-side), reported driver belt use, light 
truck body type (pickup or SUV), and whether or 
not the height-matching criteria were met.  
Driver fatalities per million light truck vehicle 
registration-years then were calculated for each 
of these groups. 

The estimated benefits of lower front energy-absorbing 
structure were a 19 % reduction in fatality risk to belted car 
drivers in front-to-front crashes with light trucks and a 19 % 
reduction in fatality risk to car drivers in front-to-driver-side 
crashes with light trucks. 

Focus on the risk to the driver only. 
The vehicle characteristics being 
analyzed were limited to matching of 
primary energy-absorbing structures 
that affect the agressivity of light trucks 
with cars.  

Bédard et al. (2002) 

FARS data for US traffic 
fatalities from 1975–
1998. 

Multivariate logistic regression. Odds ratio (OR) of a fatal injury increased with age, 4.98 (for 
drivers aged 80+ compared with drivers aged 40–49 years. 
Female gender (OR=1.54) and blood alcohol concentration 
greater than 0.30 (OR=3.16) were associated with higher 
fatality odds. In comparison with front impacts, driver-side 
impacts doubled the odds of a fatality (OR=2.26), and speeds 
in excess of 111 kilometers per hour (were related to higher 
fatality odds (OR=2.64) compared with speeds of less than 56 
kph.  

Only focus in single -vehicle crashes.  
Risk to the drivers only. 

Boufous et al.(2008) 

Database linking hospital 
from the Inpatient 
Statistics Collection (ISC) 
to police crash casualty 
records from the Traffic 
Accident Database 
System (TADS), in 
Australia. 

Injury resulting from traffic crashes was 
measured using the International Classification of 
Diseases, 10

th
 revision (ICD-10) Injury Severity 

Score (ICISS). 
Univariate and Multiple linear regression 
analysis. 
Different Models were developed: for analysis 
impact driver characteristics, for analysis impact 
of environment and road and for analysis of the 
impact of vehicle and crash information on injury 
severity.   

Road type, presence of complex intersections, road speed 
limit as well as driver's error, speeding, and use of seat belt 
were significant predictors of injury severity in older people 
hospitalized as a result of a traffic crash 

Only focus in older diver risk. 
Vehicle information is only limited to 
being a car or “other vehicle” and year 
of manufacture.  
It includes the number of vehicles 
involved in the crash but not the effect of 
the opponent vehicle.  
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AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS 

Broughton (2008) 

British SATS19 national 
road accident reporting 
system. 
Data crashes from 2001 
to 2005 

Car models were grouped into six types, ranging 
from ‘Minis and Superminis’ to ‘4 × 4s and PCs. 
Statistical models were fitted to identify the 
influence on a driver's risk of injury in a car-car 
collision based on type and registration year of 
the driver's car and the type and registration year 
of the other car in the collision. 
Risk has been calculated as driver casualty rate 
per million. 
Generalized linear model was used to fit the 
driver casualty rate data 
Analysis focus on secondary risk estimated from 
two-vehicle collisions.  

Driver casualty rates falls with size of car, except for sport 
cars. In car-car collision driver fatality rise with size of the 
other car.  
In multi-vehicle accident, occupants of smaller vehicle face 
greater risk and the asymmetry of risk increases with mass 
ratio.  
In car-car collisions, driver of the earlier car tends to face 
greater risk than the driver of the later car. 
 
The risk of death for the driver of the smallest type of car was 
4 times the risk for the largest type. 
The risk of death for a driver in collision with the largest type 
of car was over twice the risk when in collision with the 
smallest type, 
The risk of death for the driver of a car registered in 2000-
2003 is less than half the risk for the driver of a car registered 
in 1988–1991. 
The risk of death for a car driver in collision with a car 
registered in 2000–2003 is about 46% greater than the risk 
when in collision with a car registered in 1988-1991. 
The risk of being killed or seriously injured varies less with car 
type and registration year than the mean risk of being killed. 
Nature and severity of an accident tend to vary with the local 
speed limit.  

Focus on the risk to the driver only. 
Car information was limited to type and 
registration year). 

Broughton (2012) 

Crashes extracted from 
the British National Road 
Accident Reporting 
System. 
Accident data from 2003 
to 2007. 

Two models were fitted to the accident data and 
the dependent variable for each model was 
proportion of injured drivers who were killed or 
seriously injured. 
One model comprise comprised the driver's age 
and sex and the registration year of the driver's 
car. Other model had added type of car and 
registration year. Separated models were fitted 
for type of road.  

The mean risk of death for a car driver in collision with a car 
registered in 2004-2007 was 23% greater than in collision with 
a car registered in 1988-1991. 
Newer cars are associated with lower risk of injury than older 
cars, namely protection of occupants in fatal and serious 
accidents and aggressivity in serious accidents. 
Fewer casualties in car-car collisions were registered when 
more modern cars are involved. So the casualty benefits of 
improved secondary safety have clearly outweighed the 
disbenefits of increased aggressivity. 

Only focus on risk to the drivers. 
Predictors were based on type of car 
and registration year. 
It does not take into account vehicles’ 
differential size and mass.  

Chen and Kockelman 
(2012) 

Data was used from 
2007 through 2009 
NASS GES. 
26,421 occupant 
observations for one190 
vehicle crashes and 
72,139 occupant 
observations for two-
vehicle were analyzed. 
1V and 2V 

Data from NASS GES was matched with 
additional vehicle-specific characteristics 
(obtained using HLDI’s database) based on 
abbreviated vehicle identification numbers 
(VINs). 
Heteroscedastic ordered probit model to 
distinguish the effects of vehicle weight, footprint 
(wheelbase*width) and height on the severity of 
injuries sustained by vehicle occupants. 

Larger-footprint vehicles and shorter vehicles are estimated to 
reduce the risk of serious injury. In single-vehicle crashes, 
they appear to be less crashworthy in two-vehicle collisions. 
Heavier vehicles are anticipated to be more crashworthy 
regardless of crash type.  
Moderate changes in vehicle weights, footprints are estimated 
to have small impacts, while other factors, such as seat belt 
use, driver intoxication, and the presence of roadway 
curvature and grade influence crash outcomes much more 
noticeably. 

The methodology does not explain if the 
effect of the opponent vehicle was on 
the case vehicle injury outcomes.  
Vehicles differential characteristics such 
as weight differential between the two 
vehicles involved in the collisions were 
not shown.   

Das et al.(2009) 

Crash data from the 
Crash Analysis and 
Reporting (CAR) System 
, Florida Department of 
Transportation (FDOT), 
for the years 2004 
through 2006. 

Random Forests, which are ensembles of 
individual trees grown by CART algorithm, were 
used to classify crash severity. 
Severity level was defined as Binary (1 = 
incapacitating injuries/ fatalities; 2 = possible/ 
non-incapacitating injuries). 

Alcohol/ drug use was associated with increased severity of 
crashes irrespective of the length of the corridors or the type 
of crashes. 
Failure to use safety equipment by all passengers and 
presence of driver/passenger in the vulnerable age group (> 
55 yr or <3 yr) increased the severity of injuries. 

Only consider crashes occurring in 
urban arterials. 
For vehicle information only consider 
vehicle type category: light trucks; heavy 
vehicles and light slow moving vehicles. 
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AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS 

Evans (2004) 

Crashes cases were 
extracted from FARS 
data, for 1975-1998  

Analysis the quantitative relationship to to 
explore what length increases was required to 
offset the risk increases from reducing vehicle 
mass. 
Analysis derived from frontal two-car crashes.  

If a car is heavier, it reduces risk to its driver but increases risk 
to other drivers. 
If a car is larger (without being heavier) it reduces the risk to 
its driver and also reduces risk to other drivers.  
Increased dimensions in a car provide increased occupant 
comfort.  
To reduce fatality risk in crashes between large and small 
cars requires increasing vehicle length while reducing mass. 

Focus only on two-car crashes.  

Fredette (2008) 

Data from 2 vehicle 
collisions occurring 
between 1993 and 2001, 
from National Collision 
Database, in Canada. 
Data for 2,999,395 
drivers. 

Logistic regression was used to model the risk of 
driver death or major injury (defined has being 
hospitalized). 

Pickup trucks, minivans and sport utility vehicles (SUVs) are 
more aggressive than cars for the driver of the other vehicle 
and more protective for their own drivers. 
Like vehicle mass and type, characteristics of drivers and 
circumstances of the collision influence the driver’s condition 
after impact. Male drivers, older drivers, drivers who are not 
wearing safety belts, collisions occurring in a higher speed 
zone and head-on collisions significantly increase the risk of 
death. 

Only focus in older diver risk. 
 
It classifies six vehicle types: passenger 
car, SUV, pickup truck, minivan, heavy 
truck and bus.  
Mass ratio for driver car and impact 
were included. The study did not include 
vehicle’s technical data information.  

Kashani et al.(2011) 

Dataset include 213,569 
drivers that were involved 
in rural road crashes 
from 2006 to 2008, in 
Iran. 

CART was applied to model 13 independent 
variables, and the target variable injury severity, 
which includes 3 classes: no-injury, injury and 
fatality. 

Seat belt use, cause of crash and collision type as the most 
important variables influencing the injury severity of traffic 
crashes. 

Vehicle information is only in respect of 
vehicle type classification. 
Only focus on drivers’ risk. 

Keall (2008) 

Crash data in the years 
2005-2006, New 
Zealand.  
Population with 
2,996,000 vehicles of 
which 17,245 were 
involved in an injury 
crash. 

Vehicles grouped by category.  
Poisson regression was used to estimate the 
number of casualties resulting from crashes 
involving the vehicle marker group. Multivariate 
logistic regression models were used to estimate 
crash risk. 

Sport cars high crash involvement rate and injury rate is likely 
to be largely due to the way they are driven rather than to 
inherent characteristics of the vehicles themselves. 
SUVs are dangerous when in the hands of young drivers. 
Safety conscious vehicle purchaser should also avoid sports 
cars because of the tendency for drivers to take additional 
risks when provided with high levels of acceleration and 
performance. 

Only two continuous variables available 
for the analysis, vehicle age and annual 
distance driven. 
The logistic model for injury crash 
involvement had a non-significant 
Hosmer-Lemeshow Goodness-of-fit test, 
providing evidence of a poor fit.  

Kockelman and Kweon 
(2002) 

Data from National 
Automotive Sampling 
System GES, which has 
all police-reported 
crashes in the US for 
1998  year. 

Ordered probit regression was applied to model 
four levels categories: no injury (0), minor injury 
(1), severe injury (2), and fatal injury sustained 
by driver (3). 

Manner of collision, number of vehicles involved, driver 
gender, vehicle type, and driver alcohol use play major roles. 
Rollover and head-on collisions are particularly serious, 
contributing to more severe injury levels than speed increases 
of 50 mph and more. 

Only considered the risk to the driver. 
For vehicle information only consider 
vehicle age (model year) and vehicle 
type category, such as motorcycle, 
SUVs, van, pick-up, heavy duty vehicle. 
 

Kononen et al. (2011) 

National Automotive 
Sampling System 
Crashworthiness Data 
System (NASS-CDS) for 
1999-2008.  
Sample had 14,673 
vehicles, 1212 (8.3%) 
contained one or more 
occupants with ISS 15+ 
injuries. 

Injury Severity Score (ISS) was considered for 
crash outcomes injury level analysis. 
Logistic regression was conducted using SAS 
9.2. 
The target was the percent of vehicles with 
seriously injured occupant(s). 

Delta-V (mph), seat belt use and crash direction were the 
most important predictors of serious injury. 

Lack of vehicles characteristics for 
models inputs. The only information 
used was vehicle type (utility, van, 
pickup and car). 

Kuhnert et al. (2000) 

Survey from 1997 to 
1998, in Australia. 
2000 people were 
inquired.  

Participants were stratified by sex, vehicle type 
and postcode areas). 
Combined non-parametric modeling procedures 
(CART) and multivariate adaptive regression 
splines (MARS) with logistic regression. 

MARS and CART are not only modeling tools but exploratory 
tools for a more detailed analysis.  
Models have identified age, experience, sex and seatbelts are 
major contributors to serious injury. 

Vehicle information was limited to 
vehicle type classification. 
It center in the analysis of driver 
characteristics rather than other 
contributor factors to injury outcomes. 
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AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS 

Li (2008) 

The crash data were 
originally obtained from 
the Kansas Department 
of Transportation (KDOT) 
database.  
Data includes 85 fatal 
crashes and 604 injury 
crashes between 1998 
and 2004. 

Crash severity index (CSI) for work zone safety 
evaluation was proposed and a set of CSI 
models were developed through the modeling of 
work zone crash severity outcomes. 
Chi-square statistics and Cochran–Mantel–
Haenszel (CMH) statistics were employed to 
ensure the accuracy of risk factor identification. 
First, a wide range of crash variables were 
examined in a comprehensive manner and the 
significant risk factors that had impact on crash 
severity were selected. Second, the CSI models 
were developed using logistic regression 
technique by incorporating the selected risk 
factors. Finally, the developed models were 
validated using the recent crash data and their 
ability in assessing work zone risk levels were 
analyzed. 

CSI models can provide straightforward measurements of 
work zone risk levels. 

Training model developed with 267 
injury crashes and 67 fatal crashes. 
 
The crash data used for model 
validation had only 18 fatal crash cases. 
The size of the fatal crash sample might 
not be large enough to validate the 
developed models under typical fatal 
conditions. 

Martin and 
Lenguerrand (2008) 

Crashes by the police in 
France between 1996 
and 2005. The risk of the 
driver being killed has 
been evaluated for a 
sample with 144,034 
drivers. 
Single and two-vehicle 
crashes. 

Poisson regression was used to assess the 
relative risks.  
With this regression the relative risks for drivers 
within the same crash are estimated by 
conditioning the Poisson likelihood on the 
number of deaths in each matched set (single 
and two-vehicle crashes) 

When a recent car is in collision with an older car, the driver of 
the former is better protected than the driver of the latter.  
Improvements in secondary safety are not observed in the 
case of single-car crashes, very probably because of higher 
impact speeds. 

Data which would have allowed a good 
estimate of impact conditions in terms of 
Delta-V was not available. 
Lack of precision concerning vehicle 
characteristics, mainly registration year, 
mass and power. 

Mendez et. Al (2010) 

Data extracted from the 
Spanish Road Accident 
Database, for cars 
registered before 1985 
and cars registered, in 
2000-2005 

Two types of regression models have been used: 
logistic regression models in single-car crashes, 
and generalized estimating equations (GEE) 
models in two-car crashes. 
Dependent variables have been defined as 
proportion of injured drivers who were killed or 
serious injured in the Spanish car fleet. 

Crashworthiness improved in two-car crashes: when crashing 
into the average opponent car, drivers of cars registered 
before 1985 have a significantly higher probability of being 
killed or seriously injured than drivers of cars registered in 
2000-2005. 
In single-car crashes, the improvement in crashworthiness 
was very slight. 
Increase in the aggressivity of newer cars. 

Only focus on analysis of the drivers 
risk. 
Vehicle information is only limited to the 
registration year. 
 

Pakgohar (2011) 

Database extracted from 
Traffic Accidents of Iran’s 
Police.  
The size of the target 
population was 347,285 
road crashes during 
2006. 

Descriptive analysis, Logistic Regression, and 
CART were employed. 
The dependent variable (Accident Severity) had 
three levels: “Fatal”, “Injury”, and “No Injury”. 
During running CART and LR algorithms through 
SPSS, the software’s defaults were adopted. 

After executing algorithms, the accuracies of 81% and 78.57% 
were achieved for CART and LR, respectively. Thus CART 
had higher accuracy than LR method. 

Accident severity did not take into 
account vehicle effect but driver´s age 
and gender, seat belt use, and driving 
license.  

Tolouei (2009) 

UK data from two-car 
accidents where at least 
one driver was injured, 
from 2000-2004. 

Logistic regression models were used to 
represent the independent influence of speed 
limit (proxy for accident severity), first point of 
impact, driver sex and driver age.  
Linear model was estimated using ordinary least 
square to investigate the effect of vehicle mass 
on its adjusted crash injury risk to the driver.  

A 100 kg increase in mass decreases risk of injury to the 
driver in a two-car injury accident between 2.6% and 3.2%. 
Characteristics of the fleet, and in particular the distribution of 
mass within the fleet, it is an important factor in determining 
the relationship between mass and secondary safety 
performance of individual vehicles. 

Only focus in risk to the driver. 
It seems that uses an average of 
vehicle’s mass and engine size for auto-
brands rather than using vehicles 
individual’s mass and engine size.  
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AUTHOR’S STUDY DATA SAMPLE STATISTICAL METHODS KEY FINDINGS LIMITATIONS 

Tolouei (2013) 

UK STATS19 Police 
reported data from 2000 
to 2006.  
Sample dataset included 
two-car crashes where at 
least one of the drivers 
was either killed or 
seriously injured (KSI); 
this included a total of 
2485 two-car crashes. 
Two vehicle collisions. 

Disaggregate analysis of two-car crash data to 
estimate the partial effects of mass, through the 
velocity change, on absolute driver injury risk in 
each of the vehicles involved in the crash.  
Absolute injury risk is defined as the probability 
of injury when the vehicle is involved in a two-car 
crash. 
It separates the effect of vehicle mass from size 
(length x width). 
The driver injury probability is described by a 
logistic function that includes, for each vehicle 
involved in the crash, the velocity change 
(defined as a function of mass ratio and closing 
speed) as well as various driver and vehicle 
characteristics. 

The probability of injury of the driver of vehicle 1 increases 
with speed limit and with increasing mass ratio (μ = m2/m1) 
while the probability of injury of the driver of vehicle 2 
increases with speed limit and with decreasing mass ratio; 
that is, in a two-car collision vehicle mass has a protective 
effect on its own driver injury risk and an aggressive effect on 
the driver injury risk of the colliding vehicle. 
There is a protective effect of vehicle size above and beyond 
that of vehicle mass for frontal collisions. 
Mass might not necessarily impose a trade-off between safety 
and environmental goals in the vehicle fleet as a whole. This 
is because the secondary safety performance of a vehicle 
depends on both its own mass and the mass of the other 
vehicles in the fleet. 
 

Only estimate risk to the driver. 
Crash analysis focus only frontal two-car 
crashes. 

Wenzel (2005) 

Crashes from fatality 
analysis reporting system 
FARS, for 1997-2001. 

Used the number of driver fatalities during the for 
selected vehicle types/models from model years 
1997–2001 and divide the number of fatalities for 
a given vehicle type or model by the number of 
“registration-years”. 
Risk defined as drivers deaths per million 
registered vehicles for a given car model.  
Use both primary risk (crash involvement) and 
secondary risk (injury risk) during the analysis. 

Range in cars’ risk must be attributed to vehicle design (which 
encompasses mass and size) and to difficulty to driver 
characteristics and/or behavior.  
Mass alone is a “modest” predictor for risk. 
Mass and size correlates inversely with risk; large and mid-
size cars have safer records than average subcompact, but 
the correlation is not strong. Better correlation was found 
between vehicles quality and safer records.  
It remains inconclusive whether design features or driver 
characteristics and/or behavior are more important to risk.  

Focus on the risk to the driver only. 
The “other vehicle” could be any model, 
including motorcycles, buses and heavy 
vehicles. 
Study the dependence of risk on vehicle 
type and especially on vehicle model, 
but not took into consideration vehicles 
technical information. 
In the risk to the driver did not consider 
the effect of vehicles characteristic 
differentials.  

Xie et al. (2012) 

Total number of crashes 
with valid data was 4,285 
obtained from Florida 
Traffic Crash Records 
Database, in 2005. 
Single-vehicle crashes. 

Multinomial logit (MNL) model and latent class 
logit (LCL) model were used. 
Five crash injury outcomes were considered in 
this research: “no injury”, “possible injury”, “non-
incapacitated injury”, “incapacitated injury”, and 
“fatal injury”. 
To further assess the performance of the LCL 
model, a prediction experiment was conducted to 
evaluate the goodness-of-fits of the two models.  
From the collected data, 3,000 observations 
were randomly drawn for model fitting, and the 
remaining data are used for evaluation. This 
process is repeated 10 times.  

Compared to the MNL model, the LCL model improves the 
prediction accuracy for the possible injury category by around 
37%.  
For other injury outcomes, the improvements from the LCL 
model range between 10% and 20%, which are quite 
significant considering that this is the average result based on 
10 randomly generated samples. 
Model´s significant risk factors were: driver age, DUI, seat belt 
usage, points of impact, lighting condition and speed. 
Vehicle age and surface condition were not significant.  

Focused on rural single-vehicle traffic 
crash and only in crash driver injury 
severity risk. 
Vehicle information was only limited to 
vehicle age and being an automobile or 
a van.  

Zhang (2000) 

Crashes obtained from 
Canadian Traffics 
Accident Information 
Databank from 1988-
1993.  
17,367 crashes including 
711 fatal observations.  

Multivariate logistic regression was used to 
calculate the estimated relative risk based on 
odds ratios (OR). 

Factors significantly related to the increased risk of fatal-injury 
in crashes were: age (OR=1.4 for 70–79), sex (OR=1.4 for 
males), failing to yield right-of-way/disobeying traffic signs 
(OR=1.7), non-use of seat belts (OR=4.0), ejection from 
vehicle (OR=11.3), intersection without traffic controls 
(OR=1.7), roads with higher speed limits (OR=7.9 for 70–90 
km.hr

-1
; OR=5.8 for 100 km.hr

-1
), head-on collisions 

(OR=55.1), two-vehicle turning collisions (OR=3.1 for left-turn, 
OR=8.7 for right-turn), overtaking (OR=5.6), and changing 
lanes (OR=2.1). 

Vehicle information was limited to 
automobile or van.  
Only focus on risk injuries to the elderly 
drivers. 
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2.5 Modeling Rare Events- Imbalanced Data 

Problems of classification and prediction models with imbalanced classes are common in several 

domains. This section discussed the challenges imposed by rare events and summarizes authors’ 

findings dealing with this topic.  

 

2.5.1 Why are rare events a problem? 

 

Figure 2.1 - A scheme illustrating a dataset with imbalance classes (used with permission [106].  

 

Imbalanced data sets exists in many real-world domains, such as spotting unreliable 

telecommunications customers, detection of oil spills in satellite radars images, detection of 

fraudulent telephones calls and credit card frauds [83, 106, 107]. High imbalance events occurs in 

real-world where the decision is aimed to detect a rare but important case [107]. Imbalance data 

correspond to data exhibiting significant and sometimes extreme imbalances between the classes. 

A dataset is imbalanced if the classes are not approximately equally distributed. Some authors 

claim that natural distributions are not the bets distribution for learning a classifier [107-111].  

Figure 2.1 illustrates in a simpler manner an imbalanced classes distribution [106]. The stars 

represent the minority class and the circles represent the majority class. In some domains of 

civilian life to national security, between class imbalances are on the order of 100:1, 1000:1 and 

10000:1, where for each case, one class severely outrepresents another [106]. Classifiers (or 

algorithm method) tend to provide a severely imbalance degree of accuracy: with the majority class 

having close 100% accuracy, and the minority class having accuracies in the interval of 0-10% 

[106]. There is the need to have an algorithm method that it will provide high accuracy for the 

minority class, without making vulnerable the accuracy of the majority class.  

In literatures, rare events have proven difficulty to explain and predict [110]. The importance of 

addressing the imbalance distribution between the majority and minority classes in modeling is 
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often derived from the underlying decision context and the costs associated with it [83]. The nature 

of the class imbalanced was defined as “a relative problem depending on both the complexity of 

the concept represented by the data in which the imbalanced occurs and the overall size of the 

training set, in addition to the degree of class imbalance present in the data and the classifier 

involved” [110]. High complexity and imbalance classes, as well as small training set sizes, lead to 

very small subclusters that cannot be classified accurately [110]. Contrariwise, the class imbalance 

problem causes no harm when all subclusters have a reasonable size, thus dismissing the belief 

that classification errors will necessarily occur if one class is represented by a large data set and 

the other, by a small one [110].  

As far as the answer to the question “Why are rare events a problem?” there are several reasons 

as explained next.  

Explanation 1: Some small disjunctions may not indicate a rare case or exceptional observation, 

but rather noisy data [107]. Hence, just small disjunctions that area meaningful should be reserved 

for the analysis [107]. In logistic regression modeling to predict a binary target outcome (Y=”0” or 

“Y=1”) with unequal sample frequencies of the two outcomes (“0” and “1”), the less frequent 

outcome (“1”) always has lower estimated prediction probabilities than the other outcome [112]. 

Thus, the logit model would estimate high prediction probabilities for the most common event and 

very low for the less frequent event. Hence the inequality of sample proportions of the outcomes 

leads to a high overall estimated prediction probabilities and to high log-likelihood [112]. Cramer 

stated that a good prediction would be simply a matter of choosing the right predictors[112]. 

Whatever value the rare outcomes can attain, on average the prevalent outcome will always be 

predicted even better [112]. The extent of this asymmetry differs with the fit of the model, which is 

usually mediocre, as a “rule” there is a great contrast between the poor prediction of the rare event 

and the good prediction of the common event [112].  

Explanation 2: The problems of logistic regression in rare events are mainly related to two 

sources: statistical procedure can sharply underestimate probability of rare events and commonly 

data collection strategies are inefficient for unbalanced data [83, 109]. The first source of problems 

of rare events data analysis with binary dependent variables is related to the mean of the binary 

variable which is the relative frequency of the events in the data. For instance, logit coefficients are 

biased in small samples (under 200) and this problem have been well documented in the literature 

[109]. However, it is not widely understood why in rare events data, the biases in probabilities can 

be substantively significant for large sample sizes (above thousands) [109]. In addition, the 

probabilities of events in the logit analysis are suboptimal in samples containing rare events, 

leading to errors in the same direction as biases in the coefficients [83, 109]. The second source of 

problems with rare events data is derived from the data collection. Collecting data sets with no 

events (and thus no variation on the dependent variable “Y”) led to choice of very large number of 

observations with poorly measure explanatory variables [109]. King and Zeng stated that “a trade-

off always exist between gathering more observations and including better or additional variables” 

[109].  
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Explanation 3: In many applications and domains of data mining, the costs of type I and type II 

errors is dramatically asymmetrical, making an invalid prediction of the minority class more costly 

than an accurate prediction of the majority class [83]. Traditional algorithms usually have a bias 

towards the majority class, which provides more error signals [83]. Moreover, the error signals 

derived from different numbers of events “1” and events “0” may shift the decision surface in 

feature space for those methods estimating decision boundaries using fundamentally different 

approaches to classifier design, depending on their statistical efficiency. Hence, there is the need 

to avoid collecting the vast majority of observations without efficiency loss. Some approaches 

designed to handle with this problem rely on selecting the events (Y=”1”) which are relevant, 

however those approaches might lead to alter the population to which are inferring or requires 

conditional analysis [109]. 

The above explanations prove why handling imbalance data requires either the development of 

distribution insensitive algorithms or an artificial rebalancing of the datasets through sampling [83]. 

The computer time and memory required for the statistical analysis depend on the number of 

cases, the number of variables, the complexity of the model, and the algorithm. Therefore, for 

many modeling situations, there is a trade-off between time and memory.  

 

2.5.2 Strategies and methodologies to handle imbalanced data 

Solutions to handle imbalanced data sets include: sampling techniques, cost-sensitive methods 

and kernel-based methodology [83, 106, 107, 109, 111, 113-115]. The sampling methods comprise 

different forms of re-sambling, such as: oversampling, undersampling, cluster-based sampling and 

boosting [83, 106-108, 111, 113, 114]. Balancing methods attempt to balance the distributions by 

taking into account the proportions of the classes. Whereas, cost-sensitive methods target the 

imbalanced data problem by using cost matrices that address the cost of misclassifying any data. 

Attention is given to oversampling and undersampling which are among the most common re-

sampling methods. 

Crone and Finlay defined undersampling as ”instances of the minority and majority classes are 

selected randomly in order to achieve a balanced stratified sample with equal class distributions, 

often using all instances of the minority class and only a sub-set of the majority class” [83]. 

Whereas, oversampling have been defined as “the cases of the under-represented class are 

replicated a number of times, so that the class distributions are more equal” [83]. These authors 

alerted for the inconsistencies in this terminology, which are frequent. Anderson had referred to 

oversampling, but essentially described it as undersampling by removing instances of the majority 

class[83, 116]. Also, Sarma defined oversampling as including all the cases of the “responders” 

and only a fraction of the “non-responders” [117]. Japkowicz and Stephen defined random 

oversampling as “oversampling the small class at random until it contains as many examples as 

the other class” [110]. On the other hand, random undersampling was defined as “eliminating at 

random elements of the over-sized class until it matches the size of the other class” [110]. Nisbet et 
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al. defined “oversampling” as increasing the sample rate category, and “undersampling” as 

reducing the sample of the common category [118]. 

King and Zeng strategy was to select on Y by collecting observations (randomly or all those 

available) for which Y=1 and a random selection of observations for which Y = 0 [109]. In fields 

were the number of observable ones is strictly limited (such as in crash injury severity events) the 

authors recommend collecting all available or large number of ones. Subsequently, the decision 

how many numbers of zeros must be collected depends if that collection is not costless, the 

analysis must collect more zeros than ones [109]. A useful practice is sequential, involving first the 

collection of all ones and an equal number of zeros [109]. “Real information in the data lies much 

more with the ones than the zeros, but researchers must be careful to avoid selection bias [109].    

Japkowicz and Stephen compared various strategies to handle class imbalanced: two re-sampling 

methods (random oversampling and random undersampling) and cost-modifying [110]. These 

authors found random oversampling more useful than random undersampling [110]. In some 

applications, cost sensitive methods perform better than sampling methods [106, 113, 119]. Cost-

sensitive learning outperforms random resampling [110]. However the cost of misclassification is 

generally unknown in real cases [107].  

Each of the above methods has advantageous and disadvantageous and they have been subject 

of several discussions in the literature. The major drawback of undersampling is that can discard 

potentially useful data [107]. On the other hand, random oversampling can increase the likelihood 

of occurring overfitting, when this methodology relives exact copies of the minority class [107]. 

Chawla suggested that undersampling is usually better than oversampling with replications [111]. 

Nisbet et al. recommend that if the data set is not large it is better to oversampling the rare 

category [118]. In the case of oversampling selection, overfitting may occurs when classifiers 

produce multiple copies of the same example; although the training accuracy will be high the 

classification performance on the unseen testing data is worse [106]. 

Sampling methodologies (under and oversampling) generally lead to models with an enhanced 

discriminatory power, but both random oversampling and random undersampling methods have 

their shortcomings: random undersampling can discard potentially important cases from the 

majority class, thus impairing an algorithm’s ability to learn the decision boundary, while random 

oversampling duplicates records and can lead to the overfitting of similar instances [83]. Therefore, 

undersampling tends to overestimate the probability of cases belonging to the minority class, while 

oversampling tends to underestimate the likelihood of observations belonging to the minority [119]. 

As both over and under-sampling can potentially reduce the accuracy in generalization for unseen 

data, a number of studies have compared variants of over- and under-sampling, and have 

presented (often conflicting) viewpoints on the accuracy gains derived from oversampling versus 

undersampling [111, 113]. The presence of irrelevant data it would make undersampling more 

effective than oversampling or even cost-modifying on fields presenting a large variance in the 
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distribution of the larger class [110]. However, undersampling, removing examples from the 

majority class, may cause the classifier to missing important information [111, 113]. 

 

2.5.3 Effect of sample size in predictive modeling 

With regard to binary data classification, analysis of data containing rare events or imbalance class 

distributions poses a great challenge to industry and to the machine learning community [114]. 

Sample size and balance may affect not only the accuracy but also the interpretability and 

efficiency of the algorithms [83]. Larger sample sizes raise the probability that a sample will be 

representative of the entire population, and therefore guarantee similar predictive accuracy, 

however increases computation times and data acquisition costs. On the other hand, smaller 

samples, the patterns contained in the data may be missed or erroneous patterns may be detected, 

thus enhancing efficiency at the cost of limiting accuracy [83]. The ratio of events to variables tends 

to be a less important factor for larger samples, hence decreasing the probability of overfiting. 

Harrell claimed that amount of information in a data set with a categorical outcome is determined 

not by the total number of cases in the data set itself, but instead by the number of cases in the 

rarest outcome category (for binary target data sets) [103]. Therefore, this author recommended 

separating sampling as an effective resampling strategy for productive modeling [103]. Crone and 

Finlay suggested that logistic regression had a near optimal performance using far fewer 

observations than methods such as CART, when there is a concern with sample size on the 

efficiency of the algorithm [83]. Also, this work stated that oversampling significantly increases the 

accuracy relatively to undersampling, across all algorithms. For logistic regression, the balancing 

applied to datasets appears to be of minor importance. However, the other methods demonstrate a 

greater sensitivity to balancing, particularly CART [83]. 

As final remarks regarding to re-sampling strategies, it should be noted that over and 

undersampling will impact not only the predictive accuracy, depending on the statistical efficiency, 

but also the resource efficiency in model construction and application. Balancing (re-sampling) has 

an impact on the total sample size by omitting or replicating good and/or bad instances, thereby 

decreasing or increasing the total number of instances in the dataset, which impacts the time taken 

for model parameterisation [83]. “It is still unclear which sampling procedure performs best, what 

sampling rate should be used and that the proper choice is probably domain specific” [107]. 

Although, algorithms presented in this literature review (section 2.4) claimed to improve 

classification accuracy, there are certain situations in which learning from original data sets may 

provide better performance [106]. Thus, it would be desirable a uniform benchmark platform to 

provide assessment between existing and future methodologies. Henceforth, the results are not 

universal and depend on the dataset properties and the application domain [83]. 
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2.5.4 Severe crashes as rare events- Predictive challenges  

In contrast to the domain of credit card fraud detection, injury severity prediction on road safety 

analysis is missing an approach to deal with the rare events (severe crashes). The imbalance 

between severe crashes and non-severe crashes highlighted with the following road safety 

indicators. A study in US, with crash data from 1996 to 1997 have shown the following distribution 

driver injury: property damage only (no injury; 58.8%); possible injuries (20.7%); evident injuries 

(9.0%); and severe/fatal injuries (4.8%) [42]. In 2009, crash data provided by the Fatality Analysis 

Reporting System (FARS) showed that from total police reported motor vehicle crashes 

(5,500,000), fewer (30,797) than one percent resulted in death (1%) [44].  

 

Unfortunately, the best practices for resampling have not been explored in crash severity injury 

prediction. The evidence of the existing gap in resampling strategies to deal with rare events 

among crash data is illustrated by the next four studies.  

1. Xie et al. analyzed driver injury for data obtained in Florida for the time period 2002 to 2006 

using logit regression methods. In this study, the percent of fatal crashes was 1.71% and 

0.78% for rural and urban roads respectively [93].  

2. Pakgohar et al. applied CART and logistic regression for the analysis of crash severity in a 

data set where injuries were 8% and fatalities were 1% among the data [46]. 

3. Li developed a crash severity index comprehensive models using for 267 injury crashes 

and 67 fatal crashes [100]. Models validation was performed with new crash data, 337 

injury crashes and 18 fatal crashes. The author recognized that the size of the sample 

could not be large enough to validate developed model [100].  

4. Only Kononen et al. had shown concern with the imbalance classes between the non-injury 

cases and the injury cases [43]. This study using National Automotive Sampling System 

Crashworthiness Data System (NASS-CDS) data the overall probability of injury cases was 

2.8% [43].  

Despite of above highlighted imbalance data sets with disproportion between severe and non-

severe observations, those authors have not shown resampling strategies. As a consequence, 

issues of sample size and balancing have been neglected within road safety expertise as a topic of 

study. Thus, the gap in sample balancing for crash severe events studies, lead the development of 

an own strategy in this study to overcome the challenge imposed by imbalance between severe 

crashes and non-severe crashes in the Portuguese collected data [120]. Also, this is the first 

research conducted in Portugal that integrates vehicles technical characteristics with crash data 

analysis [120-122]. Chapter 3, dedicated to Safety Analysis Methodology, will present the 

balancing approach developed for the analysis of the Portuguese crash sample.  
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2.6 Trade-off of Vehicle Safety, Fuel Efficiency and Emissions  

The trade-off between vehicle´s safety and fuel economy has been a controversial issue since the 

energy crisis of the 1970s. In 2007 and 2009, the EU regulations set CO2 emissions performances 

targets for manufacturer’s new car sales moved the technological trade-off in favor of increased 

fuel efficiency. First, CO2 emissions limits measures are discussed. Second, research on the 

vehicle’s safety and fuel efficiency trade-off analysis is outlined.  

 

2.6.1 CO2 emissions measurements   

Fontaras and Dilara investigated how vehicles characteristic affects real world emissions 

performance [123]. The difference between real world performance and the certified test was 

estimated in 15-20% [123]. The authors claimed that NEDC does not take into account other 

important factors affecting vehicles’ emissions such as: use of air conditioning, vehicles 

accessories, and reduction of tyre pressure [123]. Leduc et al. compared CO2 emissions and 

energy use under real world conditions with those under the NECD and found that NECD had 

lower emissions by 14% [124]. Zervas recommended that NEDC CO2 emissions should account for 

annual mileage [4].  

Franco et al. revised emission measurements techniques for road vehicle emissions [125]. There 

are models that only required mean travelling speed to estimate emissions (e.g. COPERT), models 

that need traffic situations to express emissions (e.g. HBEFA), and others that require second-by-

second engine data (e.g. PEMS, MOVES, VSP) to originate emission information for the driving 

profile [125]. The author argued that emissions measures under real-world conditions (such as in 

tunnel or on-board measurements (PEMS)) are usually less precise and repeatable than those 

performed in an engine and chassis dynamometer studies, due to the absence of a standard test 

cycle and the presence of additional sources of variability such as environmental or traffic 

conditions, driver behaviour or highly transient operation [125]. This study suggested that the 

selection of the appropriate emission method depends on the application considered [125]. 

Bampatsou and Zervas claimed that specific CO2 emissions are measured on the NEDC for all 

PCs, but all PCs do not have the same annual traveling distance. The authors have shown the 

average annual mileage of new gasoline and diesel passenger cars, is a function of segment and 

model year of the vehicle [126].  

 

2.6.2 Are CO2 emissions standards compromising the trade-off analysis 

between fuel efficiency and vehicle safety?   

Thought automakers must comply with emissions regulations, consumers’ preferences influence 

the market share by selecting vehicle attributes, such as car segment, fuel type, mass/size, and 

engine power. Kok has assessed the effects of consumer preferences and technological advances 
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on sales-weighted average CO2 emissions of new passenger cars [72]. Until 2007, the results 

showed that consumers preferences shifts towards larger and less fuel-efficient car segments and 

also towards larger, heavier and more powerful cars within the same car segment [72]. From 2007 

to 2011, this trend decline reflecting consumer preferences shifts toward smaller car segments [72]. 

Between 2000 and 2007, 56% CO2 reduction from technological advances had been covered by an 

increase in larger vehicles sizes. Though from 2008 to 2011 purchasing trends reduced CO2 by 

31% over those from technological advances [72].  

Despite of the air emissions regulations, some criticism have been addressing the standards for 

CO2 emissions and fuel economy, which are based on vehicles attributes. The mass-based 

vehicle, (almost half of the world automobile market), apparently seem to be logical choice for the 

regulatory structure, because vehicle mass is a fundamental determinant of vehicle efficiency. In 

addition to mass, rolling resistance, powertrain efficiency, and aerodynamics have been improved 

during the last decade and they have been contributing to expressively reduce emissions. 

However, Lutsey argued that “vehicle mass reduction technology (advanced materials, mass-

optimized designs) is a major technology strategy for increasing vehicle efficiency” [127]. Thus, “by 

using a mass-based standard structure, the core efficiency technology of mass-reduction is 

essentially neutralized” [127]. Bampatsou and Zervas criticized the regulatory emissions of the 

exhaust CO2 exhaust emissions from PCs in the EU by the Regulation [EC] No. 443/2009, 

previously introduced in section 1.1.3, [126]. This study highlighted four critical points.  

First: “the regulation proposes a limit on exhaust CO2 emissions based on the average emissions 

of each manufacturer sales and not a limit for each passenger car” [126]. Thus if a car 

manufacturer sells a number of PCs with CO2 emissions higher than the limit, it must sell a number 

of passenger cars with CO2 emissions lower than the limit to compensate the difference [126].  

Second: the regulation allows the manufactures to create groups of car makers which applied an 

average value of CO2 for the entire group [126]. This “transference of CO2 emissions limit through 

car groups” is based on the principle of “flexibility to the compliance” [126]. However, other 

regulations/directives concerning emissions and safety of passenger cars are not flexible but they 

have specific targets such as the Euro5/Euro 6 limits imposed by the EU Regulation (EC) No. 

715/2007 and cars safety features established by the EU (EC) Regulation No. 19/2011, [126, 128]. 

This “flexibility” has implications in the ethical point of view, “as the “polluter-pays” principle 

becomes “someone who can pay, can pollute” principle” [126].  

Third: the Regulation [EC] No. 443/2009 proposed a penalty proposed for CO2 emissions 

exceeding the average upper limit (95 euro per exceeding gram of CO2 g.km
-1

 per vehicle) [126]. 

This penalty will be included in the final price of the vehicle rather than for the car maker.  

Forth and last: the critical point is related to the proposed 95g.km
-1

 for 2020 which could be a very 

ambitious target. Average EU15 CO2 emissions decreased from 186.6 g.km
-1

 to 153 g.km
-1

, 

between 1995 and 2008, which corresponds to a decrease of 17.67% during 13 years [126]. 
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Therefore necessary change to reach CO2 95g.km
-1

 would be 49% [126]. Thus, from 2008 to 2020, 

CO2 emissions would require a decrease of 31.4% [126].  

Zervas shown that the average CO2 emissions by car firm selling volumes in the European market 

[4]. Lamborghini, Ferrari, Porsche, they are required to overcome a higher challenge to reach the 

proposed Regulation [EC] No. 443/2009 target [126]. Seat, Citroen, Renault, Peugeot and Fiat 

have lower effort to reach target of 95 g.km
-1 

by 2020. As proposition for the CO2 regulations by 

2020, the previous work study had suggested the same CO2 limit of all new passenger cars without 

derogations and penalties [126]. In the US, the problem with the current structure of fuel economy 

standards for cars is that the target of 27.5 miles per gallon is applied to an automaker’s whole 

fleet, no matter the mix of cars an individual automaker sells [58]. A cross-disciplinary cooperation 

between different industry segments and political institutions is recommended for improvements 

towards sustainable mobility. 

 

2.6.3 The trade-off between fuel efficiency, emissions and vehicle safety 

really exists? 

Some studies have intended to discuss if there is a trade-off or not between fuel efficiency and 

vehicles safety, as summarized below.  

Wenzel suggested that the relationship between footprint (wheelbase x width) and casualty risk to 

the drivers of individual vehicle models, including cars and light trucks is very week [129]. Vehicle 

design, which can be improved by safety regulations, would be more effective on occupant safety 

than fuel economy standards that are structured to maintain vehicle size and weight [129]. On the 

other hand, Tolouei and Titheridge stated that in vehicle design, there is a trade-off between fuel 

economy and secondary safety performance imposed by mass [64]. Even though mass imposes a 

trade-off in vehicle design, between safety and fuel use, this do not mean that it imposes a trade-off 

between safety and environmental goals in the vehicle fleet as a whole” [64]. The “secondary 

safety performance of a vehicle depends on both its own mass and the mass of the other vehicles 

with which it collides” [64].  

Chen and Ren analyzed the relationship between vehicle safety ratings and fuel efficiency for 45 

new vehicles models [37]. From 2002 and 2007, the relationship between vehicle safety ratings 

and fuel efficiencies seem to have been mostly positive [37]. Zachariadis examined 192 car models 

to investigate whether a safer car consumes more fuel than its less safe counterparts [62]. 

Enhanced safety of modern cars has a very small effect on vehicle mass and does not significantly 

affect fuel consumption [62]. Safer cars are heavier by only a few kilograms and do not consume 

more fuel than their counterparts with lower safety scores [62]. The author suggested that there is 

almost no trade-off between better car safety and CO2 emission reduction [62]. 

While the advocates of the new standards claim the benefits of energy and environment, 

opponents argue that vehicle safety will be compromised with the new fuel standards. The current 
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structure of fuel economy standards could encourage manufacturers to sell more smaller, lighter 

cars to offset the fuel consumed by their bigger, heavier models [58]. “Automakers even sell the 

smaller and less safe cars at a loss to ensure compliance with fleetwide requirements” [58]. 

Bampatsou and Zervas claimed that there are two ways to decrease real CO2 emissions: to 

decrease the mileage and to decrease the emissions per kilometer [126]. However, other study 

argued that the main way to reduce CO2 emissions is by reducing car weights, which means 

downsizing vehicles, but this would cause conflit with occupants safety goals [58].  

The application of lightweight design with thermoplastics offers a possibility to reduce the CO2 

emission and fuel consumption [130]. The use of nanocomposites in vehicle parts and systems 

potentially can to improve manufacturing speed, enhance environmental and thermal stability, 

promote recycling, and reduce weight. Substituting reinforced polymers in vehicle body 

components is a promising approach to weight reduction and fuel savings. An estimated 30% 

improvement of roll-resistance, air-resistance, car-weight and powertrain might reduce the fossil 

fuel consumption by 4%, 6%, 15%, or 28%, respectively [131]. Nanotechnology application into the 

automotive industry leads to lighter car bodies without compromises stiffness and crash resistance 

and results in less fuel consumption. General Motors (GM) produced the electric Chevy Volt that 

uses 45.4 Kg of thermoplastics, including composites in the hood and doors, plus unreinforced 

polymeric materials in the rear deck lid, roof and fenders [131, 132]. Volt model also incorporates 

glass fiber reinforced composite for lightweight horizontal body panels. Tesla Roadsport electric 

model uses innovative lightweight body panels of carbon fiber/epoxy composite [131, 132]. 
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2.7 Concluding Remarks 

In technical literature, much attention is paid to vehicle type and its risk to drivers, but not to its 

relation to crashworthiness. Vehicles’ speed collision was identified as one of the most important 

fact influencing crash severity outcomes. During a crash, the change of velocity distribution 

depends on the mass of the vehicle; hence the mass influences the impact of a severity. Thus, 

vehicle mass was found to be a significant factor of crash severity, that not only influences the 

vehicle crashworthiness and “agressivity”, but also impacts vehicle fuel use and air emissions. 

However, vehicle’s mass alone is a “modest” predictor for injury risk. There is a lack of a 

methodology to estimate the effect of vehicles characteristics on crash severity following vehicles 

collisions. 

Crash testing protocols provide a valuable tool in consumer guidance, but they cannot predict real-

life crash outcomes. During the last few years, improvements in vehicle’s safety have been 

significant, and advanced safety technologies have been recognized to save lives. However, 

despite of the potential safety features benefits, how the drivers will interact with those technologies 

will influence the effectiveness of these avoidance systems.  

A number of studies have attempted to correlate safety and vehicle design features. However this 

relation is not fully understood. In addition, crash samples are highly imbalanced for minor injury vs. 

serious injury and/or killed. Therefore, crash analysis faces a challenge when investigating crash 

severe events, and no attempted has been made in the literature on how to approach the 

imbalanced classes in real crash data.  

Larger vehicles usually show an extra size and weight that enhance occupant protection in 

collisions. Nevertheless small cars are more affordable; they use less gas and emit fewer 

pollutants. The safety and environmental tradeoffs are still not fully explained and they impose a 

challenge for the transportation and environmental authorities. The trade-off between vehicle’s 

safety performance and environmental performance has been raising some debate. The few 

existing studies on this trade-off analysis usually focus on the relationship between vehicle’s safety 

and fuel consumption, targeting CO2 emissions but other exhaust air pollutants are not covered. 

Furthermore, previous research analyzed vehicle’s safety performance based on the individual 

vehicle only, and they have not considered the risk of exposure in the fleet.   
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CHAPTER 3  

SAFETY ANALYSIS METHODOLOGY 

 

 

 

 

 

 

 

 

This Chapter describes the methodology for the safety analysis of the Portuguese crash sample. 

The motivation for this research was to focus on the light vehicle fleet (passenger cars and light 

duty vehicles) technical characteristics and analyze which one, if any, has a stronger impact on 

crash severity, expressed by the risk to drivers and passengers, based on real crash data. As an 

outline of the designed methodology, first data preparation and variables definition are presented. 

To overcome the challenge imposed by few rare events (severe crashes) in the sample, an 

advanced strategy was developed to balance the distribution between severe and non-severe 

events. In conclusion, CART and logistic regression modeling techniques are explained for the 

crash severity classification and prediction.   
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3.1 Research Domain   

Crash severity was analyzed by exploring the contribution of vehicle related variables: auto brand 

make, weight (mass), engine size (power), wheelbase, year of registration (age) and fuel type. 

Crash severity is related to the occurrence of severe injuries and/or fatalities among vehicle’s 

occupants, during the event of a crash involving light passenger vehicles and light duty vehicles. As 

stated in Chapter 2, factors affecting the risk of increased injury level of occupants during a crash 

include: demographic and behavioral characteristics of person, environmental factors, roadway 

conditions and vehicle [45]. This research was not designed to understand the circumstances 

under which the crash had occurred, such as presence of roadside obstacles, inattentive driver, 

failure to press the braking system, and traffic volume among other causes. Further, this research 

focused exclusively on post-crash consequences centered on the injury level outcomes, rather than 

on pre-crash contributing factors to the event. It focused on the understanding of how technical 

characteristics of the vehicle may affect the risk of severe injury and/or fatality among its 

occupants. It is important to point out that, drivers’ characteristics, such as age, gender, and 

agressivity, as well as socio-demographic factors were beyond the scope of this study. Although 

vehicle’s speed at the moment of the crash had been identified as one of the most important 

factors of injury risk [34, 42, 43, 74, 91, 92, 99], this information is usually not accessible. 

Information on occupant’s seat belt use, airbag data, and vehicle protective systems, as well as 

trauma management were not available at the Portuguese police crash reports. Figure 3.1 

summarizes the steps undertaken to execute the general methodology followed in this study, 

although this chapter focused the safety analysis methodology. 

As discussed in the literature review, previous research generally has attempted to model overall 

crash severity without taking into account the effect of the opponent vehicle [43, 85, 86, 91, 93, 98, 

102, 104]. However, in multi-vehicle collisions the injury severity outcomes depends on the 

attacking ability of striking vehicle as well as the protective ability of struck vehicle [63]. Some 

studies have analyzed the effect of vehicle on crashworthiness (ability to protect its own occupants) 

and “agressivity”, hazardousness that the subject vehicle imposes to the opponent vehicle [48, 49, 

59, 61, 63]. However these studies focused only in risk to the drivers and largely they only have 

analyzed the effect of vehicle type (category). In addition, those studies have not clarified how the 

effect of the opponent vehicle was taken into account on the injuries prediction for the occupants of 

the vehicle being analyzed. This gap in the previous research work, lead to the development 

specific target variables to model not only the overall crash severity, but also to model crash 

severity exclusively for the each vehicle involved in the collision.  
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Figure 3.1 - Methodology overview. 

 

For single-vehicle crashes, vehicle individual technical data, such as brand, model, age (vehicle 

model year), engine size, weight and wheelbase were analyzed for their contribution to crash 

outcomes. For two-vehicle collisions, in addition of vehicles individual technical data, differential 

variables were created to express the quantitative difference between the characteristics of the 

vehicles involved in the collisions (such as: age difference, engine size difference, weight 
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difference and wheelbase difference) in order to analyze their contribution to crash severity. A 

detailed explanation of response variables (derived from crash outcomes) and independent 

variables (crash information and vehicle technical characteristics) is given in section 3.3.  

  

3.2 Data Collection 

This section describes the data collection process, limitations within the crash reports and 

development of the crash database for the safety and environmental analyses. 

 

3.2.1 Site description 

During 2010, in Portugal the highest rates of crash fatalities occur for the districts of: Lisbon, Porto 

and Aveiro, with 123, 108 and 88 road deaths, respectively [23]. The districts of Aveiro and Porto 

were selected for this study because of two reasons: first, due to the higher rates of fatalities, 

second, for data collection convenience, that would be performed in the proximity of TEMA/UA 

where this study was developed. Figure 3.2a) signalizes the crash data collection area in Portugal.  

For the selected region above, the accessed crash reports records involved accidents on roads 

which are included on the 2000 National Roadway Plan, in the Northeast side of Portugal. The 

reported crash records included the following road classes: 

- Main Road (speed limit is 90 km.h
-1

); 

- Principal Itinerary (speed limit is 100 km.h
-1

); 

- Complementary Routes (speed limit is 100 km.h
-1

); 

- And Motorways/freeways (speed limit is 120 km.h
-1

). 

Figure 3.2b) signalizes some examples of those road classes for Porto metropolitan area, as 

follows:  

- Main Road (such as EN1, EN14); 

- Principal Itinerary (such as IP1, IP4); 

- Complementary Routes (such as IC1, IC24); 

- And Motorways/freeways (such as A1, A29). 

It must be clarify that crash data collection was not controlled for those road classes. However, for 

each crash observation, the road name ID was recorded, as explained in section 3.2.4.  
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a) 

 

 

 

 

 

 

 

 

b)  

 

Figure 3.2 - Crash Site location for crash data collection: a) in Porto, Portugal, Europe; and b) 

Porto metropolitan area.  

 

Among the several road classes identified in the crash records and illustrated in Figure 3.2b), there 

is A29 motorway, which is a toll road with high volume of traffic, selected often by drivers travelling 

between Aveiro and Porto, and vice-versa. A29 is among the Portuguese roads with more black 

spots (five or more severe crashes in 200 meters of the road length in question) [133].  

 

3.2.2 Crash reports selection 

Data for the crash severity models development were collected from the Road Traffic Division 

(RTD) of the Portuguese Road Safety National Republican Guard (GNR) located in Porto and the 

Portuguese Public Safety Police (PSP) located in Oporto and in Aveiro. From extensive crash 

reports records data gathered by GNR and PSP, reports were selected based on the following 

criteria.  

1. Recorded crash reports involving property damage only were excluded because this 

research was focused exclusively on crashes involving any level of injury.  

2. Crashes with injuries and/or fatalities and involving light passenger vehicles and light duty 

vehicles (such as passengers’ cars, sport utility vehicles (SUVs) vans and pick-up trucks) 

were selected.  

3. From those, crashes involving pedestrians and/or cyclists were excluded because the 

designed analysis aimed to explore the relationship between vehicle characteristics and 

occupants injury risk only.  

4. Crash reports data were gathered for the time period of five years, 2006 to 2010.  
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Following the selection criteria, a total of 2,270 reports were personally collected, as summarized in 

Table 3.1. Initially crash data were gathered at PSP. Secondly, data were collected at the RTD of 

GNR. In the first phase of this research, single-vehicle crashes and multi-vehicle collisions were 

gathered from 2006 to 2008. On the second phase, additional crash data was gathered with focus 

on two-vehicle collisions from 2008 to 2010. 

 

Table 3.1 - Relevant crash frequencies gathered in the study for the time period 2006 to 2010. 

Data Source 2006 2007 2008 2009 2010 Total by Data Source 

GNR Porto, PT 298 548 508 161 184 1699 
PSP Aveiro, PT - 65 65 - - 130 
PSP Porto, PT - 166 275 - - 441 

Total 298 779 848 161 184 2270 

 

3.2.3 Challenges faced to developed the crash database 

Several difficulties were faced previously to accomplish the full develop the crash database 

investigated in this research, as presented in the next section. Following data collection, the 

extracted information from each crash report was analyzed in more detail and criteria selection was 

followed in order to develop a database adjusted to the objectives of this research. Contrary to 

simple-easier researcher access to crash databases as exemplified in section 2.4.1, in 

Portugal crash data access is quite different, since crash records are not available in digital 

files and crash information is not centralized.  

At national level, the crash database is managed by the ANSR. The Police Officers are responsible 

for submitting selected information from the crash records reports on the 15 days basis to this 

Authority using a form called “Boletim Estatístico de Acidentes de Viação (BEAV)”. However, the 

extracted information in the BEAV is brief and standardize, usually indicating the cause of the 

crash, the outcomes, information on the day, and hour. The ANSR crash database does not 

include any information on the vehicles involved in the crash, rather than vehicle category (such as 

light vehicle or heavy vehicle). Thus, the strategy for this study was to personally collect the data at 

the Police Road Traffic Divisions. 

Some published studies in the U.S. had matched crash data with the vehicle identification number 

(VIN), obtained from the Highway Loss Data Institute [43, 99]. In Portugal this procedure was 

different. The one of the most challenging tasks of completing the Portuguese crash database 

based it was to obtain legal permission to access the vehicle technical information derived from 

vehicles’ registration license plate (RLP). Due to this difficulty, it was decided to focus on the GNR 

records (1,699 observations) rather than the total 2,270 gathered crash observations. The reason 

why the “priority” was given to GNR crashes GNR was related to the fact that this Police Force in 

general is responsible for patrolling roads with higher speed levels, whereas PSP usually operates 

in urban areas, where the legal speed limits are lower. Therefore, severe crashes are at higher 

frequency at the GNR records.  
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From the selected GNR 1,699 crashes, only 1,374 were manageable for further analysis. The 

reasons why this research was centered on 60% (1374/2270) of the original collected data are 

presented underneath. 

1. As result of the constraints to have legal access to vehicle specific technical data, from the 

total of 2,270 gathered reports, priority was given to 1,699 collected reports at GNR.  

2. From those 1,699 observations, multi-vehicle collisions with more than 2 vehicles were 

eliminated because the individual vehicle contribution to the overall crash severity would be 

masked by the interaction with other vehicles involved in the collision.  

3. Observations including vehicles which the RLP did not match the Portuguese standard 

label were excluded because no further information could be gleaned about its technical 

attributes from international entities. In general the vehicles Portuguese plates follow the 

partner: four numbers plus two letters, for a total of six digits. For vehicles from abroad is 

not possible to request vehicles specifications.  

4. Each vehicle’s information in the crash dataset was recorded following the order stated at 

the Police record. As an example, the first vehicle (V1) in a collision report tends to be 

related with the one that initially collided with the second vehicle (V2) and/or caused the 

crash collision. However the vehicle order in the police records does not follow this protocol 

uniformly and there was limited information to assume that vehicle V1 always hits vehicle 

V2 or that vehicle V2 is always struck by vehicle V1. While for rear-end collisions 

scenarios, it would be easier to identify the vehicle that hits the car in front of it, for the 

general collisions this identification is more complex.  

5. Report content may be unclear; sometimes information was missing or could show 

inconsistent information and also human errors. For instance, crash reports identify the 

vehicle type/category information as: light duty vehicle or light passenger vehicle. However, 

when developing the database and matching vehicles’ RLP with technical information it 

was noticed that the label light duty vehicle was either a heavy duty vehicle, or a non-road 

vehicle (agricultural tractor). Other reports mislabel “light passenger vehicle” to designate a 

scooter, or a motorbike. When such errors were detected, the crash record was eliminated 

from further consideration.  

 

Regarding to crash outcomes information accuracy, it is relevant to clarify the uncertainty which 

could be associated with some injury levels reported at the crashes records. The Portuguese 

Police Forces consider three level of injury risk: Light Injury (LI), Serious Injury (SI) and Fatality (F). 

In Portugal, a serious injured is reported if following the crash the individual required hospitalization 

at least during 24 hrs. Status of seriously injured was not traced overtime, with the possibility that 

the harm injuries would result in a death. As explained in Chapter 1, (section 1.1.2.2), until 2010, 

Portuguese methodology did not apply the threshold of 30 days [7, 15, 23]. Also, in 2011, during 

the second stage of crash data collection, which took place the Oporto GNR headquarters, a Police 
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Officer inquired claimed that new methodology procedure was being implemented with difficulties, 

and the required collaboration between hospital services and Police Forces was yet imperfect to 

ensure the monitoring of the victims’ status in the 30 days basis. As far as the crash sample used 

in this thesis analysis, it must be said that data collected for the years 2006 to 2009 did not follow 

the 30 days methodology. For the 2010 crash data collection, fatalities were also recorded in the 24 

hours basis, as they were registered in the crash reports by GNR Officers and to ensure 

consistency with previous data on the crash sample.  

 

3.2.4 Development of the crash database 

The 1,374 records selected from the GNR source included single-vehicle crashes and two-vehicle 

collisions resulting in injuries and fatalities. For each crash event, information extracted from each 

report was as follows: a) road name and location, b) weather conditions, c) driver’s alcohol and/or 

drugs test results, d) crash type, vehicles’ registration plate and registration year, and f) crash 

outcomes, namely vehicle occupant’s injuries and/or fatalities. Appendix 3 shows a copy of a 

severe crash report record, which outcomes resulted in a fatality, driver of vehicle V2.  

At the crash reports, the technical information related to the registered vehicles was minimal, 

mainly restricted to vehicle’s registration plate and vehicle’s registration year. Since one of the 

major goals of this research was to analyze vehicle characteristics effects on the crash severity 

outcomes, it was obligatory to fulfill vehicle information with exact technical data for each individual 

vehicle, such as its specific weight, engine size (engine displacement) and wheelbase dimensions. 

The vehicle technical features were obtained from the former Institute for Mobility and Inland 

Transportation (IMTT), which is currently the new Institute for Mobility Transportation (IMT). IMTT 

database allowed to match vehicle registration plate (VRP) (extracted from crash reports) to be 

augmented with details such as the date of the first registration and specific vehicle’s make and 

model technical data.  

For each crash observation, vehicle registration plate was matched with the correspondent VIN, 

which is equivalent to the “N.º Homologação Nacional” at “Folha de Aprovação do Modelo”, IMTT 

sheet. As an example, a copy of this document is presented in Appendix 4 for a Toyota Corolla 

E12T, 2005 vehicle model year, (vehicle’s registration plate was deleted on purpose for 

safeguarding owner privacy). For this vehicle in particular, the characteristics acquired from IMTT 

databases are listed below: 

- Brand Name (Toyota),  

- Model (Corolla E12T),  

- Wheelbase (2600 mm),  

- Length Size (Not available for this model),  

- Curb Weight (1360 kg),  

- Engine Size (1364 cm
3
),  
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- Fuel (Diesel), 

- Vehicle Registration Year (2005). 

Successively, vehicles registration plates were matched with the “Folha de Aprovação do Modelo” 

in an Excel spreadsheet, which dataset contained the record of each crash observation. An 

integrated database was developed where each crash record and technical characteristics for the 

vehicles involved in the collision were combined into a unique crash event observation. Appendix 6 

shows the code applied to the statistical analysis software (SAS) for reading all the data imported 

from the Excel spreadsheet crash database (explained in section 3.2.4) and converting it into SAS 

data source. Following, SAS crash data source was subject to data mining analysis with Enterprise 

Miner (EM) software.  

 

3.3 Structure of the Database and Variables Definition 

This section explains the crash database subdivided by datasets and it defines the variables used 

in the crash sample. For simplicity, three crash datasets were defined based on the number of 

vehicles involved:  

 All represents the total of the crashes observations including single-vehicle crashes and 

two-vehicle collisions (N=1,374), 

 Two represents the two-vehicle collisions (N=874),  

 And Single represents the single-vehicle crashes (N=500).  

The crash dataset includes two types of variables and three classes of variables. The two types of 

variables including in this analysis were: categorical and continuous. The categorical has values 

that function as labels rather than numerical information, and in some programs are called as 

“nominal” variables, such as in data mining software. On the other hand, the continuous variables 

have numeric values. In the crash dataset, examples of those types of variables are presented 

next. 

a) Categorical variables: crash type, speed level and weather conditions.  

b) Continuous variables: vehicle weight, vehicle engine size, vehicle age and vehicle 

wheelbase.  

The two classes of variables used during the crash data modeling are presented as follows: 

a) Target variable/dependent variable or response variable is the variable whose values 

are modeled and predicted by other variables. An example is crash severity. 

b) Predictor variable/independent variable or explanatory variable is a variable whose 

values are used to predict the target variable. An example is vehicle weight. 

The most widely adopted approach for predictive modeling of crash severity is to categorize the 

data using dummy variables (which are an artificial variable created to represent an attribute with 
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two or more distinct categories/levels). For example, alcohol and/or drugs test results, which 

originally was recorded as a continuous variable was converted into a dummy variable having two 

levels: “1” if the driver had alcohol content in the blood >0.5 g.L
-1

 and/or the test for drugs were 

positive, “0” if the driver was legal. Dummy variables provide a good linear approximation of the 

non-linear features of the data. In this Thesis, binary targets were used to predict the crash severity 

as explained next.  

Regarding two-vehicle collisions, it is convenient to explain vehicle identification/order: vehicle V1 

and vehicle V2, previously mentioned in section 3.2.3. Hard copy reports usually warn that their 

contents includes crash witness’s description (if there is any), rather than providing much technical 

and/or official explanation. Also, for a collision involving two vehicles usually is its unknown what 

vehicle was responsible for the crash. Thus to avoid judgments, Officers just identified vehicles as 

vehicle V1 and Vehicle V2. The order in the crash records does not obey a restricted and 

predefined procedure. Similarly to Tolouei et al., vehicle V1 and vehicle V2 keep the same labels 

as those in the original police crash reports and this order are believed to be arbitrary [65].  

Table 3.2 identifies the independent (explanatory) variables that were analyzed to estimate and/or 

predict their impact on crash severity outcomes. Table 3.2 also presents the derivative variables for 

vehicles V1 and V2 differential characteristics. For instance, in a two-vehicle collision, the weight 

differential between V2 and V1 as expressed by WTV2V1 (kg), which was obtained by subtracting 

the weight of vehicle V1 from vehicle V2. The same procedure was applied for the vehicle’s engine 

size, wheelbase, and age, leading to the following derived variables: ccV2V1, WBV2V1, and 

AgeV2V1, respectively.  
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Table 3.2 - Description of independent variables used in the analysis of crash database. 

 
Variable 
 

 
Description 
 

 
Symbol 
 

Age, Vehicle 1 AgeV1 (yr): year of the crash event -year of the first vehicle 
registration. 

AgeV1 

Age, Vehicle 2 AgeV2 (yr): year of the crash event - year of the first vehicle 
registration. 

AgeV2 

Age Difference vehicle between (V2) 
and (V1) 

AgeV2V1 (yr): age of vehicle V2 - age of vehicle V1. AgeV2V1 

Alcohol and/or Drugs The Driver´s test for alcohol and or drugs is presented as: 
Code=0, legal; Code=1, illegal  

AlcoholDrugs 

Number of vehicles involved  The number of vehicles involved distinguish between single 
vehicle crash  and multi-vehicles collisions and it is coded 
as follows: 
NVehicles=1, if a single vehicle is involved in the crash 
NVehicles=2, if two vehicles are involved in the crash 

NVehicles 

Crash Type RanOff=1, if crash type is RanOff Road, else RanOff =0  CrashCode 

Rollover=1, if crash type is Rollover, else Rollover=0 

RearEnd=1, if crash type is Rear End, else RearEnd=0 

HeadOn=1, if crash type is Head-on, else HeadOn=0 

Sideswipe=1, if crash type is Sideswipe, else Sideswipe=0 

Other=1, if crash type is Other, else Other=0 

Divided/ 
undivided 

Existence or absence of physical median/barrier:  
Code=0, undivided 
Code=1, divided 

DivisionCode 

Engine Size Vehicle 1 Engine size of vehicle (V1) (cm
3
) ccV1 

Engine Size Vehicle 2 Engine size of vehicle (V2) (cm
3
) ccV2 

Engine Size Difference between 
vehicles (V2) and (V1) 

ccV2V1: engine size of vehicle V2 - engine size of vehicle 
V1, at crash observation (cm

3
). 

ccV2V1 

Road Class Based in the number of lanes and coded as follows:  
Code=0, two lanes 
Code=1, multi-lanes  
Code=2, motorway 

RoadClass 

Speed Level SpeedLevel=1, if Speed Limit > 90 km.h
-1
, else, 

SpeedLevel=0  
SpeedLevel 

Wheelbase Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1 

Wheelbase Vehicle 2 Wheelbase of vehicle (V2) (mm) WBV2 

Wheelbase Difference between 
vehicles (V2) and (V1) 

WBV2V1: wheelbase of vehicle V2 - wheelbase of vehicle 
V1, at crash observation (mm). 

WBV2V1 

Weight Vehicle 1 Weight of vehicle 1 (V1) (kg) WTV1 

Weight Vehicle 2  Weight of vehicle 2 (V2) (kg) WTV2 

Weight Difference between vehicles 
(V2) and (V1) 

WTV2V1 stands for weight of vehicle V2 minus the engine 
size of vehicle V1, at crash observation (kg). 

WTV2V1 

Weather Conditions Weather conditions at the moment of the crash: 
Code=0, Clear and/or dry pavement 
Code=1, rain and/or wet pavement 

WeatherCode 

 

Table 3.3 identifies four categories for the dependent variables (response variables or targets) 

used during the statistical modeling. The dependent variables categories were defined by 

performing calculations and aggregations with the original crash outcomes, namely the number of 

light injuries (LI), serious injuries (SI) and killed (K) in a crash record. As an example, the 

dependent variable labeled “SIK” was created to signify the sum of the number of serious injuries 

and fatalities in a crash.  

 

For the single-vehicle crashes, the response variable was crash severity expressed by the 

variable FatalSIK, which represents the probability of serious injuries and/or fatalities 

among the occupants of the vehicle being studied following the crash.  
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For two-vehicle collisions, the safety analysis included not only the contribution of each individual 

vehicle in the overall crash severity, but also explores the individual impact of each vehicle in the 

protection of its occupants and risk imposed to the occupants of the opponent vehicle. Thus, for 

the two-vehicle collisions, three response variables have been defined as follows.  

1. The overall crash severity is expressed by the variable FatalSIK, which represents 

the probability of serious injuries and/or fatalities among the occupants of the two 

vehicles involved in the collision, regardless of the vehicle’s identification.  

2. Crash severity for the studied vehicle is defined by FatalSIKV1, which represents the 

probability of serious injuries and/or fatalities among the occupants of the studied 

vehicle, vehicle V1.  

3. Crash severity for the opponent vehicle is defined by FatalSIKV2, which represents 

the probability of serious injuries and/or fatalities among the occupants of the 

vehicle V2.  

Thus, FatalSIKV1 takes into account the protective effect of vehicle V1 and the risk imposed by the 

vehicle V2 into the severity sustained by the occupants of V1. On the other hand, FatalSIKV2 takes 

into account the protective effect of vehicle V2 and the risk imposed by vehicle V1 into the severity 

sustained by the occupants of V2.   

 

Table 3.3 - Description of dependent variables for crash data set modeling.  

 

Variable 

 

 

Description 

 

 

Symbol 

 

Number of Killed (K) plus Serious 
Injured (SI) 

SIK: sum of occupants serious injured (SI) + sum of occupants 
killed (K) in a crash event.  

SIK 

   

Serious injured and/or killed in the 
crash (with one vehicle or two vehicles 
involved)  

FatalSIK: categorical response for a crash outcome used to 
predict either a serious injury, or fatality in a crash event. 
 
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0 

FatalSIK  

   

Serious injured and/or killed in vehicle  
V1 occupants 

FatalSIKV1: categorical response for a crash outcome used to 
predict either a serious injury, or fatality or both for occupants in 
vehicle 1 in a crash event. 
 
FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0 
 

FatalSIKV1 

Serious injured and/or killed in vehicle 
V2 occupants 

FatalSIKV2: categorical response for crash outcome for a crash 
outcome used to predict either a serious injury, or fatality or to 
both for occupants in vehicle 2 in a crash event. 
 
FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0 

FatalSIKV2 

 

Following data description and variables definition, the next sections of this Chapter explain the 

approach developed for the crash data analysis.  
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3.4 Vehicle Brand Severity Ratio Analysis  

The individual vehicle analysis aims to infer severity index at the crash sample with the overall 

severity index at national fleet. Also, it gives attention to the vehicle brand representatively the in 

sample and the severity ratio for the crashes involving the vehicle’s auto brand being analyzed. 

The Portuguese crash database covers all the police injuries and fatalities registration records 

segregated by light injured, serious injured and killed, for crashes involving one single vehicle or 

two vehicles involved. For these crashes matching the criteria established in this study (in section 

3.2.2) the overall severity index (OSI) was defined by the equation above: 

         
       

               

     
Equation 3.1 

Where “OSI” is the overall severity index for the national fleet, “SIKPT” is the sum of the number of 

serious injured and killed, and “LIPT+SIPT+KPT” is the sum of all the injuries and killed for the 

national fleet. The OSI was estimated for the time period 2006-2010 and individually for single 

vehicle crashes and two-vehicle collisions, in order to allow the comparison with the crash data 

sample used in this study. Following, a crash severity index (CSI) was calculated for each crash 

dataset: Single and Two, as established on Equation 3.2: 

        
   

        
     

Equation 3.2 

Subsequently, for each crash dataset, the vehicle brands that showed a higher frequency in crash 

involvement were investigated for the numbers of occupants distributed amongst the injury level. A 

brand severity ratio (BSR) was defined as follows: 

         
    

          

     
Equation 3.3 

 

Where “i” is the Auto Brand, “BSRi” is the brand severity ratio, “SIKi” represents the sum of number 

of serious injured and killed for crashes involving that brand, and “LIi+SIi+Ki” is the total number of 

injured and killed in the crashes where that brand was involved. Firstly, for Single and Two 

datasets, BSRi for the most frequent brands was compared with the corresponding CSI. Secondly, 

each BSRi was evaluated by comparing with OSI.  

 

For the inference of individual vehicle brand injury severity ratio with the injury severity level at the 

Portuguese fleet, specific road safety data was requested to ANSR in order to estimate the OSI. 

Then, those brands were analyzed base on their share in the Portuguese fleet. Brands sales 

information and annual number of vehicles register at the National fleet were obtained from the 

Portuguese Automobile Association (ACAP) [134, 135]. Then, BSRi was discussed taking into 

account brands exposure on the national fleet based on brans sales annual percentage by 

numbers of vehicles annually registered.   



 

 
Chapter 3 

 

 

 

56 
 

3.5 Analysis Strategy for Imbalance Crash Data 

In this study, the main constrains of the crash dataset modeling were related to small sample size, 

and disproportion between severe and non-severe events. The safety analysis methodology 

identifies which factors are determinant for crash severity prediction. With regard to binary data 

classification (such as severe or non-severe crashes), analysis of data containing rare events or 

imbalance class distributions poses a great challenge to the machine learning community [114]. 

There is the need to have an algorithm method that would provide high accuracy for the minority 

class, without making vulnerable the accuracy of the majority class [106]. Previous authors (see 

section 2.5.4) have not shown any strategy to deal with the problem of imbalanced classes in crash 

analysis. This gap in previous research leads to the greatest challenge of this work: design an 

approach to resampling crash events in order to allow further modeling analysis with adequate 

degree of accuracy. First, proof of original crash imbalanced data is presented. Second, the 

strategy to balance the original crash data is explained.   

 

3.5.1 Imbalance data within the original crash sample 

From a total of 1,374 crashes selected for this study, only 5.1% had resulted in serious and/or fatal 

crashes. Thus, for a binary target classification, this means that there were 70 severe crashes 

(events being “1”) and 1,304 non-severe crashes (events being “0”). The overall sample crash 

severity proportion of 5.1% proves a clear imbalance distribution between severe and non-severe 

events. Consequently modeling the original imbalance sample would lead to high accurate 

predictions for non-severe crashes, but poor predictions for the severe crashes, since they 

represent the minority class. As a result, there was the need to have an algorithm method that will 

provide high accuracy for the minority class, without making vulnerable the accuracy of the majority 

class.  

 

3.5.2 Balancing strategy- Stratified random sample 

This section explains the balanced strategy which was applied to both predictive methods: CART 

and logistic regression. Random sampling often does not provide enough targets to train a 

predictive model for rare events. Since the response rate was very low it was necessary to include 

all the responders available and only a random fraction of non-responders [117]. Studies have 

shown that for several classifiers, a balanced data set provides improved overall classification 

performance when compared to an imbalanced data set [83, 106]. However studies do not imply 

that classifiers cannot learn from imbalanced dataset [83]. As a matter of fact, some studies have 

shown that classifiers applied to certain imbalanced dataset are comparable to classifiers induced 

from balanced datasets [106, 110]. In balanced sampling, the attempt is to draw samples from a 
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population but with the composition of the dependent variable in the sample being different from 

that in the original population [136].  

 

For balancing the crash data for predictive modeling a resampling strategy was applied [89, 103, 

117, 118]. To deal with the overrepresentation of non-severe crashes (target with outcome being 

“0”) a resampling approach was applied. Instead of randomly sampling cases from the modeling 

sample, cases from each outcome level were separately sampled. Since the number of the cases 

of interest (target “1”) was especially small, all available severe cases were selected, and then, 

they were matched with one non-severe case (target “0”), which was randomly selected.  

To model rare events with SAS® Enterprise Miner™, all the observations having the rare event 

(severe crash) were included, but only a fraction of the non-event (non-severe crash) was included 

[103, 117]. The fraction of the non-event (or majority class) was randomly selected. At the EM 

interface, the sample was configured for stratified random sampling properties, by omitting cases of 

the common classes in the trading dataset.  

Each crash dataset, (All, Two and Single), was stratified to the target proportion 0.5, leading to 

training samples were the proportion of target level “1” (severe crash) was equal to the target level 

“0” (non-severe crash). However this procedure biases the sampling to provide enough target 

events to effectively train a predictive model, leading to overrepresentation of target level “1” 

(severe crashes), which is the response level of interest for this research. Thus, the models 

developed from the balanced sampling would be biased unless a correction is made for the bias 

caused by over-representation of the target “1”. The approach followed to correct this bias was 

different for each predictive modeling technique, since the algorithms sensitivity to the balancing 

samplings is different. For logistic regression, the balancing applied to datasets appears to be of 

minor importance. However, the other methods demonstrate a greater sensitivity to balancing, 

particularly CART [83]. For logistic regression the solution include adjusting the decision threshold 

by adding a cutoff node function, as going to be explained in section 3.7.2. For the decision 

prediction modeling (decision trees) the approach used to correct the bias introduce by balancing 

by adjusting prior probabilities, as explain in the next section. The predictive models were 

developed using SAS® Enterprise MinerTM 7.1 [84, 89, 117]. 

 

3.6 CART Methodology  

Decision trees provide an excellent introduction to predictive modeling and are useful to predict 

new cases, select useful inputs and optimizing complexity [84, 89, 118]. Tree prediction algorithms 

can be applied for distinct predictions types, namely decisions, rankings and estimates. This 

section explains the modeling approach with CART methodology. First, the reasons why decision 

trees are sensitive to relative high imbalanced classes are presented. Then, the strategy 
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implemented to correct the bias introduced by balancing the crash data is explained. Following 

decisions trees development and assessment are explained.  

 

3.6.1 CART methodology selection 

Trees as predictive algorithms do not assume any association structure, they simply isolate 

concentrations of cases with like-valued target measurements [89].  

CART methodology was selected for the following reasons.  

1. Traditional statistics have limited utility in the task of variable selection for multiple variable 

comparisons. Apart from identifying the variables that improve classification accuracy, the 

methodology also identifies clearly the variables that are neutral to accuracy, and also 

those that decrease it [137].  

2. Predictor variables are rarely satisfactorily distributed and decisions trees can deal with 

missing data [46, 86, 138]. Fortunately, at the crash data set, there were no missing inputs 

for any of the variables included in this analysis.  

3. Complex interactions may exist amongst the explanatory variables, such as vehicle engine 

size, vehicle weight, crash type and weather conditions. CART has the potential to 

“uncover complex interaction between predictors which may be impossible to uncover 

using traditional multivariate techniques” [86].  

4. It is a powerful method to deal with prediction and classification problems, mainly when 

there is a large amount of data with many independent variables [104].  

5. CART output is almost intuitive and offers an easier comprehension between the target 

and the explanatory variables.  

 

3.6.2 Decision trees structure 

The decision tree represents a segmentation of the data that is created by applying a series of 

rules, resulting in a hierarchy of segments within segments. The hierarchy is called a tree, and 

each segment is called a node (or a leaf). A simplified decision tree is illustrated in Figure 3.3. The 

original segment contains the entire data set and is called the root node of the tree. Then, the root 

node is divided into child nodes (also called tree leafs) on the basis of an independent variable 

(splitter in Figure 3.3), which creates the best purity in the way that the data in the child note is 

more homogeneous than in the upper parents node [104]. For each leaf, a decision is made and 

applied to all observations in the leaf. This process will last until all data in each node have as 

much as possible homogeneity, leading to the terminal nodes or terminal leafs.  
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Figure 3.3 - General structure of a decision tree [104]. 

 

Therefore, a decision tree split, for a binary class, can be expressed by a confusion matrix. The 

parent node contains positive and negative examples, by splitting, one node will carry the true and 

false positive observations and the other node will carry the true and false negative observations 

[139]. CART provides an advance methodology for predictive modeling, the decision is simply the 

predicted value [89]. To select useful inputs, trees employ a split search algorithm. The split search 

selects an input for partitioning the training data. If the input was coded as an interval variable (for 

instance, vehicle weight), each unique value serves as a potential split point for the data. If the 

input is categorical (for instance, speed level), the average value of the target is used [89]. For a 

selected input, two groups are generated, resulting in two leafs (or child node).  

If input values are less than the split point are said to branch left. If input values greater than the 

split point are said to branch right. The groups, combined with the target outcomes, form a 2x2 

contingency table with columns specifying branch direction (left or right) and rows specifying target 

value (0 or 1). For the slipping rules, the criterion is based on either a statistical significance test, 

namely a F test or a Chi-square test, or on the reduction in variance, Gini index [89]. The 

significance level specifies the maximum acceptable p-value for the worth of a candidate splitting 

rule, and by default was configured for 0.2 [84, 140]. The F test and Chi-square test accept a p-

value input as a stopping rule [89]. A Pearson chi-square statistic is used to quantify the 

independence of counts in the table’s columns. Large values for the Chi-square statistic suggest 

that the proportion of zeros and ones in the left branch is different than the proportion in the right 

branch [89, 117]. A large difference in outcome proportions indicates a good split. The p-value 

indicates the likelihood of obtaining the observed value assuming identical target proportions in 

each branch [89]. For large data sets, these p-values can be very close to zero. For this reason, 

the quality of a split is reported by logworth = -log(chi-squared p-value). At least one logworth must 

exceed a threshold for a split to occur with that input. A threshold corresponds to a chi-squared p-

value of 0.20 or a logworth of approximately 0.7 [89]. Hence, the best split for an input is the split 

that has the highest logworth. For more details of the tree algorithm, the paper by Das is 

recommended [87].  
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The Decision Tree analysis provides information for the output selected variables based on their 

relative importance. The relative importance of an input variable in subtree denotes the primary or 

surrogate splitting rule using that input in a way the node assures the reduction in sum of squares 

errors (SSE) from the predicted values. It must be noticed that the variables relative importance 

may or may not follow the order of the variables selected by the tree for the split. The split is based 

on logworth. Hence, input variables that have a larger -log(chi-squared p-value) are selected first. 

On the other hand, the variable importance choses as most important the variable that will 

minimize the SSE associated with the other independent variables. The variable importance 

measure (VIM) is one of the CART method output that is helpful for the analysis of which variables 

are more important to classify or predict the target [87, 89, 104]. More information on the variable 

importance score algorithm can be found at Das and Kashani [87, 104]. VIM is very helpful for 

variables selection and will be used in the discussion of the decision trees modeling results 

(Chapter 5).  

 

3.6.3 Decision trees- Strategy to handle the imbalanced data 

CART is one of the most popular algorithms in decision tree induction, however splitting criteria is 

considered to be skew sensitive, because splitting criteria as the skewness increases, the 

information gain will become poorer [139, 141]. This occurs because the sampling methods prior to 

the decision tree induction alter the class distribution driving the bias towards the majority or 

positive class [139]. The objective functions used by the classifiers methods typically tend to favor 

the larger, less important class in the analysis of imbalanced datasets [139]. Thus, the predictive 

accuracy might not be appropriate when the data is imbalanced and /or the cost of different errors 

vary significantly [111]. With imbalanced datasets it is useful to incorporate the prior of the positive 

class to smooth the probabilities so that the estimates are shifted toward the minority class base 

rate [106]. 

Following the balanced strategy (section 3.5.2), the solution to correct the bias imposed by the 

imbalanced crash data was to adjust the probabilistic estimates at the tree leaf [109, 117, 140]. The 

bias introduced by over representing level “1” was corrected by adjusting the predicted probabilities 

with prior probabilities, allowing the model to predict the original distribution of target “1” for the 

original crash data. The adjustment of prior probabilities was performed with a decision node. As 

explained, the original portability of a severe crash was: 0.051, 0.037 and 0,073 for All, Two and 

Single crash datasets, respectively. To balance the bias by stratified 0.5 level training samples 

generation, the prior probabilities were adjusted for the original proportion of target level “1” and 

“0”. For instance, for the two-vehicle collisions dataset, the stratified sample procedure has 

generated a training sample including all the severe crashes (32 events) and equal proportion of 

non-severe crashes (which were randomly selected). Then the prior probability of 0.5 was adjusted 

for the original probability of 0.963, and 0.037, for targets levels “0” and “1, respectively. Table 3.4 
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summarizes the adjusting prior probabilities for the stratified training samples used in the trees 

model development.  

 

Table 3.4 – Stratified Training Samples adjust prior probabilities for the original crash dataset.  

Data set 

 
      Stratified Levels Prior Probabilities Adjusted Prior 

Level Count 

All 1 70 0.5 0.051 

0 70 0.5 0.949 

Two 1 32 0.5 0.037 

0 32 0.5 0.963 

Single 1 38 0.5 0.076 

0 38 0.5 0.924 

 

It must be pointed out that in this study the 0.5 stratified level was chosen under the constrain of 

the available observations for the minority class (rare event), so that all random samples would 

contain all the rare events (severe crashes), since the sample size was small and imbalanced for 

the crash severity distribution. In addition, with small or moderate data sets, data splitting would be 

inefficient; the reduced sample size can reduce the fit of the model training and validation [43, 89, 

103]. However, the conventional split between training data and testing data was not applied in this 

study, due to sample constrains. Thus, for decision trees assessment significance test analysis (to 

be explained in section 3.6.5) was applied.  

 

3.6.4 Decision trees development  

The process flow diagram for the decisions trees was created as follows. Each input dataset, All, 

Two and Single, were imported into the software interface. The sample node allowed to extract a 

sample from crash input data source. Then each tree node was connected to the decision node. 

The trees were created with the assessment method and assessment measure set for decisions 

because decision trees were applied to produce only a class decision, such as severe crash or 

non-severe crash, in this study. Table 3.5 shows the variables that were used as inputs for each 

tree development, as well as, the dependent variable used as a target. 
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Table 3.5 – Description of input variables and targets in CART modeling. 

Variable Description Abbreviation 
Variable role 

Input Target 

Age of Vehicle 1 AgeV1 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV1 Figures 5.1 to 
5.8 

- 

Age of Vehicle 2 AgeV2 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV2 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8  

- 

Age Difference between 
vehicles (V2) and (V1) 

AgeV2V1 (yr) stands for age of vehicle V2 minus the age 
of vehicle V1, crash observation. 

AgeV2V1 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

Alcohol and/or Drugs The Driver´s test for alcohol and or drugs is presented 
as: Code=0, legal; Code=1, illegal  

AlcoholDrugs Figures 5.1 to 
5.8 

- 

Crash type for single 
vehicles 

Ran off road  
 
Rollover  

RanOff 
 
Rollover 

Figures 5.3 and  
5.6 
- 

- 

Crash type for collisions Rear End  
Head-On  
Sideswipe  
Other 

RearEnd  
HeadOn  
Sideswipe  
Other  

Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 
- 

- 

Divided/undivided Existence or absence of physical median: Code=0, 
undivided 

Code=1, divided 

DivisionCode Figures 5.1 to 
5.6 

- 

Number of vehicles  Number of vehicles involved in the crash: 
Code=1, if only one vehicle was involved 
Code=2, if two vehicles were involved 

NVehicles Figure 5.1 - 

Serious and/or killed in 
the crash (involving one 
vehicle or involving two 
vehicles) 

FatalSIK is a categorical response for a crash outcome 
used to predict either a serious injury, or fatality in a 
crash event. 
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0 

FatalSIK  - Figures 
5.1 to 5.6 

Serious and/or killed at 
vehicle 1 (V1) occupants 

FatalSIKV1 is a categorical response for a crash 
outcome used to predict either a serious injury, or fatality 
or both for occupants in vehicle 1 in a crash event. 
FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0 

FatalSIKV1 - Figure 
5.7 

Serious and/or killed at 
vehicle 2 (V2) occupants 

FatalSIKV2 is a categorical response for crash outcome 
for a crash outcome used to predict either a serious 
injury, or fatality or to both for occupants in vehicle 2 in a 
crash event. 
FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0 

FatalSIKV2 - Figure 
5.8 

Speed Level The speed level was coded as follow: 
If Speed limit≤90 km.h

-1
, then code=0 

If Speed limit>90 km.h
-1

, then code=1 

SpeedLevel Figures 5.1 to 
5.7 

- 

Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm). WBV1 Figures 5.1 to 
5.8 

- 

Wheelbase of Vehicle 2 Wheelbase of vehicle (V2) (mm). WBV2 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

Wheelbase Difference 
between vehicles (V2) 
and (V1) 

WBV2V1 stands for wheelbase of vehicle V2 minus the 
wheelbase of vehicle V1, at crash observation, (mm). 

WBV2V1 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg). WTV1 Figures 5.1 to 
5.8 

- 

Weight of Vehicle 2  Weight of vehicle 2 (V2) (kg). WTV2 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

Weight Difference 
between vehicles (V2) 
and (V1) 

WTV2V1 stands for weight of vehicle V2 minus the 
engine size of vehicle V1, at crash observation (kg). 

WTV2V1 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

Weather Conditions Weather conditions at the moment of the crash: 
Code=0, Clear and/or dry pavement 
Code=1, rain and/or wet pavement 

WeatherCode Figures 5.1 to 
5.7 

- 

Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm
3
). ccV1 Figures 5.1 to 

5.8 
- 

Engine Size of Vehicle 2 Engine size of vehicle (V2) (cm
3
). ccV2 Figures 5.1, 5.2, 

5.4, 5.5, 5.7 and 
5.8 

- 

Engine Size Difference 
between vehicles (V2) 
and (V1) 

ccV2V1 stands for engine size of vehicle V2 minus the 
engine size of vehicle V1, at crash observation, (cm

3
). 

ccV2V1 Figures 5.1, 5.2, 
5.4, 5.5, 5.7 and 
5.8 

- 

 

The CART methodology for decisions classification of target FatalSIK was performed for each 

crash dataset based in two procedures: imbalance sample (original sample distribution of severe 

and non-severe crashes) and balance sample (stratified sample with equal proportion of severe 

and non-severe crashes). For an advanced analysis of the vehicles’ effect on crashworthiness and 
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risk imposed to the other car involved in the collision, two additional target variables were explored: 

FatalSIKV1 and FatalSIKV2 (as explained in section 3.3). These response variables have few 

observations for the target level “1”: 21 and 14 for FatalSIKV1”1”, and FatalSIKV2”1”, respectively. 

Due to the limited number of the target with the level of interest, the resampling approach was not 

performed, otherwise the stratified random sample procedure (randomly removing the majority 

class to a balanced proportion) would lead to small training samples: 42 observations to model 

FatalSIKV1 and 28 observations to model FatalSIKV2. As it was explained in section 3.4.2.1, 

decision trees are very sensitive to the sample size and small leafs (i.g, small number of 

observations in the tree node). Therefore, for the two-vehicle collisions, decision trees modeling 

were developed with the distribution (0.037, and 0.963 for severe and non-severe collisions, 

respectively). 

 

3.6.5 Decision trees significant test analysis 

Chi-square statistics is widely employed to ensure the accuracy of risk factor identification [87, 

100]. In this study, to examine whether there is an association between the predictor variables 

selected at the trees’ leafs and the target, Chi-square test (Chi-Sq) was conducted. Chi-Sq test 

measure the difference between the observed cell frequencies and the cell frequencies that are 

expected if there is no association between the variables. If the p-value is small (less than 0.05) 

there is enough evidence at 5% significance level to reject the null hypothesis. If the association 

test results in a significant Chi-Sq statistic, there is strong evidence that an association exists 

between the variables. The value of the Chi-Sq statistic only indicates how confident the researcher 

can be to reject the null hypothesis. This test does not show the magnitude between the variables 

being analyzed. When more than 20% of the cells (nodes at the tree) have expected frequencies of 

less than 5, the Chi-Sq test might not be valid [89]. This happens with the crash data sample used 

in this study, since there are a limited number of observations. For small samples, exact p-value is 

useful, however sometimes it might requires a prohibit augment of time and computing memory for 

the EXACT statement in SAS® v9.2. The exact p-value reflects the probability of observing a table 

with at least the same evidence of an association as the one actually observed, given there is no 

association between the variables. Therefore, Fisher’s exact test was used to ensure the accuracy 

of severe crash factors identification, for the situation where the Chi-Square test was not valid at 

the 5 % significance level (for those cells that had expected counts less than 5) [89]. 

 

3.7 Logistic Regression Methodology  

Regression offers a different approach to prediction modeling compared to decision trees [61, 89]. 

Regressions, as parametric models, assume a specific structure between inputs (predictors) and 

target. Whereas trees as predictive algorithm, do not assume any association structure, they simply 

isolate concentrations of cases with like-valued target measurements. A great advantage of logistic 
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regression technique comparing to CART technique is that regression provides valuable 

information on the parameters estimates, their standard error and their significance. Logistic 

regression method was selected to predict the probability that the binary target will acquire the 

event of interest as a function of the independent inputs. First, this section provides a background 

of logistic regression analysis. Second, the developments of logistic models are explained. Third, 

logit regression models validation approach is presented.  

 

3.7.1 Logistic regression background 

The logistic regression is widely used for predictive modeling of binary targets. The binary logistic 

regression model was developed primarily by Cox and Walter and Duncan [103]. The odds of an 

event can be expressed by the probability of that event as Equation 3.4: 

      
 

   
  

Equation 3.4 
 

Where “P” is the probability of the event. In logistic regression, the dependent variable responds to 

a logit, which is the natural log of the odds, (Equation 3.5), that is:  

                        (
 

   
) 

Equation 3.5 
 

The logit transformation in the logistic regression model is described by the following equation: 

            (
 

   
)                          

Equation 3.6 
 

Equation 3.6 expresses a linear relation between the odds and X in terms of probability. The 

logistic function is the inverse of logit function. A logistic regression applies a logit transformation (a 

natural log of the odds) to the probabilities and ensures that the model generates estimated 

probabilities between 0 and 1. At this function, x has an unlimited range while P (Probability) is 

restricted to range from 0 to 1. The preceding Equation 3.6 could be transform to probabilities by 

applying the natural log by sides of the above equation and solving for “P”. Subsequently the above 

equation in terms of probability it can be rewritten as Equation 3.7:  

  
                             

                                 
 

Equation 3.7 
 

Where “    is the intercept, “    is the estimated for the parameter “  ”, and the same for “     ”. 

The logistic mathematical model assumes a linear relationship between predictors and the logit for 

the response variable. The slope coefficient in the logistic regression model represents the change 

in the logit for a change of one unit in the independent variable “x” [85]. Unlike linear regression, 

the logit is not normally distributed and the variance is not constant. Hence, the least squares 

estimation is abandoned in favor of maximum likelihood estimation. The logistic regression requires 

a more complex estimation method than the linear regression, called maximum likelihood to 
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estimate the parameters. For the logistic regression analysis the function chosen to measure the fit 

of the model is the maximum likelihood. The likelihood function is the joint probability density of the 

data related as function of the parameters. The Likelihood is a conditional probability (P|X), the 

probability of Y given X. Hence in model selection the parameters that will be chosen are the ones 

that yield to the greatest likelihood computed. The estimates are called maximum likelihood 

because the parameters are chosen to maximize the likelihood of the sample data. The logistic 

regression finds the parameters estimates that are most likely to occur given the data [89]. This 

procedure is achieved by maximizing the likelihood function that expresses the probability of the 

observed data as function of the unknown parameters [84, 89]. 

 

3.7.2 Logistic regression modeling 

The modeling process flow was developed with application of specific functions of the EM program: 

such as drop, transformation, regression and cutoff nodes. Appendix 5 provides detailed 

information for the logistic models development using SAS®Enterprise MinerTM 7.1 [84, 89, 117]. 

During the training process, four selection methods for variables input in the model were used:  

 Backward - begins with all candidate effects (inputs) in the model and removes effects until 

the stay significance level is met. It creates a sequence of models decreasing complexity. 

 Forward- begins with no candidate inputs in the model and adds inputs until the entry 

significance level is met. In contrast with backward selection creates a sequence of models of 

increasing complexity. 

 Stepwise- begins as in the forward selection but may remove inputs already in the model. 

This procedure sequentially adds inputs with the smallest p-value below the entry cutoff. As each 

input is added, the algorithm re-evaluates the statistical significance of all included inputs in the 

model. If p-value of the selected inputs exceeds a stay cutoff, the input is removed from the model.  

 None- When none of the above selections methods are selected, the regressions use all 

the available inputs to fit the model. Usually, it generates models with higher complexity 

since all the predictor variables stay in the model.  

As result of the input selection methods, several candidate models were developed, some 

incorporating all the input variables (when “none” method was selected), others candidate models 

with several or few inputs.  

Following the development of several models candidates, the best model to predict the target was 

selected based on the goodness of fit of the model to the crash data. Following the selection of the 

best model, cutoff, score and SAS code nodes were added to the diagram for further assessment 

of the prediction accuracy.  
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The cutoff function provides graphical information to determine the appropriate probability cutoff 

point for decision making with binary target models. The establishment of a cutoff decision point 

entails the risk of generating false positives and false negatives, but an appropriate use of the 

cutoff node can help minimize those risks. During the models training, the optimal cutoff value was 

obtained for 0.69. This value was found by taking into account which cutoff would result in a higher 

overall classification rate and the prior probabilities for the severe crashes in the data set.  

The score function creates predictions using the best model selected based on the model 

comparison node, described above. To evaluate the performance of the selected model from the 

training procedure, a new data source must be dragged into to diagram workspace. While for the 

training models development the data set’s role was set to “raw”, for the score stage, the data set 

was set to “score” role. This attribute allows the score node to use the data set to generate 

predicted values for a data set that might not contain a target. 

Finally, at the end of the models development process, sas score code function was linked to the 

score node. This function allows to programing code to generate an output for the model 

performance when evaluating its prediction accuracy with the original data. The generated report 

output creates the scores results for the classification assessment, (that will be discuss in the next 

section).  

 

3.7.3 Models assessment and validation 

The most frequent metrics for models assessment are accuracy and error rate [106]. By convention 

the class label of the minority class is positive, and the class label of the majority class is negative 

[107, 108]. Given a classification model (also called classifier) and a response, there are four 

possible outcomes. If the response is positive and it is classified as positive, it is counted as a true 

positive; if it is classified as negative, it is counted as a false negative [142]. If the response is 

negative and it is classified as negative, it is counted as a true negative; if it is classified as positive, 

it is counted as a false positive [142]. Given a classifier and a set of responses, a two-by-two 

confusion matrix (also called a contingency table) can be constructed representing the dispositions 

of the set of responses, with the true class on the columns and the predicted class on the lines. 

This matrix forms the basis for many common metrics and provides information on the performance 

of the model [106-108, 142].  

 

In this study, the event classification table (metric provided by Enterprise Miner) is used to measure 

the assessment score rankings for the model, showing the predicted probabilities of the observed 

response (target being modeled). Binary targets can be classified as event or non-event. Predicted 

and observed targets results follow into four classification categories: False Negative, True 

Negative, False Positive, and True Positive.  
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Thus, the event classification analysis classifies the response output accuracy for the target being 

modeled as:  

- False Negative (FN), which means that the target was predicted as “0” when it was “1” in 

reality. 

- True Negative (TN), which indicates that the target was correctly predicted as “0”.  

- False Positive (FP), which means that the target was incorrectly predicted as “1” when it 

was in reality “0”. 

- And True Positive (TP), which means that the target was correctly predicted as “1”.   

Table 3.6 shows the measures classification approach developed based on the Enterprise Miner 

software for the assessment score and confusion matrix for a binary classification; in this case 

FatalSIK. Table 3.6a) shows the assessment of the training model evaluation. The TN category 

refers to the observations where a crash was non severe (actual value was FatalSIK”0”) and it was 

predicted as non-severe (FatalSIK”0”). When a crash was severe (actual value FatalSIK”1”) and it 

was predicted as severe crash (FatalSIK”1”), this observation follows into the category TP.  

 

Table 3.6 - Assessment of FatalSIK prediction based on event classification table. 

Model Assessment Score 

a) Assessment of selected model with the training sample/balanced sample 

Target False Negative (FN) True Negative (TN) False Positive (FP) True Positive (TP) 

Predicted  FatalSIK”0” FatalSIK”0” FatalSIK”1” FatalSIK”1” 
Actual  FatalSIK”1” FatalSIK”0” FatalSIK”0” FatalSIK”1” 

b) Assessment of selected model with the original sample/imbalanced data 

Target True Positives (TPs) False Positives (FPs) True Negatives (TNs) False Negatives (FNs) 

Predicted  FatalSIK”1” FatalSIK”1” FatalSIK”0” FatalSIK”0” 
Actual  FatalSIK”1” FatalSIK”0” FatalSIK”0” FatalSIK”1” 

 

The accuracy of the model measures the fraction of cases where the decision matches the actual 

target value. The accuracy rate (AR) in the training model is equivalent to the percentage of the 

cases predicted right by the model within the training sample. Equation 3.8 shows the calculation of 

“Accuracy Rate” as: 

                              
       

             
 

Equation 3.8 
 

On the other hand, the misclassification measures the fraction of cases where the decision does 

not match the actual target value. Equation 3.9 shows the misclassification rate: 

                    
       

             
 

Equation 3.9 
 

 

The validation process of a model is an important step to confirm that the developed model is likely 

to perform as expected in the field. The standard strategy in predictive modeling is the data 

splitting. Thus, a proportion would be used for fitting the model, which is the training data. The 
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remaining data would be used for empirical validation. However, with small or moderate data sets, 

data splitting is inefficient; the reduced sample size can severely degrade the fit of the model [43, 

89]. Kononen et al. stated that “splitting-sample validation results in the validation of the model fit to 

a “training” dataset, but does not validate the model fit to the complete dataset, the objective of a 

predictive model” [43]. Computer-intensive methods, such as cross-validation and the bootstrap 

methodologies can be used for both fitting and honest assessment [83, 84, 89, 103].  

 

Validation process relies on model assessment to predict new cases. However, for the selected 

model during the training process, the model was scored based on the training sample (with a 

stratified distribution of severe vs. non-severe cases). Firstly, the final selected model was score 

not only for the stratified sample (balanced proportion of severe and non-severe crashes), Table 

3.6a). Secondly, it was scored using the original crash data (with original distribution of severe vs. 

non-severe cases). Table 3.6b) shows the assessment measure for the selected model score with 

the original sample. To predict new cases using the original imbalanced sample, the classification 

measures are as follows: True Positive (TPs), False Positives (FPs), True Negatives (TNs) and 

False Negatives (FNs). 

Similarly to Equation 3.8, the performed accuracy for the final model was expressed as the 

percentage of the cases predicted right by the selected model when scoring the crash population. 

The accuracy rate within the entire crash dataset was calculated by Equation 3.10 and percentage 

of predicted right cases was derived from the accuracy rate*100% and the accuracy rate was in 

this case determined as: 

                                
         

                 
 

Equation 3.10 
 

The selected model (final model) was evaluated for the prediction accuracy performance. The 

procedure developed to ensure a valid and reliable validation of the selected models is based on 

the k-fold cross validation from Crone and Finlay and Xie et al. [83, 93].  

 

For the purpose of this study, and to ensure valid and reliable estimates of the experimental results 

despite small sample sizes, a resampling K random cross-validation was employed for the 

selected, essentially replicating each random sample k = 10 times (i.e., resampling). The 

resampling k random cross validation is to some extent different from k-fold cross validation by 

Crone and Finlay. For the Portuguese crash data analysis, a stratified random sampling was 

applied, with the events “1” (severe crashes) and events “0” (non-severe crashes) sampled with 

equal proportion. The crash dataset was segmented into k sections of equal size, with an equal 

proportion of severe crashes and non-severe crashes, within each fold. For the two-vehicle 

collisions (N=874), 10 stratified random samples (N=64) were developed including all severe 

crashes (32 events “1”) and equal number of non-severe crashes (32 events “0”). For the validation 
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of the best selected models for the single dataset, 10 stratified random samples (N=76) were 

developed including all the severe crashes (38 events “1”) and equal number of non-severe 

crashes (38 events “0”).  

 

The resampling k random cross validation is presented next, through step 1 to step 3. 

Step 1: Stratified random samples cross validation 

To create each stratified sampled subset, observations were randomly excluded from the majority 

class (the non-severe crashes) until they equal the observations number of the minority class 

(severe crashes). Hence, 10 samples with balance classes were generated from the full dataset. 

The 10 stratified random balancing samples were chosen taking into account: time consuming, 

computing requirements and the need to obtain a reasonable number of samples, under the 

constrain of the available observations.   

 

 Step 2: Model Score with stratified random samples  

In Crone and Finlay k-fold cross validation approach, the stratified samples were used to construct 

k models for each cumulative percentage of the population [83]. Then for each model, all the N/k 

observations in the validation section were used to evaluate the model performance. In this 

research, the performance of accuracy prediction of the final model was evaluated by comparing 

the model score rates for the original crash dataset with the model score for each of those 10 

stratified random samples. Hence, the final model was evaluated 10 times by score the final model 

with each of those 10 stratified samples subsets. Then, the model accuracy prediction rates for 

each of those subsets were recorded and the average of those 10 accuracy rates was estimated.  

 

Step 3: Final Model Accuracy Rate Assessment Performance 

To conclude, the accuracy rate derived from the model application to the original crashes sample 

was compared with the model accuracy rate derived from the model application within the 10 

stratified samples. Each accuracy rate obtained for each subset was subtracted from the accuracy 

rate of the final model (with the full sample). This procedure allowed evaluating the stability of 

accurate prediction rate of the final model through the 10 subsets (10 stratified random samples).  

 

The experimental approach designed to evaluate the goodness-of-fits with: training sample, original 

sample (OS) and finally, validation with 10 stratified random samples (SS), is outlined in Figure 3.4. 

Figure 3.4 illustrates the resampling K random cross-validation developed in this study for the 

assessment of models performance and validation for the two-vehicle collisions.  
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Figure 3.4 - Crash severity modeling using logistic with resampling strategy: training models 

assessment and validation for the two-vehicle collisions. 
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On the left top right of Figure 3.4, all the input variables are shown, as well as the original sample 

size. The “1”s squares in red illustrate the severe crashes which were less frequent than the non-

severe-crashes, blue squares, in the original sample (OS) (N=874). Without the resampling 

approach, preliminary model training with the OS showed a poor fitting due to the high 

disproportion between target “1” and target “0”, bottom left side of Figure 3.4. Thus, a resampling 

approach, yield to training samples of equal proportion of sever crashes vs. non severe crashes 

(same proportion of red and blue square, on the top right of Figure 3.4. Subsequently, the model 

prediction accuracy was evaluated with the OS and then, validation was performed with the 10 

stratified random samples Si+1 (N=42 and N=28 for FatalSIKV1 and fatalSIKV2 models 

assessment, respectively), on the bottom right of Figure 3.3. For example, the prediction accuracy 

rate for a selected model (developed with a balanced training ample) and then scored with the 

original sample is represented by “AR,OS,Bal”, shown at the bottom of Figure 3.4. For FatalSIKV2 the 

structure would be the same, with category FatalSIK replaced by FatalSIKV1 or FatalSIKV2, 

depending on the target of interest. For the single-vehicle crashes the process is similar.  
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3.8 Concluding Remarks 

The main constraint of the Portuguese crash sample was the limited number of observations (small 

sample size). In addition, a particular challenge was found when handling the imbalanced classes 

in the crash dataset, as result of the minority class of severe crashes in the sample. Due to the 

small dataset, data splitting would be inefficient, since the reduced sample size could reduce the fit 

of the model training and validation. The modest number of severe events (which were the target 

with interest for the modeling) generated an opportunity for a new modeling strategy: resampling 

and 10-fold cross validation procedure.  

The safety analysis methodology presented in this chapter pursues the research goals as follows.  

 Individual vehicle analysis to compare crash sample severity ratio with overall severity 

index for the national fleet. 

 CART modeling to identify which variables are important to predict injury severity.  

 Logistic regression modeling to evaluate the effect of vehicles attributes (risk factors) in 

injury severity prediction. 
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CHAPTER 4  
CRASH DATA DESCRIPTIVE STATISTICS 

AND SEVERITY INDEX WITHIN THE 
PORTUGUESE FLEET  

 

 

 

 

 

 

 

 

In this Chapter, initially descriptive statistics are presented for the crash sample with main focus on 

vehicles technical characteristics. Secondly, risk of exposure in the sample is presented based on 

injury severity and vehicle’s engine size category. Thirdly, vehicle’s individual brand analysis is 

discussed taking into account its involvement in crash severity outcomes. Then, brand’s severity 

risk is compared with the overall severity within the Portuguese fleet. Main remarks are 

summarized.  
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4.1 Crash Data Descriptive Statistics  

This section presents descriptive statistics for the crash sample comprising a total of 1,374 

observations involving single-vehicle crashes and two-vehicle collisions. Whereas for single-vehicle 

crashes, the vehicles were defined as vehicle V1 only, for collisions, vehicles were register as 

vehicle V1 and vehicle V2, following the police record information (as explained in section 3.3). 

Descriptive statistics for All, Single and Two datasets are next.   

 

4.1.1 General statistics  

The crash sample revealed 22 crashes involving a drunk and/or drugged driver. Crash frequency 

distribution by road speed limit was as follows: 67.6%, 4.7%, 27.1% and 0.5, for 120 km.h
-1

, 100 

km.h
-1

, 90 km.h
-1

and 50 km.h
-1

, respectively. Crashes registered at roads where the legal speed 

limit is the lowest, 50 km.h
-1

,
 
did not result in any severe case. On the other hand, crashes register 

in motorways, 120 km.h
-1

,
 
showed the highest percentage of severe observations, 3.4% (48/1374). 

This finding is consistent with previous studies that identified road speed as a key factor for crash 

severity risk [42, 43, 49, 91, 98].  

The crash sample covers a total of 2,248 vehicles. The most frequent vehicle category was light 

passenger vehicles, which represented 74.3% of the vehicles, whereas light duty vehicles account 

for 25.7%. Diesel engines were the most common, corresponding to 58.9% of the analysed 

vehicles, following by the gasoline engines representing 40.7%. At a significant lower frequency: 

LPG (“GPL” at the Portuguese designation) and hybrid vehicles accounting only for 0.3% and 

0.1%, respectively.  

Regarding to vehicle technical characteristics, the mean values and its standard deviation (S.D.) for 

all the vehicles in the sample, vehicles’ weight, engine power, wheelbase and age were: 1238.1kg 

(S.D. 347.2), 1665.2 cm
3
 (S.D. 504.4), 2591.9 mm (S.D. 270.2) and 8.5 yr (S.D. 5.1).  

Relating to individual vehicles analysis, as V1 and as V2, descriptive statistics of continuous design 

variables with focus on vehicles characteristics is presented in Table 4.1. The oldest vehicle 

involved had 38 years, whereas the newest cars had one year, corresponding to 1972 and 2010 

vehicle model year, respectively. Also, the heaviest vehicle in the crash dataset weighted six times 

more than the lighter passenger car, a 3500/584 weight ratio. Also, the largest vehicle’s wheelbase 

was almost three times larger than the smallest one, a 4325/1625 wheelbase ratio. Thus, results in 

Table 4.1 reflect a wide range of vehicles’ dimensions (weight, engine size and wheelbase) and 

vehicle model year (associated to vehicle’ age), as well. Therefore it is fundamental to take into 

account vehicle individual information for road safety analysis, since real crashes occur without any 

control among the vehicles categories and/or segments involved in the collision. In this Chapter, 

the statistics motivate the designed methodology to account for vehicle individual analysis, rather 

than the standard information, mainly restricted to vehicle type and vehicle model year, [43, 59-61, 
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85, 87, 93, 98]. Previous studies attempted to model overall crash severity without taking into 

account the effect of the opponent vehicle [43, 85, 86, 91, 93, 98, 102, 104]. Nonetheless, in multi-

vehicle collisions, injury severity outcomes depend not only on the risk of the other vehicle 

involved, and also on the protective ability of the subject vehicle. 

 

Table 4.1 - Descriptive statistics for vehicles selected variables in the crash dataset.  

 
Symbol 
 

 
N Mean 

 
S.D.  

 
Minimum Maximum 

WTV1
1
(Kg) 1374 1222.34  334.98 640  3200  

ccV1
2
(cm

3
) 1374 1662.65  491.67 599  4104  

WBV1
3
(mm) 1374 2581.02  256.47  1625  4325  

AgeV1
4
(yr) 1374 8.48  5.06 1  25  

WTV2
5
(kg) 874 1262.85  364.46 584  3500  

ccV2
6
 (cm

3
) 874 1700.94  522.18 698  4104  

WBV2
7
 (mm) 874 2609.00 289.88 1812  4100  

AgeV2
8
(yr) 874 8.54  5.26 1  38  

WTV2V1
9
(mm) 874 28.65  519.87 -2165  2860  

ccV2V1
10

(cm
3
) 874 34.98  719.72 -2905  2909  

WBV2V1
11

(mm) 874 10.84  396.80 -2213  1918  
AgeV2V1

12
(yr) 874 <1  7.42 -20  28  

1 Weight of Vehicle V1; 2 Engine size of Vehicle V1; 3
 
Wheelbase of Vehicle V1; 4 Age of vehicle V1; 5 Weight of Vehicle 

V2; 6 Engine size of Vehicle V2; 7 Wheelbase of Vehicle V2;8 Age of vehicle V2; 9
 
Weight Differential between V2-V1, in 

two-vehicle collisions; 10 Engine size differential between V2-V1, in two-vehicle collisions; 11 Wheelbase Differential 
between V2-V1, in two-vehicle collisions; 12 Age Differential between V2-V1, in two-vehicle collisions. 

 

 

At the crash reports, crash outcomes are classified in three injury levels: light injury (LI), serious 

injury (SI) and killed (K). Table 4.2 shows injury level distribution by number of vehicles involved 

and by vehicle recorded as V1 or V2, in the crash. Table 4.3 shows the frequency of severe 

observations expressed by the sum of serious injured and killed (SIK) by crash event.  

 

 

Table 4.2 – Injury level distribution by vehicle position in the crash.  

Datasets 
 Vehicle V1 Vehicle V2 Total 

N
1
 LI SI K LI SI K LI

2
 SI

3
 K

4
 SIK

5
 

Single  500 590 31 16 - - - 590 31 16 47 
            
Two  874 643 14 9 732 16 2 1375 30 11 41 
            

All  1374 1233 45 25 732 16 2 1965 61 27 88 

1 Number of crashes observations; 2 Sum of light injuries; 3 Sum of serious injuries; 4 Sum of killed; 5 Sum of serious 

injured and/or killed. 
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Table 4.3 - Frequency of severe observations by number of severe injuries and/or killed and by 
vehicles involved.  

 
Dataset 

 

 
N

1
 

 
SIK “1”

2
 

 
SIK “2”

3
 

 
SIK “3”

4
 

 
Total SIK

5
 

Single  500 31 5 2 38 
      

Two  874 25 5 2 32 
      

All  1374 56 10 4 70 
      

1 Number of crashes observations; 2 Number of crashes having 1 occupant serious injured and/or killed; 3 Number of 
crashes having 2 occupants serious injured and/or killed; 4

 
Number of crashes having 3 occupants serious injured and/or 

killed; 5 Total Number of observation having a severe crash (either SI>0 and/or K>0) 

 

Relating to crash severity risk of exposure in the sample, severe cases are presented based on 

vehicle involvement in single-vehicle crashes and vehicle involvement in two-vehicle collisions as 

V1 or as V2. Severe cases are related to an event that has resulted at least in a serious injured 

and/or killed among the occupants of the vehicle. For example in a severe collision, a severe injury 

can happen at one of the vehicle involved, or it can happen in both vehicles involved 

simultaneously. Table 4.4 shows the risk of exposure based on severe cases by the number of 

vehicles involvement and vehicle’s age and engine size categories. Vehicle´s age was grouped by 

5 categories: 1≤Age<5yr, 5≤Age<10yr, 10≤Age<15yr, 15≤Age<20yr and Age≥20yr. Engine size 

was grouped into three categories: c.c.<1400 cm
3
, 1400≤c.c.<2000cm

3
 and c.c.≥2000 cm

3
. For 

single-vehicle crashes, the majority of vehicles fell in the engine size category c.c.<1400 cm
3
, 

followed by the category 1400≤c.c.<2000 cm
3
, with 219 vehicles involved in 13 severe crashes and 

218 vehicles involved in 18 severe crashes, respectively, as shown in Table 4.4. Although the most 

frequent category was the vehicles in the small engine size category, it was in the middle engine 

size category that severe crashes were higher.  

For two-vehicle collisions, vehicles V1 in the engine size category 1400≤c.c.<2000 cm
3
, were the 

most frequent, with 390 vehicles involved in collisions that have resulted in 14 severe cases for the 

occupants of vehicle V1, Table 4.4. For vehicle V2, the most frequent engine size category was 

also 1400≤c.c.<2000 cm
3
, 379 vehicles with three serve crash outcomes. However, for V2, the 

higher ratio of severe crashes was found for vehicles in the smaller engine size category, with 334 

vehicles involved in collisions that had resulted in eight severe cases for its occupants. Appendix 7 

provides information on Pearson correlation coefficients for all the variables in the crash dataset.  
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Table 4.4 – Crashes severe cases by: vehicles involvement in single-vehicle crashes or two-vehicle collisions, engine size and age categories.  

Vehicle categories Single-vehicle crashes 
Two-vehicle collisions 

As V1 As V2 V1+V2 

Engine size 
category 

Age category N Severe Cases N Severe Cases N Severe Cases N Severe Cases 

c.c.<1400 cm
3
 

1≤Age<5yr 63 

 

60 

 

76 

 

199 

 

5≤Age<10yr 77 121 99 297 

10≤Age<15yr 48 93 98 239 

15≤Age<20yr 27 67 50 144 

Age≥20yr 4 5 11 20 

Total 219 13 346 5 334 8 680 13 

1400 cm
3
≤c.c.<2000 cm

3
 

1≤Age<5yr 68  100  114  282  

5≤Age<10yr 81  138  133  352  

10≤Age<15yr 46  98  94  238  

15≤Age<20yr 18  42  31  91  

Age≥20yr 5  12  7  24  

Total 218 18 390 14 379 3 769 17 

c.c.≥ 2000 cm
3
 

1≤Age<5yr 12  40  37  89  

5≤Age<10yr 32  52  66  150  

10≤Age<15yr 16  33  35  84  

15≤Age<20yr 3  10  17  30  

Age≥20yr 0  3  6  9  

Total 63 7 138 2 161 3 299 5 

N  500 38 874 21 874 14 1,648 35 
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The overall crash severity was 5.1% (70/1374), reveling an unequal distribution of severe crashes 

compared to non-severe crashes, which were the most common events in the crash sample, 

showing a frequency of 94.9%. For the two-vehicle collisions, the ratio of the common event (non-

severe crash) to the rare event (severe crash) was 26 (842/32). Thus, the non-severe crashes 

happened 26 times more frequently than the severe ones, yielding to an over represented of 

crashes with minor injuries. Therefore this crash data qualifies for imbalanced data. Whereas the 

percentage of severe crashes in two-vehicle collisions was 3.7% (32/874), for single-vehicle 

crashes the severity was 7.6% (38/500). Apart from unequal distribution of severe non-sever 

crashes, it is interesting to note that the overall severity was twice as higher for single-vehicle 

crashes than for the two vehicles crashes. 

This disproportion between non-severe crashes and severe crashes imposed a challenge during 

the crash severity prediction. Next Chapter presents the approach designed in this research to 

handle imbalanced data.  

 

4.1.2 Single-vehicle crashes descriptive statistics  

In the Single dataset, the percentage of crashes involving drunk and/or intoxicated drivers was 

2.0% (10/500). From those, three crashes that involved drunk and/or intoxicated drivers resulted in 

severe outcomes. As far as crashes distribution by road class speed limit, the frequency was: 375, 

29, 95, and 1, for 120 km.h
-1

, 100 km.h
-1

, 90 km.h
-1

and 50 km.h
-1

, respectively. The roads that 

appeared more often were motorways: A4, A28, A3 and A29, with the frequency: 96, 86, 55, 55, 

respectively. A map with the identification of these roads was previously highlighted in Figure 3.2b). 

Crashes type distribution was as follows: 333 ran off road and 67 rollovers. The mean values for 

vehicle V1 technical characteristics were as follows. 1201.6Kg (S.D. 292.1), wheelbase of vehicle 

V1 was 2551.1mm (S.D. 205.0), for weight, engine size, and wheelbase, respectively. The mean 

vehicle’s age was 7.8yr (S.D. 4.9).  

Histograms are presented in Figure 4.1 to illustrated vehicles technical characteristics (independent 

variables) frequency distribution with crash severity (dependent variable). As shown by the 

histogram a), in Figure 4.1, the category 5≤AgeV1<10 is the most frequent and severe crashes 

were also more frequent for this category. For the majority of the vehicle’s involved in single-vehicle 

crashes, had engine sizes in the categories ccV1<1400 cm
3
 and 1400≤ccV1<2000 cm

3
, which 

were also linked to more severe outcomes, histogram b), in Figure 4.1. Vehicles in the weight 

category, 1000≤WTV1≤1499 kg, were clearly the most frequent and also showed higher number of 

severe crashes, histogram c), in Figure 4.1. The two most frequent categories for vehicle’s 

wheelbase were: 2000≤WBV1≤2499 and 2500≤WBV1≤2999 and with a higher number of crashes 

resulting in severe outcomes as well, histogram d), in Figure 4.1.   
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a) b) 

c) d) 

Figure 4.1 - Frequency distribution of vehicles’ characteristics with crash severity, in single-vehicle 

crashes: a) AgeV1 category; b) ccV1 category; c) WTV1 category; d) WBV1 category.     

 

4.1.2 Two-vehicle collisions descriptive statistics 

In the Two dataset, the percentage of crashes involving drunk and/or intoxicated drivers was 1.4% 

(12/874), and three of them have resulted in severe collisions. The roads with higher frequency of 

collisions involving any type of injuries where: A4, A28, A3 and EN15, with 121, 112, 88 and 88 

counts, respectively. A map with the identification of these roads was previously shown in Figure 

3.2b). Regarding to the frequency of collisions by road class speed limits, the distribution was: 6, 

278, 36 and 554, for 50km.h
-1

, 90 km.h
-1

, 100 km.h
-1

 and 120 km.h
-1

, respectively. Crashes 

distribution by collision type was as follows: 311, 89, 67, and 407, for rear end, sideswipe, head on 

and others, respectively. The mean values for vehicles V1 and V2 weight were as follows: 1234.2 

Kg (S.D. 356.8) and 1262.9 Kg (S.D. 364.5), respectively. The mean engine size for vehicle V1 and 

V2 was: 1665.0 cm
3
 (S.D. 510.0) and 1700.9 cm

3
 (S.D. 522.2), respectively. The mean wheelbase 

for vehicle V1 and V2, was: 2598.2 mm (S.D. 280.4) and 2609.0 mm (S.D. 289.9), respectively. 

The mean vehicle V1’s age was 8.9 yr (S.D. 5.1), whereas, the mean vehicle V2’s age was 8.5 yr 

(S.D. 5.3).  

Comparison between Single and Two datasets, with 500 vehicles and 1,784 vehicles, respectively, 

is summarized next. The mean vehicles weight was 1248.5 Kg (S.D. 360.0) and 1201.6 Kg (S.D. 

292.1), for Two and Single datasets, respectively. The mean engine size was 1683.5 cm
3
 (S.D. 
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516.3) and 1601.6 cm
3
 (S.D. 455.5), for Two and Single, respectively. The mean wheelbase was 

2603.6 mm (S.D. 285.1) and 2551.1 mm (S.D. 205. 0.4), for Two and Single, respectively. The 

mean vehicles’ age was 8.7 yr (S.D. 5.1) and 7.8 yr (S.D. 4.9). Despite of the difference in the 

number of observations for those datasets, it was noticeable that in average, vehicles involved in 

single-vehicles crashes were slightly lighter, with smaller engine size and smaller wheelbase, and 

almost one year younger than the vehicles involved in collisions.  
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a) 
b) 

c) 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Figure 4.2 - Frequency distribution of vehicles’ characteristics with crash severity, in two-vehicle 

collisions: a) AgeV1 category; b) AgeV2 category; c) ccV1 category; c) ccV2 category; d) WTV1 

category; d) WTV1 category; e) WTV2 category; f) WBV1 category and f) WBV2 category. 

  

0

50

100

150

200

250

300

350

<5 5_9 10_14 15_19 ≥20 

F
re

q
u

e
n

c
y
 

Vehicle V1 Age Category  (yr)   

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

<5 5_9 10_14 15_19 ≥20 

F
re

q
u

e
n

c
y
 

Vehicle V2 Age Category  (yr)   

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

400

450

<1400 1400-2000 ≥2000 

F
re

q
u

e
n

c
y
 

Vehicle V1 Engine Size Category (cm3) 

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

400

450

<1400 1400-2000 ≥2000 

F
re

q
u

e
n

c
y
 

Vehicle V2 Engine Size Category Category (cm3) 

Severe crashes

Non severe crashes

0

100

200

300

400

500

600

<1000 1000-1499 1500-1999 2000-2499 2500-3000 ≥3000 

F
re

q
u

e
n

c
y
 

Vehicle V1 Weight Category (kg)   

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

400

450

500

<1000 1000-1499 1500-1999 2000-2499 2500-3000 ≥3000 

F
re

q
u

e
n

c
y
 

Vehicle V2 Weight Category (kg)   

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

400

450

≤1999 2000-24992500-29993000-34993500-3999 ≥4000 

F
re

q
u

e
n

c
y
 

Vehicle V1 Wheelbase Category (mm)   

Severe crashes

Non severe crashes

0

50

100

150

200

250

300

350

400

450

500

≤1999 2000-2499 2500-2999 3000-3499 3500-3999 ≥4000 

F
re

q
u

e
n

c
y
 

Vehicle V2 Wheelbase Category (mm)   

Severe crashes
Non severe crashes



 

 
Chapter 4 

 

 

 

82 
 

4.2 Inference of Auto Brands in the Sample with the Portuguese 

Fleet 

The vehicle’s make individual analysis gives attention to the vehicle’s auto brand distribution in the 

sample and the severity index for the crashes involving that specific brand being analyzed. First, it 

compares auto brand severity index with the sample severity index. Second, it compares the auto 

brand severity index with the overall severity at national level. 

 

4.2.1 Vehicles brand severity ratio analysis in single and two-vehicle 

collisions and within the Portuguese fleet 

The single-vehicle crashes included 500 vehicles representing 35 auto brands. Using the crash 

outcomes in Table 4.2 the crash severity index was 7.4% (47/639). The national level, road safety 

data for the single-vehicle crashes involving light vehicles only and during the period 2006 to 2008 

showed the following injury distribution: 9,451 light injured, and 889 serious injured and killed, 

leading to an overall severity index of 8.6% (889/10341).  

Table 4.5 shows the auto brands with the highest frequency at the crash sample. The brands 

involved in the single-vehicle crashes with higher frequency were: Renault (15.8%), Opel (9.2%), 

and Fiat (8.8%). Crashes involving a Renault had resulted in an increment of almost 1% in the 

severity ratio when compared to the overall severity at the sample: BSR for Renault was 8.3%, 

whereas the overall severity index at the crash sample was and 7.4%. However, when comparing 

this vehicle brand severity ratio with the overall severity index, it was slightly lower, 8.3% and 8.6%, 

for Renaults’ BSR and Portuguese fleet, respectively. Based on the crash sample, Renault vehicles 

could be linked to lower lower protectiveness to its occupants since the severity index was 0.9% 

higher compared to the sample index. However, when Renaults’ BSR is compared with OSI, it was 

0.6% lower, thus suggesting that this brand provides better protection to its vehicle’s occupant’s 

than the average brand involved in the same crash type at national level.  

Table 4.5 – Vehicle’s brand severity ratio analysis across the crash sample for two-vehicle 

collisions and single-vehicle crashes  

 
Vehicle Analysis by Brands 
 

 
Frequency  

 
LI

1
 

 
SI

2
 

 
K

3
 

 
BSR

4
 

Two-vehicle collisions 

Renault 14.7% 218 8 3 4.8% 
Opel 10.8% 160 2 3 3.0% 
Volkswagen 7.3% 105 0 0 0% 

Single-vehicle crashes 

Renault 15.8% 99 6 3 8.3% 
Opel 9.2% 53 1 2 5.36% 
Fiat 8.8% 61 0 0 0% 
1
 Number of light injured at vehicle’s auto brand; 

2
 Number of serious injured at vehicle’s auto brand; 

3
 killed at vehicle’s auto 

brand; 
4
 brand severity ratio for the vehicle’s brand.  
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The two-vehicle collisions sample in this study included 1,748 vehicles representing 41 auto 

brands. The crash outcomes for those collisions by injury level were as follows: 1,375 light injured, 

and 41 serious injured and killed, leading to a crash severity index of 2.9%, (41/1416). On the other 

hand, the overall severity index for the two-vehicle collisions involving light vehicles in the 

Portuguese fleet was 4.8%.  

Table 4.5 shows the brands with the highest frequency for the two-vehicle collisions sample: 

Renault (14.7%), Opel (10.8%), and Volkswagen (7.3%). The two-vehicle collisions involving a 

Renault had resulted almost twice in the severity ratio for the overall crash sample, 4.8%, and 2.9% 

respectively. However this finding could not be used o drive a conclusion that the Renault brand 

showed a poor crashworthiness performance in general at the Portuguese roads. In fact, Renault’s 

BSR when compared with the OSI (for the same type of crashes) showed the same severity ratio, 

4.8%. 

 

4.2.2 Expanding brand severity ratio analysis within the Portuguese fleet 

Expanding the analysis of vehicles brand severity ratio with Portuguese overall severity index 

required an evaluation of those brands representativeness across the Portuguese fleet. For 

instance, if a brand has BSR higher than the OSI and their vehicles sales are low in the Portuguese 

fleet, it would suggest that probably the brands models would offer a poor crashworthiness. On the 

other hand, if a brand had a lower BSR than the OSI, and its vehicles sales are high in the nation; 

this brand could reflect good crashworthiness across the fleet. Based on the brands annual sales, 

each top brand identified earlier were normalized by the total number of light passenger vehicles 

and light duty vehicles registered at the annual calendar year, using data was provided by ACAP 

[134, 135].  

 
 
In the case of Renault, it was the most common brand in the sample, this vehicles’ brand were also 

the most exposure in the sample, hence increasing the risk of crash involvement. Therefore, it was 

also important to consider the share of Renault vehicles in the Portuguese fleet. This brand is in the 

top sales in Portugal, and, across the Portuguese fleet it would be expected more vehicles register 

under the Renault brand as in fact it is, as illustrated in Figure 4.3. BSR information does not 

support the statement about Renault vehicles crashworthiness because it is the most sale 

carmaker in Portugal; Renault vehicles have a higher probability to be involved in a crash because 

they are also more frequent at the fleet. In addition, the analysis presented in this study is limited to 

an analysis of average brand severity ratio, and different models of the same brand may perform 

differently.  
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Figure 4.3 – Vehicle brand sales by the total vehicle, within the period 2006 to 2010. 

 

However, it was interesting to notice that Volkswagen and Fiat vehicles, even though were found 

among the most popular brands in the Two and Single datasets, these brands crash involvement 

did not result in any severe consequences, since number of serious injured and/or killed was zero. 

The inference of these brands with the national fleet, also revealed that they are between the most 

representative in the vehicle fleet, in Figure 4.3. Despite of Volkswagen and Fiat high frequency in 

the fleet, its crash risk was smaller than for Renault. Based on the crash sample used in this study, 

the number of observations involving those vehicles was small to established further conclusions. 

Nevertheless, these differences in brand severity ratio among the most common brands are 

consistent with other study, which found Ford and Toyota as the most popular brands in Florida 

[143]. Even though the risk of exposure was the same for both brands, Ford showed better self-

protective ability than Toyota [143].   
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4.3 Concluding Remarks 

The results presented in this Chapter showed descriptive statistics of continuous design variables 

and vehicles characteristics, for the vehicles involved in two-vehicle collisions and single-vehicle 

crashes. The average weight and size of vehicles involved in the two-vehicle collisions was slightly 

larger than the average for the vehicles involved in single-vehicle crash. Regarding to crash 

outcomes, the overall crash severity was 5.1%, with high disproportion between non-severe 

crashes and few observations of severe crashes. Thus the crash sample qualifies for imbalanced 

data.  

In this chapter, the most remarkable finding was related to the crash sample severity (either a 

serious injured and/or killed) distribution for the single-vehicle crashes and two-vehicle collisions: 

7.6% and 3.7%, respectively. These findings are consistent with previous work which had stated 

that in crashes involving one car, the vehicle crashworthiness may be offset by the driver behavior 

that could be speeding, and thus increasing the risk of serious crash outcomes [49, 61, 99]. In 

addition, inference of sample severity index with the Portuguese overall severity index (serious 

injured and killed by the total number of injuries and killed) shows consistent values. At national 

level, for crashes involving one vehicle, the severity index was 7.4% and 8.6%, for the single-

vehicle crash sample and population, respectively. For the crashes involving two vehicles, the 

severity index was 2.9% and 4.8%, for the two-vehicle collisions sample and population, 

respectively.   

Regarding vehicles brand analysis, the most frequent brands were: Renault, Opel, Volkswagen and 

Fiat, with Renault showing the highest severity ratio. On the other hand, Volkswagen and Fiat, 

although among the most frequent brands, did not show any involvement in severe crashes. 

However, the inference of this brand with the Portuguese fleet showed that Renault’s severity ratio 

was similar to the National overall severity index. For single-vehicle crashes, the brand severity 

ratio was 8.3% and the national crash severity ratio was 8.6. Furthermore, Renault brand has been 

in the top sales during the time period covered in this analysis, thus increasing the risk of exposure. 

It must be pointed out that severity risk reported in this vehicles’ brand severity ratio analysis does 

not account for the total number of occupants in the vehicle, neither for the differences in annual 

kilometers driven, nor driver age or gender. In conclusion, the brands severity ratio inference 

analysis must be approached with care and always attending to the brands representativeness 

within the national fleet.  
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CHAPTER 5  

DECISION CLASSIFICATION TREES ANALYSIS 

FOR CRASH SEVERITY PREDICTION 

 

 

 

 

 

 

 

 

One benefit of decision tree compared to other modeling techniques is that these models provide 

decisions by making the answer “if-then” questions efficiently [104]. Researcher and traffic 

engineering can easily predict the injury likelihood of an accident simply by determining the value of 

splitters and tracing a path down the tree to a terminal node. The trees not only give the variables 

of importance, but also help to better interpret the results. The targets being predicted by CART 

models were: FatalSIK, FatalSIKV1 and FatalSIKV2, all of them having a categorical measurement 

level, “1” or “0” and therefore, the type of the prediction is a decision: severe or non-severe crash.  

This Chapter is organized as follows. First, CART models are presented for all crashes, two-vehicle 

collisions and single-vehicle crashes, based on the original sample. Second, following a resampling 

procedure, CART models are presented for all crashes, two-vehicle collisions and single-vehicle 

based on balanced datasets. Third, CART models targeting individual vehicle injury severity 

classification are shown for the original sample distribution of two-vehicle collisions. Remarkable 

findings of crash severity analysis with CART methodology are also highlighted.  
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5.1 CART Analysis for FatalSIK with the Original Crash Sample- 

Imbalanced Datasets 

In the beginning of this section, the decision tree is presented in a way that it will help to interpret 

the following trees in this Chapter. The trees’ grow reflects a hierarchical group of relationships. 

Each branch is split further using the classes or categories of the other predictor variables. This 

process, known as recursive partitioning, continues until a stopping rule is satisfied, such as the 

minimum number of cases in the terminal leaf (5 counts). It must be noted that the root node split 

for each tree structure shows a branch that is highlighted bold, which shows the split with the larger 

number of cases. One of the two connecting lines showing the predictor split also displays the term 

“missing” for one of the categories. However it must be clear that this term appears by default at 

the CART diagrams. Fortunately in this study, there was no missing data, since all the predictor 

variable values were available for all the observations in the crash database. Also, the leaves’ 

Node ID do not show an organized order. However, Node ID do reflect a decreasing order from the 

root node (which is always identified as Node ID:1). Each leaf/node contains information about the 

number of cases in the particular leaf, denoted by “count” term in the node. CART methodology 

was applied using SAS®v9.2 and SAS®Enterprise Miner™7.1 (EM7.1) software. 

 

Following, the decision trees are discussed as prediction models for the crash severity target with 

interest for each dataset: All, Two and Single (as defined in section 3.3.). Figure 5.1 to Figure 5.8 

show the decision trees models for the binary classification for crash severity.  

In this section, section 5.1, CART results are discussed for the original sample distribution, which 

means that the proportion of the severe crashes (FatalSIK”1”) vs. the non-severe crashes 

(FatalSIK”0”) was kept the same as the original sample.  

 

. 
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Figure 5.1 – Classification tree model for FatalSIK with all crashes using the original imbalanced sample.
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5.1.1 CART for FatalSIK with all crashes- Imbalanced dataset 

The original distribution of severe crashes in the crash sample was as follows: 5.1% of severe 

cases (corresponding to target FatalSIK“1”) and 94.9% of non-severe cases (corresponding to 

target FatalSIK”0”). Figure 5.1 shows the output of the CART prediction for FatalSIK using all 

crashes, including single-vehicle crashes and two-vehicle collisions. Twenty three independent 

variables (predictors) and one dependent variable (target) were defined for CART modeling, and 

these variables used as inputs and the target being modeled were identified in Table 3.5, Chapter 

3.  

The first selected variable for the decision tree split was alcohol and/or drugs, with the category for 

illegal drivers (alcohol or drugs use) associated with higher percentage of severe crashes, 27.3% of 

FatalSIK”1”. This node, node ID 16, was split by the differential of wheelbase between the vehicles 

involved in the collision, WBV2V1. As previously mentioned, crashes involving illegal driving 

(AlcoholDrugs “1”), and involving vehicles in the category WBV2V1 < -112.5 mm, were associated 

to the highest percentage (40%) of FatalSIK “1”. [87, 92, 93]. This decision tree model shows that 

alcohol and or drugs use plays a major role in increasing severity risk of crashes, despite of vehicle 

crashworthiness or collision type, and is in agreement previous research [92].  

 

On the right branch of the tree, the category of crashes involving legal drivers (no alcohol or drugs 

use) was split by the weight of vehicle V2, WTV2. Then, crashes for legal drivers, with heavier 

vehicle V2 category, WTV2≥1751 kg, and involving a lower age differential (AgeV2V1<1.5 yr) 

showed the highest count (36) of crashes involving severe injuries or killed, node ID 26. This node 

showed 6.7% of severe crashes, which was higher than the overall rate at the crash sample, 5.1%. 

However, for the category AgeV2V1≥1.5yr the percentage of FatalSIK”1” was higher, 31.8%. The 

category of crashes involving a lighter vehicle V2, WTV2<1751kg, crash type other than sideswipe, 

were split by the age of vehicle V2. The category of newer vehicles V2, AgeV2<1.5yr presented 

higher percentage of FatalSIK”1”, node ID 24. A lower percentage of severity for cases involving 

newer vehicles models would be expected, but it must be noticed that the severe injured and killed 

were more frequent among occupants of vehicle V1; SIK distribution was as follows: 79.5% (70/88) 

and 20.5% (13/88), vehicle V1 and V2 respectively. Mendez et al. claimed that newer vehicle 

models have increased “agressivity”. Thus, it is possible that newer vehicle V2 models imposed 

more risk for occupants of V1. Whereas in two-vehicle collisions involving older V2 models, the 

impact on the compartment area of V1 could be less intrusive, leading to lower risk of severe 

injured. Thus, the risk imposed by newer vs. older V2 models could be a possible explanation for 

the differential concentration of severe crashes at the terminal nodes: node ID 24, and node ID 25, 

7.7% and 5.5, respectively.  

To assess the classification decision tree model for FatalSIK with all crashes, the Fisher’s exact 

test was conducted once some categories had less than five counts (node ID 19 showed zero 
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cases of target level “1” as observed in Figure 5.1). The p-value<1.267E
-12

 denotes the significance 

level at which the terminal nodes affect the binary target being predicted, crash severity expressed 

by FatalSIK.  

In addition to the graphical display, CART technique also provides information on the variable 

importance for all the variables in the decision tree model. The variables importance score 

indicates whether the presence or absence of a variable in the model (decision tree) will improve or 

degrade the efficiency of the model. For the FatalSIK decision tree model with all the crashes from 

the original sample, the variables relative importance score is as follows: AgeV1V2 (1), 

AlcoholDrugs (0.91), WTV2 (0.78), WBV2V1 (0.76), Sideswipe (0.49) and finally, AgeV2 (0.42). 

The most scored effects were the age difference between the two vehicles involved (AgeV1V2) and 

the effect of alcohol and/or drugs. The effect of AgeV1V2 can be explained when the vehicles 

involved in the collision differ by model year, it means that the vehicles structure may be different, 

and the safety equipment will also differ as well. It would be expected that newer vehicles models 

would be equipped with better safety equipment’s, hence providing a better protection to its 

occupants. These findings are coherent with Das, whose work found the use of alcohol and/or 

drugs use as the most important variable [87].  

 

5.1.2 CART for FatalSIK with two-vehicle collisions- Imbalanced dataset 

Figure 5.2 shows CART output for FatalSIK prediction using two-vehicle collisions. The original 

distribution of the Two dataset was as follows: 3.7% of severe cases (FatalSIK“1”) and 96.3% of 

non-severe cases (FatalSIK”0”). Twenty independent variables (predictors) and one dependent 

variable (FatalSIK) were defined for CART modeling. These variables used as inputs and the target 

being modeled are identified in Table 3.5, Chapter 3.  

 



 

 
Chapter 5 

 

 

 

92 
 

 

Figure 5.2 - Classification tree model for FatalSIK with two-vehicle crashes using the original imbalanced sample.
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Figure 5.2 shows that the effect of alcohol and/or drugs was the first explanatory variable selected 

by CART methodology to split the 874 two-vehicle collisions. As shown in Figure 5.1, alcohol 

and/or drugs was also selected for the split of the original dataset containing all the crashes.  

Crashes in which drivers were sober and involving a heavier category of vehicle V2, WTV2≥ 1751 

kg, combined with the category of higher age differential, AgeV2V1≥1.5 yr, had a high 

concentration of severe crashes, 31.8% of FatalSIK”1”. For the category AgevV2V1< 1.5 yr, severe 

cases were much less frequent, 2%. This finding suggests that the collision that involves vehicles 

of different ages, vehicles’ crashworthiness and “agressitivy” performance also will be different. 

Newer vehicles models are better equipped with safety features, offering better protection to its 

occupants, but on the other hand, they may also imposed a higher risk for the towards the 

occupants of the other vehicle involved. This finding is consistent with [49, 61] that found increasing 

risk imposed by newer models. For collisions involving a lighter category of vehicle V2, WTV2< 

1751 kg, the percent of severe crashes was lower (2.7%) than when V2 belonged to a heavier 

category (11.1%), as observed at nodes ID 7 and 8, respectively. This fining is consistent with 

previous research that found for collisions involving two cars of different masses, the fatality risk 

ratio of the heavier to the lighter car increases as a power function of mass ratio [53, 64]. Following, 

the node ID 7 was split by sideswipe crash type. The sideswipe collisions resulted in a higher 

concentration of severe crashes than a non-sideswipe collision, 8.6% and 2%, in nodes ID 9 and 

10, respectively. This finding is consistent with other research, that found sideswipe impacts as the 

most serious crashes and substantially more likely to result in serious injury [43, 48, 144]. For the 

non-sideswipe crashes, the tree split by the age of vehicle V2, leading to a higher concentration of 

severe crashes (7.7%) when AgeV2< 1.5 yr, compared to 1.4% of severe collisions when category 

AgeV2≥1.5 yr was involved. This finding is consistent with Bédard et al. results that indicated an 

increased risk of fatalities [91]. Others, claimed that recent models are safer [57]. Newer vehicle 

models definably they offer better protection to its occupants, and when the other vehicle involved 

is an older model, probably its occupants face a greater risk. Thus, caution must be present in the 

interpretation of this finding because discrepancies between previous studies are likely explained 

by adopted methodology, variables use and samples.  

Turning to the right side of the tree, for the collisions involving driving under the influence of alcohol 

and/or drugs, and a vehicle V1 newer than 7.5 yr, the risk of severe crash outcome was the 

highest, 60% for FatalSIK“1”. On the other hand, collisions involving vehicle V1 with more than 7 yr 

only showed non-severe crashes, 100% for FatalSIK”0”, node ID 6. As previously explained for the 

effect of AgeV2, this finding could seems counterintuitive since it would be expected that in general 

newer vehicles models show better safety performance than older models. One possible 

explanation would be that younger drivers usually underestimate the risk associated with alcohol 

and/or drugs use and driving faster. Kockelman and Kweon have stated that “young drivers 

involved in single-vehicle crashes are driving much more recklessly than middle-age drivers, 

leading to sufficiently more severe crashes that benefits of youth are outweighed by crash severity” 
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[92]. If this statement would be proven, it could be extended to two-vehicle collisions because 

younger driver keeps in a centrally way the same driving profile. Also, Kuhnert et al. classification 

tree model have identified drivers younger than 27 yr as the age group associated with higher 

concentration of severe crashes.  

Since some of the categories had less than five counts, Fisher’s exact test was performed for the 

eight terminal leafs showing a p-value <6.516E
-10

. At the 5% significance level, the target FatalSIK 

and the above categories related to the tree terminal leafs cannot be considered independent. 

For the classification tree model for FatalSIK with two vehicle-collisions with the original 

imbalanced dataset, the variables that have a major importance in predicting this target are as 

follows: AgeV2V1 (1), AgeV1 (0.87), AlcoholDrugs (0.64), WTV2 (0.59), Sideswipe (0.48), AgeV2 

(0.41) and last, ccV2 (0.36). Similarly to the classification tree model for FatalSIK with all crashes, 

vehicles age differential, AgeV2V1, was the most important variable for the model. These results 

are consistent with Kockelman and Kweon that found vehicle´s age significant to predict crash 

severity for two-vehicle collisions [92]. As mentioned in the previous subsection, alcohol and drugs 

use have been identified as important factors related to increasing severity by several authors [87, 

92, 137, 144]. Also, vehicles weight it is known as significant factor not only to address risk to 

occupants of vehicle, but also it affects the risk to the occupants of the opponent vehicle [53, 59, 

64, 87].   

 

5.1.3 CART for FatalSIK with single-vehicle crashes- Imbalanced dataset 

This CART model to predict the target FatalSIK for single-vehicle crashes is discussed in this 

section. The original distribution of the Single dataset was as follows: 7.6% of severe cases 

(FatalSIK“1”) and 92.4% of non-severe cases (FatalSIK”0”). CART output for this model is 

presented in Figure 5.3. Ten independent variables (predictors) and one dependent variable 

(target) were defined for CART modeling, and these variables used as inputs and target are 

identified in Table 3.5, Chapter 3.  
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Figure 5.3 – Classification tree model for FatalSIK within single-vehicle crashes using an 

imbalanced sample. 

 

Similar to what was found for the previous CART modes presented in sections 5.1.1 and 5.1.2, the 

initial split of node ID 1 was based on the alcohol and/or drugs use, and consistent with previous 

work [87, 137]. Subsequently, crashes involving illegal drivers, resulted in the highest percentage 

for severe crashes, 30% for FatalSIK”1”, in node ID 3. These three severe crashes have already 

been analyzed in Figure 5.3. CART output for FatalSIK with single-vehicle crashes revealed that 

the presence of alcohol and/or drugs itself was linked to a higher crash severity, despite of vehicle 

characteristics. However only three severe cases were observed in node ID 3, hence caution must 

be presented in the previous statement. Whereas for the crashes where the effect of alcohol and/or 

drugs was not involved, the percentage of severe cases was lower, 7.1% in node ID 4. 

Subsequently, this node was split by the weather code, and the trees branch taking the value of 1 

(meaning “bad” weather conditions) lead to a terminal node with lower percentage of severe 
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crashes (4%) compared to the good weather conditions (8.9%), nodes ID 6 and 5, respectively. 

This could seem counterintuitive since under bad weather conditions (due to rain, smog, and ice) 

crashes frequency is expected to increase because vehicles require longer distances to break. 

However, the higher proportion of severe crashes for good weather conditions is consistent with 

previous classification models [87, 104]. “Drivers could be less attentive when driving in good 

weather and road conditions” [87]. Then, node ID 5 was split by the age effect of the vehicle, 

predominantly recent models (AgeV1<5.5 yr) and older models (AgeV1≥5.5 yr.). It is interesting to 

notice that sober drivers, under good weather conditions and driving an older vehicle, (with 5.5 yr 

or more), showed the highest number of severe crashes (23 counts), node ID 8. On the other hand, 

keep the same conditions constant (no alcohol and/or drugs and good weather), when driving a 

vehicle model newer than 5.5 yr, the number of crashes resulted in severe consequences was 

smaller, 5 cases, terminal node ID7.  

To test the association between the four terminal categories of the tree model discussed above and 

the target FatalSIK, Fisher’s exact test was used showing p-value<0.002. Thus, the null hypothesis 

is rejected and FatalSIK and its association with the presented categories of the tree terminal leafs 

cannot be considered independent.  

Regarding to the variables importance for the classification tree model for severity prediction in 

single-vehicle crashes with the original dataset, the variables that have a major importance in 

predicting this target FatalSIK are as follows: AlcoholDrugs (1), AgeV1 (0.85) and WeatherCode 

(0.72). These findings are consistent with other researchers. The importance of alcohol and/or 

drugs in increasing severity is consistent with other studies [87, 92, 137, 144]. On the other hand, 

the importance of vehicle´s age and weather conditions has been also indicated by other research 

[57, 87]. 

 

5.2 CART Analysis for the FatalSIK with Resampling Approach 

This section presents the CART analysis results for crash severity prediction using a balancing 

approach, leading to equal distribution between target levels. The resampling approach was 

applied to CART modeling more as an academic interest. Each crash dataset (All, Two and 

Single), had been balanced in order to include equal proportion of severe crashes and non-severe 

crashes. As previously explained in Chapter 3, the bias introduced by the resampling approach 

was correct by adjusting the prior probabilities within the crash subsets. As is going to be noticed in 

the graphical representation through the decision trees discussed in this section, the initial root 

node will reflect the original crash sample distribution, where the severe crashes were found at 

much lower proportion than the severe crashes. The predictor variables used in these models are 

the same used when modeling FatalSIK with the original crash sample, and those inputs are 

identified in Table 3.5, Chapter 3.  
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5.2.1 CART for FatalSIK with all crashes- Balanced dataset 

The classification tree model for crash severity for all crashes presented in this section is presented 

in Figure 5.4. During the modeling phase, a resampling procedure was applied to the original crash 

sample, leading to a balanced dataset with equal proportion of target level “1” (70 counts for severe 

crashes) and target level “0” (70 counts for severe crashes), resulting in a total of 140 observations, 

as observed in the root node of the tree, node ID 1. As mentioned above, the decisions predicted 

with this tree model were corrected for the original sample distribution. Thus, seven counts in the 

root node, denoted the original 5.1% of severe cases (FatalSIK “1”) in the original crash sample, 

and the remaining 133 represented the original 94.9% for non-severe cases (FatalSIK”0”).  

 

 

Figure 5.4 – Classification tree model for FatalSIK with all crashes for balanced sample. 

 

CART output displayed in Figure 5.4 shows that the weight of vehicle V2 (WTV2) was the first 

variable used to split the observations at the root node. Collisions involving heavier vehicles for V2, 

WTV2≥1743.5 Kg, were associated with a higher percentage (9.3%) of severe crashes, node ID 4. 

On the other hand, crashes involving collisions with a vehicle V2 which follows into the lighter 

category, WTV2<1743.5 Kg, show a lower percentage of severe crash, 2.7%, node ID 3. This 

finding is consistent with previous research that indicates increasing risk of severity when the 



 

 
Chapter 5 

 

 

 

98 
 

weight of opponent vehicle increases [53, 56]. In addition, the category presented by node ID 4, 

can denote the effect of incompatibility between vehicles. The higher severity found for collision 

involving opponent vehicles having a weight ≥ 1743.5 kg can represent a collision involving a 

passenger car with a pick-up truck, thus higher severity may be expected for car occupants. This 

finding is consistent with Fredette at al. research that stated “drivers colliding a pickup truck rather 

than a car are 2.72 times more likely to die” [48]. Node ID 3 was further split by vehicle crash type, 

leading to sideswipe collisions to a higher percentage of severe crashes (11.1%) and non-

sideswipe collisions with smaller percentage of severe crashes (2.1%), nodes ID 16 and 15, 

respectively. As previously mentioned for the tree model discussed in section 5.1.1, sideswipe 

collisions are known to increase the risk of severity. However, only one severe case is observed at 

each terminal node, nodes ID 15 and ID 16, and caution is needed in the interpretation of results 

relaying in few observations. The strength of association between the predicted target FatalSIK and 

the categories denoted by three terminal nodes was evaluated by Chi-sq test. Since two cells had 

expected counts less than 5, (1 observation for target level”1” in nodes ID 3 and ID 4), Fisher’s 

exact test was selected. Fisher’s exact p-value< 0.0164 and it implies that the FatalSIK cannot be 

considered independent from the weight of vehicle V2 and the collision type. The classification tree 

model indicates that the weight of vehicle V2 (WTV2) and crash type, were selected to classify a 

crash as severe FatalSIK”1”, or non-severe, FatalSIK “0”.   

CART information for variable importance for the predictors included in decision tree model with a 

balanced dataset was as follows: WTV2 (1) and Sideswipe (0.66). As already explained, these 

predictors were also found important for modeling crash severity by other studies [48, 144].  

 

5.2.2 CART for FatalSIK with two-vehicle collisions- Balanced dataset 

The predictive decision tree model for two-vehicle collisions using a balanced dataset is presented 

in Figure 5.5. The resampling procedure lead to a balanced dataset with 0.5 ratio between the 

target level “1” (32 counts for severe crashes) and target being level “0” (32 counts for non-severe 

crashes), resulting in a total of 64 observations. To correct the bias from the over-representation of 

the target level “1”, prior probabilities were adjusted for the original dataset distribution, as 

observed in the root node o Figure 5.5. Thus, 2 counts represent the 3.7% of FatalSIK “1”, and 62 

counts denoted the 96.3% of FatalSIK”0” for the original dataset distribution.  
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Figure 5.5 – Classification Tree for FatalSIK for two-vehicle crashes with a balanced sample. 

 

The above classification tree shows that when the collision involved a lighter V1, WTV1<1000.5kg, 

98.9% of the crashes were estimated non severe, node ID 21. On the other hand, collisions 

involving heavier vehicles V1, WTV1≥1000.5kg, were associated with a higher percentage of 

severe crashes (5.6%), node ID 22. Then, this node containing more severe crashes was split by 

speed level, showing that higher speeds (left branch with number 1”) are associated with a higher 

proportion of severe crashes, leading to 8.6% for FatalSIK “1”. On the other hand, collisions 

registered at roads with lower speed limits (right branch with number “0”) showed a lower 

proportion of severe crashes, 2.5% for FatalSIK”0”. These results are consistent with previous 

research that had identified the dominant effect of weight in increasing crash risk when a collision 

involves two cars of different weights [43, 53, 63, 64, 87]. Regarding to speed effects, the result is 

consistent with other research that had identified speeding as increasing risk of injury level [42, 43, 

91, 93, 98]. This classification tree model has predicted the highest probability of 8.6% for severe 

crashes resulting from collisions involving heavier vehicle class and driving at higher speed level. 

Tracing the path down the tree to this terminal node, it can be noticed that the graphical 

representation of this model supports the Newtonian mechanism explored by Evans to evaluate 

injury risk based on mass ratio and changes in the velocity for the two vehicle involved [53, 145]. 

For this classification model, the strength of association between crash severity and the categories 

illustrated by the terminal nodes is proven by Fisher’s exact test. The p-value< 1.7E
-12

 indicates 
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that the FatalSIK cannot be considered independent from the weight of the vehicles involved in the 

crash neither from the speed level.  

CART output for variable importance for the classification model discussed above was as follows: 

WTV1 (1) and Speed Level (0.71). As already explained, these predictors were also found 

important for modeling crash severity by other studies mentioned earlier [42, 43, 53, 64, 91, 93, 98, 

145].   

 

5.2.3 CART for FatalSIK with single-vehicle crashes- Balanced dataset 

The predictive decision tree model for single-vehicle crashes using a balanced dataset is presented 

in Figure 5.6. The resampling procedure was applied to obtain a balanced dataset with equal 

proportion of target level “1” (38 counts for severe crashes) and target being level “0” (38 counts for 

non-severe crashes). Hence a total of 76 observations were used as training sample for the 

decision tree development. To correct the bias from the over-representation of target level “1” 

(FatalSIK “1”), prior probabilities were adjusted for the original dataset distribution, as observed in 

the root node of Figure 5.6. Thus, 6 counts represent the 7.6% of FatalSIK “1”, and 70 counts 

denoted the 92.4% of FatalSIK”0” for the original dataset distribution.  
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Figure 5.6 – Classification tree model for FatalSIK for single-vehicle crashes with a balanced 

sample. 

 

The initial split at node ID 1 is based on the variable of weather conditions: crashes that happen 

under rain and/or bad weather conditions (variable taking up the value “1” at the right tree branch) 

showed a lower (4.2%) proportion of severe cases, node ID 4. On the other hand, crashes 

occurring under good weather conditions (variable taking up the value “0” at the left tree branch) 

showed a higher proportion of severe cases (9.3%), node ID 3. This node was split by vehicle´s 

engine size. Crashes involving lower vehicles engine size, ccV1<1588 cm
3
, showed a lower crash 

severity, 4.8%. On the other hand, when vehicle with larger engine was involved, ccV1≥1588 cm
3
, 

displayed a higher proportion of severe crashes, 27%, node ID 6. Following, node ID 5 in the left 

breach was split by vehicle’s weight into two terminal nodes. Crashes involving heavier vehicles, 

WTV1≥845 kg, were linked to smaller proportions of severe injuries (3%) than crashes involving 

lighter vehicles, WTV1< 845 kg, which was associated with 100% proportion of severe crashes 

based on the balanced dataset for single vehicle-crashes. Following down the path from node ID 6 

(in the right), wheelbase of vehicle was used to split, leading two additional terminal categories as 

follows. Crashes including vehicles with larger wheelbase, WB≥ 2701.5 mm, revealed lower 

proportion of severe injuries, 5.8% (node ID 10). While crashes involving vehicles in the smaller 
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category of wheelbase, WB< 2701.5 mm, were predicted to result in severe injuries, 100%, node 

ID 9.  

Fisher’s exact test revealed a p-value 6.15E
-18

, showing that the FatalSIK cannot be consider 

independent from those four terminal categories. Comparison of this decision tree model with 

earlier studies, shows that good weather conditions have been linked to a higher incidence of 

severe crashes, as previously mentioned [87, 92, 144]. A possible explanation is that sunny days 

may result in higher speeds and more driver confidence [87]. For crashes involving lighter vehicles 

(WTV1< 845 kg) the probability of a severe crash was significantly higher than for the heavier 

vehicles. This finding supports the argument that any crash involving a vehicle with low mass will 

mostly be severe [53, 64, 145]. Very important to notice that, though vehicles with larger engines 

(ccV1≥1588 cm
3
) suggests a higher probability of involvement in severe crashes, if those vehicles 

follow into the category of larger wheelbase distances (WBV1≥2701.5 mm), the injury risk could be 

reduced. This finding is consistent with Bédard et al. that suggested “25 cm increase in wheelbase 

translates into 10% reduction in the odds of a fatality” [91]. This model supports the protective 

value of larger vehicles independent of their drivers.  

 

CART information for variables importance was as follows: ccV1 (1), WTV1 (0.93), WBV1 (0.78), 

and Weather (0.49). For the classification model discussed in this section, it is interesting to notice 

that vehicle technical characteristics were found significantly more important for FatalSIK prediction 

rather than crash information, denoted by the selection of only one variable ( weather conditions) 

and its importance is less relevant than the variables linked to vehicles’ technical data.  

 

5.3 CART for FatalSIKV1 and FatalSIKV2 for Two-Vehicle Collisions- Original 

Sample 

This section presents CART results for the innovative modeling strategy targeting the severity risk 

prediction for the occupants of each individual vehicle, in a two-vehicle collision. The original crash 

sample included a limit number of severe cases for FatalSIKV1 (21 observations) and FatalSIKV2 

(14 observations). Therefore, the resampling strategy, as followed in section 5.2 for FatalSIK 

prediction, was not applied for FatalSIKV1 and FatalSIK2 modeling, since it would produce small 

balanced datasets: 42 and 28 observations, respectively. For these targets modeling, the original 

sample for two-vehicle collisions was used and results are presented next. For both models, the 

inputs were the same (20 independent variables), those variables, and targets are identified in 

Table 3.5, Chapter 3. 
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5.3.1 CART for FatalSIKV1 in two-vehicle collisions- Imbalanced dataset 

This section presents CART results for crash severity prediction in the subject vehicle, (vehicle V1), 

by addressing the effect that the characteristics of opponent vehicle V2 might impose to the 

occupants of V1, and by taking into account the subject vehicle capability to protect its occupants 

(crashworthiness). The probability of serious injuries and/or fatalities within the occupants of 

vehicle V1 is expressed by FatalSIKV1. Classification tree model for FatalSIKV1 is shown in Figure 

5.7. 

 

Figure 5.7 – Classification tree model for FatalSIKV1 in two-vehicle collisions with the original 

sample. 
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The engine size of vehicle V2, ccV2, was the first explanatory variable selected to split the original 

sample of 874 crashes. Collisions involving vehicle V2 with smaller engine size, ccV2< 2789.5 cm
3
, 

showed a lower proportion of severity for occupants of vehicle V1 (1.8%), than when V2 had a 

larger engine size, ccV2≥ 2789.5 cm
3 

(16.2%). Following, the type of crash and then by the 

presence of drivers tested for alcohol and/or drugs were used for the tree split. The terminal nodes 

at the left side of the tree clearly show that collisions involving a sideswipe collision or a head on 

have higher risk of severity for occupants of vehicle V1, 5.7% and 6%, in nodes ID 16 and 18, 

respectively. This finding is consistent with previous work that had identified these crash types as 

the most severe [43, 48, 61, 144]. Also, the effect of alcohol and/or drugs use is consistent with a 

large number of studies [87, 92, 99]. 

Following the right branch of the above tree, collisions where engines size of V2≥ 2789.5 cm
3 

 and 

AgeV2V1< 1.5 yr resulted in non-severe crashes (100% for FatalSIK”0” as observed in node ID 

14). On the other hand, collisions involving AgeV2V1≥1.5 yr, were linked to the highest proportion 

of a severe outcome in the subject vehicle was the highest, 40% (in node ID 15). This analysis 

suggests that the characteristics of the opponent vehicle (vehicle V2) have an effect on the 

increased risk of serious and/or killed injuries in the subject vehicle V1. The association between 

the above categories and severe outcomes in vehicle V1 is confirmed by Fisher’s exact test, which 

p-value <1.96E
-09

 suggested that the FatalSIKV1 and the above selected categories cannot be 

considered independent at the 5% significance level. 

In addition to the graphical display for the classification tree model for FatalSIKV1, CART also 

provides helpful information on the variables importance. For this model, variables importance was 

as follows: AgeV2V1 (1), ccV2 (0.72), HeadOn (0.33), Sideswipe (0.32) and AlcoholDrugs (0.26). 

Very interesting to notice that when predicting the probability of a severity for occupants of vehicle 

V1 involved in a collision with the counterpart vehicle V2, vehicles’ characteristics play a more 

important role than variables relaying in crash type and presence of alcohol and/or drugs.  

 

5.3.2 CART for FatalSIKV2 in two-vehicle collisions- Imbalanced dataset 

This section presents CART results for crash severity prediction in the opponent vehicle, (vehicle 

V2), by addressing the effect that the characteristics of subject vehicle V1 might impose to the 

occupants of vehicle V2, and taking into V2 capability to protect its occupants. The probability of 

serious injuries and/or fatalities within the occupants of vehicle V2 is expressed by FatalSIKV2. 

Classification tree model for FatalSIKV2 is shown in Figure 5.8. 
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Figure 5.8 – Classification tree model for FatalSIKV2 in two-vehicle collisions with the original 

imbalanced sample. 

 

The differential of wheelbase distance between the two vehicles, WBV2V1, was the first variable 

selected to split the crash. For collisions where the wheelbase of vehicle V2 was 1523 mm shorter 

than the wheelbase of the other vehicle involved, WBV2V1< -1523 mm, had resulted in higher 

proportion of severity for occupants of vehicle V2, 20% (in node ID 3). On the other hand, for 

collisions involving vehicles were WBV2V1≥ -1523 mm, the proportion of severe cases among 

vehicle V2 was smaller, 1.5% (node ID 4). Subsequently, the variable alcohol and/or drugs splits 

this node, and collisions involving this effect lead to a higher proportion of severity in vehicle V2, 

8.3% (in node ID 5). For collisions where WBV2V1≥ -1523mm and involving sober drivers, the 
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proportion of severe cases in vehicle V2 was smaller, 1.4% (node ID 6). Following, this node was 

split by the engine size of vehicle V2, leading to two terminal nodes. Collisions where vehicle V2 

follows in the category ccV2< 996 cm
3
, were associated with higher proportion of severe cases 

than for vehicles in the category ccV2≥ 996 cm
3
, (10% and 1.2%, respectively). Vehicles with larger 

engine size often are heavier; hence it would be possible to offer a better protection to its 

occupants. Even though the vehicles weight was not select for the tree development, it is possible 

that effect of vehicle´s weight could be in a certain way reflected in vehicle´s engine size 

categories. The results presented by this model are consistent with previous research that had 

associated vehicle crashworthiness with its size and mass [53, 60, 87, 145]. In the interpretation of 

this model, it must be aware that the training sample only had 14 cases for the target level with 

interest, FatalSIKV2”1”. However, Fisher’s exact test showed a p-value <0.0016, denoting that 

FatalSIKV2 and the differential of wheelbase, engine size and presence of alcohol and/or drugs 

cannot be considered independent, at the 0.05 significance.  

As far as variables importance for the above model, it follows as: WBV2V1 (1), ccV2 (0.94), and 

AlcoholDrugs (0.57). Similarly to the previous model, for crash severity prediction, vehicle’s 

characteristics for both involved in the collision were found more important predictors than 

variables relaying in crash information.    

 

5.3.3 Comparison of FatalSIKV1 and FatalSIKV2 decision tree models 

For both decision trees models For FatalSIKV1 and FatalSIKV2 (sections 5.3.1 and 5.3.2) vehicles’ 

characteristics suggest to be more relevant for the injury severity prediction than variables related 

to crash information. It is noticed than for both models, vehicles differential for “specific” technical 

characteristic was found the most important predictor, denoting that it is important not only to 

consider vehicle’s individual characteristics but also, its differential between the vehicle involved in 

the collision. The engine size of vehicle V2 was important for both targets prediction: severity 

among occupants of vehicle V1 and V2. A possible explanation why ccV2 was selected for both 

classification tree models could be related to the fact that mean values for engine size of vehicle V2 

was larger than for vehicle V1, 1700.94 cm
3
 (S.D. 522.18) and 1665.96 cm

3
 (S.D. 509.98), 

respectively. In addition, it is conceivable that this variable contains the effect of vehicle weight; as 

a matter of fact, descriptive statistics seems to support this statement because the weight of 

vehicle V2 was also slight larger than the weight of vehicle V1, 1262.85 kg (S.D. 364.46) and 

1234.20 kg (S.D. 356.82), respectively. In two-vehicle collisions, vehicle V2 due to its larger size 

and weight would raise the risk for occupants of the opponent vehicle, therefore larger vehicles 

categories of ccV2 would increase the severity risk for occupants of vehicle V1, as it was 

suggested with highest proportion for FatalSIKV1”1” (in node ID 15 inFigure 5.7). On the other 

hand, vehicle V2 would probably offer a larger compartment area to absorb the impact of the 

collisions, and they would decelerate more slowly following the impact, decreasing the risk of 
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injuries. Accordingly, collisions involving larger categories for ccV2 would decrease the severity risk 

for occupants of vehicle V2, (as observed in node ID 8 in Figure 5.8). For both models, the effect of 

alcohol and/or drugs use was linked to a higher proportion for severe cases. Information on crash 

type, even though those predictors were scored as important inputs for FatalSIKV1 prediction, they 

were irrelevant for FatalSIKV2 predication. An acceptable explanation for this difference is due to 

the fact that only 14 severe events cover target FatalSIKV2, while there were 21 severe events for 

target FatalSIKV2 modeling. Last, variables importance within the classification tree models for 

FatalSIKV1 and FatalSIKV2 prediction suggest that vehicles’ characteristics play a more relevant 

role comparatively to other crash information.    
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5.4 Concluding Remarks 

This Chapter presented CART results for crash severity prediction using two approaches: original 

imbalanced sample and balanced datasets. For the imbalanced approach (based on the original 

sample), the presence of alcohol and/or drugs was a common risk factor identified across all the 

classification decision tree models. These models showed evidence that alcohol and/or drug use 

play a major role in increasing crash severity risk, despite of vehicle crashworthiness and/or 

collision type. For single-vehicle crashes, this variable was found the most important for crash 

severity prediction, suggesting that crashes outcomes could be more influenced by drivers’ 

behavior than vehicles’ characteristics. For the balanced approach (following a resampling 

strategy), CART output revealed that the input alcohol and/or drugs was not present in any of the 

classification tree models. Severity prediction decision tree for two-vehicle collisions identified the 

effect of vehicle’s weight as the most important predictor, suggesting an increasing proportion of 

severe crashes when one of the vehicles involved is heavier. For single-vehicle crashes, engine 

size was the most important factor for FatalSIK prediction.  

The comparison of the two approaches, decision trees developed with the original sample and with 

the balanced sample, revealed that in general the application of the decision trees with the 

imbalanced sample resulted in larger trees, due to the larger number of observations used for the 

tree development. Thus, this approach resulted in trees with more splits, yielding to the 

identification of more risk factors for the classification of a crash event as sere or non-severe. On 

the other hand, the decision models developed with the balanced approach had resulted smaller, 

because fewer observations were used. Very interesting it was the finding that alcohol and/or drugs 

were identified as common risk factor across all crashes, two-vehicle collisions and single-vehicle 

crashes. Also, the age of the vehicles involved in the crash was identified as an important risk 

factor for all the decision trees models. However, when modeling the balanced sample, this risk 

factor was not selected by the decision tree models. Following the resampling approach, the weight 

of the vehicle was identified as an important risk factor across all the decision trees models, for: all 

crashes, two-vehicle collisions and single-vehicle crashes. 

Regarding the individual vehicle injury severity analysis, classification tree models for FatalSIKV1 

and FatalSIKV2 were developed using the original sample (imbalanced data). Owing the limited 

number of severe events in each vehicle involved (28 severe events in V1 and 14 events in V2), 

the resampling method was not applied. Decision trees also identified the effect of alcohol and/or 

drugs, although here the effect of alcohol and/or drugs was the less important variable for crash 

severity modeling. For FatalSIKV1, the most important risk factor was the age differential for the 

two vehicle involved in the collision. On the other hand, for FatalSIKV2, the most important risk 

factor was the wheelbase differential between the two vehicle involved. These findings suggest that 

for crashworthiness evaluation, it is important not only to consider vehicle’s individual 

characteristics but also, its differential characteristics between the vehicles involved in the collision. 
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CHAPTER 6  
LOGISTIC MODELS FOR SEVERITY 

PREDICTION IN SINGLE-VEHICLE CRASHES  

 

 

 

 

 

 

 

 

This chapter discusses the injury severity risk sustained by the occupants of a vehicle involved in a 

single motor vehicle crash. For logistic regression models analysis, while the coefficients estimates 

provide a good interpretation for continuous independent variables, the odds ratio will be used for 

the interpretation of the categorical variables in the model.  

Chapter 6 is organized as follows. Firstly, a model developed based on the original crash sample 

(imbalanced data) is presented. Secondly, the best models for FatalSIK prediction based on 

balanced approach are presented. Selected models are examined for its fit statistics and evaluated 

for prediction accuracy with the training sample and original sample, 10 stratified random sample 

used for validation. Finally, a recommended model for FatalSIK prediction is presented. Models 

presented in this chapter were developed with SAS® v9.2 and SAS®Enterprise Miner™7.2 

software [84, 89, 117, 136]. 
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6.1 Logistic Regression Analysis for FatalSIK with the Original 

Single Crash Sample- Imbalanced Data 

This beginning section aims to exhibit the problem of prediction accuracy linked to logistic 

regression models using imbalanced data, rather than discussing the model itself. As previously 

explained in section 2.5, modeling rare events, such as sever crashes, imposes a challenge 

because the logit model would predicted right the most common event (non-sever crash) and will 

miss the prediction for the rare event (severe crash). As presented in Chapter 4, for single-vehicle 

crashes overall severity was 7.6%, thus yielding to 92.4% of non-severe crashes in the sample. 

The logistic model developed to predict FatalSIK using the original crash sample is presented in 

Table 6.1. This model exhibits the problem of prediction accuracy when dealing with imbalanced 

classes’ distribution at the Portuguese crash sample. Thus it supports the need to perform logistic 

regression modeling for the Portuguese crash data, based on a balanced training sets. 

 

Table 6.1 - Imbalanced-Model-S results for FatalSIK prediction with logistic regression performed 

for the original single-vehicle crashes sample.  

Imbalanced- MODEL-S 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

4 0.0015 Intercept 1 2.0201 2.6143 0.4397  (-3.1039_ 7.1441) 

  AlcoholDrugs (0) 1 -0.8263 0.3665 0.0242 0.192 (-1.5446_ -0.1080) 

  WBV1 1 -0.00233 0.0011 0.0415 0.998 (-0.0046_ -0.0001) 

  WeatherCode 
(0) 

1 0.4269 0.2175 0.0496 
2.349 

(0.0007-0.8532) 

  ccV1 1 0.0012 0.0004 0.0032 1.001 (0.0004_ 0.0020) 

Obs. 500 

ASE 0.07 

MISC 0.07 

Accuracy Performance 

Accuracy Rate with Training Sample (N=500) 

FN
4
 TN

5
 FP

6
 TP

7
 

37 462 0 1 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive.  

 

As observed in Table 6.1, the model predicted right all the cases of non-severe crashes, (TN=462). 

However, only one severe crash was correctly predicted, whereas the remaining severe ones were 

incorrectly predicted as non-severe (FN=37). Thus, without a resampling strategy, model training 

prediction accuracy for the severe crashes would be unsatisfactory, 2.7% (1/37). Next, logistic 

regression models results for crash severity prediction based on the resampling strategy are 

presented.  
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6.2 Logistic Regression Analysis for FatalSIK with Resampling 

Approach  

This section presents the logistic regression modeling results for the probability of a serious injury 

and/or fatality given a single-vehicle crash. Several candidate models were developed based on a 

balanced training sample and the best candidate models were selected for further accuracy 

performance evaluation. During the modeling stage, four models were selected for FatalSIK 

prediction in single-vehicle crashes: Model-IA-S, Model-IB-S, Model-IC-S and Model-ID-S. For 

single-vehicle crashes there is only one target, FatalSIK, denoted by “I”, and the alphabetic terms 

“A, B, C and D” are used to indicate the best four candidate models, and “S” stands for single-

vehicle crashes. Model-IA-S and Model-IB-S were selected to be presented and discussed in this 

section. Model-IC-S and Model-ID-S are provided in Appendix 8. 

Independent variables used as models inputs are identified in Table 6.2. Models results for single-

vehicle crashes are discussed based on hypothesis testing for the selected variables (model 

parameters estimates). The parameters (predictors) that are statistically significant at 0.05 level are 

shown with an “*”. Lower and upper bound of 95% confidence interval of estimates are shown in 

brackets. The ASE and MISC are of most interest in model fit statistics. The ASE measures the 

difference between the prediction estimate and the observed FatalSIK value. Also, misclassification 

measures the fraction of cases where the decision does not match the actual target value, as 

defined in Equation 3.9 and Equation 3.10. For the selected best models candidates, accuracy 

performance was evaluated as follows. Firstly, each selected model was evaluated based on its 

prediction accuracy with the original sample (500 observations). Secondly, each of the selected 

models was evaluated using 10 stratified random samples (76 observations), based on the K-fold 

cross validation explained in section 3.7.4.  
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Table 6.2 – Description of design variables (inputs) and targets when modeling crash severity for 
single-vehicle crashes with logistic regression. 
 
 

Variable 

 

Description 

 

Abbreviation 

 

Model Identification 

Independent Variables Used as Inputs   

Age of Vehicle 1 AgeV1 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV1 Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Alcohol and/or Drugs The Driver´s test for alcohol and or drugs is presented 
as: Code=0, legal; Code=1, illegal  

AlcoholDrugs Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Crash type  Ran off road  RanOff Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

 Rollover Rollover - 

Divided/undivided Existence or absence of physical median: Code=0, 
undivided 
Code=1, divided 

DivisionCode Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Speed Level The speed level was coded as follow: 
If Speed limit<=90 km.hr

-1
, then code=0 

If Speed limit>90 km.hr
-1

, then code=1 

SpeedLevel Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1 Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg) WTV1 Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Weather Conditions Weather conditions at the moment of the crash: 
Code=0, Clear and/or dry pavement 
Code=1, rain and/or wet pavement 

WeatherCode Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm
3
) ccV1 Model-IA-S, Model-IB-S, 

Model-IC-S and Model-ID-S 

Dependent Variable used as Target 

Serious and/or Killed FatalSIK is a categorical response for a crash outcome 
used to predict either a serious injury, or fatality in a 
crash event. 
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0 

FatalSIK Model-IA-S, Model-IB-S, 
Model-IC-S and Model-ID-S 

 

6.2.1 Model-IA-S Analysis  

Model-IA-S was developed using logistic regression for FatalSIK prediction in crashes involving 

one single vehicle, with forward selection for the inputs signalized at Table 6.2. As already 

mentioned forward selection method begins with no candidate inputs in the model and adds inputs 

until the entry significance level is met. For this model design, the entry level was set 0.1, similarly 

to Li modeling research [100], the p-values less than or equal to the 0.1 level of significance are 

considered.  

Table 6.3 summarizes Model-IA-S fitting results and performance evaluation. The test for the global 

null hypothesis shows that at least one of the predictor´s regression coefficient is not equal to zero 

in the model, p-value<0.0004. From a total of nine inputs (in Table 6.2), the final model has four 

predictors: AgeV1, WBV1, ccV1 and WeatherCode. All these predictors are statistically significant 

at 0.1 level. Model intercept was not found statistically significant at 0.1 level, p-value<0.30. “Too 

much focus on statistical significance can lead to the false conclusion that a variable is “important” 

explaining “Y”, even though its estimated effect is modest” [146]. In addition, for smaller size, some 

authors are willing to use larger significance levels, reflecting the fact that it is harder to find 

significance with smaller sample sizes ( the estimators are less precise) [146]. For instance, at one 

of the models developed by Li to predict crash severity in work zones, a larger criterion of 0.3  was 

set [100]. On the other hand, focus only in the predictors at the model, with exception for the 
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wheelbase of the vehicle, (p-value<0.0593), all the selected predictors in the model were found to 

be statistically significant at the 0.05 level (p-value<0.0144, p-value<0.0418, and p-value<0.0031, 

for AgeV1, WeatherCode(0) and ccV1, respectively. The model fit statistics yield an ASE of 0.187 

and MISC of 0.237.  

 

Table 6.3 - Model-IA-S results for FatalSIK prediction with logistic regression performed for a 

balanced dataset of single-vehicle crashes.  

MODEL-IA-S 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

4 0.0004 Intercept 1 5.1730 5.0151 0.3023  (-4.6565_ 15.00) 

  AgeV1 1 0.1519 0.0621 0.0144* 1.164 (0.0302_ 0.2736) 

  WBV1 1 -0.0045 0.0024 0.0593 0.996 (-0.0092-0.0002) 

  WeatherCode 
(0) 

1 0.6879 0.3380 0.0418* 
3.958 

(0.0255-1.3504) 

  ccV1 1 0.00297 0.0010 0.0031* 1.003 (0.0010_ 0.0049) 

Obs. 76 

ASE 0.187 

MISC 0.237 

Prediction Accuracy Performance 

Accuracy Rate with Training Sample (N=76) Accuracy Rate with Original Sample (N=500) 
Prediction Accuracy  

for 10 Stratified 
Random Samples 

FN
4
 TN

5
 FP

6
 TP

7
 AR

8
% TPs

9
 FPs

10
 TNs

11
 FNs

12
 AR

13
% Mean%

14
 S.D.

15
 

10 30 8 28 76.3 17 97 365 21 76.4 62.0 2.3 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8 
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate; 
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified 
random samples; *Statistically significant at 5% level. 

 

The logistic regression equation developed for Model-IA-S is presented below. 

              

  
                                                                         

                                                                           
 

Equation 6.1 

 

The interpretation of the Model-IA-S shows a positive relationship between vehicle engine size and 

age and good weather conditions with the probability of severe crashes, FatalSIK”1”. Therefore, the 

model parameters: AgeV1, WeatherCode and ccV1 show positive sign at the above equation, 

Equation 6.1. On the other hand, as the vehicle wheelbase increases there is a decrease in the 

probability of a FatalSIK”1”. Thus the parameter WBV1 shows a negative sign on Equation 6.1. 

Crashes occurring under good weather condition are associated with a significant increased risk of 

crash severity, as shown by the odds ratio. In Table 6.3, odds ratio of a severe crash increases in 

good weather condition almost by four compared to the bad weather conditions. Graphical 

representation for this model FatalSIK prediction equation, Equation 6.1, is illustrated in Figure 6.1.  
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a) 

 

b) 

 

c) 

 

Figure 6.1 – Probability of a serious injury and/or killed by Model-IA-S for single-vehicle crashes 

with: a) age of the vehicle; b) engine size of vehicle; and c) wheelbase of the vehicle.  
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In Figure 6.1a), FatalSIK probability is predicted a function of the age of the vehicle, controlling for 

vehicle wheelbase and the engine size (at 2551 mm and 1602 cm
3
, average wheelbase 

(AvgWBV1) and engine size (AvgccV1), respectively). A similar approach was used for Figure 

6.1b) and c). Figure 6.1a) shows that as the age of the vehicle increases, the probability of a 

FatalSIK also increases. This model finding supports previous conclusions that recent cars protect 

their drivers better than older cars [49, 59, 60, 85]. Figure 6.1b) shows that as the engine size of 

the vehicle increases, the probability of a FatalSIK also increases. The effect of the engine size 

may be interacting with travel speed, since drivers of more powerful cars tends to accelerate more. 

This finding also supports previous studies that argued “higher engine performance and power 

could be associated with greater speeds and greater injury risk” [64]. Figure 6.1c) shows that as 

the wheelbase size of the vehicle decreases, the probability of a FatalSIK also increases. The size 

of vehicle’s wheelbase in the decreasing risk of a serious and/or fatal crash may be interpreted by 

the fact that one of the vehicles attribute most related to the injury severity level is vehicle size [53, 

91]. A larger vehicle, offers a greater area for the energy dissipation following the crash impact 

force, hence reducing the energy change to which occupants in the compartment area may be 

exposed, thus reducing the risk. This finding is consistent with previous research which suggested 

that “25 cm increase in wheelbase translates into 10% reduction in the odds of a fatality” [91]. For 

the risk factors explained above, crashes occurring under the good weather conditions are worsen, 

the probability of FatalSIK is higher than for bad weather conditions, as observed by logit curves 

blue and red, respectively. Comparison with earlier crash severity prediction models, good weather 

conditions have been linked to a higher incidence of severe crashes, as previously mentioned [87, 

92, 144].  

The assessment of the Model-IA-S shows a good performance, as observed in Table 6.3. The 

accuracy rate when running the model with the training sample, which was stratified in 38 severe 

crashes and 38 non-severe crashes, correctly predicted 76.3% of the cases. In the training sample, 

the model correctly predicted 28 severe crashes (TP) and 30 non-severe crashes (TN). When 

compared with the previous model in Table 6.1, Imbalanced-Model-S, it is clear the improvement in 

model accuracy prediction. The model developed with the original imbalanced sample predicted 37 

severe crashes as non-severe, leading to unsatisfactory results for TP, (TP=1). On the other hand, 

Model-IA-S performed with the balanced approach, was able to predict right 28 severe crashes (out 

of 38). When assessing the performance of this model with the original crash sample, the 

prediction accuracy, was also good, 76.4%. From a total of 500 crashes events, Model IA-S 

correctly predicted 17 severe crashes out of 38. In addition, the model correctly predicted 365 of 

the non-severe events out of 462 non-severe events at the entire sample. The model predicted 

right more severe crashes in the training sample, than in the original dataset, 28, and 17, 

respectively. However, it is noted that the model overall accuracy within the original sample was 

slightly higher than in the training sample, 76.4% and 76.3%, respectively. The evaluation of the 
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model overall performance with 10 stratified random samples was very satisfying; 62% (S.D. 2.3) 

prediction accuracy rate. EM output for Model-IA-S is provided in Appendix 8.  

 

6.2.2 Model-IB-S Analysis  

Model-IB-S is an alternative to FatalSIK prediction for single-vehicle crashes. This model was 

developed using logistic regression for FatalSIK prediction in crashes with backward selection for 

the inputs signalized at Table 6.2. As explained in Chapter 3, backward selection begins with all 

candidate effects (inputs) in the model and removes effects until the stay significance level is met. 

For this model design, the entry level was set 0.05.  

Table 6.4 summarizes Model-IB-S fitting results and accuracy performance evaluation. The test for 

the global null hypothesis shows that at least one of the predictor´s is not equal to zero in the 

model, p-value<0.0013. From a total of nine independent variables entered as inputs, only two 

were selected by the model: AgeV1 and ccV1. These predictors are statistically significant at 0.05 

level: p-value<0.0079 and p-value<0.0229, Age and ccV1, respectively. The model fit statistics 

shows ASE of 0.206 and MISC of 0.276, respectively.  

 

Table 6.4 - Model-IB-S results for FatalSIK prediction with logistic regression performed for a 

balanced dataset of single-vehicle crashes.  

MODEL-IB-S 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

2 0.0013 Intercept 1 -3.4443 1.1651 0.0031  (-5.7279_ -1.1607) 

  AgeV1 1 0.1572 0.5922 0.0079* 1.164 (0.0411_ 0.2732) 

  ccV1 1 0.00139 0.0006 0.0229* 1.003 (0.0002_ 0.0026) 

Obs. 76 

ASE 0.206 

MISC 0.276 

Prediction Accuracy Performance 

Accuracy Rate with Training Sample (N=76) Accuracy Rate with Original Sample (N=500) 
Prediction Accuracy  

for 10 Stratified 
Random Samples 

FN
4
 TN

5
 FP

6
 TP

7
 AR

8
% TPs

9
 FPs

10
 TNs

11
 FNs

12
 AR

13
% Mean%

14
 S.D.

15
 

10 27 11 28 72.4 14 96 366 24 76.0 58.0 3.1 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8 
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate; 
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified 
random samples; *Statistically significant at 5% level. 

 

The logistic regression equation developed for Model-IB-S is presented below. 

                
                                       

                                         
 

Equation 6.2 
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The positive regression estimates for AgeV1 and ccV1 shows a positive effect of vehicle engine 

size and vehicle age on crash severity risk, FatalSIK”1”. Graphical representation of the logit curve 

for FatalSIK prediction with Equation 6.2, is illustrated in Figure 6.2. Figure 6.2 shows the 

probability of a serious injury and/or fatality predicted by Model-IB-S for single-vehicle crashes with 

engine size of the vehicle and taking into account the effect of vehicle’s age consecutively. 

 

 

Figure 6.2 – Probability of a serious injury and/or fatality predicted by Model-IB-S with engine size 

of the vehicle and age of the vehicle, for single-vehicle crashes.  

 

Figure 6.2 clearly shows that the probability of a severe crash increases as the engine size 

increases. As explained in Chapter 4, the engine size for the 500 vehicles in the Single dataset has 

minimum of 796 cm
3
 and a maximum of 3387 cm

3
. On the other hand, the newest vehicles in the 

crash data had 1yr old, while the oldest vehicle model was 24 years old. The color lines at the chart 

not only illustrate the age, but also the frequency of vehicles at that age level. Following this 

explanation, it is easy to follow the effect of vehicles age, as the engine size increases, resulting in 

a higher probability of a severe crash outcome.  

Model-IB-S results, which have identified vehicles age and engine size as significant predictor of 

crash severity, are consistent with other research. The effect of vehicle´s age have been widely 

discussed for single and two-vehicle collisions analysis that claimed that recent cars protect their 
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drivers better than older cars models [49, 59, 60, 85]. Comparing to vehicle age, vehicle´s engine 

effect on crash severity have not been so widely explored. However, previous research have 

mention that larger engine size (as a proxy of vehicle power) could be associated with greater 

speeds and thus, severity risk [58, 64]. It is possible that the injury severity risk associated to 

engine powerful cars would reflect the way that vehicles are driven, rather than to inherent 

characteristics of vehicles engine themselves.   

 

The assessment of the Model-IB-S confirms a good performance, as observed in Table 6.4. When 

using the training sample, the model correctly predicted 72.4% of the cases. In the training sample, 

the model correctly predicted 28 severe crashes (TP) and 27 non-severe crashes (TN). When 

assessing the performance of this model with the original crash sample, the prediction accuracy, 

was even better than for the training sample, 76%. From a total of 500 crashes, Model IB-S 

correctly predicted: 14 severe crashes (out of 38) and 365 non-severe events (out of 462). The 

evaluation of the model overall performance accuracy rate with 10 stratified random samples was 

also satisfactory; 58.0% (S.D. 3.1). EM output for Model-IB-S is provided in Appendix 8. 

 

The comparison of selected Models for FatalSIK analysis in single-vehicle crashes is presented 

next. Both models, Model-IA-S and Model-IB-S had identified the effect of vehicle´s age and engine 

size in crash severity analysis. Models prediction accuracy for the original sample was almost the 

same for models, 76.4% and 76.0%, for Model-IA-S and Model-IB-S, respectively. However, when 

evaluating prediction accuracy with 10 stratified random samples, Model-IA-S was slight better than 

Model-IB-S, 62.0% (S.D. 2.3) and 58.0% (S.D. 3.1), respectively. Regarding to the other two 

additional models developed for FatalSIK prediction, a brief comparison is presented as follows. 

Considering, model complexity and comprehensive interpretation, accuracies rates and average 

estimated values, Models-IA-S and Model-IB-S were better than Model-IC-S and Model-ID-S 

(Appendix 8). Model-IC-S and Model-ID-S, accuracy rate evaluation with the original sample was 

also very satisfactory, (76.4% and 79.2%) respectively. Models performance assessment for the 10 

stratified random sample was also good: 65.3% (S.D. 2.6) and 56.6% (S.D. 1.9) for Model-IC-S and 

Model-ID-S, respectively. Despite of these two alternative models had achieved good performance 

accuracy, they are more complex and hence they would be more complex to apply for real world 

crash scenarios prediction.  
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6.3 Concluding Remarks  

The presented models for FatalSIK prediction in single-vehicle, Model-IA-S and Model-IB-S,   

crashes had identified vehicle’s characteristics associated with crash severity risk. Model-IA-S with 

four degrees of freedom and p-value< 0.0004 selected the effect of vehicle´s inherent 

characteristics (age, engine size and wheelbase) and also crash circumstances (linked to weather 

conditions) for crash severity prediction. All these selected predictors were statistically significant at 

0.05 level, with exception for wheelbase (p-value<0.0593) and the intercept (p-value<0.3023). On 

the other hand, Model-IB-S with two degrees of freedom and p-value<0.0013 selected the effect of 

vehicle´s age and engine size for crash severity prediction, with both predictors being statistically 

significant at 0.05 level. Model-IA-S showed lower MISC rate than Model-IB-S, (0.237 and 0.276). 

Models prediction accuracy for the original sample was almost the same for Model-IA-S and Model-

IB-S, (76.4% and 76.0%, respectively). However, when evaluating prediction accuracy with 10 

stratified random samples, Model-IA-S was better than Model-IB-S, 62.0% (S.D. 2.3) and 58.0% 

(S.D. 3.), respectively. For single-vehicle crash analysis, Model-IB-S is recommended for severity 

prediction, owing to the three main reasons presented next.  

1. This model, the association between the selected predictors (AgeV1 and ccV1) and 

intercept is stronger than for Model-IA-S parameters, since for the first model all 

parameters were statistically significant at 0.05 level.  

2. Model overall prediction accuracy rate was slightly better for Model-IA-S, Model-IB-S 

showed better prediction accuracy for the original sample, compared to the training 

sample, (76.0% and 72.4%, respectively).  

3. Model-IB-S is simpler to apply and easy to interpreter. 

Comparison of crash severity prediction models using CART and logistic regression is summarized 

next. Although the input parameters were the same for both techniques, CART model (Figure 5.6 in 

pp 101) showed the contribution of vehicle characteristics and weather conditions in risk. Small 

engine size with low weight vehicles and larger engine size in vehicles with smaller wheelbase 

increased the likelihood of a severe crash. On the other hand, the logistic Model-IB-S (pp 116) 

identified the age and the engine size of the vehicle as important factors for crash severity 

prediction. Similarly to CART, larger engine size vehicles were linked to an increased risk.  

Often, the selection of statistical models is recommended based on models purpose objective, 

hence this model provides a good way to judge the practical (as opposed to the statistical) 

importance of the model in the target of interest prediction [89]. Both models support the conclusion 

that, for single vehicle crash severity analysis vehicle engine size and age are statistically 

significant for crash severity prediction. Models results clearly show that recent vehicles protect 

their occupants better than older vehicles models in the event of a crash. In addition, both models 

showed good overall prediction accuracy for the original imbalanced data, despite of crash sample 

limitations.    
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CHAPTER 7  

LOGISTIC MODELS FOR CRASH SEVERITY 

PREDICTION IN TWO-VEHICLE COLLISIONS 

 

 

 

 

 

 

 

 

Logistic regression modeling results for the probability of serious injuries and/or fatalities in a crash 

involving two vehicles is discussed next. Important inputs are ascertained by parameters estimates 

and odds ratio. The best model to predict the overall crash severity (conveyed as FatalSIK) in two-

vehicle collisions was identified as Model I-T. Model II-T was designed to estimate the probability of 

a serious injured and/or killed in vehicle V1 (expressed by FatalSIKV1). On the other hand, Model 

III-T was developed to estimate the probability of a serious injured and/or killed in vehicle V2 

(defined as FatalSIKV2). This modeling strategy for two-vehicle collisions differentiates from 

previous modeling approaches mainly for two reasons. Firstly, it integrates new design variables to 

express the differential of technical characteristics for the two vehicles involved. Secondly, these 

models were able to model simultaneously and independently the contributing effect of each 

individual vehicle in the risk of severity sustained by the occupants of the vehicle being analyzed. 

Models were developed with SAS® v9.2 and SAS®Enterprise Miner™7.2 software [84, 89, 117]. 

Chapter 7 is organized as follows. First, presentation of best models to estimate the probability of a 

serious injured and/or killed in the event of two-vehicle collisions. Second, models prediction 

accuracy and performance assessment, and validation are discussed. Finally, main remarks are 

summarized.  
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7.1 Logistic Regression Analysis for FatalSIK with the Original 

Crash Sample- Imbalanced Data 

To prove the problem of prediction accuracy of logistic regression models using the imbalanced 

sample for two-vehicle collisions, the Model-T is shown in Table 7.1. This model predicted right all 

the cases of non-severe crashes, (TN=842). However, all the severe crashes were incorrectly 

predicted as non-severe crashes (FN=32).  

 

Table 7.1 - Imbalanced-Model-T results for FatalSIK prediction with logistic regression performed 

for the original sample of two-vehicle collisions.  

Imbalanced- MODEL-T 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

3 0.0013 Intercept 1 -4.7726 1.3192 0.0003  (-7.358_ -2.187) 

  AlcoholDrugs (0) 1 -1.1648 0.3507 0.0009 0.097 (-1.852_ -0.477) 

  Sideswipe (0) 1 -0.5223 0.2258 0.0207 0.352 (-0.965_ -0.08) 

  WBV1 1 0.0011 0.0005 0.0198 1.001 (0.0001_0.002) 

Obs. 874 

ASE 0.03 

MISC 0.4 

Accuracy Performance 

Accuracy Rate with Training Sample (N=874) 

FN
4
 TN

5
 FP

6
 TP

7
 

32 842 0 0 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive ; 7 True Positive.  

 

Owing to constrain of the Portuguese crash sample nature and size, the resampling strategy 

described earlier was applied for the two-vehicle collisions crash severity prediction modeling.  

 

7.2 Logistic Regression Analysis for FatalSIK with Resampling 

Approach 

This section presents the logistic regression modeling results for the probability of a serious injury 

and/or fatality given any level of injuries in a vehicle crash involving two vehicles. As previously 

explained in sections 3.7.2 and 3.7.3 of the Safety Analysis Methodology Chapter, several 

candidate models were developed based on a balanced training sample and three of the best 

candidate models were selected for further accuracy performance evaluation: first with the original 

sample (874 observations) and then, using 10 stratified random samples (64 observations). The 

best three models to predict the overall crash severity in two-vehicle collisions is labeled as: Model 

IA-T, Model IB-T, and Model IC-T. This model labels are explained as: “I”, designs the model 
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number for the target of interest, “A, B, and C” indicates the three best model candidates for the 

target being predicted, and “T” stands for two-vehicle collisions. Among the tree best candidate 

model to predict FatalSIK, only the recommended model is presented in this section, Model IA-T. 

The other two best models for FatalSIK prediction, Model-IB-T and Model-IC-T are shown in 

Appendix 9. Independent variables used as inputs and models’ targets are identified in Table 7.2.  

 

Table 7.2 – Description of design variables (inputs) and targets when modeling crash severity for 

two-vehicle collisions with logistic regression. 

 

Variable 

 

Description 

 

Abbreviation 

 

Model Identification 

Independent Variables Used as Inputs   

Age of Vehicle 1 AgeV1 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Age of Vehicle 2 AgeV2 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV2 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Age Difference between 
vehicles (V2) and (V1) 

AgeV2V1 (yr) stands for age of vehicle V2 minus the age 
of vehicle V1, crash observation. 

AgeV2V1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Alcohol and/or Drugs The Driver´s test for alcohol and or drugs is presented 
as: Code=0, legal; Code=1, illegal  

AlcoholDrugs Model-IA-T, Model-IB-T and 
Model-IC-T 

Crash type for collisions Rear End, Head-On, Sideswipe or Other 
 

RearEnd  Model-IA-T, Model-IB-T and 
Model-IC-T 

  HeadOn  
 

Model-IA-T, Model-IB-T and 
Model-IC-T 

  Sideswipe  
 

Model-IA-T, Model-IB-T and 
Model-IC-T 

  Other - 

Divided/undivided Existence or absence of physical median: Code=0, 
undivided 
Code=1, divided 

DivisionCode Model-IA-T, Model-IB-T and 
Model-IC-T 

Speed Level The speed level was coded as follow: 
If Speed limit<=90 km.h

-1
, then code=0 

If Speed limit>90 km.h
-1

, then code=1 

SpeedLevel Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Wheelbase of Vehicle 2 Wheelbase of vehicle (V2) (mm) WBV2 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Wheelbase Difference 
between vehicles (V2) 
and (V1) 

WBV2V1 stands for wheelbase of vehicle V2 minus the 
wheelbase of vehicle V1, at crash observation, (mm). 

WBV2V1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg). WTV1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Weight of Vehicle 2  Weight of vehicle 2 (V2) (kg). WTV2 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Weight Difference 
between vehicles (V2) 
and  (V1) 

WTV2V1 stands for weight of vehicle V2 minus the 
engine size of vehicle V1, at crash observation (kg). 

WTV2V1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Weather Conditions Weather conditions at the moment of the crash: 
Code=0, Clear and/or dry pavement 
Code=1, rain and/or wet pavement 

WeatherCode Model-IA-T, Model-IB-T and 
Model-IC-T 

Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm
3
). ccV1 Model-IA-T, Model-IB-T, Model-

IC-T, Model-II and Model-III-T 

Engine Size of Vehicle 2 Engine size of vehicle (V2) (cm
3
). ccV2 Model-IA-T, Model-IB-T, Model-

IC-T, Model-II and Model-III-T 

Engine Size Difference 
between vehicles (V2) 
and  (V1) 

ccV2V1 stands for engine size of vehicle V2 minus the 
engine size of vehicle V1, at crash observation, (cm

3
). 

ccV2V1 Model-IA-T, Model-IB-T, Model-
IC-T, Model-II and Model-III-T 

Dependent Variables used as Targets 

Serious injured and/or killed FatalSIK is a categorical response for a crash outcome used to 
predict either a serious injury, or fatality in a crash event. 
FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0 

FatalSIK  Model-IA-T, Model-IB-T, Model-IC-T, 
Model-II and Model-III-T 

Serious injured and/or killed 
for vehicle 1 (V1) occupants 

FatalSIKV1 is a categorical response for a crash outcome used to 
predict either a serious injury, or fatality or both for occupants in 
vehicle 1 in a crash event. 
FatalSIKV1=1, if SI>0 and/or K>0, else, FatalSIKV1=0 

FatalSIKV1 Model-II-T 

Serious injured and/or killed 
for vehicle 2 (V2) occupants 

FatalSIKV2 is a categorical response for crash outcome for a crash 
outcome used to predict either a serious injury, or fatality or to both 
for occupants in vehicle 2 in a crash event. 
FatalSIKV2=1, if SI>0 and/or K>0, else, FatalSIKV2=0 

FatalSIKV2 Model-III-T 
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Regarding to Model-IA-T design, it was developed using logistic regression for FatalSIK prediction 

in crashes involving two-vehicle collision, with forward selection for the inputs signalized at Table 

7.2. During the forward selection, the modeling begins with no candidate inputs in the model and 

adds inputs until the entry significance level is met. Table 7.3 summarizes Model-IA-T fitting results 

and performance evaluation. The test for the global null hypothesis shows that at least one of the 

predictor´s regression coefficient is not equal to zero in the model, p-value <0.0054. From a total of 

19 potentially explanatory variables exanimated with forward selection method, only two of them 

are found to be statistically significant at 0.05 level. Age of vehicle V1 (AgeV1) and non-head-on 

collisions are significant factors to estimate the crash severity; p-values 0.0084 and 0.0346, 

respectively. In this model, as the age of vehicle V1 increases, the risk of a severe crash outcome 

is lower. Also, crashes rather than head-on collisions were associated with a decrease in crash 

severity. In the sample, just 7.6% of the crashes were as head-on collisions (67/874). The 

remaining 808 observations were distributed as follows: 311 were rear end collisions, 89 were 

sideswipe collisions and 408 were reported as other. Those head-on collisions have resulted 12% 

(4/32) of severe events in the crash dataset. The model fit statistics shows the following values of 

0.211 and 0.328, for the ASE and MISC, respectively.  

 

Table 7.3 - Model-IA-T results for FatalSIK prediction with logistic regression performed for a 

balanced dataset of two-vehicle collisions.  

MODEL-IA-T 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

2 0.0054 Intercept 1 2.6230 0.9736 0.0071  (0.7147_ 4.5312) 

  AgeV1 1 -0.1769 0.0671 0.0084* 0.838 (-0.3084_ -0.0454) 

  HeadOn (0) 1 -1.3964 0.6610 0.0346* 0.061 (-2.6920_ -0.1008) 

Obs. 64 

ASE 0.211 

MISC 0.328 

Prediction Accuracy Performance 

Accuracy Rate with Training Sample (N=64) Accuracy Rate with Original Sample (N=874) 
Prediction Accuracy  

for 10 Stratified 
Random Samples 

FN
4
 TN

5
 FP

6
 TP

7
 AR

8
% TPs

9
 FPs

10
 TNs

11
 FNs

12
 AR

13
% Mean%

14
 S.D.

15
 

10 21 11 22 67.2 8 148 694 24 80.3 54.4 1.7 
NOTA:

 1
 Standard Error; 

2
 Odds Ratio Estimate; 

3
 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True 

Positive; 8 Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of 
Accuracy Rate; 14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of 
the 10 stratified random samples; *Statistically significant at 5% level. 

 

The logistic regression equation developed for Model-IA-T is presented next. 

                
                                          

                                            
 

Equation 7.1 

 

The interpretation of the Model-IA-T with the odds ratio, in Table 7.3, shows that the odds of a 

FatalSIK crash in a non-head-on collision is 0.061 the odds in a head-on collision. In other words, 
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the odd of a severe crash increases by 16 times for head-on collisions. Also, the odds for the 

continuous variable AgeV1, 0.838, shows that an increased risk of a FatalSIK is associated with 

the decrease for the age of vehicle V1. Figure 7.1 shows a graphical representation of crash 

severity prediction estimates logit curve using Model-IA-T equation. As observed, the logit curve for 

the estimated probability of FatalSIK for head-on collisions is higher than the estimated target 

values for all the others crash types, such as, rear-end and sideswipe. 

 

 

Figure 7.1 – Probability of a serious injury and/or fatality with age of vehicle V1, in two-vehicle 

collisions, using Model-IA-T. 

 

Model-IA-T shows a positive effect of head-on collision in crash severity risk (or a negative effect of 

non-head on collisions), which is supported by several other works which found head-on collision 

contribution to more severe injuries levels [48, 92, 144]. The most severe crash configuration is 

front-to-side impact, which imposes a higher risk of being killed in the side-impacted vehicle [49]. 

On the other hand, as the age of the vehicle V1 increases, the overall crash severity tends to 

decrease. Some studies have related newer vehicle models with an increased risk for the accounts 

of the other vehicle involved [49, 59, 60, 85]. Thus, as age of V1 increases, it would be possible 

that the vehicle would be less “aggressive” during the event of a collision. Hence, the occupants of 

the other vehicle involved would face a lower risk, and it could contribute to a decrease in the 

overall crash severity.   

The assessment of the Model-IA-T shows a good performance, as observed in Table 7.3. The 

accuracy rate when running the model with the training sample, which was stratified in 32 severe 

crashes and 32 non severe crashes, correctly predicted 67.2% of the cases. In the training sample, 

the model correctly predicted 22 severe crashes (TP) and 21 non severe crashes (TN). When 
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compared with the previous model in Table 7.1, Imbalanced-Model-T, it is straightforwardly to 

notice the improvement in model accuracy prediction. The model developed with the original 

imbalanced sample predicted all the severe crashes as non-severe, leading to unsatisfactory 

results for TP, which were none. On the other hand, Model-IA-T performed with the balanced 

approach, was able to predict right 22 severe crashes, out of 32. When assessing the performance 

of this model within the original crash sample, it shows high prediction accuracy, 80.3%. From a 

total of 874 crashes observations, Model IA-T correctly predicted 8 severe crashes out of the 32 

severe collisions. In addition, the model correctly predicted 694 of the non-severe out of the 

observed 842 non-severe events in the entire dataset. The model predicted right more severe 

crashes in the training sample, than in the original dataset, (22 and 8, respectively). However, it is 

noted that the model overall accuracy within the original population was higher than the model 

accuracy within the training sample, (80.3% and 67.2%, respectively). The evaluation of the model 

performance with 10 stratified random samples was also satisfactory; the mean prediction accuracy 

rate was 54.4% (S.D. 1.7). EM output for Model-IA-T is provided in Appendix 9. 

Model-IA-T, when compared with the FatalSIK prediction candidates, Model-IB-T and Model-IC-T 

(Appendix 9) showed slight lower prediction accuracy, 80.3%, 82.6% and 82.8%, respectively. 

Model-IA-T was selected because its prediction accuracy was good and since it is easier to 

interpret, its application in real world crash scenarios could be more helpful.  

 

7.3 Logistic Regression Analysis for FatalSIKV1 and FatalSIKV2 

with Resampling Approach 

The original crash sample included a limit number of severe cases for FatalSIKV1 (21 cases) and 

FatalSIKV2 (14 cases). Whereas the resampling strategy was not applied for CART modeling of 

those targets due to this technique sensitivity to sample size (as explained in Chapter section 5.3), 

the resampling approach was applied for the logistic modeling.  

To model FatalSIKV1 and FatalSIKV2, the design variables focus in each individual vehicle 

characteristics, and differential of vehicle characteristics. In addition, the variable SpeedLevel was 

also used as input during the modeling stage, since speed is known as increasing risk of injury 

level [42, 43, 91, 93, 98]. It must be mentioned that only the best models for FatalSIKV1 and 

FatalSIKV2 are presented. During the modeling stage several candidate models were developed 

using the same design variables, a total of 19 predictors, as they were used for FatalSIK modeling, 

such as AlcoholDrugs, DivisonCode, WeatherCode and variables related to crash type. However 

those models showed a poor performance and only the best models for each target are discussed 

in section 7.3. For FatalSIKV1 and FatalSIKV2 models, the inputs were the same, 13 independent 

variables, and models’ targets, are identified in Table 7.2. Interpretation of FatalSIKV1 and 

FatalSIKV2 logistic models: Model-II-T and Model-III-T, respectively, is next.  
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7.3.1 Model-II-T Analysis  

Model-II-T was developed using logistic regression for FatalSIKV1 prediction models with a 

balanced training sample, which was stratified in 21 severe crashes and 21 non severe crashes, for 

two-vehicle collisions. Forward method was used for selection of the inputs in Table 7.2. Forward 

method was used for selection of the inputs in Table 7.2. Since the model development was based 

on sample training containing a limited number of observations (42 crashes), the 5% level was not 

applied, but 10% level. Therefore, model entry level was set to 10% (p-value<0.1). Statistical 

support is provided bellow.  

Some researchers argued to use smaller significance levels as the sample size increases, partly to 

offset the fact that standard errors are getting smaller. Some authors feel comfortable using 5% 

level when is a few hundred, thus they might use 1% level when n is a few thousand [146]. 

Additional information for Model-II-T is provided in Appendix 9. As previously mentioned in the 

previous chapter (section 6.2.2), for samples with smaller size, some authors are willing to use 

larger significance levels, reflecting the fact that it is harder to find significance with smaller sample 

sizes ( the estimators are less precise). For small sample sizes, it can be use a larger p-value, as 

0.2, but there is no hard rules [84, 146].  

Table 7.4 summarizes Model-II-T fitting results and performance evaluation. As explained above, 

due to the small training sample size (N=42), a larger p-value is used, p-value<0.1. The test for the 

global null hypothesis shows that at least one of the predictor´s regression coefficient is not equal 

to zero in the model, p-value <0.0594. From a total of 13 variables entered as inputs during the 

modeling stage, only the engine size of the opponent vehicle is statistically significant at 0.10 level, 

p-value<0.0762.  
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Table 7.4 - Model-II-T results for FatalSIKV1 prediction with logistic regression performed for a 

balanced dataset of two-vehicle collisions.  

MODEL-II-T 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

1 0.0594 Intercept 1 -2.0657 1.1961 0.0842  (-4.4101_0.2786) 

  ccV2 1 0.00108 0.0006 0.0762 1.001 (-0.0001_0.0023) 

         

Obs. 42 

ASE 0.239 

MISC 0.357 

Prediction Accuracy Performance 

Accuracy Rate with Training Sample (N=42) Accuracy Rate with Original Sample (N=874) 
Prediction Accuracy  

for 10 Stratified 
Random Samples 

FN
4
 TN

5
 FP

6
 TP

7
 AR

8
% TPs

9
 FPs

10
 TNs

11
 FNs

12
 AR

13
% Mean%

14
 S.D.

15
 

10 16 5 11 64.3 6 41 812 15 93.6 61.2 2.4 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8 
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate; 
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified 
random samples; *Statistically significant at 10% level. 

 

The logistic regression equation developed for Model-II-T is presented next. 

                  
                          

                            
 

Equation 7.2 

 

The signs of coefficient estimates are directly related to their influence on probability of the target 

being modeling. As can be observed in Table 7.2, the estimate for ccV2 has a positive sign 

(0.00108). Graphical representation Equation 7.2 for Model-II-T is illustrated in Figure 7.2, showing 

that as the engine size of vehicle V2 increases, the probability of severe injury sustained by the 

occupants of vehicle V1 also increases.  
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Figure 7.2 –Estimated probability of a serious injury and/or killed among the occupants of vehicle 

V1 with the engine size of the opponent vehicle, ccV2, in two-vehicle collisions, using Model-II-T.  

 

In the interpretation of Model-II-T revealed that when analyzing the risk that occupants of the 

subject vehicle V1 are exposed, the model did not select any variable related to this vehicle 

crashworthiness, rather a variable that seems to be related to the “risk agressivitive” imposed by 

the other vehicle involved in the collision. The engine size of the opponent vehicle increases the 

probability of major injuries and/or fatalities among the occupants of the subject vehicle. It is 

possible that effect of mass of the opponent vehicle could be reflected in vehicle´s engine size. 

Often, vehicles with larger engine size are heavier; hence it would be expected higher risk following 

the collision. Model-II-T results are supported by previous work which agree that in a two-vehicle 

collisions severity risk rises with size and mass of the other vehicle involved [53, 60, 87, 145].  

The assessment of the Model-II-T shows a good performance, as observed in Table 7.3. The 

accuracy rate when running the model with the training sample, correctly predicted 64.3% of the 

cases. In the training sample, the model correctly predicted 11 severe crashes (TP) and 16 non 

severe crashes (TN). When assessing the performance of this model within the original crash 

sample, it shows great prediction accuracy, 93.6%. From a total of 874 crashes observations, 

Model II-T correctly predicted 6 severe crashes out of the 21 severe collisions. In addition, the 

model correctly predicted 694 of the non-severe out of the observed 842 non-severe events in the 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

500 1000 1500 2000 2500 3000 3500 4000

P
 (

F
a

ta
lS

IK
V

1
) 

 ccV2 (cm3) 



 

 
Chapter 7 

 

 

 

130 
 

entire dataset. As expected, the model predicted right more severe crashes in the training sample, 

than in the original dataset, 11, and 6, respectively. However, the model overall accuracy within the 

original population was higher than the model accuracy within the training sample, 93.6% and 

64.3%, respectively. It must be pointed out that this model was able to predict six out of the 21 

severe cases in vehicle V1 for the entire sample containing 853 non-severe cases and only 21 

severe cases. As a matter of fact, at the original sample, the non-severe outcomes for individual 

vehicle V1 were almost 41 times more frequent than severe outcomes (853/21). As a validation 

approach for the model discussed in this section, the evaluation of the Model-II-T performance with 

10 stratified random samples is also satisfactory; showing a mean prediction accuracy rate of 

61.2% (S.D. 2.4).  

 

7.3.2 Model-III-T Analysis  

Model-III-T was developed using logistic regression for FatalSIKV2 prediction models with a 

balanced training sample stratified in 14 severe crashes and 14 non severe crashes, for two-

vehicle collisions. Backward method was used for selection of the inputs in Table 7.2. Additional 

information for Model-III-T is provided in Appendix 9. Table 7.5 summarizes Model-III-T fitting 

results and performance evaluation. The test for the global null hypothesis shows that at least one 

of the predictor´s regression coefficient is not equal to zero in the model, p-value <0.0201. From a 

total of 13 variables entered as inputs during the modeling stage, only the engine size of the 

opponent vehicle is found to be statistically significant at 0.05 level, p-value<0.0387.  

 

Table 7.5 - Model-III-T results for FatalSIKV2 prediction with logistic regression performed for a 

balanced dataset of two-vehicle collisions.  

MODEL-III-T 

Fit Statistics 

Test for Global 
Null Hypothesis 

Analysis of Maximum Likelihood Estimates and Odds Ratio  

DF Pr<ChSq Parameter DF Estimate SE
1
 Pr>ChiSq OR

2
 95% CI

3
 

1 0.0201 Intercept 1 -3.5969 1.78 0.0433  (-7.0856_-0.1082) 

  ccV1 1 0.00205 0.0010 0.0387 1.002 (-0.0001_0.0040) 

         

Obs. 28 

ASE 0.231 

MISC 0.286 

Prediction Accuracy Performance 

Accuracy Rate with Training Sample (N=28) Accuracy Rate with Original Sample (N=874) 
Prediction Accuracy  

for 10 Stratified 
Random Samples 

FN
4
 TN

5
 FP

6
 TP

7
 AR

8
% TPs

9
 FPs

10
 TNs

11
 FNs

12
 AR

13
% Mean%

14
 S.D.

15
 

4 10 4 10 71.4 5 133 727 9 83.8 40.5 2.1 
1 Standard Error; 2 Odds Ratio Estimate; 3 95% Confidence Interval; 4 False Negative; 5 True Negative; 6 False Positive; 7 True Positive; 8 
Percentage of Accuracy Rate; 9 True Positives; 10 False Positives; 11 True Negatives; 12 False Negatives; 13 Percentage of Accuracy Rate; 
14 Mean of Prediction Accuracy for the 10 stratified random samples; 15 Standard Deviation for the Prediction Accuracy of the 10 stratified 
random samples; *Statistically significant at 10% level. 
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The logistic regression equation developed for Model-III-T is presented next. 

                  
                          

                            
 

Equation 7.3 

The signs of coefficient estimates are directly related to their influence on probability of the target 

being modeling. As can be observed in Table 7.5, the sign of ccV1 estimate has a positive sign, 

showing that its effect is associated with an increase probability for FatalSIKV2. Graphical 

representation for this Model-III-T equation (Equation 7.3) is illustrated in Figure 7.3, showing that 

as the engine size of vehicle V1 increases, it raises the probability of severe injuries in the 

occupants of vehicle V2 also increases.  

 

Figure 7.3 – Estimated probability of a serious injury and/or fatality among the occupants of vehicle 

V2 with the engine size of the opponent vehicle, ccV1, in two-vehicle collisions, using Model-III-T.  

 

Similarly to Model-II-T, Model-III-T shows the effect of a predictor that seems to express the risk 

imposed by the other vehicle involved in the collision, ccV1. As previously mentioned, Model-III-T 

fining supports other research that had identified the size of the opponent vehicle (which 

encompasses vehicle mass, engine size and length) as a risk factor for serious injuries and/or 

fatalities among the occupants of the other vehicle involved in the collision [53, 60, 87, 145].  

The assessment of the Model-III-T shows a great performance, as observed in Table 7.5. The 

accuracy rate with the training sample, correctly predicted 71.4% of the cases. In the training 

sample, the model correctly predicted 10 severe crashes (TP) and 10 non severe crashes (TN). 

When assessing the performance of this model within the original crash sample, it shows good 

prediction accuracy, 83.8%. Based on the 874 collisions observations, it is important to notice that 
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Model-III-T was able to predict 5 out of the 14 severe cases of the original sample containing only 

1.6% cases for severe crash outcomes in vehicle V2. In addition, the model correctly predicted 727 

of the non-severe cases out of the observed 842 non-severe cases in the entire sample. As 

expected, the model predicted right more severe crashes in the training sample, than in the original 

dataset, since the first was a balanced dataset; the second was the original sample that was highly 

imbalanced. As a validation approach for Model-III-T, the evaluation performance for the 10 

stratified random samples was also suitable; showing a mean prediction accuracy rate of 40.5% 

(S.D. 2.1). 

 

Following the discussion of Model-II-T for FatalSIKV1 prediction and Model-III-T for FatalSIKV2, 

the consistency of both models is analyzed. As previous explained each of these models targets to 

predict the probability of a serious injured and/or killed in the subject vehicle, by modeling this 

vehicle crashworthiness simultaneously with the opponent vehicle risk. Both models found the 

engine size of the opponent vehicle as a significant factor contributing towards an increased risk of 

severity injuries sustained by the occupants of the vehicle being analyzed. Figure 7.4 integrates the 

effect of engine size in crash severity risk for each vehicle involved in a two-vehicle collision. 

 

Figure 7.4 – Effect of engine size of the opponent vehicle in the probability of a serious injury 

and/or fatality among the occupants of vehicle being analyzed, in two-vehicle collisions.    

 

In Figure 7.4, the logit curve for Model-II-T is presented in red and denotes an increasing in crash 

severity risk for V1 as the engine capacity of the other vehicle involved increases. Whereas, for 
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Model-III-T several curves illustrates how crash severity risk for V2 varies with several categories of 

opponent vehicles engine size, ccV1 in series. It must be noticed that, since this methodology 

strategy design takes into account not only own vehicle protection, but simultaneously, the risk 

caused by the opponent vehicle, it cannot be “directly” compared with previous research because 

in the literature few studies have considered the effect of the other vehicle involved and those did 

not integrate simultaneously each individual vehicle contribution. However, the findings for these 

models support previous work, that in a two-vehicle collisions severity risk rises with size and mass 

of the other vehicle involved [53, 60, 87, 145].  

 

Regarding to Model-II-T and Model-III-T fit statistics to the crash sample, it was notice that the first 

model the parameters were significant at 10% level, even though it had a larger training sample 

size (N=42). On the other hand, for  Model-III-T, the parameters were found significant at 5% 

significant level, even though the training sample was very small, only 28 observations. Despite of 

the smaller sample size (with only 14 severe events for the target being predicted), Model-III-T 

showed a lower misclassification rate than Model-II-T, (0.286 and 0.357, respectively). Even 

though both models showed a good prediction performance, care must be present in the 

interpretation of these models because logist regression modeling was performance with very small 

samples.  
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7.4 Concluding Remarks 

This Chapter presented logistic regression results to examine the probability of a serious injured 

and/or killed as an outcome of two-vehicle collisions. Logistic regression performed with the original 

imbalanced sample, Imbalanced-Model-T, revealed poor accuracy performance (with none true 

positive (TP) for crash severity prediction). On the other hand, re-sampling procedure adopted for 

the logistic modeling (by randomly removing the majority class of non-severe cases to a balanced 

proportion of severe cases) has resulted in improvements in TP without increasing significantly the 

FP. Some training information is lost, but it is counterbalanced by the improvements in the minority 

class accuracy, i.e, crash severity prediction. 

Following logistic models presentation, the Model-IA-T is recommended to predict the overall crash 

severity following a collision. Regarding to Model-IA-T findings, it shows that when a collision 

involves an older vehicle, the risk of a severe crash outcome decreases. Newer vehicles models 

are known to show improved crashworthiness, however they also have been linked to impose 

higher “agressitivity” towards the occupants of the other vehicle involved in the collision. As 

expected, head-on collision contribute to more severe injuries levels. When analyzing the risk of 

severity to each individual vehicle involved in two-vehicle collisions, Models-II-T and Models-III-T 

are recommended. Model-II-T targets the prediction of a serious injuries and/or fatality for 

occupants of vehicle V1. Model-III-T targets the prediction of a serious injuries and/or fatality for 

occupants of vehicle V2. Both models are consistent and both reinforce the finding that the engine 

size of the opponent vehicle involved in the collision is a significant variable in explaining crash 

severity suffered by the occupants of the vehicle being analyzed.  
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CHAPTER 8  

VEHICLE EMISSIONS MODELING 

 

 

 

 

 

 

 

 

This Chapter aims at the analysis of the vehicle’s emissions and fuel consumption. Based on this 

analysis, the vehicle environmental performance will be developed for further application in vehicle 

integrated analysis presented in Chapter 9. 

Firstly, it briefly summarizes the methodology applied for pollutant emissions and fuel consumption 

estimation. Secondly, it centers on pollutant vehicle’s emissions modeling. It begins by explaining 

the design methodology to fit emissions estimations results to linear regression models. Then, it 

highlights the most relevant trends for pollutant vehicles’ emissions and fuel use for the vehicles 

included in the crash database. Thirdly, it presents vehicle’s emissions models for selected 

pollutants. Main remarks present key findings for vehicle’s emissions models developed based on 

the sample explored in this Thesis.  
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8.1 Methodology  

This section summarizes the methodology applied to estimate pollutant vehicle emissions and fuel 

consumption for the vehicles included in the crash dataset. For the purpose of this research, the 

CORINAIR methodology was applied [147], which is based on the European emission standards 

that are related to the acceptable limits for emissions of new vehicles sold in EU member states 

Since the crashes in the sample occurred in main roads and motorways, it was assumed that 

engines were in stabilized operation. Thus, CORINAIR methodology was used to estimate “hot” 

emissions, which better reflect the driving conditions for the vehicles registered in the crash dataset 

since the majority of sample represents highway or motorway driving. For the environmental 

performance analysis of the vehicles included in the crash database, carbon monoxide (CO), 

nitrogen oxide (NOx) and particle matter (PM) were selected. In addition to the above pollutants, 

CORINAIR methodology was also applied to estimate the fuel consumptions, based on the CO2 

emissions. The PM emissions factors refer to PM2.5 coarse fraction. This choice is justified because 

this fraction travel deeper in the lungs and are more toxic, so these can have worse health effects. 

 

8.1.1 Vehicles classification 

As explained earlier in Chapter 3, this research focuses exclusively on the analysis of crash reports 

involving light vehicles. For the estimations of emissions and fuel consumption for light passenger 

vehicles (LPV) and light duty vehicles (LDV) based on CORINAIR methodology, the following 

inputs were used: 

- Vehicle category; 

- Fuel type; 

- Engine size category; 

- Technology level (Emission standard);  

- Average speed; 

- And driving share.  

The above inputs are explained as follows. 

 

Henceforth, CORINAIR methodology was applied to the following two vehicles categories in the 

dataset: LPV and LDV which weight is lower than 3.5 tons. For these vehicles fuel type are 

subdivided into: gasoline (G), diesel (D), liquefied petroleum gas (LPG) and hybrid (H). The LPV 

with gasoline are then subdivided by the engine size (c.c.) into three categories, whereas LPV with 

diesel are subdivided into two categories.    

Following CORINAIR methodology, road vehicles are usually classified according to their level of 

emission control technology, which is actually defined in terms of the pollutant emission legislation 

with which they are compliant. Table 8.1 summarizes the vehicle technology (emissions standards) 

based on CORINAIR methodology [147] used in this work. The nomination “ECE” and “Euro” 
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reflect the legislative regulation, and “Improved conventional” or “conventional” refer to applied 

technology. In 1992, “Euro” standards became mandatory in all Members States.  

 

Table 8.1 – Vehicles legislation technology adopted by CORINAIR [147].  

Vehicle Category Fuel type Engine Size Legislation/Technology 

Light Passenger Vehicle 

Gasoline 

 
<1.4L 
1.4-2.0L 
>2.0L 

ECE 15/00-01 

ECE 15/02 

ECE 15/03 

ECE 15/04 

Improved conventional 

Euro 1  91/441/EEC 

Euro 2 94/12/EC 

Euro 3 98/69/EC Stage 2000 

Euro 4 98/69/EC Stage 2005 

Euro 5 EC 715/2007 

Diesel 
<2.0L 
>2.0L 

Conventional 

Euro 1 91/441/EEC 

Euro 2 94/12/EC 

Euro 3 98/69/EC Stage 2000 

Euro 4 98/69/EC Stage 2005 

Euro 5 EC 715/2007 

LPG - 

Euro 1 91/441/EEC 

Euro 2 94/12/EC 

Euro 3 98/69/EC Stage 2000 

Euro 4 98/69/EC Stage 2005 

Euro 5 EC 715/2007 

Hybrid <1.6L Euro 4 98/69/EC Stage 2005 

Light-duty vehicles 

Gasoline <3.5t 

Conventional 

Euro 1  93/59/EEC 

Euro 2 96/69/EC 

Euro 3 98/69/EC Stage 2000 

Euro 4 98/69/EC Stage 2005 

Euro 5 EC 715/2007 

Diesel <3.5t 

Euro 1  93/59/EEC 

Euro 2 96/69/EC 

Euro 3 98/69/EC Stage 2000 

Euro 4 98/69/EC Stage 2005 

Euro 5 EC 715/2007 

 

Euro 1 was officially introduced by Directive 91/441/EEC in July 1992. In the subsequent years, 

new legislatives steps leads to Euro 2 to Euro 5 and Euro 6, with more restrictions in emissions 

levels and succeeding pollutants reductions. Euro 5 emissions standards came into effective in 

September 2009, leading to further 25% reduction NOx, compared to Euro 4. Euro 6 was not 

represented in the above table since the vehicle in the crash database were previous to the 

introduction of this European emission standard.  

Emissions control-technology for LDV follows the technology for LPV with a delay of one or two 

years. For LPG category, vehicles were grouped as conventional for those vehicles prior to 

91/441/EEC. Otherwise, the same Euro norms were applied as those relating to gasoline and 

diesel cars. The legislation classes for hybrid vehicles comply with the Euro 4 and Euro 5 European 

Emissions Standards [147]. 
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Another, required input in the CORINAIR methodology is the average speed, however, since the 

vehicle real speed is unknown, the legal speed limit was used as a proxy of vehicle speed (see 

more details on Chapter 4). The speed profile was obtained since the police reports provide 

information for the road name and road type. Input speed values were: 50 km.hr
-1

, 90 km.hr
-1

, 100 

km.hr
-1

 and 120 km.hr
-1

 for vehicles involved in crashes at: urban roads, main roads, 

complementary roads and motorways.  

 

8.1.2 Emission and fuel consumption estimation  

Vehicle emissions are strongly dependent on the engine operation conditions. Emissions depend 

on several factors, such as: distance that the vehicle travels, its speed, road type, vehicle’s age, 

vehicles engine size and weight. Vehicle speed has a major influence on exhaust emissions as well 

as in the fuel consumption. Equation 8.1 represents the formula for estimating hot emissions (g.km
-

1
) for a generic pollutant [147]. 

                             (
 

  
)                                                    (

  

       
)  

Equation 8.1 

The CO2 was obtained directly from the fuel consumption. Further detail for each selected pollutant 

and its emissions factors based on the vehicle category covered in this study are found in the 

CORINAIR methodology [147]. 

 

8.1.3 Modelling vehicle’s environmental performance  

Subsequently, to the application of CORINAIR for emissions estimation, the obtained data was fit in 

order to develop models for further application in vehicle’s environmental performance, as part of 

the vehicle’s integrated analysis, presented in Chapter 9.  

Although CORINAIR methodology is valuable, it requires specific iterations and are time 

consuming. Therefore, vehicle’s environmental performance evaluation would benefit from having 

access to straight forward mathematical equation models for emissions estimation. As a starting 

point, emissions data was obtained for the 2,248 vehicles included in the dataset. Following, for 

each vehicle category and fuel type (section 8.1.1) a methodology approach was used to develop 

estimation models for the selected targets: CO2, CO, NOx and PM and fuel consumption, using as 

inputs vehicle’s engine size category, speed and Norm, among others. Since those targets 

pollutants are continuous variables, linear regression was selected for modelling [146].  

A linear regression model is described by the following equation: 

                          Equation 8.2 
 

Where Y is the response variable (target being modelling), β0 is the intercept, β1 is the estimate for 

the parameter x1, and so one. The linear regression is broadly used for estimations modelling of 
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continuous targets. Since all these targets (selected air pollutants) were continuous variables, 

linear regression modelling was selected [84, 89, 146]. The estimation modelling with linear 

regression approach is explained next, through step 1 to step 4. Models were developed using 

SAS® v9.2 and SAS®Enterprise Miner™7.2 software [84, 89, 117]. 

 

Step 1: Setting Emissions Training Database 

At the original emissions estimation database covering a total 2,248 vehicles, some vehicles’ 

categories were represented by few observations and where be removed in order to avoid bias 

[146]. Hence, models training were performed based on a database which covered the emissions 

estimation values for 2,236 vehicles.  

 

Step 2: Reorganizing Training Database by Vehicle Category and Fuel Type 

Training data was organized by vehicle category and fuel type. Hence the training database from 

step 1 (N=2,236 vehicles) was split yielding to the following groups:  

- Light Passenger Gasoline Vehicles (LPGV): N=889 vehicles; 

- Light Passenger Diesel Vehicles (LPDV): N=769 vehicles; 

- Light Duty Diesel Vehicles (LDDV): N=556 vehicles; 

- and Light Duty Gasoline Vehicles (LDGV): N=22 vehicles. 

The dataset referring to LDGV has only 22 vehicles and was not used due to the insufficient limited 

number of observations. Following, each dataset was addressed for model the most relevant 

pollutants associated with vehicles category. Despite of improvements due to catalytic converters, 

gasoline engines have been associated with higher CO emissions. On the other hand, diesel 

engines have been associated with significant emissions rates for NOx and PM than gasoline 

engines [125, 148]. Diesel engines generally produce larger amounts of NOx than gasoline engines 

due to higher combustion temperatures. Also, they emit greater amounts of PM. Since CO results 

from the incomplete combustion of vehicle fuels, gasoline engines emit a lighter proportion of CO 

than diesel engines, due to the lower combustion temperatures. Thus, the LPGV dataset was used 

to model CO emissions, whereas, LPDV and LDDV datasets were used to model NOx and PM 

emissions. On the other hand, for CO2 emissions modeling, the three datasets (LPGV, LPDV and 

LDDV) were used in order to address fuel consumption for those categories.  

 

Step 3: Linear Regression Modeling 

The response variables (targets) with interest for this study were: CO2, CO, NOx, and PM. The 

explanatory/predictor variables (inputs) used during the modeling stage were: engine size category 
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(cc), wheelbase (WBV1), weight (WTV1), technological level (Norm) and speed limit (SpeedLimit, 

was used as a proxy of traveling speed). For each pollutant, several candidates’ models were 

developed and the best models were selected using the goodness-of-fit measures to the three 

datasets mentioned in step 2.  

 

Step 4: Assessment of explanatory variables belonging to the model 

For the final model assessment, adjusted R-Square (Adj R-Sq) parameter was used for evaluation 

of goodness-of-fit and the analysis of the maximum likelihood estimates (AMLE) for evaluation of 

parameters and to test its statistics significance in the model [89]. As an example, the Enterprise 

Miner output for CO2 modeling based on LPGV dataset is illustrated in Figure 8.1. The analysis of 

variance and effects showed p-value<0.0001. Model fit statistics revealed Adj R-Sq explained 

94.2% of the variation in the CO2 estimations. However, the AMLE displays a non-statistically 

significant value for the parameter Euro 4 (Euro IV in the Figure 8.1), p-value <0.3799. Thus, any 

variable/parameter that is not statistically significant must be analyzed individually in order to keep 

that parameter in the model or removed it from the model. The factor that should determine 

whether an explanatory variable belongs in a model is whether the explanatory variable has a 

nonzero partial effect on “Y” in the population, which means, its population coefficient is zero [146]. 

During the modeling phase some variables were dropped from the model, those that were not 

adding useful information to the variability of the response variable [85]. Following Wooldrige, 

Tolouei and Al-Ghamdi, the observations related to LPGV with Norm 4 were dropped from LPVG 

dataset because they were not statistically significant [64, 85, 146]. The new model is displayed in 

Figure 8.2. Even though the size of the training sample was reduced (N=817), the model revealed 

good performance, with all the parameters in the model being statistically significant at 5% level, as 

observed in AMLE in Figure 8.2. In addition, Adj R-Sq (used for evaluation of goodness-of-fit) 

shows a very satisfying value, 0.9473. In fact, Adj R-Sq slightly improved after dropping Norm 4 

observations, 0.9426 and 0.9473, for model goodness-of-fit with and without Norm 4, respectively.   
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Figure 8.1 – Linear regression output for CO2 modeling with LPGV dataset using SAS®Enterprise 

Miner™7.2 software. 
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Figure 8.2 – Linear regression output for CO2 modeling following the removal of Euro 4 

observations from the LPGV dataset, obtained with SAS®Enterprise Miner™7.2 software. 

 

For CO, NOx and PM modeling, the procedure was similar. Following the optimization of the 

estimation models with removal of not statistically significant parameters, the training size datasets 

are shown in Table 8.2. The model for NOx estimation for LPDV revealed all the parameters being 

significant at 5% level, hence there was not need to remodel and therefore the training sample was 

kept at the original size for the LPDV dataset, 769 with “*” in Table 8.2.  
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Table 8.2 – Training sample size by vehicle category for selected pollutants modeling 

 

Model Dataset 
Training Sample Size (N) 

Previous  Following Optimization  

Modeling CO2 

LDGV 889 817 

LPDV 769 344 

LDDV 556 335 

Modeling CO LDGV 889 847 

Modeling NOx 
LPDV 769 769* 

LDDV 556 535 

Modeling PM 
LPDV 769 731 

LDDV 556 533 
* All the parameters were found statistically significant without need to remove any parameter from the training set. 

 

After dropping the variables that were not useful for the models, Adj R-Sq was very satisfactory for 

final models and all the parameters in the models were statistically significant. Final models are 

presented next.  

 

8.2 Results  

This section presents the most significant trends for emissions estimation of the selected pollutants 

and fuel consumption for the crash dataset (see section 8.2.1). Then, it presents the results for 

fitting the emissions database into linear regressions models for CO2 and local pollutants emissions 

estimation, as basis for vehicle’s environmental performance analysis.   

 

 

8.2.1 Emissions and fuel consumption trends 

Based on the crash sample explored in this study with 2,248 vehicles, trends on the emissions for 

the selected pollutants using CORINAIR methodology can be summarized as follows. The mean 

CO emissions were higher for gasoline than diesel engines: 2.07 g.km
-1

 and 0.40 g.km
-1

, for a 

sample with 914 gasoline vehicles (LPGV and LDGV) and 1,325 diesel vehicles (LPDV and LDDV), 

respectively. On the other hand, PM emissions were significantly higher for diesel than gasoline 

engines, 0.109 g.km
-1

 and 0.002 g.km
-1

, respectively. For NOx emissions estimation, diesel engines 

also revealed a mean value higher than for gasoline engines, 1.04 g.km
-1

 and 0.53 g.km
-1

, 

respectively. Regarding to CO2 emissions, it appears to be higher for the diesel engines than for 

gasoline engines in the crash sample, 241 g.km
-1

 and 164 g.km
-1

, respectively. The effect of engine 

size is relevant for the interpretation of these results in the crash sample, since diesel vehicles has 

a higher engine size. The mean engine size was: 1912 cm
3
 (S.D. 471) and 1309 cm

3
 (S.D. 295) for 

the 1325 diesel vehicles and 914 gasoline vehicles in the sample. While the majority of gasoline 

vehicles in the sample fells in the category c.c.<1400 cm
3
, diesel vehicles are very closer to 2000 

cm
3
, and the disproportion of engine size may affect CO2 emissions results for the sample used in 

this study.  
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8.2.2 Environmental performance analysis  

This section presents the results for fitting the emissions database into linear regressions models. 

Models equations are presented for each selected pollutant based on vehicle category. Emissions 

models are identified as “Model-E-i+1” were “E” stands for emissions and “i+1” identifies the model 

number. Results for models fit statistics and analysis of maximum likelihood estimates are 

summarized in Table 8.3. Though, engine size categories appear in L units in the CORINAIR 

methodology, in this study be consistent with previous sections, engine size categories were 

converted to cm
3
 for model equation presentation.  
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Table 8.3 – Emissions estimations models results for selected pollutants using a linear regression approach. 

Model Target Vehicles 
Category 

Model Fit Statistics 
Analysis of Maximum Likelihood Estimates 

Pr>F Adj R-Sq ASE 
M

O
D

E
L

-E
-1

 

CO2 LPGV <0.0001 0.9473 18.54 

 

M
O

D
E

L
-E

-2
 

CO2 LPDV <0.0001 0.8643 145.34 

 

M
O

D
E

L
-E

-3
 

CO2 LDDV <0.0001 0.9877 68.75 

 

M
O

D
E

L
-E

-4
 

CO LPGV <0.0001 0.9762 0.03 
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Model Target 
Vehicles 
Category 

Model Fit Statistics 
Analysis of Maximum Likelihood Estimates 

Pr>F Adj R-Sq ASE 
M

O
D

E
L

-E
-5

 

NOx LPDV <0.0001 0.7941 0.01 

 

M
O

D
E

L
-E

-6
 

NOx LDDV <0.0001 0.7609 0.04 

 

M
O

D
E

L
-E

-7
 

PM LPDV <0.0001 0.8910 0.0001 

 

M
O

D
E

L
-E

-8
 

PM LDDV <0.0001 0.8639 0.0001 
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8.2.2.1 Models for CO2 Emissions Estimation  

Model-E-1 estimates the emissions for CO2 from LPGV. As observed in Table 8.3, the AMLE 

shows that for LPGV category older vehicles models (ECE15-00/04) and/or driving at higher 

speeds (120 km.h
-1

) significantly contribute to increase CO2 emissions, estimates 8.7 and 21.6, 

respectively. On the other hand, for the same vehicle category, when models have a small engine 

size (c.c.<1400 cm
3
, labelled as category cc<1.4L in Table 8.3), CO2 emissions decrease 

considerably, due to the parameter value of 23.8. Also, all these predictor variables in the model 

were statistically significant, p-value<0.0001. The linear regression equation developed for Model-

E-1 is presented below. 

 

         
   

                                              
                                                                
                                                             
                                                  
                     

Equation 8.3 

 

Where “if” implies a condition to be satisfied by the categorical variable (model parameter), 

otherwise the term in the equation will be zero. Since the equations were developed for individual 

vehicles, only one category for each component (Norm, engine size and speed) can be satisfied. 

Additional information for Model-E-1 is provided in Appendix 10. The following example is 

demonstrated. Considering a light passenger gasoline vehicle with 1300 cm
3
, complying with Norm 

2 and driving at 120 km.h
-1

, Equation 8.4 will be simplified as: 

                                                                            

Thus for the vehicle in this example, CO2 emissions would be estimated of 188.2 g.km
-1

.  

 

Model-E-2 estimates CO2 emissions for LPDV. As shown in Table 8.3, for LPDV category earlier 

technological legislation (conventional) and/or driving at higher speeds (120 km.h
-1

) expressively 

increase CO2 emissions. On the other hand, these vehicles models when in the smaller engine size 

category (c.c.<2000 cm
3
), CO2 emissions decrease significantly. Also, all model predictor variables 

were statistically significant, p-value<0.0001. The linear regression equation developed for Model-

E-2 is presented underneath. 

 

         
                                                    

                                            
                          

 

Equation 8.4 
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Model-E-3 estimates CO2 emissions for LDDV. As shown in Table 8.3 for LDDV category earlier 

technological level (conventional) and/or driving at 120 km.hr-1 expressively increase CO2 

emissions. On the other hand, for the same category, vehicle with smaller engine size (c.c.<2000 

cm
3
) and/or driving slow (50 km.h

-1
) significantly contribute towards CO2 emissions reduction. 

Model-E-3 equation is as follows. 

 

         
                                                   

                                               
                                               
                                                
                          

Equation 8.5 

 

Although in this Chapter, emissions estimation models are presented for LPVG, LPDV and LDDV, 

in the following Chapter, vehicle’s safety, fuel efficiency and green integrated analysis is presented 

for LPGV and LPDV. Thus, Model-E-1 and Model-E-2 were applied for the evaluation of these 

vehicles’ fuel efficiency.  

 

8.2.2.2 Models for local pollutants emissions estimation     

This section presents the results for fitting the local pollutants emissions database into linear 

regressions models. Model-E-4 estimates CO emissions for LPGV. Table 8.3 shows that for LPGV 

category earlier technological level (ECE15-00/04) yields to an increase in CO emissions. All these 

predictor variables in the model were statistically significant, p-value<0.0001. Model-E-4 equation 

is presented below. 

 

        
                                               

                                              
                                              
                                                  
                     

 

Equation 8.6 

Model-E-5 estimates NOx emissions for LPDV. Table 8.3 shows that for LPDV category earlier 

technological level (Conventional) and/or driving at 120 km.h
-1

 increase NOx emissions. As 

expected, when driving at lower speed (50 km.h
-1

) the emissions estimations for NOx decrease. All 

predictor variables in the model were statistically significant, p-value<0.0001. Model-E-5 equation 

is next. 
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Equation 8.7 

 

Model-E-6 estimates NOx emissions for LDDV. The analysis of maximum likelihood estimates in 

Table 8.3 confirms that for LDDV category, earlier technological level (conventional and Euro 1) 

and/or driving at 120 km.h
-1

 contribute towards an increase of NOx emissions. On the other hand, 

for those LDVD, newer models with Euro 4 and/or when driving slow (50 km.h
-1

), the emissions 

estimations for NOx decrease. All predictor variables in the model were statistically significant, p-

value<0.0001. Model-E-6 equation is below. 

 

          
                                                   

                                               

                                               

                                               

Equation 8.8 

 

Model-E-7 estimates PM emissions for LPDV. The analysis of maximum likelihood estimates 

shows that convectional vehicles had the biggest impact in PM emissions. This result was 

expected since vehicles with earlier technological level were not equipped with particle filters. On 

the other hand, after Euro 2, there were refinements of fuel injection and LPDV started to be 

equipped with particle filters, thus contributing to reductions in PM, as observed in Table 8.3. Also, 

all these predictor variables in the model were statistically significant, p-value<0.0001. Model-E-7 

equation is below. 

 

        
                                                  

                                               
                                               
                     

Equation 8.9 

 

Model-E-8 estimates PM emissions for LDDV, as shown in Table 8.3. Similarly to LPDV, for LDDV 

models, earlier technological level (conventional) increases PM emissions. In addition, driving at 

120 km.h
-1

 also shows a positive effect in PM emissions. On the other hand, newer LDDV models 

with Euro 4 contribute towards to PM reductions. Predictor variables in the model were statistically 

significant, p-value<0.0001. Model-E-8 equation is below. 
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Equation 8.10 

 

8.2.2.3 Assessment of vehicle’s emissions estimation models     

 

As previously mentioned (in section 8.2.2.1), since in the vehicle’s safety, fuel efficiency and green 

emissions analysis presented in Chapter 9, only light passenger vehicles are discussed, the 

assessment of models goodness-of-fit is presented for LPGV and LPDV. For LPGV, CO2 and CO 

emissions estimation based on Model-E-1 and Model-E-4 explained 94.7% and 97.6% of data 

variability, respectively as shown in Table 8.3. For LPDV, Model-E-2 showed a good fit to the CO2 

emissions estimation data, with Adj R-Sq explaining 86.4% of the data, Table 8.3. Also for those, 

NOx and PM emissions estimation based on Model-E-5 and Model-E-7 explained 79.4% and 

89.1% of data, respectively. All these models revealed very satisfying results for goodness-of-fit, 

and will be further apply for vehicle’s environmental performance evaluation. Although goodness-

of-fit models results are very promising, they are based on the crash sample explored in this study 

with CORINAIR methodology. If a different sample was used, or if more vehicles information would 

be added to the crash database, the emissions estimation models may change. More information 

for the emissions models is found in Appendix 10. 
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8.3 Concluding Remarks  

In this Chapter, CORINAIR methodology was used to develop an emissions estimation database 

for the vehicles included in the crash sample explored in this study. Then, the emissions data were 

fit into linear regression models. The models were developed to estimate the most relevant 

selected pollutants for gasoline and diesel vehicles. Emissions estimation models revealed very 

satisfactory results for goodness-of-fit, as summarized next. For light passenger gasoline vehicles, 

CO2 and CO emissions estimation models, showed an adjusted R-square explaining 94.7% and 

97.6% of the data emission, respectively. For light passenger diesel vehicles, CO2, NOx and PM 

emissions estimation models, showed adjusted R-square values explaining 98.8%, 79.4% and 

89.9% of the data, respectively. Thus, the developed models are helpful for further application on 

the vehicle’s environmental performance evaluation, which is part of the vehicle’s integrated 

analysis in Chapter 9.  

Based on the developed emissions estimation models, its predictor variables and its estimate 

values, the following statements can be drawn, focusing the effect of model predictor variables 

(sign and magnitude of the predictor estimate) has on the model response, air pollutant. For all the 

selected pollutants, CO2, CO, NOx and PM emissions models for gasoline and diesel engines there 

is an increase of these pollutants emissions for earlier technological levels (as shown by the 

positive sign associated to the former emissions regulation). Driving at higher speeds (120 km.h
-1

) 

contributes to a general increase for all the above air emission pollutants and fuel consumption. 

NOx emissions models for diesel engines showed that earlier technology level (Conventional) 

contribute to higher emissions, because vehicles were not equipped with emissions control 

systems, such as exhaust gas recirculation and diesel oxidation catalyst. PM emissions models 

had identified vehicles complying with earlier technological levels (Conventional and Euro 1) as 

contributing to a significant increase on particulate matters, because few vehicles were equipped 

with particle filters. 
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CHAPTER 9  

INTEGRATED ANALYSIS OF VEHICLE’S SAFETY, 

EFFICIENCY AND GREEN PERFORMANCE 

 

 

 

 

 

 

 

 

The main goal of this Chapter is to present a methodology which combines the vehicle’s safety and 

environmental evaluation into an integrated analysis in order to provide a rate classification. SEG 

(for Safety, Fuel Efficiency and Green) is the integrated indicator that was developed. This chapter 

combines the results from Chapters 3, 6, 7 and 8 and is organized as explained next. First, the 

methodology to develop the integrated analysis methodology is explained. Second, the results for a 

scenario base analysis are presented. Third, final combined score, SEG itself, is discussed for 

several vehicles categories. Finally, the most relevant findings are highlighted. 
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9.1 Methodology 

SEG integrated analysis examines the trade-off between a vehicle’s safety and its environmental 

performance. As will be explained in this section the SEG methodology was designed to explore 

the conflict that apparently seems to exist between larger and heavier cars with smaller and lighter 

cars’ safety and environmental performances. Bigger and heavier cars are considered safer but 

they use more fuel and emit more CO2 among other air pollutants. On the other hand, smaller, 

lighter cars are more affordable, they use less fuel, and thus, they earn higher environmental 

performance, but they could do a relative poor job of protecting their occupants. To examine this 

potential conflict, SEG rates the vehicle performance for each domain: safety, fuel efficiency and 

emissions. Figure 9.1 illustrates the basic steps of SEG methodology overview for each of those 

three domains.  

 

Figure 9.1 – SEG methodology overview. 

 

As shown in Figure 9.1, safety analysis follows eight basic steps which comprise the probability of 

the vehicle being involved in a single-vehicle crash and in a collision, step 1 “S1” and step 2 “S2”, 

respectively. For two vehicle collisions, the probability of the vehicle being analyzed to be involved 

with a counterpart vehicle with an engine size category is calculated, “S3”. Following, the risk of 

severe crash outcome is evaluated for the crashes were only one vehicle is involved in the crash, 

“S4” and for the collisions, where the vehicle is considered to be vehicle V1 and as V2, steps “S5” 

and “S6”, respectively. Following, in step 7, “S7”, the vehicle overall safety score is calculated 

based on each safety component derived from the steps “S4-S6”. Vehicles’ fuel efficiency analysis 

covers three basic steps: mainly estimation of CO2 emissions (g.km
-1

), evaluation and rating, 

represented by the steps “S1”, “S2” and “S3”, respectively.  
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Finally, vehicle’s green emissions analysis start with emissions estimation, based on vehicle fuel 

type, as illustrated in step 1, “S1”. Following, emissions estimations are evaluated at step 2 “S2” 

and vehicle is rated for its emissions “S3”. Concluding, vehicles’ safety, fuel efficient and green 

ratings are combined into a single score.   

 

9.1.1 Methodology for a vehicle safety rating   

Safety rating measures vehicle’s crashworthiness (capability to protect vehicle’s occupants) on a 

qualitative scale. In this research, the procedure evaluates vehicle crashworthiness both in single-

vehicle and two-vehicle collisions. The overall safety score (OSS) evaluates the vehicle on both 

risk of exposure and the probability that a crash would result in a severe outcome. Therefore OSS 

is the product of the probability that certain vehicle categories would be involved in a crash and the 

probability of crash injury severity itself.  

Previous to the OSS methodology, crash severity distribution as presented earlier in Chapter 3 

must be recalled for a better comprehension of the risk of exposure in the crash sample (previously 

presented in section 4.1.1). Table 4.4, presented earlier, showed the distribution of vehicles by 

number of vehicles involved in the crash, engine size category and crash severity outcomes for 

each vehicle involved. For single-vehicle crashes, 43.8% of the vehicles fell in the engine size 

category c.c.<1400 cm
3
, and those vehicles were involved in 34.2% of the severe crashes. Also, 

43.6% of the vehicles fell in the engine size category 1400≤c.c.<2000 cm
3
 those were involved in 

47.4% of the severe crashes in the single-vehicle crashes, as shown in Table 4.4. 

For two-vehicle collisions, risk of exposure is also shown in Table 4.4. The example for vehicles in 

the intermediate engine size category is presented. In Table 4.4, 44.6% of vehicles V1 fell in the 

intermediate engine size category, 1400≤c.c.<2000 cm
3
, and those were involved in 43.8% of the 

severe collisions. Also, for vehicle V2, the intermediate engine size category was the most 

frequent, covering 43.4% of vehicle V2, but it accounted for a smaller proportion of involvement in 

severe crashes, 9.4%.  

Therefore, it must be pointed out that the risk of exposure is derived from the crash sample used in 

this study. If a different crash sample were used, the distribution of vehicle involvement by crash 

type, engine size and age would vary, and hence, the risk of exposure would be affected as well. 

The method to determine vehicle safety rating can be updated as more crashes are added to the 

current sample.  

The OSS methodology is presented as follows. The OSS has mainly three components derived 

from: the risk of an event involving the vehicle in a single-vehicle crash, the risk of a crash event in 

a collision where the vehicle being analyzed is assumed to be as vehicle V1 and the risk 

associated when the vehicle being analyzed is assumed to be as vehicle V2. OSS is performed 

following step 1 through 7, as previously summarized in Figure 9.1. An example will be provided 
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through these steps yielding the overall safety score. A vehicle one year old and with an engine 

size capacity of 1300 cm
3
 is evaluated. 

 

Step 1: Probability of involvement in a single-vehicle crash  

The first step of the OSS is the estimation of the probability of exposure as a single vehicle 

involved in the crash. Considering the vehicle mentioned above, 1 year old and 1300 cm
3
 engine, 

and based on Table 4.4, the probability of this vehicle being involved in a single-vehicle crash is 

0.028 (63/2248).  

 

Step 2: Probability of involvement in two-vehicle collisions  

Step 2 is based on the calculation of the probability of vehicle involvement in a collision and also 

the probability of involvement with a counterpart engine size category. For the two-vehicle crashes 

scenario, the probability that this vehicle is involved in a collision as vehicle V1 is 0.027, whereas 

the probability to be involved as vehicle V2 is 0.034.  

The probability that the vehicle is involved in a crash event with certain counterpart vehicle 

category is determined based on the engine size category into which falls the other vehicle 

involved in the collision. In this probability of event calculation, the engine size category for a 

counterpart vehicle being V2 is considered, as well as the engine size category for a counterpart 

vehicle being V1. The following example illustrates better the step 2 calculations using Table 4.4. In 

the scenario when the vehicle being analyzed is assumed to be vehicle V1, the probability that is 

going to be involved in a collision with a counterpart vehicle, vehicle V2, in the category of engine 

size <1400 cm
3 
is 0.146 (334)/2248. The probability that the vehicle being analyzed is involved with 

a V2 in the engine size category 1400-2000 cm
3 

is 0.169 (379)/2248, and so forth. Similarly, the 

vehicle being analyzed could be considered as vehicle V2, and thus the counterpart vehicle would 

be V1. In this scenario, the probability that V2 is involved with V1 for each engine size category: 

<1400 cm
3
, would be (346)/2248=0.1540, and so forth.  

 

Step 3: Probability of exposure-vehicle involvement in a crash with opponent category  

The probability of exposure is the product of vehicle involvement in a collision and the probability of 

involvement with a counterpart engine size category, both calculated in step 2. 

Following the example, the probability of exposure for a vehicle 1 year old with 1300 cm
3
 engine is 

calculated, as explained next. The probability that this vehicle would be involved with a counterpart 

vehicle, V2, with c.c.<1400 cm
3 

is 0.0039 (0.027x0.146). The probability that the vehicle would be 

involved with V2 with c.c.1400-2000 cm
3 

and V2 with c.c.≥2000 cm
3
, are 0.0046 and 0.0019, 
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respectively. The same procedure would be followed to cover the scenario where the vehicle being 

analyzed would be vehicle V2 and the counterpart vehicle would be V1.  

  

Step 4: Component from a single-vehicle crash event  

For the single crash scenario, as discussed in Chapter 6, the probability of a serious injury and/or 

fatality (FatalSIK”1”) is given by Model-IB-S, presented in Equation 6.2. Component for vehicle 

overall safety score from a single-vehicle event is the product of the probability estimated in step 1 

and the probability of FatalSIK.  

Following the example, the probability of the vehicle being analyzed being involved in a single 

crash is 0.028, as explained in step 1. The probability of FatalSIK using Model-IB-S for the vehicle 

being analyzed, that is 1 yr old and with 1300 cm
3
, is 0.1854. Thus, the component from a single-

vehicle crash event towards vehicle overall safety score is 0.520% (0.028x0.1854x100). 

 

Step 5: Component from vehicle involvement, as vehicle V1, in collision with opponent V2  

For a two-vehicle collision scenario, the subject vehicle can be either V1 or V2. Step 5 assumes the 

subject vehicle is V1, and opponent vehicle as V2. As explained in section 7.3, Chapter 7 for 

severe crashes prediction in two-vehicle collisions, for a subject vehicle V1 the probability of a 

serious injury and/or fatality (FatalSIKV1”1”) is given by Model-II-T, presented in Equation 7.2. 

Since V2 can fall in one of three engine size categories, this component integrates the probability 

of a crash event for: ccV2<1400 cm
3
, 1400≤ccV2<2000 cm

3
 and ccV2≥2000 cm

3
. 

Following the example, the probability for FatalSIKV1 when V2 with engine of 1300 cm
3
 is involved 

is 0.340. As the engine size of the other vehicle involved in the collision increases, the probability 

FatalSIKV1 also increases since Model-II-T depends on ccV2 engine size only. For counterpart 

vehicles with engine sizes of 1700 cm
3
 and 2500 cm

3
, the probability of FatalSIKV1 would be 

0.4428 and 0.6535, respectively. The probability of exposure was already determined in step 3. 

The contribution from this collision event is the product of the probability of exposure and the 

probability of a severe crash outcome in V1. In this case, it is 0.0039x0.340, yielding a value of 

0.135%. Similarly, the contribution from the collision event involving a counterpart vehicle with 1700 

cm
3
 is 0.199% (0.00449x0.4428x100). Finally, the contribution from a collision event involving a 

counterpart vehicle in the largest engine size category, ccV2=2500 cm
3
, is 0.125% 

(0.019x0.653x100).  

 

Step 6: Component from vehicle involvement, as vehicle V2, in collision with opponet V1  

Step 6 focuses on the subject vehicle as V2, whose safety score takes into account the probability 

to be involved with an opponent vehicle, V1. When the vehicle being analyzed is V2, the probability 
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of a serious injury and/or fatality (FatalSIKV2”1”) is given by Model-III-T, presented in Equation 7.3. 

Similarly to step 5, this component integrates the probability of a crash event involving the vehicle 

being analyzed with an opponent vehicle for each engine size category: ccV1<1400 cm
3
, 

1400≤ccV1<2000 cm
3
 and ccV1≥2000 cm

3
. 

Following the example, the probability for FatalSIKV2 the opponent vehicle has engine size of 1300 

cm
3
 is 0.2825. For opponent vehicles with engine sizes of 1700 cm

3
 and 2500 cm

3
, the probability 

of FatalSIKV2 would be 0.4720 and 0.8217, respectively. The probability of exposure was already 

determined in step 3. The contribution from this collision event is the product of the probability of 

exposure and the probability of a severe crash outcome in V2. The collision with a V1 in the 

category of c.c.< 1400 cm
3
, is 0.147% (0.0052x0.2825x100). The collision with a V1 in the category 

of 1.4≤c.c.< 2000 cm
3
 is 0.277% (0.0058x0.4720x100). The collision with a V1 in the category of 

c.c.≥ 2000 cm
3
 is 0.171% (0.0021x0.8217x100).  

 

Step 7: Overall safety score   

The overall safety score is the result of steps 1 through 6. OSS includes three components scores:  

 risk associated with the vehicle being involved in a single-vehicle crash, estimated in step 

4;  

 risk associated with vehicle being V1 and involved with the tree categories of engine size 

of V2, estimated in step 5; 

 and risk associated with vehicle being V2 and involved with the tree categories of engine 

size of V1, estimated in step 6. 

Using the same example, mentioned in the above steps, the overall safety score for a vehicle that 

is with 1 yr old and with an engine size 1300 cm
3
capacity would be: 0.520% + 0.135% + 0.199% + 

0.125% + 0.147% + 0.277% + 0.175%. Thus, the vehicle will achieve a score of 1.573%.  

 

Step 8: SEG vehicle safety rating 

Two approaches were established for SEG safety rating: one is based on the overall safety score 

the other alternative is based on the vehicle severity risk score (SRS). The evaluation of 

preliminary results reveled that safety rating was very dependent on the risk of exposure, which is 

affected by the vehicle category distribution in the crash sample. SRS is part of OSS, however 

does not take into account the risk of exposure, but focuses exclusively on vehicle 

crashworthiness. SRS is calculated as the mean value for the probability of risk of severity for each 

target component: FatalSIK, FatalSIKV1 and FatalSIKV2, as the subject vehicle is considered in 

single-vehicle crash event, as vehicle V1 in a collision and as vehicle V2 in a collision, respectively.  
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SEG rating based on OSS was defined as: good, if OSS is lower than 1.99%, moderate if OSS is 

lower than 2.75% and poor if OSS is higher or equal to 2.75%. The criteria to establish the limit 

values to differentiate between good and moderate and moderate and poor safety ratings were 

established based on the maximum and minimum values of OSS using a training data scenario, 

[0.887%; 3.915%]. The lowest value, 0.887%, is associated to the vehicle with best safety 

performance, on the other hand, the highest value, 3.915%, is associated with the poorest safety 

performance for the vehicles tested with the scenario based analysis. Hence, based on the OSS 

range scale, the value of 1.99% was selected as cut off point for vehicle differentiation between 

good and moderate safety ratings. The value of 2.75% was selected as cut point for vehicle 

differentiation between moderate and poor safety ratings. As result, SEG safety rating based on 

OSS was defined as good, if OSS is lower than 1.99%, moderate if lower than 2.75% and poor if 

equal or higher than 2.75%. 

A similar criteria set was established for SRS evaluation based in its training data scenario range 

[0.457; 0.559]. SEG safety rating based on SRS was defined as: good, if SRS is lower than 

0.503%, moderate if OSS is lower than 0.521% and poor if OSS is higher or equal to 0.521%. The 

criteria to establish those values were based on the maximum and minimum values of SRS using a 

training data scenario, [0.457%; 0.559%].  

 

9.1.2 Vehicle’s fuel efficiency rating    

SEG designed methodology for vehicle fuel efficiency evaluation is based on CO2 emissions, since 

they are a direct function of vehicles fuel use [32, 147]. Vehicle fuel efficiency evaluation was 

performed following step 1 through 3.   

 

Step 1: CO2 estimation based on vehicle category 

For each vehicle category, CO2 emissions (g.km
-1

) were calculated using Model-E-1 and Model-E-

2, which were developed in section 8.2.2.1. For LPGV CO2 emissions were estimated using 

equation 8.3, whereas for LPDV, CO2 emissions were estimated using equation 8.4.  

 

Step 2: CO2 criteria for vehicle fuel efficiency rating 

The criteria to assess vehicles CO2 emissions were developed based on a recent study from Kok 

[72], in which the author published CO2 emissions by vehicle class (from mini cars to executive and 

SUVs) and fuel type from 2000 to 2010 [72]. This data was further combined to develop Table 9.1.  
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Table 9.1 – Criteria for CO2 (g.km
-1

) evaluation in the SEG vehicle efficiency rating.    

Vehicle CO2 (g.km
-1

) by year 

Category 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

LPGV 179 179 176 176 174 173 167 165 156 146 138 

LPDV 159 158 161 163 161 161 163 163 158 152 128 

 

For gasoline vehicles, the emissions values estimated from 2000 to 2004 were used to estimate an 

average CO2 emission value, 177 g.km
-1

, as shown in Table 9.1. As expected, older vehicle models 

emitted more CO2. Thus, the value of 177 g.km
-1

 was used to set the criteria for the lowest and 

middle scores for fuel efficiency differentiation. On the other hand, advanced efficiency technology 

in newer vehicles models is known to reduce CO2 emissions and fuel use. Thus, the emissions 

values from 2005 to 2010 were used to estimate the average CO2 emissions, 158 g.km
-1

, as shown 

in Table 9.1.  

For diesel vehicles the procedure was quite similar. CO2 emissions values from 2000 to 2005 were 

used to estimate the average CO2 emission value, 161 g.km
-1

, as observed in Table 9.1. On the 

other hand, the emissions values from 2006 to 2000 were combined into the average value of 153 

g.km
-1

, to differentiate a vehicle from being fuel efficient or not.  

 

Step 3: SEG vehicle fuel efficiency rating 

Vehicle fuel efficiency rating, based on estimated CO2 average values (from Step 2 of section 

9.1.2) were further explored to establish rating criteria as follows. For example, for gasoline 

engines, a vehicle will reach a good rating for fuel efficiency if the CO2 emissions are lower than 

158 g.km
-1

. A vehicle with CO2 emissions equal or above 158 g.km
-1

and lower than 177 g.km
-1

, will 

reach the moderate rating. On the other hand, a vehicle with emissions equal or above 177 

gCO2.km
-1

 will be scored as poor for fuel efficiency. A similar procedure was developed for diesel 

vehicles fuel efficiency rating, based on the estimated CO2 average values for a diesel vehicles 

fleet. Diesel engines with CO2 emissions lower than g.km
-1

 will raise a good efficiency rating, CO2 

emissions equal or above 153 g.km
-1

 and lower than 161 g.km
-1

 will reach a moderate rating and 

CO2 emissions equal or above 161 g.km
-1

 will reach a poor rating. 

 

9.1.3 Vehicle’s Green Emissions Rating   

SEG design methodology for vehicle green rating is based on the CO emissions for gasoline 

vehicles and NOx and PM for diesel vehicles. Vehicle green evaluation is described through step 1 

to step 3.   



 

 
 SEG_Integrated Analysis Results 

 

 

 

 

161 
 

Step 1: Selected pollutants estimation for each vehicle category 

For each vehicle category, air emissions (g.km
-1

) were calculated using Model-E-4, Model-E-5 and 

Model-E-7 developed in section 8.2.2.2. For LPGV, CO emissions were estimated using Equation 

8.6. For LPDV, NOx and PM emissions, estimations were obtained using Equations 8.7 and 8.9, 

respectively.  

 

Step 2: Criteria for green evaluation   

The SEG rating for green evaluation is designed using emission factors for passengers cars and 

light duty vehicles, extracted from CORINAR [147]. For the green rating criteria the emissions limits 

are established taking as reference Euro 4 and Euro 2. Euro 4 vehicles benefit from advanced 

engine technology and improvements in the after treatment monitoring (for NOx reduction and PM 

oxidation) and control [147]. Thus, Euro 4 emission factors were chosen to differentiate between 

good and moderate score. On the other hand, Euro 2 vehicles were equipped with three-way 

catalyst but they were not equipped with particle filters [147]. Thus, Euro 2 emission factors were 

chosen to differentiate between moderate and poor score.  

For gasoline vehicles, the green evaluation focuses CO emissions. As an example of green rating 

for a gasoline vehicle, let is imagining that the engine size is 1300 cm
3
. Thus, the vehicle will fell in 

the engine size corresponding to c.c.<1400 cm
3
. For this engine size category and LPGV, if the 

vehicle emits lower than 0.710g gCO.km
-1

, the vehicle is scored with good. For the same vehicle 

category, if the emissions are between 0.710 g.km
-1

≤CO<2.39 g.km
-1

, than the attributed score is 

moderate. If CO ≥2.39 g.km
-1

, than the attributed score is poor.  

For diesel vehicles, the green evaluation focuses on NOx and PM emissions, and for LPDV the 

criteria evaluation values are independent of engine size, based on CORINAR [147]. Regarding to 

NOx analysis, if emissions are lower than 0.601 g.km
-1

, the vehicle is scored with good. If emissions 

are between 0.601 g.km
-1

≤NOx<0.726 g.km
-1

, than the attributed score is moderate. If NOx ≥0.726 

g.km
-1

, than the attributed score is poor. Regarding to PM analysis, if emissions are lower than 

0.0324 g.km
-1

, the vehicle is scored with good. If PM emissions are between 0.0342 g.km
-1 

≤PM<0.0549 g.km
-1

, than the attributed score is moderate. If PM ≥0.0549 g.km
-1

, than the 

attributed score is poor.  

 

Step 3: SEG vehicle green emissions rating 

For gasoline engines, the following ranges: <0.710 gCO.km
-1

, 0.710g.km
-1

≤CO<2.39 g.km
-1

, and 

≥2.39 gCO.km
-1

, will lead to the attribution of good, moderate or poor green ratings, respectively. 

However, for diesel engines, the vehicle green final rating is the combination of NOx and PM 

emissions scores. Table 9.2 illustrates the final green rating for diesel vehicles evaluation, taking 

into account the score attributed based on NOx and PM emissions values. If a vehicle has good for 
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NOx emissions evaluation and good for PM emissions evolution, the final green score will be good. 

However, in order to render the SEG rating more demanding, the following rule was established: a 

“lower” score is dominant when combined with a “higher” score.  

 

Table 9.2 – Light passenger gasoline and diesel vehicles final green emissions rating.   

Vehicle type CO  NOx  PM  Final green rating 

Gasoline Vehicle 

Good - - Good 

Moderate - - Moderate 

Poor - - Poor 

Diesel vehicle 

- Good Good Good 

- Moderate Good Moderate 

- Poor Good Moderate 

- Good Moderate Moderate 

- Moderate Moderate Moderate 

- Poor Moderate Poor 

- Good Poor Moderate 

- Moderate Poor Poor 

- Poor Poor Poor 

 

9.1.4 SEG integrated rating   

The criteria and rating score for SEG integrated analysis are summarized in Table 9.3. The best 

rating corresponds to the brightest yellow (since yellow is the standard color for crash testing) and 

is associated with the “Good“ rating. Thus, the brightest yellow is adopted for all the three domains 

(safety, efficiency and green) reaching “Good”. The medium rating is represented by middle 

yellowish, following by orange (which denotes awareness), for “Moderate” and “Poor” ratings, 

respectively. SEG rating leads to a qualitative classification of vehicle performance for each domain 

being analyzed: safety, efficiency and green. The final output of the SEG analysis, described on 

previous sections, is a combined score which transforms vehicle SEG rating into a quantitative 

score, designed as SEG. SEG final combined score assumes two principles: 

1. On a descending order, the lowest number corresponds to a better vehicle performance, 

whereas the largest number relates to the poorest performance.  

2. The combined score for a vehicle reaching the poorest rating for all the three domains will 

end up being one, assuming that the weighting factor attributed to each domain is the 

same. 
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Table 9.3 – Ranting criteria for SEG integrated analysis based on vehicle category.   

Domain SAFETY EFFICIENCY GREEN 

Vehicle 

category 

LPV
1
 LPGV

2
 LPDV

3
 LPGV

2
 LPDV

3
 

Target OSS%
4
 SRS%

5
 CO2

6
 (g/km) CO

7
 (g/km) NOx (g/km)

8
 PM (g/km)

9
 

Evaluation 

criteria 

OSS<1.99 SRS<0.503 CO2<158 CO2<153 

c.c.< 1400 cm
3
:  CO<0.710 

NOx<0.601 PM<0.0342 1400≤cc<2000 cm
3
:  CO<0.658 

c.c.> 2000 cm
3
:  CO<0.549 

1.99≤OSS<2.754 0.503≤SRS<0.521 158≤CO2<177  153≤CO2<161  

c.c.< 1400 cm
3
:  0.710≤CO<2.39 

0.601≤NOx<0.726  0.0342≤ PM<0.0594 1400≤cc<2000 cm
3
:  0.658≤CO<2.18 

c.c.> 2000 cm
3
:  0.549≤CO<1.74 

OSS≥2.754 SRS≥0.521 CO2≥177 CO2≥161  

c.c.< 1400 cm
3
:  CO≥2.39 

NOx≥0.726 PM≥0.0594 1400≤cc<2000 cm
3
:  CO≥2.18 

c.c.> 2000 cm
3
:  CO≥1.74 

1 Light Passenger Vehicle; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Overall Safety Score; 5 Severity Risk Score; 6 Carbon Dioxide emissions in g/km; 7 Carbon Monoxide emissions in 
g/km; 8 Nitrogen Oxides emissions in g/km; 9 Particulate Matter in g/km.  
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Table 9.4 shows the conversion of SEG quantitative rating into qualitative score. Similarly to OSS, 

as SEG increases, vehicle’s performance decreases.  

 

Table 9.4 – Converting SEG quantitative rating into a qualitative score.   

SEG rating 

Qualitative Good Moderate Poor 

Quantitative 0.1 0.5 1 

 

Equation 9.1 shows the generic calculations for SEG final combined score.  

    
                    

           

 
Equation 9.1 

Where: “SR” is the safety rating , “WFS” is the weighting factor attributed to the safety rating, “ER” 

is the efficiency rating, “WFE” is the weighting factor for efficiency rating and “GR” is the green 

rating, “WFG” is the weighting factor for green rating. Since SEG aims to provide a flexible 

classification tool for vehicle performance evaluation, the weighting factor attributed to each domain 

can be changed, as illustrated in Table 1.1. In scenario 1, Sc.1, is assumed for a neutral 

user/consumer which would tend to equate each evaluation domain with the same weight, 0.333. In 

scenario 2, Sc.2, for a user more interested in vehicle safety evaluation, SEG combined score 

could be calculated given a weighting factor of 75% to the safety rating and 12.5% to efficiency 

rating and 12.5% to green rating, and so forth, as explained in Table 9.5.  

 

Table 9.5 – Weighting factors for SEG final combined score applying different users profiles  

 

User profile 

SEG final combined score 

WFs WFE WFG 

Scenarios 

Sc1. Neutral user 0.333 0.333 0.333 

Sc2. Safety-Conscious user 0.750 0.125 0.125 

Sc3. Efficiency-Conscious user 0.125 0.750 0.125 

Sc4. Eco-Conscious user 0.125 0.125 0.750 

 

The final combined score, SEG, ranges from 0.1 to 1, or 10-100%. Similarly to OSS, as SEG 

increases, vehicle’s performance decreases. A vehicle achieving a SEG rating of “Good”, for 

safety, efficiency and green performance, respectively, will lead to the quantitative scores: 0.1, 0.1, 

and 0.1, yielding a SEG of 10%, assuming that weighting factor is 0.333. On the other hand, a 

vehicle raising Poor performance for all the three domains will be scored with a SEG of 100%. 
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9.2 Results 

SEG rating results are integrated in to a scenario base analysis covering several situations. This 

scenario base was carried out to allow conducting SEG evaluation for the vehicles categories 

LPGV and LPDV, covering the three engine size categories and emissions standards from Euro 1 

through Euro 5. Based on the levels of service standards (LOS) A and F from the Highway 

Capacity Manual, two speed profiles were assumed for the Portuguese motorways: 120 km.hr
-1
 

and 60 km.hr
-1

, [149]. Whereas 120 km.hr
-1

 would represent free flow conditions, and 60 km.hr
-1

 

would represent unusual traffic conditions on motorway and/or when the driver is taking the ramp 

for exit, and the maximum allowed speed is 60 km.hr
-1

.  

The scenario base is presented as a matrix, where the variables/information added was as follows: 

vehicle category, vehicle’s engine size and age, vehicle’s Euro norm, road speed, emissions for 

selected pollutants, and vehicle’s safety analysis for vehicle involvement in a crash as a single 

vehicle and vehicle involvement in two-vehicle collisions. Since engine size affects not only vehicle 

emissions but its safety, scenarios were created to cover all engine size categories. Regarding the 

safety analysis, crash severity was estimated for the situations were only the vehicle being 

analyzed was involved in the crash event, and thus the effects of the vehicle belonging to smaller, 

medium and larger engine sizes categories are model. In addition, for a scenario where the vehicle 

was involved in a collision with another vehicle, crash severity was estimated taking into account 

the possible combinations of engine size category for the counterpart. The resulting scenario base 

matrix has 73linesx74 columns. Only selected scenarios are discussed in this section. First, SEG 

results for vehicle safety analysis are discussed. Second, SEG results for Euro 1 and Euro 5 

vehicles safety and environmental performances driving at 120 km.hr
-1

 vs 60 km.hr
-1

 are presented. 

Third, results for final combined score, SEG, are presented covering selected scenarios for 

different users and/or consumers profiles.   

 

9.2.1 Safety analysis   

Vehicle safety score is presented for both alternative measures: SRS and OSS, (as explained in 

section 9.1.1, step 8). SRS is the mean value for severity risk calculated for each target 

component, FatalSIKV1 and FatalSIKV2. On the other hand, OSS is based on a conditional 

probability that takes into account the risk of a serious and/or fatality in the vehicle being analysed 

and also the risk of exposure to the crash event for the vehicles categories involved. For the final 

combined score, vehicle safety rating is provided by OSS measure. Results for vehicle safety score 

is presented in Table 9.6. Results are presented for vehicles at each engine size category and then 

by decreasing order of vehicle age. 

Vehicle safety rating would be the same for both driving scenarios, 120 km.h
-1

and 60 km.h
-1

, hence 

results in Table 9.6 could be apply to those speed levels. It could be expected that vehicle safety 
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performance would be poor at 120 km.h
-1

, and it could, if vehicles were truly driving at 120 km.h
-1 

at 

the time of the crash. No doubt collision speed is a very important variable for crash severity 

analysis; however speed data is not available from police crash records. For vehicle’s injury 

severity risk modelling, legal speed limit was used, but this variable was not selected by the crash 

severity prediction models. Even though speed would be selected by the models, that variable 

would be a categorical variable informing on the legal speed limit only and not on vehicle’s driving 

speed at the moment of the crash.  
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Table 9.6 – SEG results for vehicle safety.   

1 Engine size of vehicle being analyzed; 2 Age of vehicle being analyzed; 3 Probability of a serious injured and/or killed in the crash involving only the subject vehicle; 4 Component associated with the risk of a single 

crash event; 5 Probability of a serious injured and/or killed in vehicle V1; 6 Component associated with the risk of V1 involvement with a counterpart with ccV2<1400 cm
3
; 7 Component associated with the risk of V1 

involvement with a opponent with 14≤ccV2<2000 cm
3
; 8 Component associated with the risk of V1 involvement with a counterpart with ccV2≥2000 cm

3
; 9 Probability of a serious injured and/or killed in vehicle V2; 10 

Component associated with the risk of V2 involvement with a counterpart with ccV1<1400 cm
3
; 11 Component associated with the risk of V2 involvement with a counterpart with 1400≤ccV1<2000 cm

3
; 12 Component 

associated with the risk of V2 involvement with a counterpart with ccV1≥2000 cm
3
; 13 Severity Risk Score; 14 Overall Safety Score, (see ratings in Table 9.3). 

 

Subject As Single 

As V1 As V2 

Safety score Safety rating 

ccV2<1400cm
3
: 1400≤cc<2000cm

3
 ccV2≥2000cm

3
 ccV2<1400cm

3
: 1400≤cc<2000cm

3
 ccV2≥2000cm

3
 

c.c (cm
3
)
1
 Age (yr)

2
 FatalSIK

3
 CS%

4
 FatalSIKV1

5
 CS%

6
 FatalSIKV1

5
 CS%

7
 FatalSIKV1

5
 CS%

8
 FatalSIKV2

9
 CS%

10
 FatalSIKV2

9
 CS%

11
 FatalSIKV2

9
 CS%

12
 SRS

13
 OSS

14
% SRS

3
 OSS

4
 

1.3 

14 0.637 1.361 0.340 0.209 0.443 0.309 0.653 0.194 0.283 0.190 0.472 0.357 0.822 0.220 0.521 2.839 Poor Poor 

10 0.484 1.033 0.340 0.209 0.443 0.309 0.653 0.194 0.283 0.190 0.472 0.357 0.822 0.220 0.500 2.511 Good Moderate 

7 0.369 1.264 0.340 0.272 0.443 0.402 0.653 0.252 0.283 0.192 0.472 0.361 0.822 0.222 0.483 2.964 Good Poor 

4 0.267 0.749 0.340 0.135 0.443 0.199 0.653 0.125 0.283 0.147 0.472 0.277 0.822 0.171 0.469 1.803 Good Good 

1 0.185 0.520 0.340 0.135 0.443 0.199 0.653 0.125 0.283 0.147 0.472 0.277 0.822 0.171 0.457 1.573 Good Good 

 14 0.754 1.543 0.340 0.220 0.443 0.325 0.653 0.204 0.283 0.182 0.472 0.342 0.822 0.211 0.538 3.028 Poor Poor 

 10 0.620 1.269 0.340 0.220 0.443 0.325 0.653 0.204 0.283 0.182 0.472 0.342 0.822 0.211 0.519 2.754 Moderate Poor 

1.7 7 0.505 1.819 0.340 0.310 0.443 0.458 0.653 0.287 0.283 0.257 0.472 0.485 0.822 0.298 0.503 3.915 Moderate Poor 

 4 0.389 1.176 0.340 0.225 0.443 0.332 0.653 0.208 0.283 0.221 0.472 0.415 0.822 0.256 0.486 2.833 Good Poor 

 1 0.284 0.859 0.340 0.225 0.443 0.332 0.653 0.208 0.283 0.221 0.472 0.415 0.822 0.256 0.471 2.516 Good Moderate 

 14 0.903 0.643 0.340 0.074 0.443 0.110 0.653 0.069 0.283 0.068 0.472 0.128 0.822 0.079 0.559 1.169 Poor Good 

 10 0.832 0.592 0.340 0.074 0.443 0.110 0.653 0.069 0.283 0.068 0.472 0.128 0.822 0.079 0.549 1.119 Poor Good 

2.5 7 0.756 1.076 0.340 0.117 0.443 0.173 0.653 0.108 0.283 0.128 0.472 0.240 0.822 0.148 0.538 1.990 Poor Moderate 

 4 0.659 0.352 0.340 0.090 0.443 0.133 0.653 0.083 0.283 0.072 0.472 0.135 0.822 0.083 0.525 0.947 Poor Good 

 1 0.547 0.292 0.340 0.090 0.443 0.133 0.653 0.083 0.283 0.072 0.472 0.135 0.822 0.083 0.509 0.887 Moderate Good 
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The highest OSS was 3.915, associated with 7 yr vehicles and 1700 cm
3
 engines, Table 9.6. On 

the other hand, the best safety score, lowest crash severity and risk of exposure was at 0.887, for 

the newest and larger engine size vehicle category, 1 yr vehicles with 2500 cm
3
 engine. OSS 

calculations are dependent on vehicles characteristics, but also in vehicles category distribution in 

the sample. For OSS analysis, the worst safety performance was estimated for vehicles in the 

categories: 1400≤c.c.<2000 cm
3 

and 5≤Age<10 yr. The best safety performance was predicted for 

vehicles in the categories: c.c.≥2000 cm
3 
and 1≤Age<5 yr. For vehicles categories, 1400≤c.c.<2000 

cm
3 

and 5≤Age<10 yr, the probability FatalSIK was 0.505. However, these vehicles categories 

represent the highest fraction at the sample, 15.7%. On the other hand, for the categories, 

c.c.≥2000 cm
3
 and 1≤Age<5 yr, the probability FatalSIK was higher, 0.547. Nonetheless, these 

vehicles categories represent the lowest fraction at the sample, 4.0%. Based on SRS analysis, the 

highest severity risk, 0.559, was associated to the oldest vehicles in the largest engine size 

category: 14 yr and 2500 cm
3
, Table 9.6. The lowest severity risk, 0.457, was attributed to the 

newest vehicle models in the smallest engine size category: 1 yr and 1300 cm
3
. The SRS results 

clearly show that a better crashworthiness (lowest risk) is associated to the newest vehicle models, 

showing that auto-industry have achieved significant improvements during the last years. These 

results are consistent with previous work that claimed that recent cars protect their drivers better 

than older cars [49, 59-61]. During the last years the auto industry has significantly improved 

vehicles’ crashworthiness (secondary safety) but also, active safety. These technological 

developments involve the structure of the vehicles, with progressive crumple zones and a more 

rigid survival cell, restrain systems (as pretensioning seat belts) and impact absorption systems (as 

airbags) [49]. 

 

Table 9.6 further illustrates the differences in SEG safety rating based on the SRS or OSS 

measures. For instance, a vehicle with 2500 cm
3 
and 14 yr old yield a poor safety rating using SRS, 

but a good safety performance using OSS measure. As already discussed, older vehicles have 

poorest crashworthiness. In addition, larger engine size vehicles are associated to more powerful 

vehicles and they have been linked to potentiate speeding [64]. Hence, crashes involving that 

vehicle category can increases the probability that its occupants would sustain severe injuries 

and/or fatalities. In addition, they impose more risk the other vehicle involved in the collision. 

However, SEG using OSS has rating that vehicle category, c.c.≥2000 cm
3
 and 1≤Age<5 yr, with 

good safety performance, mainly because the probability that as crash is going to involved that 

category is low. Thus, the risk of exposure is reduced, and hence OSS takes benefit of that, as 

explained above. It is important to mention that, as more crashes would be added to the crash 

sample, the probability of crash severity and risk of exposure would become more stable and SRS 

and OSS would be more accurate.  
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9.2.2 Environmental performance  

Vehicle’s emissions models developed in Chapter 8 were applied to estimate emissions for 

selected pollutants based on vehicles categories and driving scenarios. Following, SEG 

methodology (see sections 9.1.2 and 9.1.3) was used in the environmental performance evaluation 

of those vehicles categories. In addition to the analysis of vehicles by engine size and age 

category, Euro Norms were added as a complement of vehicle’s age. Although environmental 

performance results were obtained for all the vehicles categories discussed in section 9.2.1, for the 

environmental analysis vehicle’s 14 yr old and 1 yr old categories are presented in order to allow 

the discussion for the earlier and most recent Euro Norms. In Table 9.7, the results for vehicle 

environmental performance are presented for selected vehicles categories complying with Euro 1 

and Euro 5 emission standards, assuming free flow (120 km.h
-1

) and congested scenarios on 

motorway (60 km.h
-1

). 

Regarding to fuel consumption and emissions, vehicles are clearly affected by the driving speed 

scenarios using the emissions estimation models. For Euro 1 vehicles driving in free flow 

conditions, 120 km.h
-1

, fuel consumption was significantly higher compared to congestion (60 km.h
-

1
). For example, fuel consumption, expressed in terms of CO2 emissions, for a gasoline vehicle with 

1.7 L and 14 yr old, was 189.11 g.km
-1

 and 167.48 g.km
-1

, at 120 km.h
-1

 and 60 km.h
-1

, 

respectively, Table 9.7. On the other hand, for 1 yr old car complying with Euro 5, in the categories 

mentioned above, fuel consumption was 159.25 g.km
-1

 and 127.65 g.km
-1

, at 120 km.h
-1

 and 60 

km.h
-1

, respectively, Table 9.7.  

Concerning emissions, for LPGV, a Euro 1 vehicle with 1.3L engine, driving at 60 km.h
-1

, CO 

emissions were lower than at 120 km.h
-1

, 2.117 g.km
-1

 and 2.874 g.km
-1

, respectively. The same 

trend was found for Euro 5 vehicles under the same driving scenarios. Comparing CO emissions 

for LPGV Euro 5 and Euro 1, there were a noteworthy reduction of this pollutant, 2.783 g.km
-1

 and 

0.885 g.km
-1

, as shown in Table 9.7 at 120 km.h
-1

. Similarly to LPGV, for LPDV emissions 

reductions were also detected from the 120 km.h
-1

 to 60 km.h
-1

 driving scenarios and when 

comparing older vehicle models with newer ones. Assuming that Euro 5 and Euro 1 vehicles were 

driving under the same conditions, a Euro 5 vehicle would emit less 0.244 NOx g per kilometres 

driven than a Euro 1 vehicle, 0.600 g.km
-1

 and 0.844 g.km
-1

, respectively  
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Table 9.7 – Selected results for a scenario using Euro 1 and Euro 5 vehicles analysis in SEG methodology.   

Subject Vehicle Characteristics Emissions (g.km
-1
) for 120 (km.h

-1
): Emissions (g.km

-1
) for 60 (km.h

-1
) Safety 

Norm
1
 

Vehicle category Subject vehicle Efficiency Green Efficiency Green  

LPGV
2
 LPDV

3
 c.c (cm

3
)
4
 Age (yr)

5
 CO2

6
 CO

7
 NOx

8
 PM

9
 CO2

6
 CO

7
 NOx

8
 PM

9
 SRS

10
 OSS

11
 

Euro 1 1 0 1.3 14 173.679 2.874 NA NA 152.042 2.117 NA NA 0.521 2.839 

 1 0 1.7 14 189.114 2.874 NA NA 167.477 2.117 NA NA 0.538 3.028 

 1 0 2.5 14 197.453 2.874 NA NA 175.816 2.117 NA NA 0.559 1.169 

Euro 5 1 0 1.3 1 146.254 0.885 NA NA 127.646 0.559 NA NA 0.457 1.573 

 1 0 1.7 1 159.529 0.885 NA NA 140.921 0.559 NA NA 0.471 2.516 

 1 0 2.5 1 166.700 0.885 NA NA 148.092 0.559 NA NA 0.509 0.887 

Euro 1 0 1 1.3 14 176.092 NA 0.844 0.152 157.518 NA 0.628 0.137 0.521 2.839 

 0 1 1.7 14 176.092 NA 0.844 0.152 157.518 NA 0.628 0.137 0.538 3.028 

 0 1 2.5 14 206.074 NA 0.844 0.152 187.500 NA 0.628 0.137 0.559 1.169 

Euro 5 0 1 1.3 1 137.792 NA 0.600 0.005 120.265 NA 0.444 0.003 0.457 1.573 

 0 1 1.7 1 150.295 NA 0.600 0.005 132.768 NA 0.444 0.003 0.471 2.516 

 0 1 2.5 1 157.049 NA 0.600 0.005 139.523 NA 0.444 0.003 0.509 0.887 

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed; 6 Carbon Dioxide emissions in g/km; 7 
Carbon Monoxide emissions in g/km; 8 Nitrogen Oxides emissions in g/km; 9 Particulate Matter in g/km; 10 Severity Risk Score; 11 Overall Safety Score; NA Means that the pollutant was not applicable to the vehicle 
category.    
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9.2.3 SEG integrated ratings  

In this section, SEG rating results are first presented as a qualitative evaluation of vehicles’ 

performance. Additionally, SEG final combined score, as quantitative score are also presented. 

Since SEG aims to provide a flexible classification tool for vehicle performance evaluation based 

on the user and/or consumer profile, vehicles’ performance is discussed based on different users 

profiles and domain interests.   

 

9.2.3.1 SEG rating  

SEG ratings results are shown in Table 9.8. When comparing Euro 5 and Euro 1 vehicles, 

significant differences in safety and environmental performances were found, as explained next.  

First results are discussed for gasoline vehicles at 120 km.h
-1

 driving scenario. In Table 9.8, for 

vehicles in the older category (complying with Euro 1) with the smaller engine size category, 

c.c.<1400 cm
3
, SEG rating was: poor, moderate and poor. On the other hand, Euro 1 vehicles with 

c.c.≥2000 cm
3
, SEG rating was: good, poor and poor. While for the smaller engine size category, 

vehicles reached moderate fuel efficiency performance, for the larger engine size, vehicles 

revealed poor efficiency performance, since fuel consumption was larger. For vehicles complying 

with Euro 5 with c.c.<1400 cm
3
, SEG rating was: good, good and moderate. For Euro 5 vehicles 

with c.c.≥2000 cm
3
, SEG rating was: good, moderate and moderate. For newer vehicles, safety 

improvements as well as environmental performance are evident. For the larger engine size 

category, vehicle’s use more fuel for driving in the same conditions, as vehicles with the smaller 

engine size. SEG results showed that newer models are safer, suggesting protecting its occupants 

in ran off road or rollover crash, but also when involved in collision with other vehicle. SEG safety 

findings supports other research that concluded that drivers of recent cars are better protected than 

drivers of older vehicles [49, 59, 61, 99]. The improved vehicle efficiency when comparing the 

earlier Euro 1 models with the recent Euro 5 models could be explained due to the fact that newer 

vehicles when introduced in the market benefit from advanced engine technology and optimize fuel 

injection leading to a better fuel efficiency. Improvements in the after treatment monitoring and 

control yield to emissions reductions in general, such as on CO emissions, contributing to 

improvements in environmental performance. These findings are consistent with previous research, 

showing that during the last years, improvements in vehicles design have contributed to improve 

green performance allowing significant reductions in exhaust emissions [37, 62]. 

Second, for diesel vehicles at 120 km.h
-1

 driving scenario, no significance differences were found 

between diesel and gasoline vehicles in the older vehicle category (Euro 1), with the exception that 

for the smaller engine size category, c.c.<1400 cm
3
, SEG rated gasoline vehicles as more efficient 

than diesel vehicles, moderate and poor, respectively. For vehicles complying with Euro 5, 

environmental performance was better than for gasoline vehicles. As mentioned, safety 
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performance is the same as for gasoline vehicles, since safety was not influenced by fuel type. For 

instance, while for gasoline vehicles, green performance was moderate for all the three engine size 

categories, for diesel ones were good for the smaller and medium size categories. SEG finding is 

consistent with previous work, revealing inherent efficiencies of diesel engines and higher energy 

content of diesel [150]. For green performance, gasoline vehicles achieved a moderate rate for all 

the three engine size categories, whereas diesel vehicles raised good performance for all 

categories. Whereas none of the gasoline vehicles reached a good rating simultaneously for all the 

three domains, diesel vehicles raised good rating for safety, efficiency and green, for the category 

c.c.<1400 cm
3
.  

Third, considering 60 km.h
-1 

driving scenario, vehicles safety rating was the same as for the 120 

km.h
-1

, as previously explained in section 9.2.1. However for vehicles environmental performance, 

technological improvements were significant. For Euro 1 vehicles with c.c.<1400 cm
3
, SEG rating 

was: poor, good and moderate, whereas for c.c.≥2000 cm
3, 

SEG rating was: good, moderate and 

poor, Table 9.8. For vehicles complying with Euro 5 with c.c.<1400 cm
3
, SEG rating was: good, 

good and good. For Euro 5 vehicles with c.c.≥2000 cm
3
, SEG rating was: good, good and 

moderate. Newer vehicles models with the smaller engine size category driving at lower speed 

yield to a good rating for all the three domains.    

 

For diesel vehicles, in general SEG ratings improved and more vehicle categories raised good 

rating for safety, efficiency and green performance simultaneously. For example, vehicles 

complying with Euro 5 and c.c.<1400 cm
3
, 

 
SEG rating was: good, good, good, for both driving 

scenarios: 120 km.h
-1 

and 60 km.h
-1

, as observed in Table 9.8. As far as safety performance, 

results were not affected neither by the scenario speed, neither by vehicle’s fuel type, since crash 

severity prediction were not function of speed neither of fuel type.  
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Table 9.8 – SEG rating results for Euro 1 and Euro 5 vehicle’s safety, fuel efficiency and green performances. 

Vehicle Rating results for 120 (km.h
-1
) Rating results for 60 (km.h

-1
) 

Norm
1 LPGV

2
 LPDV

3
 c.c (cm

3
)
4
 Age (yr)

5
 SAFETY SRS

6
 SAFETY OSS

7
 EFFICIENCY

8
 GREEN

9
 SAFETY SRS

6
 SAFETY OSS

7
 EFFICIENCY

8
 GREEN

9
 

Euro 1 1 0 1300 

14 

Poor Poor Moderate Poor Poor Poor Good Moderate 

 1 0 1700 Poor Poor Poor Poor Poor Poor Moderate Moderate 

 1 0 2500 Poor Good Poor Poor Poor Good Moderate Poor 

Euro 5 1 0 1300 

1 

Good Good Good Moderate Good Good Good Good 

 1 0 1700 Good Moderate Moderate Moderate Good Moderate Good Good 

 1 0 2500 Moderate Good Moderate Moderate Moderate Good Good Moderate 

Euro 1 0 1 1300 

14 

Poor Poor Poor Poor Poor Poor Moderate Poor 

 0 1 1700 Poor Poor Poor Poor Poor Poor Moderate Poor 

 0 1 2500 Poor Good Poor Poor Poor Good Poor Poor 

Euro 5 0 1 1300 

1 

Good Good Good Good Good Good Good Good 

 0 1 1700 Good Moderate Good Good Good Moderate Good Good 

 0 1 2500 Moderate Good Moderate Good Moderate Good Good Good 

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed;6 Safety rating using Severity Risk Score; 7 

Safety rating using Overall Safety Score. 



 

  
 SEG_Integrated Analysis Results 

 

 

 
 

174 
 

9.2.3.2 SEG final combined score 

When evaluating vehicle’s performance with SEG combined score, results are similar to SEG 

rating, although combined into a single score. Final combined score for SEG results are presented 

in Table 9.9, using similar selected scenarios to the previous ones used for SEG rating. In addition, 

based on Table 9.5 four profiles were added to differentiate vehicle performance evaluation 

according to which the user/consumer favors or not: neutral, safety, efficiency or ecology. For 

simplicity, results are shown for free flow conditions, 120km.hr
-1

, considering normal traffic 

conditions for Portuguese motorways. Although, driving scenarios in roads with different speed 

limits are possible to be considered. 

For gasoline vehicles, (LPGV), none vehicle had reached the best combined performance score, 

0.100, in Table 9.9. For newer vehicles in the smaller engine size category, c.c.<1400 cm
3
, SEG 

was very good, 0.150, either from the perspective of a safer profile, either from the perspective of 

an efficient profile (whom may be concerning with vehicles fuel consumption). For an ecologist 

user, the vehicles in this category could not be desirable since SEG was 0.400. However, for a 

neutral user, SEG of 0.234 could be accepted as a sufficient vehicle performance.  

For diesel engines, (LPDV), the newer vehicles complying with Euro 5 and in the small engine size 

category reached the best SEG performance, achieving 0.100 for all the profiles, in Table 9.9. As 

explained in section 9.1.4, the best score, maximum vehicle performance, is attributed to vehicle’s 

reaching 0.100. Thus, vehicles in this category could result very appealing for any user style: the 

safety-conscious, or eco-conscious user, and even for the neutral user. For a user to whom vehicle 

safety performance would be the most important, either the above category, either Euro 5 vehicles 

with the larger engine size category would be preferable, SEG combined scores of 0.100 and 

0.150, respectively. For example, a safety-conscious consumer interested in a larger car for work 

proposed or family comfort, and who seeks for safety as a priority, new diesel vehicles in the 

engine size category c.c.≥2000 cm
3
 would be recommend, since the SEG combined score for this 

category was 0.150. However, for a user more interested in fuel consumption, efficiency-conscious 

user, this category would not be so appealing, SEG combined score of 0.400. For the efficient user, 

whom saving fuel is the most important, to would be recommended to shows between the following 

categories: On the other hand, for an environmental-friendly user, Euro 5 vehicles in the 

intermediate engine size category, 1400 cm
3
 ≤c.c.<2000 cm

3
, would result very appealing, due to 

SEG of 0.150 for both efficiency-conscious user and eco-conscious user. Even though this vehicle 

category would save fuel and emissions, a user and/or consumers in favor of safety, could not 

consider this category so tempting due to 0.4 SEG score.  

 

As presented above, vehicle’s performance evaluation using SEG combined score offers an easier 

approach for faster user compression since vehicle evaluation is summarized into a single score. 

On a different approach, SEG rating exhibits an individualized and separated evaluation of safety, 

fuel efficiency and green performance.    
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Table 9.9 – Selected combined score results for a scenario using vehicles Euro 1 and Euro 5. 

Vehicle 

Analysis for 120 (km.h
-1
) Analysis for 60 (km.h

-1
) 

SEG quantitative score 

SEG combined score 

SEG quantitative score 

SEG combined score 

User profile User profile 

Norm
1 LPGV

2
 LPDV

3
 c.c (cm

3
)
4
 Age (yr)

5
 Safety Efficiency Green Sc1

6
 Sc2

7
 Sc3

8
 Sc4

9
 Safety Efficiency Green Sc1

6
 Sc2

7
 Sc3

8
 Sc4

9
 

Euro 1 1 0 1300 

14 

1 0.5 1 0.833 0.938 0.625 0.938 1 0.1 0.5 0.533 0.825 0.263 0.513 

 1 0 1700 1 1 1 1 1 1 1 1 0.5 0.5 0.666 0.875 0.563 0.563 

 1 0 2500 0.1 1 1 0.700 0.325 0.888 0.888 0.1 0.5 1 0.533 0.263 0.5125 0.825 

Euro 5 1 0 1300 

1 

0.1 0.1 0.5 0.234 0.150 0.150 0.400 0.1 0.1 0.1 0.100 0.100 0.100 0.100 

 1 0 1700 0.5 0.5 0.5 0.500 0.500 0.500 0.500 0.5 0.1 0.1 0.233 0.400 0.150 0.150 

 1 0 2500 0.1 0.5 0.5 0.366 0.200 0.450 0.450 0.1 0.1 0.5 0.233 0.150 0.150 0.400 

Euro 1 0 1 1300 

14 

1 1 1 1 1 1 1 1 0.5 1 0.832 0.938 0.625 0.938 

 0 1 1700 1 1 1 1 1 1 1 1 0.5 1 0.832 0.938 0.625 0.938 

 0 1 2500 0.1 1 1 0.700 0.325 0.888 0.888 0.1 1 1 0.699 0.325 0.888 0.888 

Euro 5 0 1 1300 

1 

0.1 0.1 0.1 0.100 0.100 0.100 0.100 0.1 0.1 0.1 0.100 0.100 0.100 0.100 

 0 1 1700 0.5 0.1 0.1 0.233 0.400 0.150 0.150 0.5 0.1 0.1 0.233 0.400 0.150 0.150 

 0 1 2500 0.1 0.5 0.1 0.233 0.150 0.400 0.150 0.1 0.1 0.1 0.100 0.100 0.100 0.100 

1 Emission standard norm; 2 Light Passenger Gasoline Vehicle; 3 Light Passenger Diesel Vehicle; 4 Engine size of vehicle being analyzed; 5 Age of vehicle being analyzed; 6 Neutral user; 7 Safety-Conscious  user; 8 

Efficiency-Conscious user; 9 Eco-Conscious user. 
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9.3 Concluding Remarks  

Based on the crash sample, SEG major findings for a scenario base analysis are summarized as 

follows.  

As SEG rating, gasoline vehicles in an older category (complying with Euro 1) with the smaller 

engine size category, c.c.<1400 cm
3
, achieved: poor, moderate and poor. Euro 1 vehicle with 

c.c.≥2000 cm
3
, achieved: good, poor and poor. Smaller engine size use less fuel then larger 

engines. For these vehicles, although in the same age category, vehicles with larger engine size 

revealed good safety performance, whereas vehicles in the smaller engine size showed poor 

performance. Thus, larger vehicles (probably with more weight and extra length) seemed to offer 

better protection to its occupants. Recent vehicles (complying with Euro 5) with c.c.<1400 cm
3
 

achieved a SEG rating as: good, good and moderate. Also Euro 5 vehicles, but with c.c.≥2000 cm
3
, 

SEG rating was: good, moderate and moderate. Thus, for newer vehicles, safety performance 

seemed not to be affected by engine size category, but it affects fuel consumption. When 

comparing the earlier vehicles with more recent vehicles in the crash sample, improvements in 

vehicle design, and fuel injection moved vehicles towards performance optimization. For diesel 

vehicles, SEG rating revealed better performance than the same age and engine size categories in 

gasoline vehicles. Several categories reached good rating for all the three domains, whereas for 

gasoline vehicles only Euro 5 vehicles with c.c.<1400 cm
3
 raise good ratings for safety, efficiency 

and green. As SEG final combined score, results vary between 1 to 0.100, for the worst and the 

best vehicle performance, respectively. Recent gasoline vehicles with c.c.<1400 cm
3
, achieved 

0.150, either from the viewpoint of either a safety-conscious user or a efficiency-conscious user. 

However, this vehicle evaluation under an eco-conscious user, yield to a final combined score of 

0.400, and thus, this vehicle category would not be recommended. Newer diesel vehicles 

complying with Euro 5 and in the smaller engine size category reached the best performance, 

0.100 for all the users profiles. As a conclusion, main advantages of SEG are highlighted. 

1. Is designed to be easy-to-use tool to assist consumers in vehicle’s selection based on 

users profile style: neutral, safety-conscious, efficient-conscious or eco-conscious. 

2. Allows the evaluation of vehicle’s safety performance for single-vehicle crashes and for two 

vehicle collisions, as well as the comparison between vehicles above a 113 kg weight 

range. 

3. Allows the evaluation of vehicle’s efficiency and green performance ratings in a flexible 

scale for different scenarios and taking into account vehicles’ engine size and age, 

category.  

4. Overall safety rating is for the first time provided for the analysis of single-vehicle crash but 

also for the situation where the vehicle is involved in collision. It takes into account the 

effect of vehicle characteristics in crashworthiness. In addition, it includes risk of exposure 

for the vehicle category being analysed. 
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CHAPTER 10  

CONCLUSIONS AND FUTURE WORK 

 

 

 

 

 

 

 

 

Chapter 10 presents the key concluding remarks of the present research. It is organized as follows. 

First, conclusions are presented based on the stated research objectives at the beginning of the 

dissertation. Next, the major findings are highlighted, followed by the scope and limitations of the 

methodology and findings. Finally, recommendations for future work are offered.  
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10.1 Conclusions 

The following main conclusions can be drawn in terms of meeting the research objectives, most of 

which were fully accomplished.  

 

The 1
st

 objective was to determine if vehicles characteristics affect crash outcomes, and to identify 

which factors are more significant in predicting crash injury severity. 

This objective was fully achieved and research findings have shown the impact of vehicles 

characteristics on crash injury risk. Mainly, vehicle’s age, engine size, weight, and wheelbase have 

been identified as important predictors of crash severity. These findings were further explored, as 

the subsequent objectives were accomplished, and are explained next. 

 

The 2
nd

 objective was to develop decision models to predict the probability of a serious injury 

and/or fatality in single-vehicle and two-vehicle collisions, based on the technical characteristics of 

the vehicles involved and crash information.  

Based on the original crash sample, in single-vehicle crashes the presence of alcohol and/or drugs 

was linked to a higher crash severity. A classification and regression tree analysis revealed that the 

presence of alcohol and/or drugs was the most important risk factor, followed by the age of the 

vehicle and weather conditions, yielding values of (1), (0.85) and (0.72), for variable importance, 

respectively.  

For two-vehicle collisions, the decision model for classifying overall crash severity prediction, 

expressed by the binary target FatalSIK, identified the age differential between the two vehicles 

involved as the most important factor in predicting crash severity, followed by the age of the vehicle 

V1, alcohol and/or drugs and weight of vehicle V2, yielding values of (1), (0.87), (0.64) and (0.59), 

for variable importance, respectively. When focusing  on the crash severity sustained by the 

occupants of the subject vehicle V1, expressed by the binary target FatalSIKV1,  the decision tree 

model also identified age differential between the two vehicles involved as the most important 

factor for crash severity prediction, followed by the engine size of the opponent vehicle, yielding (1) 

and (0.72) for variable importance, respectively. When analyzing the risk of severe injuries in the 

opponent vehicle, expressed by binary FatalSIKV2, the most important risk factors were: (a) 

wheelbase differences between the two vehicles involved, (b) engine size of vehicle V2 and (c) 

presence of alcohol and/or drugs, yielding values of (1), (0.94), (0.57), for variables importance, 

respectively. These findings confirm that it is important not only to consider vehicle’s individual 

characteristics but also its differential between the vehicles involved in the collision. Also, the 

variables importance within the classification tree models for FatalSIKV1 and FatalSIKV2 prediction 

suggest that vehicles’ characteristics play a more relevant role comparatively to other crash  

related variables. Indeed, it is interesting to note that the engine size of vehicle V2 was important 



 

 
Conclusions 

 

 

 

 

179 
 

for both targets prediction, thought the effect of this variable is the opposite for each target. For 

FatalSIKV1, larger engine sizes of the opponent vehicle increased the probability of FatalSIKV1. 

This suggests that occupants of vehicle V1 are at higher risk when the opponent vehicle has a 

larger engine size. On the other hand, when predicting the probability of FatalSIKV2, the 

involvement of a larger engine size of the subject vehicle, V2 in this case, in the collision were 

associated with lower probability of a serious injury and/or fatality among its occupants. This finding 

suggest that vehicles with larger engine size offer its occupants a better protection, however they 

impose higher risk for  the occupants of the other vehicle involved, occupants of vehicle V1. 

 

The 3
rd

 objective was to develop advanced logistic regression models to predict the probability of 

a serious injury and/or fatality in single-vehicle crashes and in two-vehicle collisions, based on the 

technical characteristics of the vehicles involved. 

Regarding crash severity prediction (expressed by FatalSIK) for single-vehicle crashes, Model-IB-S 

(pp 116) helps to explain the effect of vehicle’s characteristics on crash outcomes. This model 

showed that the age of the vehicle and engine size were associated with an increase probability of 

FatalSIK. Model predictors such as vehicle’s age and engine size were statistically significant, with 

p-values<0.0079 and <0.0229, respectively. The auto industry has improved not only vehicles’ 

crashworthiness (secondary safety), but also active safety, thus occupants in a newer vehicle are 

better protected than in an older vehicle. Model accuracy rate was estimated at 58.0% (S.D. 3.1)  

For two-vehicle collisions, models were developed to predict injury severity risk for each individual 

vehicle occupants taking into account not only the vehicle’s own capability to protect its occupants, 

but also the risk posed by the opponent vehicle. When predicting crash severity in vehicle V1, 

FatalSIKV1, Model-II-T (pp 128) suggests that the engine size of the opponent vehicle, vehicle V2, 

increases the probability of major injuries and/or fatalities among the occupants of the subject 

vehicle, vehicle V1. The engine size of the opponent vehicle was found to be significant at 10% 

significance level. Model-II-T yielded good performance with a mean prediction accuracy rate of 

61.2% (S.D. 2.4). When analyzing crash severity for occupants in the other vehicle involved, 

vehicle V2, Model-III-T (pp 131) predicted that the engine size of the opponent vehicle (vehicle V1) 

heightened the probability of severe injury sustained by the occupants of vehicle V2. The engine 

size of the opponent vehicle was a significant predictor, with a p-value<0.0387. Model-III-T shows 

good performance, with mean prediction accuracy rate of 40.5% (S.D. 2.1). It is clear that the 

consistency between Model-II-T and Model-III-T magnifies the effect of engine size of the opponent 

vehicle as a significant risk factor when predicting the injury severity suffered by the occupants of 

the subject vehicle. As vehicle mass is highly correlated with engine size the same conclusion 

between a collision involving a vehicle of heavier mass and crash severity to occupants of a lighter 

vehicle can be drawn.  
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Notwithstanding the constraint of using balanced training samples, final models performance was 

evaluated using the original sample, where the imbalanced severity was distributed as: 92.4% of 

non-severe crashes and 7.6% of severe crashes and 96.3% of non-severe crashes and 3.7% of 

severe crashes, for single vehicle crashes and two-vehicle collisions, respectively. Prediction 

accuracy for Model-IB-S, Model-II-T and Model-III-T using the original crash sample was as 

follows: 76.0%, 93.6% and 83.8%, respectively. Next, each model was validated using 10 stratified 

random samples, and the mean prediction accuracy for Model-IB-S, Model-II-T and Model-III-T was 

satisfactory, (58.0%, 61.2% and 40.5%, respectively).  

In summary, the proposed models’ mean prediction accuracy rates were good, simple to apply, 

provide additional understanding about vehicles’ characteristics which contribute to crash severity 

and they tend to support previous research results in the literature. Some studies seem to be more 

concerned with the predictive accuracy and the traditional validation (using new data) but fail to 

reflect other objectives such as interpretability and resource efficiency (in both time and costs), 

which also determine the empirical adequacy of different algorithms in practice. Beyond balanced 

approach, the interpretability of models presented in this research is often of even greater 

importance. Still, further analysis with larger samples size is highly recommended to confirm the 

validity of the models.  

 

The 4
th 

objective was to attempt to contrast vehicle brands insofar as their severity involvement in 

the crash sample occurred as well as within the larger Portuguese fleet. 

This analysis resulted in the identification of vehicles from Renault as the most frequent auto brand 

(14.7%) involved in collisions, among the 1,748 vehicles in the crash sample. The two-vehicle 

collisions involving a Renault vehicle resulted in almost twice the severity ratio of the overall crash 

sample, 4.8%, vs. 2.9%, respectively. At the national level, for the same time period (2006-2010) 

the overall severity ratio for two vehicle collisions was 4.8%. Thus, the above findings could not 

lead to the conclusion that the Renault brand has a poor crashworthiness performance. Instead, 

Renault’s severity ratio is exactly the same as for the Portuguese two-vehicle collisions fleet. In the 

case of single-vehicle crashes, Renault was also the most frequent, accounting for 15.8% of the 

500 vehicles in the crash sample. Renault’s severity ratio was slightly above the severity ratio of 

the crash sample, 8.3% and 7.4% respectively, which may not be statistically meaningful. However, 

this brand inference with the Portuguese entire fleet was slightly lower, 8.6% and 8.3%, 

respectively, but again probably within the margin of error. Because of the above comparisons, 

brands severity ratio inference analysis must be viewed with extreme caution, and always 

contrasted in terms of representativeness within the national fleet. In fact, different models of the 

same brand may perform differently within the fleet. 
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The 5
th

 and last objective was to develop a safety, efficiency and environmental performance 

combined score (herein termed the SEG score) to estimate the impact of vehicle characteristics 

from the perspectives of crash severity, fuel consumption and pollutants emissions, respectively.  

The accomplishment of the last objective allowed a full successful integration of all the domains 

covered by this research: vehicle’s injury severity risk prediction and vehicle’s safety performance, 

emissions estimation and vehicle’s fuel efficiency and green performance.  

The most relevant differences in vehicle’s SEG rating were found between older vehicle models 

and newer ones and between newer vehicle models using gasoline and diesel fuel, under 120 

km.h
-1

 driving scenario. For the smaller engine size category, c.c.<1400 cm
3
, SEG rating was: poor, 

moderate and poor, and good, good, and moderate (for safety, efficiency and green performance), 

for Euro 1 and Euro 5 gasoline vehicles, respectively. For the larger engine size category, 

c.c.≥2000 cm
3
, SEG rating was: poor, poor and poor and good, moderate, and moderate (for 

safety, efficiency and green performance), for Euro 1 and Euro 5 gasoline vehicles, respectively. 

When comparing vehicles in those categories, the age differential between those vehicles models 

was around 13 years. Thus, improvements in vehicle’s stiffness structure, passive safety and active 

safety features explained the good rating for vehicles safety performance for newer vehicles. 

Similarly, vehicles’ fuel injection improvements have contributed to fuel efficiency and hence, CO2 

emissions have been decreasing within same vehicle category. On the other hand, SEG rated 

older vehicles category (Euro 1) as poor in terms of green performance for all the three engine size 

categories. Euro 5 vehicles yielded moderate green performance for all the three engine size 

categories. When comparing SEG ratings for diesel with gasoline vehicles in the older vehicles 

category, those performances were similar. Diesel vehicles safety performance was the same as 

gasoline vehicles since fuel type did not affect injury risk. However, major differences were found 

between newer vehicles models using gasoline and using diesel. Considering a 120 km.h
-1

 driving 

scenario, among all tested categories, only Euro 5 diesel vehicles with c.c.<1400 cm
3
 raised a 

good SEG rating for all the three domains: safety, efficiency and green. Euro 5 diesel vehicles 

achieved good efficiency performance for c.c.<1400 cm
3
 and 1400≤c.c.<2000 cm

3
. Also, green 

performance was good for all the Euro 5 diesel engine size categories, whereas for Euro 5 gasoline 

engine size categories, green performance was moderate based on SEG raking. The improved 

vehicle efficiency is the result of advanced engine technology and optimized fuel injection leading 

to a better fuel use. While vehicles of earlier model year were equipped with initial catalyst, 

manufactures have installed in recent models: after treatment of exhaust emissions (such as NOx 

reduction and PM oxidation), particle filters (in diesel vehicles) and more efficiency catalytic 

converters (in gasoline vehicles). In a 60 km.h
-1

 driving scenario, vehicles’ performance was better, 

and more vehicle categories achieved good rating for safety, fuel efficiency and green performance 

simultaneously. Interesting to notice that reducing driving speed, newer vehicle models achieved 

good efficiency performance despite of engine size category and fuel type. Thus, vehicle design 
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matters, but the way vehicle is driven also plays an important role, in particular, in fuel 

consumption.  

SEG has the potential to provide an important selection base of information for consumers, the 

general public, road transportation technicians and automotive engineers. 

 

Concluding remarks based in the crash sample explored in this research are summarized below.  

1. Crash severity for single-vehicle crashes was twice as higher as the crash severity for two-

vehicle collisions. This finding may suggest that for crashes involving one car, vehicle 

crashworthiness may be offset by the driver speeding behavior yielding an increased risk 

of a severe crash outcome. 

2. Engine size of the vehicle was identified as a significant predictor for crash severity across 

all crash severity prediction models. The effect of this risk factor depends on the number of 

vehicles involved in the crash. For two-vehicle collisions, as the engine size of the other 

vehicle involved increases, the probability of severity injury increases for the subject 

vehicle. Engine size seemed to suggest a protective effect for vehicle’s occupants and at 

same time imposes an increased risk towards the occupants of the opponent vehicle. On 

the other hand, for single-vehicle crashes, engine size may mask the effects of driver 

behaviour. Larger engine size (as a proxy of vehicle power) could be associated with 

greater speeds and thus, yielding an increased severity risk. This is especially true in the 

case of luxury and sport cars. For two-vehicle collisions there is evidence that engine size 

reflects the effect of vehicle characteristics on crash severity risk. For single-vehicle 

crashes, although there is no factual evidence based on the crash sample, it could be 

possible that engine size may emphasize driver aggressiveness.  

3. Vehicle safety performance was dependent on the vehicle’ technical characteristics but 

also on risk of exposure based on vehicle’s category frequency in the crash sample. 

Additionally, the composition of the car fleet also will affect vehicle safety crashworthiness 

in two-vehicle collisions.   

4. SEG findings clearly confirm the progress achieved by the auto industry in vehicle design, 

as well as the positive effects of law enforcement and emissions regulations for road 

vehicles. Thus, the SEG results allow us to answer the question: “Is there a trade-off 

between vehicle’s safety, efficiency and green performances?”. The simple answer is “No”. 

The results presented in this research showed that newer vehicles are safer, use less fuel 

and hence, fewer emissions, when compared with older vehicle models in the same weight 

range. Mainly, advanced technology and improved vehicle design are very much reflected 

in SEG ratings, and it is evident that newer vehicles achieve good performance on all three 

criteria. Newer vehicles models, however, should not be downsized, but rather, take 

advantage of new technologies of mass reduction and materials, such as aluminum and 



 

 
Conclusions 

 

 

 

 

183 
 

high-strength steel, to be lighter and resistant, not smaller. Vehicle size matters in 

protecting vehicle occupants; but this should not impose a conflict with the goal of 

improved fuel efficiency and emissions control technologies. What is required is decision 

making and setting agreements to make advanced technologies accessible to auto brands 

in order to improve the performance of car fleet. Safety goals and environmental goals 

drive together and save lives.   

 

10.2 Research Limitations 

1. Police accident reports are used worldwide for crash analysis and road safety. However 

several authors have claimed the misclassification of injury severity among road casualties 

in police reports. Studies have claimed that police reports overestimate injury severity 

significantly [95]. Whereas fatal casualties are quite clearly defined and well reported, non-

fatal casualties could be biased. In this research, injury level was recorded as stated in 

crash reports. However the author is aware that injuries classification could possibly be 

biased namely because the injury condition may change after the victims’ entrance in the 

hospital. In addition, only in 2010 did Portugal start recording road victims on the 30 days 

basis. Thus, crash outcomes collected from police records underestimate any fatality that 

may have happened following 24 hours after the crash.     

2. This research would be improved if crash report records would provide information on the 

number of vehicle’s occupants, whether injured or not, vehicle kilometers driven, and the 

speed of the vehicle at the moment of the crash. While speed has been identified as the 

most important factor to affect crash severity outcomes, this key variable is not available on 

Portuguese crash records. Hence for the crash severity prediction, the legal speed limit 

has been used as a proxy of vehicle’s speed. Also for the emissions estimation, the 

vehicle’s travelling speed was assumed to be the legal speed limit for the road where the 

vehicle was traveling at the time that was involved in the crash. Incorporating additional 

variables will improve models accuracies. 

3. In Portugal, crash data are not available in digital files to download, which are easily 

accessible across the globe. Instead, the author was required to manually collect data from 

police crash records at the Police Office in Oporto. In addition, crash, vehicle and road 

safety data are not centralized, depending on the type of information requested; at least 

three key players are needed: Police Forces, IMT (former IMTT) and ANSR. Hence, 

complementary data needed for the crash database development involved another 

institution, IMT, that manages a database on vehicle technical features to match vehicle 

registration plate (extracted from crash reports). In an earlier phase of this research, 

vehicle technical features for two hundred of vehicles were obtained from the IMTT Oporto 

in a voluntary act. Due to this nature, this assistance is much appreciated but was very 
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time consuming and dependent on the goodwill of participants. The full crash database 

development requested the access to model technical data for 2,248 vehicles in total. By 

the end of 2011 cooperation with IMTT Lisbon made it possible to access to vehicles 

technical details, and hence, the crash database was developed.   

4. Finally, this research faced several challenges due to the sample size limitations. It would 

be beneficial to have had access to larger samples, and having access to the population of 

Portuguese collisions involving any level of injuries would be desirable. To be able to work 

with a population of crashes the time needed to collect data would be infeasible under the 

study program that the corresponding author is accomplishing. The final crash database 

has been completed for 1,374 crashes and included a large number of vehicles, 2,248. 

However the collected crash sample showed a very low proportion of severe relative to 

non-severe events. It must be remembered that for the entire sample, only 70 observations 

were related to severe events. Thus the targets with interest for crash severity modeling 

were distributed as follows: 38 severe crashes for single vehicle analysis, 32 overall severe 

crashes for two-vehicle collisions and among those, 21 resulted in severe outcomes for 

vehicle V1 and 14 for vehicle V2. As result, modeling all the designed targets in this 

research would benefit from a larger sample size which would provide more targets for 

crash severity modeling.  

 

 

10.3 Future Work  

As a final remark of the conclusions section, driver’s behavior was suggested as a factor potentially 

influencing the risk of exposure to a crash and also, vehicle’s fuel consumption and emissions. This 

finding motivates the following future work needs.  

1. Collecting a larger crash sample to improve the development of crash severity training 

models. To meet international regulations, in 2010 Portugal started to record road deaths 

on the basis of 30 days-definitions. Collecting a larger sample of crashes will significant 

improve prediction models robustness. On the other hand, it will allow the portioning of the 

data for training, testing and validation. In addition, collecting a new sample with crashes 

after 2010 will reduce the bias associated with the possible misclassification of injury level 

by police forces.     

2. Analyzing the Portuguese drivers’ heterogeneity using, a driving simulator. This lab 

experiment could support data collection on driver’s performance and behavioral factors 

affecting crash involvement and crash severity.  
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3. Obtaining vehicle technical features from IMTT, in a similar manner to this Doctoral 

Research. In addition, adding new variables will allow a better comprehension of vehicle’s 

technical dimensions, safety equipment and maintenance conditions. For example, 

including vehicles kilometers traveled, will improve risk analysis as well as emissions 

estimation.  

4. The severity of occupant injuries is subject to the restraint devices and impact absorption 

by airbags (if available), structure of the vehicle, position of the occupants in the vehicle 

and their individual ability to withstand the impact. Future work would benefit using through 

the use of simulated crash scenarios on high-performance computers to ensure accurate 

and robust models for crash severity prediction.  

5. CORINAIR is one of the most popular tools to estimate vehicles emissions but has some 

limitations. It does not consider, for instance accelerations that increase energy use and 

emissions. SEG integrated analysis for vehicles’ safety, efficiency and green performance 

should be developed using AI methods to conduct a multi-objective analysis. This will 

enable the analyst to assess how vehicles’ technical characteristics can be optimized in 

order to promote vehicles performance for the three domains: safety, fuel efficiency and 

green emissions reduction.  
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Appendix 1: Approaches for risk factors linked to road traffic 

injuries 

 

 

Figure 1 The Handdon matrix [11].  

 

 

 

Figure 2 System approach to analysis the risk factors for road traffic injuries [11, 12]. . 



 

195 
 

Appendix 2: Advanced safety technologies 

 

Figure 3 - Vehicle safety technology for crash avoidance, adaptation [151].  

 

Figure 4- Vehicle safety technology for crash protection, adaptation [151].  
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Appendix 3: GNR crash report  
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Appendix 4: Vehicle specific technical information  

Vehicle Specific Technical Information extracted from “Ficha Homologação” which was provided by 
IMTT Porto. 
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Appendix 5: Logit models development using Enterprise Miner 

SAS Institute defines data mining as the process of Sampling, Exploring, Modifying, Modeling, and Assessing (SEMMA). At 

the Enterprise Miner software, a graphical user interface (GUI) provides an advance use for the SEMMA data mining 

process: 

a) Sample the data by creating one or more data tables.  

b) Explore the data by searching for anticipated relationships, unanticipated trends, and anomalies in order to gain 

understanding and ideas. 

c) Modify the data by creating new variables, selecting, and transforming the existent variables to be included in the 

model. 

d) Model search for a combination of the data that reliably predicts a desired outcome. 

e) Assess the data by evaluating the reliability of the findings from the modeling process. 

The crash data mining analysis at the Enterprise Miner interface, started by importing each data sets, Two and Single, into 

the process flow workplace. Then, the data mining process was developed, including all the above SEMMA steps, and 

some were necessary to repeat one or more of the steps several times before a satisfied result were obtained. At the end of 

the assess phase of the SEMMA process, the best models were scored to new data.  

The diagram process flow was developed by applying the following tools for Sample, Modify, Model and Assess phases of 

the SEMMA process. Since a previous correlation analysis amongst the response variable (FatalSIK) and the independent 

variable was performed withSAS9.2 PROC CORR procedure, the Explore phase of SEMMA process was applied previously 

to the models process flow diagrams to generate graph reports and summary association statistics for the training subsets. 

The logistic regression models presented in this dissertation were developed by the application of specific features of the 

EM software, as explained next though step 1 to step 10.  

 

Step1: Input data source node 

The data table generate at SAS 9.2 was launched to Enterprise MinerTM 6.2. Metadata was specified for the data set. For 

each variable used in the modeling process the role was set as input or target, and the measurement level was selected as: 

Interval for continuous variables, Nominal for category variables and binary for the target variable. Then the input data node 

was used as training data to estimate the parameters of the model. Two inputs data source were imported into each EM 

diagram process flow: Two input data source (containing the data set for two-vehicles collisions) and Single input data 

source (containing the data set for single vehicles crash).  

 

Step 2: Sample node 

A sample node, which is part of the Sample from the SEMMA data mining process, it was connected to the input data to 

create a stratified random training sample. The selected stratified criterion was “Level Base” and the sample proportion 50.0. 

As a result, the new subset used during the training included all the observations of minority class being predicted, 

FatalSIK”1”, and an equal proportion of the majority class, FatalSIK”0”, which was randomly selected. The stratified random 

sample for each data set was described Chapter 3 of the Thesis. The subsets samples had the following proportion. The 

training sample for Single included 38 observations of FatalSIK”1” and 38 observations of FatalSIK”0”. The training sample 

for Two included 32 observations of FatalSIK”1” and 32 observations of FatalSIK”0”.  

 

Step 3: Drop node 

Drop node, which is part of the Modify phase of SEMMA was used as an optional path for some models candidates and it 

was connected to the Two training sample to hide variables from the metadata. The effect of the differential characteristics 
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of the vehicles involved in the collision was explored by using the following inputs: AgeV2V1, ccV2V1, WTV2V1 and 

WBV2V1. On the  

other hand, using the drop node allowed hiding the individual vehicle characteristics as follows: AgeV1, AgeV2, ccV1, ccV2, 

WTV1, WTV2, and WBV1 and WBV2.  

 

Step 4: Transformation node 

The transform variables node, which is also part of the Modify phase of SEMMA, it enables to create new variables and also 

enables to transform class variables and to create interaction variables. Transformations are useful when the researcher 

want to improve the fit of a model to the data, (SAS EM7.1 Reference Help, 2010). For example, transformations can be 

used to stabilize variances, remove nonlinearity, improve additivity, and correct non-normality in variables (SAS EM7.1 

Reference Help, 2010). The transformation node was set to bucket. This option allows creating by dividing the data into 

evenly spaced intervals based on the difference between the maximum and minimum values. For the models path that 

including a transformation node, four bins were create for those variables mentioned above: AgeV1, AgeV2, ccV1, ccV2, 

WTV1, WTV2, WBV1, WBV2, AgeV2V1, ccV2V1, WTV2V1 and WBV2V1. If the path included a drop node, the bins were 

only created for the variables: AgeV2V1, ccV2V1, WTV2V1 and WBV2V1. For those interval inputs, the default 

transformation method, bucket, was applied.  

Step 5: Regression node 

The modeling phase of SEMMA was performed with the incorporation of regression nodes into the workspace. At each 

regression node properties the logistic regression type and logit link function were selected. The logit option specifies the 

inverse of the cumulative logistic distribution function. During the training, four selection methods were chosen, as follows:  

 Backward- begins with all candidate effects (inputs) in the model and removes effects until the Stay Significance 

Level or the Stop Criterion is met. Inputs are sequentially removed from the model with the highest p-value. The sequence 

terminates when all the remaining inputs have a p-value in excess of the predetermined stay cutoff. It creates a sequence of 

models decreasing complexity, SAS Institute Inc., 2009.  

 Forward- begins with no candidate inputs in the model and adds inputs until the Entry Significance Level or the 

Stop Criterion is met. In contrast with backward selection creates a sequence of models of increasing complexity, SAS 

Institute Inc., 2009. Improvement is quantified by the measurement of significance, p-value. A small p-value indicates a 

significant improvement. The forward selection procedure terminates when no p-value is below a predetermined entre 

cutoff, SAS Institute Inc., 2009. 

 Stepwise- begins as in the forward model but may remove inputs already in the model. This procedure 

sequentially adds inputs with the smallest p-value below the entry cutoff. As each input is added, the algorithm re-evaluates 

the statistical significance of all included inputs in the model. If p-value of the selected inputs exceeds a stay cutoff, the input 

is removed from the model, SAS Institute Inc., 2009. This procedure terminates when all the inputs available for addition in 

the model have a p-value in excess of the entry cutoff, SAS Institute Inc., 2009. 

 None- all inputs are used to fit the model. 

During the models training, at the EM process flow diagrams, several regression nodes were used in the training and all the 

above four input selection criteria were explored. If one of these methods were chosen: forward, backward or stepwise, the 

selection criteria for the model comparison can be specified. Misclassification rate was used to select the model from the 

several candidate models being developed at the EM process flow. Hence the model comparison node selected the model 

with the smallest misclassification rate. Some regressions nodes for the selections methods described above were run with 

the default setting entry significance level, which is 0.05. Others regression nodes were training with the entry significance 

level of the regression node was specified for 0.1 to add variables in forward and stepwise regressions.  

 

Step 6: Cutoff node 
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Cutoff node belongs to the Assess category in the SAS data mining process SEMMA. The node provides graphical 

information to determine the appropriate probability cutoff point for decision making with binary target models, (SAS EM7.1 

Reference Help, 2010). The establishment of a cutoff decision point entails the risk of generating false positives and false 

negatives, but an appropriate use of the Cutoff node can help minimize those risks, (SAS EM7.1 Reference Help, 2010). 

During the models training, the optimal cutoff value was obtained for 0.69. This optimal cutoff value selected by taking into 

account which cutoff value would result in a higher overall classification rate and the prior probabilities for the severe 

crashes in the data set. 

 

Step 7: Control point 

Control point node was used to simplify the distribution of connections between process flow steps that have multiple 

interconnected nodes. The control running a process flow diagram from the Control Point node will run or update all 

preceding paths, and this tool was very helpful during the diagrams development.   

 

Step 8: Model comparison node 

The Model Comparison node belongs to the Assess category in the SAS SEMMA and enables to compare the performance 

of competing models using various criteria. For binary targets the Model Comparison node provides information about: 

-Classification Measures, which include the Receiver Operating Characteristic (ROC) charts and corresponding area under 

the curve, and classification rates. 

-Data Mining Measures, which include lift and gain measures and profit and loss measures.  

-Statistical Measures, which include Bayesian Information Criterion (BIC), Akaike's Information Criterion (AIC), Gini 

statistics, and Kolmogorov-Smirnov statistics, among others.  

Several measures can be used to choose the best model out of a group of several candidate models. The comparative 

measures types of analysis are: statistical, classification, and data mining. The selection of those three measures types 

depends on the preference of who evaluates the training modes. An illustration example is extracted from the SAS EM7.1 

Reference Help, 2010: “while statisticians might be more familiar with stopping measures such as Mallows' Cq, analysts 

might be more comfortable using ROC chart analysis to choose the best model, and direct marketers might prefer using lift 

and gains tables to benchmark model performance”. 

 

Step 9: Score Node 

The Score node is part the end process of the Assess phase of SEMMA data mining process. This node creates predictions 

using the model deemed best by the Model Comparison node, described above. Alternatively, the score node into the 

diagram workspace at EM can be directly link to any desired model. To evaluate the performance of the selected model 

from the training procedure, new a data source must be dragged into to diagram workspace. Hence the the original data set, 

containing the original crash population, was dragged again into the diagram and connected to the score node was well. 

While for the training models development the data set’s role was set to “raw”, for the score stage, the data set was set to 

score role. This attribute allows the score node to use the data set to generate predicted values for a data set that might not 

contain a target. 

 

Step 10: SAS Score Code Node 

Finally, at the end of the models development path, a sas score code node was linked to the score node, (as explained in 

step 9). This tool was used to generate a new sas code into the process flow diagram to create a customized scoring data 

output. At the SAS code node's properties panel from the code editor, a sas code was written to generate report output for 
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the score node predicted results. The generated report output creates the scores results for the classification assessment as 

follows: True Positives (TPs), False Positives (FPs), True Negatives (TNs), and False Negatives (FNs). The specific sas 

code was written for this specific crash analysis in order to assist with the models evaluation. This sas code enable an 

easier comparison between the selected model classification measures, expressed by TN, FN, FP and TP, as explained 

previously. and the assessment of the model performance score results, expressed by TNs, FNs, FPs and TPs (as 

explained previously. 

 

Selection of Best Models for Injury Severity Prediction 

Following the development of several models alternatives, the best models to predict the target FatalSIK were selected 

amongst the candidate models based on the goodness of fit of the model to the crash data. For the models selection, the 

next analysis parameters were evaluated: model fit statists, test for the null hypothesis, type 3 analysis of effects and event 

classification output.  

The Model Fit Statistics provides the following information: 

a) Akaike Information Criteria (AIC), which can be used for the comparison of nonnested models on the sample.  

b) Schwarz Criterion (SC), which penalizes for the number of predictors in the model, (UCLA; 2012).  

c) -2 Log L is the negative two times the log-likelihood, which is used in the hypothesis tests for nested models, however its 

value is.  

The Test of the null hypothesis (β=0) relies on three equivalent Chi-Square tests, and all them test against the null 

hypothesis that at least one of the predictors’ coefficients is not equal to zero in the model. These three tests are presented 

next. 

a) The Likelihood Ratio Chi-Square test that at least one of the predictor´s coefficients is not equal to zero in the 

model. The Likelihood Ratio Chi-Square statistic can be calculated by -2 Log L(model with intercept only) - 2 Log L(model 

with Intercept and Covariates).  

b) The Score Chi-Square Test that at least one of the predictors' regression coefficient is not equal to zero in the 

model.  

c) Wald Chi-Square Test tests that at least one of the predictors' regression coefficient is not equal to zero in the 

model.  

The Chi-Square test statistics for those tests provides the degrees of freedom (DF) and associated p-value (Pr>ChiSq) 

corresponding to the specific test that all of the predictors are simultaneously equal to zero. The DF defines the distribution 

of the Chi-Square test statistics and is defined by the number of predictors in the model. The Pr>ChiSq can be understand 

as a specified alpha level, related to the acceptance of type I error, (usually 0.05 or 0.01). The small p-value from the all 

three tests would lead to conclude that at least one of the regression coefficients in the model is not equal to zero.  

 

The Type 3 Analysis of Effects tests the statistical significance of adding a new input to the model that is being developed. 

The statistical significance measures range from <0.0001, which is associated to highly significant inputs, to 0,9997, which 

means that the input is dubious, (SAS Institute Inc., 2007). This analysis output provides information for each effect (input 

variable) in the model, its DF and the respective Pr>Chi-Square for the selected effect. 

If decisions predictions are of interest, model fit can be evaluated by the misclassification. If estimates are of interest, model 

fit can be assessed by the average square error. A small Average Square error shows a better model.  
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The Analysis of the Maximum Likelihood Estimates (AMLE) output provides information for each parameter in the 

model, intercept and input variables, (including BIN groups for those variables, if there were Bin transformations performed). 

The AMLE also presents for each parameter its: estimates, DF, Standard error and Pr>Chi-Square.  

a) The DF in this analysis define the Chi-Square distribution to test whether the individual regression coefficient is 

zero, given the others predictors in the model.  

b) Estimates are the binary logit regression estimates for the Parameters in the model. The logistic regression model 

models the log odds of a positive response (for the target FatalSIK=1 in this research) as a linear combination of the 

predictor variables. This is written as  

where p is the probability that FatalSIK is 1, thus the crash would be severe. 

The parameter estimates can be understood as follows: for a one unit change in the predictor variable, the difference in log-

odds for a positive outcome is expected to change by the respective coefficient, given the other variables in the model are 

held constant. 

c) Standard Errors are related to the individual regression coefficients. They are used in both the 95% Wald 

Confidence Limits, and the Chi-Square test statistic.  

d) The Chi-Square and Pr > ChiSq are the test statistics and p-values, respectively, testing the null hypothesis that 

an individual predictor's regression coefficient is zero, given the other predictor variables are in the model. The Chi-Square 

test statistic is the squared ratio of the Estimate to the Standard Error of the respective predictor, (UCLA, 2012). The Chi-

Square value follows a central Chi-Square distribution with degrees of freedom given by DF, which is used to test against 

the alternative hypothesis that the Estimate is not equal to zero, (UCLA, 2012). The probability that a particular Chi-Square 

test statistic is as extreme as, or more so, than what has been observed under the null hypothesis is defined by Pr>ChiSq.  

e) The Effect refers to the predictor variables that are interpreted in terms of odds ratios. 

f) The Point Estimate underneath are the odds ratio corresponding to selected Effects in the model. The odds ratio 

is obtained by the estimate. The difference in the log of two odds is equal to the log of the ratio of these two odds. The log of 

the ratio of two odds is the log odds ratio. Hence, the interpretation of Estimate-the coefficient was interpreted as the 

difference in log-odds-could also be done in terms of log-odds ratio. When the Estimate, the log-odds ratio becomes the 

odds ratio. We can interpret the odds ratio as follows: for a one unit change in the predictor variable, the odds ratio for a 

positive outcome is expected to change by the respective coefficient, given the other variables in the model are held 

constant. 

g) The 95% Wald Confidence Limits is the Wald Confidence Interval (CI) of an individual odds ratio, given the other 

predictors are in the model. For a given predictor variable with a level of 95% confidence, the interpretation is as follows: 

there is 95% confident that upon repeated trials, 95% of the CI's would include the "true" population odds ratio. The CI is 

equivalent to the Chi-Square test statistic: if the CI includes one, it would fail to reject the null hypothesis that a particular 

regression coefficient equals zero and the odds ratio equals one, given the other predictors are in the model. An advantage 

of a CI is that it is illustrative; it provides information on where the "true" parameter may lie and the precision of the point 

estimate for the odds ratio.Additionally, the Enterprise Miner logistic output provides a list with all the fit statistics labels used 

statistical analysis, such as the following examples:  

 -AIC (explained previously) 

 -ASE (Average Squared Error)  

 -MSE (Mean Squared Error) 

 -RMSE (Root Mean Squared Error) 

 -SBC (explained previously) 

 -SSE (Sum of Squared Error) 

 -MISC (Misclassification Rate).  
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Appendix 6: SAS Code 

 
SAS Code created for Crash Data Analysis 
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Appendix 7: Variables Correlation 

 

For single-vehicles crashes dataset 
 

Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

  WTV1 ccV1 WBV1 YrV1 AgeV1 SIK FatalSIK 

WTV1 100.000 0.78814 0.74717 0.31989 -0.30815 0.02101 0.01743 

  <.0001 <.0001 <.0001 <.0001 0.6393 0.6973 

500 500 500 500 500 500 500 

ccV1 0.78814 100.000 0.64347 0.01273 -0.00418 0.08133 0.08153 

<.0001   <.0001 0.7765 0.9257 0.0692 0.0685 

500 500 500 500 500 500 500 

WBV1 0.74717 0.64347 100.000 0.10844 -0.09973 -0.02459 -0.03141 

<.0001 <.0001   0.0153 0.0257 0.5833 0.4834 

500 500 500 500 500 500 500 

YrV1 0.31989 0.01273 0.10844 100.000 -0.98898 -0.10393 -0.09870 

<.0001 0.7765 0.0153   <.0001 0.0201 0.0273 

500 500 500 500 500 500 500 

AgeV1 -0.30815 -0.00418 -0.09973 -0.98898 100.000 0.09057 0.08044 

<.0001 0.9257 0.0257 <.0001   0.0429 0.0723 

500 500 500 500 500 500 500 

SIK 0.02101 0.08133 -0.02459 -0.10393 0.09057 100.000 0.91198 

0.6393 0.0692 0.5833 0.0201 0.0429   <.0001 

500 500 500 500 500 500 500 

FatalSIK 0.01743 0.08153 -0.03141 -0.09870 0.08044 0.91198 100.000 

0.6973 0.0685 0.4834 0.0273 0.0723 <.0001   

500 500 500 500 500 500 500 
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Variables Correlation for two-vehicles collisions dataset 

 Variables WTV1 ccV1 WBV1 AgeV1 WTV2 ccV2 WBV2 AgeV2 FatalSik FatalSikV1 FatalSikV2 WTV2V1 ccV2V1 WBV2V1 AgeV2V1 

WTV1 
  
  

100.000 0.77864 0.79309 
-
0.38996 

-
0.03888 0.02414 

-
0.00736 0.04873 0.04169 -0.00156 0.05564 0.37721 0.23207 0.35636 -0.06405 

  <.0001 <.0001 <.0001 0.2508 0.4760 0.8281 0.1500 0.2182 0.9634 0.1002 <.0001 <.0001 <.0001 0.0584 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

ccV1 
  
  

0.77864 100.000 0.68193 
-
0.08996 

-
0.02998 0.02770 

-
0.01008 0.05194 0.04502 0.00120 0.07448 0.26921 0.29787 0.28430 -0.03470 

<.0001   <.0001 0.0078 0.3760 0.4135 0.7660 0.1250 0.1836 0.9717 0.0277 <.0001 <.0001 <.0001 0.3055 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

WBV1 
  
  

0.79309 0.68193 100.000 
-
0.22840 

-
0.00619 0.03709 0.03193 0.01286 0.07679 0.01498 0.09135 0.31161 0.21265 0.47075 -0.03950 

<.0001 <.0001   <.0001 0.8550 0.2734 0.3458 0.7042 0.0232 0.6583 0.0069 <.0001 <.0001 <.0001 0.2434 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

AgeV1 
  
  

-
0.38996 

-
0.08996 

-
0.22840 100.000 0.05290 0.02279 0.04196 

-
0.02169 

-
0.07285 -0.04212 -0.05146 -0.00007 0.00985 -0.05374 0.15078 

<.0001 0.0078 <.0001   0.1181 0.5011 0.2153 0.5219 0.0313 0.2135 0.1285 0.9983 0.7711 0.1124 <.0001 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

WTV2 
  
  

-
0.03888 

-
0.02998 

-
0.00619 0.05290 100.000 0.79150 0.80250 

-
0.36028 0.05388 0.08872 -0.02544 0.39900 0.27249 0.34747 0.02160 

0.2508 0.3760 0.8550 0.1181   <.0001 <.0001 <.0001 0.1114 0.0087 0.4525 <.0001 <.0001 <.0001 0.5236 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

ccV2 
  
  

0.02414 0.02770 0.03709 0.02279 0.79150 100.000 0.65409 
-
0.07678 0.06629 0.11583 -0.04438 0.30482 0.35106 0.25770 0.05206 

0.4760 0.4135 0.2734 0.5011 <.0001   <.0001 0.0232 0.0501 0.0006 0.1900 <.0001 <.0001 <.0001 0.1241 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

WBV2 
  
  

-
0.00736 

-
0.01008 0.03193 0.04196 0.80250 0.65409 100.000 

-
0.22826 0.05016 0.09713 -0.04350 0.32149 0.19470 0.43747 0.02081 

0.8281 0.7660 0.3458 0.2153 <.0001 <.0001   <.0001 0.1385 0.0041 0.1988 <.0001 <.0001 <.0001 0.5389 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

AgeV2 
  
  

0.04873 0.05194 0.01286 
-
0.02169 

-
0.36028 

-
0.07678 

-
0.22826 100.000 

-
0.01771 -0.03175 -0.02697 -0.06525 0.02591 -0.08716 0.17126 

0.1500 0.1250 0.7042 0.5219 <.0001 0.0232 <.0001   0.6012 0.3485 0.4258 0.0538 0.4442 0.0099 <.0001 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

FatalSik 
  
  

0.04169 0.04502 0.07679 
-
0.07285 0.05388 0.06629 0.05016 

-
0.01771 100.000 0.80485 0.65448 0.01746 0.04173 0.04089 0.01938 

0.2182 0.1836 0.0232 0.0313 0.1114 0.0501 0.1385 0.6012   <.0001 <.0001 0.6062 0.2178 0.2272 0.5671 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

FatalSikV1 
  
  

-
0.00156 0.00120 0.01498 

-
0.04212 0.08872 0.11583 0.09713 

-
0.03175 0.80485 100.000 0.15852 0.02908 0.04665 0.00359 0.01796 

0.9634 0.9717 0.6583 0.2135 0.0087 0.0006 0.0041 0.3485 <.0001   <.0001 0.3905 0.1682 0.9156 0.5960 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

FatalSikV2 
  
  

0.05564 0.07448 0.09135 
-
0.05146 

-
0.02544 

-
0.04438 

-
0.04350 

-
0.02697 0.65448 0.15852 100.000 -0.02661 -0.01722 0.03951 0.02593 

0.1002 0.0277 0.0069 0.1285 0.4525 0.1900 0.1988 0.4258 <.0001 <.0001   0.4320 0.6112 0.2433 0.4439 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

WTV2V1 
  
  

0.37721 0.26921 0.31161 
-
0.00007 0.39900 0.30482 0.32149 

-
0.06525 0.01746 0.02908 -0.02661 100.000 0.60990 0.67570 0.13338 

<.0001 <.0001 <.0001 0.9983 <.0001 <.0001 <.0001 0.0538 0.6062 0.3905 0.4320   <.0001 <.0001 <.0001 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

ccV2V1 
  
  

0.23207 0.29787 0.21265 0.00985 0.27249 0.35106 0.19470 0.02591 0.04173 0.04665 -0.01722 0.60990 100.000 0.48223 0.01562 

<.0001 <.0001 <.0001 0.7711 <.0001 <.0001 <.0001 0.4442 0.2178 0.1682 0.6112 <.0001   <.0001 0.6447 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

WBV2V1 
  
  

0.35636 0.28430 0.47075 
-
0.05374 0.34747 0.25770 0.43747 

-
0.08716 0.04089 0.00359 0.03951 0.67570 0.48223 100.000 0.05789 

<.0001 <.0001 <.0001 0.1124 <.0001 <.0001 <.0001 0.0099 0.2272 0.9156 0.2433 <.0001 <.0001   0.0872 

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

AgeV2V1 
  
  

-
0.06405 

-
0.03470 

-
0.03950 0.15078 0.02160 0.05206 0.02081 0.17126 0.01938 0.01796 0.02593 0.13338 0.01562 0.05789 100.000 

0.0584 0.3055 0.2434 <.0001 0.5236 0.1241 0.5389 <.0001 0.5671 0.5960 0.4439 <.0001 0.6447 0.0872   

874 874 874 874 874 874 874 874 874 874 874 874 874 874 874 

 



 

209 
 

Appendix 8: Models for Crash Severity Prediction - Single  

 
Model-IA-S 

 

 



 

 

210 
 

 

 

 

 

 

 



 

211 
 

 

 



 

 

212 
 

 

  



 

213 
 

 

 

 

  



 

 

214 
 

Model-IB-S 
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Model-IC-S 
 

Table for Model-IC-S Characteristics for Single-Vehicle Crashes. 
 
MODEL IC-S 

Fit Statistics 

Test for Global H0 Analysis of Maximum Likelihood Estimates 
ASE MISC 

DF Pr>ChSq Parameter DF Estimate Pr>ChSq 

9 0.0051 Intercept 1 4.8806 0.3799 0.178 0.237 

  AgeV1 1 0.1789 0.0261   

  AlcoholDrugs (0) 1 -0.5304 0.4713   

  DivisionCode (0) 1 -4.9235 0.9710   

  RanOff (0) 1 -0.2937 0.5539   

  SpeedLevel (0) 1 4.4550 0.9738   

  WBV1 1 -0.0047 0.1074   

  WTV1 1 0.0011 0.6687   

  WeatherCode (0) 1 0.7098 0.0485   

  ccV1 1 0.0025 0.0454   

Odds Ratio Estimates 

 Effect Point Estimate 

 AgeV1 1.196 

 AlcoholDrugs 0 vs 1 0.346 

 DivisionCode 0 vs 1 <0.001 

 RanOff 0 vs 1 0.556 

 SpeedLevel 0 vs 1 999.000 

 WBV1 0.995 

 WTV1 1.001 

 WeatherCode 0 vs 1 4.136 

 ccV1 1.003 

Accuracy Performance 

Accuracy Rate with Training Sample (N=76) 
Accuracy Rate with Original Population 

(N=500) 

Accuracy 
Performance with 

10 Stratified 
Random Samples 

FN
1
 TN

2
 FP

3
 TP

4
 % AR

5
 TPs

6
 FPs

7
 TNs

8
 FNs

9
 %AR

10
 %A.AR

11
 S.D.

12
 

11 31 7 27 76.3 20 100 362 18 76.4 65.3 2.6 
1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8 
True Negavtives1; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples; 
12 Standard Deviation for the 10 stratified random samples.  

 

 

The logistic regression equation developed to predict the probability of a FatalSIK in single-vehicle 

crashes, Model-IC-S is presented next. 

 

  (
      

      
)                                                     
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Model-ID-S 

Table Model-ID-S Characteristics for Single-Vehicle Crashes. 

MODEL ID-S 

Fit Statistics 

Test for Global H0 Analysis of Maximum Likelihood Estimates 
ASE MISC 

DF Pr>ChSq Parameter DF Estimate Pr>ChSq 

4 0.0243 Intercept 1 0.0985 0.0798 0.216 0.368 

  BIN_AgeV1 low-5.75 1 -1.3175 0.0057   

  BIN_AgeV1 5.75-10.5 1 -0.2474 0.5718   

  BIN_AgeV1 10.5-15.25 1 0.5469 0.3361   

  DivisionCode (0) 1 -0.5421 0.0809   

Odds Ratio Estimates 

 Effect Point Estimate 

 BIN_AgeV1 low-5.75 vs 15.25-high 0.097 

 BIN_AgeV1 5.75-10.5 vs 15.25-high 0.282 

 BIN_AgeV1 10.5-15.25 vs 15.25-high 0.624 

 DivisionCode 0 vs 1 0.338 

 

Accuracy Rate with Training Sample (N=76) 
Accuracy Rate with Original Population 

(N=500) 

Accuracy 
Performance with 

10 Stratified 
Random Samples 

FN
1
 TN

2
 FP

3
 TP

4
 % AR

5
 TPs

6
 FPs

7
 TNs

8
 FNs

9
 %AR

10
 %A.AR

11
 S.D.

12
 

12 22 16 26 63.2 11 77 385 27 79.2 56.6 1.9 
1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8 
True Negavtives1; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples; 
12 Standard Deviation for the 10 stratified random samples.  

 

The logistic regression equation developed to predict the probability of a FatalSIK in single-vehicle 

crashes, Model-ID-S is presented next. 

  (
      

      
)                                                             

                                                     

 

Figure 5 – Probability of a Serious Injury and/or killed in single-vehicle crashes, using 

Model-IC-S. 
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Appendix 9: Models for Crash Severity Prediction - Two 

 
Model-I-A-T 
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Model-IB-T 

Table Model-IB-T results for FatalSIK prediction with logistic regression performed for a balanced 
dataset of two-vehicle collisions. 
MODEL IB-T 

Fit Statistics 

Test for Global H0 Analysis of Maximum Likelihood Estimates 
ASE MISC 

DF Pr<ChSq Parameter DF Estimate Pr>ChSq 

18 0.0058 Intercept 1 12.7651 0.8660 0.142 0.234 

  AlcoholDrugs (0) 1 -19.9203 1.0000   

  BIN_AgeV2V1 low-4.75 1 3.3569 0.9646   

  BIN_AgeV2V1 4.75-9.5 1 3.0360 0.9680   

  BIN_AgeV2V1 9.5-14.25 1 -9.8549 0.9654   

  BIN_WBV2V1 low-419.25 1 -0.1480 1.0000   

  BIN_WBV2V1 419.25-837.5 1 0.2343 0.8242   

  BIN_WBV2V1 837.5-1255.75 1 -42.1122 0.9633   

  BIN_WTV2V1 low-718.75 1 -3.3030 1.0000   

  BIN_WTV2V1 718.75-1432.5 1 23.8886 0.9509   

  BIN_ccV2V1 low-626.5 1 8.3469 1.0000   

  BIN_ccV2V1 626.5-1253 1 7.8063 <0.0001   

  BIN_ccV2V1 1253-1879.5 1 -18.3480 0.9623   

  DivisionCode (0) 1 26.5263 <0.0001   

  HeadOn (0) 1 -1.2097 0.1159   

  RearEnd (0) 1 -0.2905 0.4956   

  Sideswipe (0) 1 -0.7549 0.1355   

  SpeedLevel (0) 1 -26.8774 1.0000   

  WeatherCode (0) 1 0.6189 0.1586   

Odds Ratio Estimates 

 Effect Point Estimate 

 AlcoholDrugs  0 vs 1 <0.001 

 BIN_AgeV2V1 low-4.75 vs 14.25-high 0.900 

 BIN_AgeV2V1 4.75-9.5 vs 14.25-high 0.653 

 BIN_AgeV2V1 9.5-14.25 vs 14.25-high <0.001 

 BIN_WBV2V1 low-419.25 vs 1255.75-high <0.001 

 BIN_WBV2V1 419.25-837.5 vs 1255.75-high <0.001 

 BIN_WBV2V1 837.5-1255.75 vs 1255.75-
high 

<0.001 

 BIN_WTV2V1 low-718.75 vs 2146.25-high 999.000 

 BIN_WTV2V1 718.75-1432.5 vs 2146.25-
high 

999.000 

 BIN_ccV2V1 low-626.5 vs 1879.5-high 469.675 

 BIN_ccV2V1 626.5-1253 vs 1879.5-high 273.541 

 BIN_ccV2V1 1253-1879.5 vs 1879.5-high <0.001 

 DivisionCode 0 vs 1 999.000 

 HeadOn 0 vs 1 0.089 

 RearEnd 0 vs 1 0.559 

 Sideswipe 0 vs 1 0.221 

 SpeedLevel 0 vs 1 <0.001 

 WeatherCode 0 vs 1 3.448 

Accuracy Performance 

Accuracy Rate with Training Sample (N=64) 
Accuracy Rate with Original Population 

(N=874) 

Accuracy 
Performance with 

10 Stratified 
Random Samples 

FN
1
 TN

2
 FP

3
 TP

4
 % AR

5
 TPs

6
 FPs

7
 TNs

8
 FNs

9
 %AR

10
 %A.AR

11
 S.D.

12
 

10 27 5 22 76.6 19 139 703 13 82.6 72.5 1.3 
1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8 
True Negavtives1; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples; 
12 Standard Deviation for the 10 stratified random samples.  
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The final model has 18 explanatory variables which makes it very complex. The logistic regression 

Model-IB-T equation developed to estimate the probability of Y =FatalSIK). 

 

                (exp(12.7651-

19.9203*AlcoholDrugs(=0)+3.3569*BIN_AgeV2V1(=low-

4.75)+3.0360*BIN_AgeV2V1(=4.75-9.5) -9.8549*BIN_AgeV2V1(=9.5-14.25) -

0.1480*BIN_WBV2V1(=low-419.25)+0.2343*BIN_WBV2V1(=419.25-873.5) -

42.1122*BIN_WBV2V1(=873.5-1255.75) -3.3030*BIN_WTV2V1(=low-873.5)-

42.1122*BIN_WBV2V1(=873.5-1255.75)+8.3469*BIN_ccV2V1(= low-

626.5)+7.8063*BIN_ccV2V1(=626.5-1253)-18.3480*BIN_ccV2V1(=1253-1879.5) 

+26.5263*DivisionCode(=0)-1.2097*HeadOn(=0)-0.2905*RearEnd(=0)-

0.7549*Sideswipe(=0)-26.8774*SpeedLevel(=0)+0.6189*WeatherCode(=0)))  

/  

(1+exp(12.7651-19.9203*AlcoholDrugs(=0)+3.3569*BIN_AgeV2V1(=low-

4.75)+3.0360*BIN_AgeV2V1(=4.75-9.5) -9.8549*BIN_AgeV2V1(=9.5-14.25) -

0.1480*BIN_WBV2V1(=low-419.25)+0.2343*BIN_WBV2V1(=419.25-873.5) -

42.1122*BIN_WBV2V1(=873.5-1255.75) -3.3030*BIN_WTV2V1(=low-873.5)-

42.1122*BIN_WBV2V1(=873.5-1255.75)+8.3469*BIN_ccV2V1(= low-

626.5)+7.8063*BIN_ccV2V1(=626.5-1253)-18.3480*BIN_ccV2V1(=1253-1879.5) 

+26.5263*DivisionCode(=0)-1.2097*HeadOn(=0)-0.2905*RearEnd(=0)-

0.7549*Sideswipe(=0)-26.8774*SpeedLevel(=0)+0.6189*WeatherCode(=0))) 
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Model-IC-T  
Table - Model-IC-T results for FatalSIK prediction with logistic regression performed for a balanced 
dataset of two-vehicle collisions.  
MODEL IC-T 
 

Fit Statistics 

Test for Global H0 Analysis of Maximum Likelihood Estimates 
ASE MISC 

DF Pr<ChSq Parameter DF Estimate Pr>ChSq 

9 0.003 Intercept 1 9.1217 0.9778 0.167 0.234 

  AlcoholDrugs (0) 1 -6.2847 0.9728   

  BIN_WBV2 low-2347.5 1 -1.9391 0.9881   

  BIN_WBV2 2347.5-2883 1 -3.9748 0.9756   

  BIN_WBV2 2883-3418.5 1 -3.2695 0.9800   

  BIN_WTV2 low-1452.5 1 2.4477 0.9933   

  BIN_WTV2 1452.5-2135 1 3.8351 0.9895   

  BIN_WTV2 2135-2817.5 1 16.2879 0.9782   

  HeadOn (0) 1 -1.2460 0.0422   

  Sideswipe (0) 1 -0.8665 0.0358   

Odds Ratio Estimates 

 Effect Point Estimate 

 AlcoholDrugs  0 vs 1 <0.001 

 BIN_WBV2 low-2347.5 vs 3418.5-high <0.001 

 BIN_WBV2 2347.5-2883 vs 3418.5-high <0.001 

 BIN_WBV2 2883-3418.5 vs 3418.5-high <0.001 

 BIN_WTV2 low-1452.5 vs 2817.5-high 999.000 

 BIN_WTV2 1452.5-2135 vs 2817.5-high 999.000 

 BIN_WTV2 2135-2817.5 vs 2817.5-high 999.000 

 HeadOn 0 vs 1 0.083 

 Sideswipe 0 vs 1 0.177 

Accuracy Performance 

Accuracy Rate with Training Sample (N=64) 
Accuracy Rate with Original Population 

(N=874) 

Accuracy 
Performance with 

10 Stratified 
Random Samples 

FN
1
 TN

2
 FP

3
 TP

4
 % AR

5
 TPs

6
 FPs

7
 TNs

8
 FNs

9
 %AR

10
 %A.AR

11
 S.D.

12
 

5 22 10 27 76.6 13 131 711 19 82.8 60.6 5.6 
1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8 
True Negavtives1; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average of Accuracy Rate for the 10 stratified random samples; 
12 Standard Deviation for the 10 stratified random samples.  

 

The logistic regression Model-IC-T equation to estimate the probability of Y (FatalSIK) is presented 

below. 

                (exp(9.1217-6.2847*AlcoholDrugs(=0)-1.9391*BinWBV2V1(=low-

2347.5)-3.9748*BinWBV2V1(=2347.5-2883)-3.2695*BinWBV2V1(=2883-

3418.5)+2.4477*BinWTV2V1(=low-1452.5)+3.8351*BinWTV2V1(=1452.5-

2135)+16.2879*BinWTV2V1(=2135-2817.5)-1.2460*HeadOn(=0)-

0.8665*Sideswipe(=0))) 

/  

(1+(exp(9.1217-6.2847*AlcoholDrugs(=0)-1.9391*BinWBV2V1(=low-2347.5)-

3.9748*BinWBV2V1(=2347.5-2883)-3.2695*BinWBV2V1(=2883-

3418.5)+2.4477*BinWTV2V1(=low-1452.5)+3.8351*BinWTV2V1(=1452.5-

2135)+16.2879*BinWTV2V1(=2135-2817.5)-1.2460*HeadOn(=0)-

0.8665*Sideswipe(=0))) 
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Model-II-T  

 

SAS Code for FatalSIKV1  
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Model-II-T (Cont.) 

 

EM output 

 

 
Type 3 Analysis of Effects Odds Ratio 

  

MISC SSE 

0.3571 9.3983 

Analsyis of Maximum Likelihhod Estimates 
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Model-III-T  

 

SAS Code for FatalSIKV2 
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EM output for fatalSIKV2 
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Appendix 10: Models for Vehicles Emissions 

 

MODEL CO2 LPGV Emissions Estimation (N=817 Vehicles) 

 

 

 

ASE= 18.54 
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MODEL CO2 LPDV Emissions Estimation (N= 344 Vehicles) 

 

 

 

ASE=145.34 
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MODEL CO LPGV Emissions Estimation (N= 847 Vehicles) 

 

 

 

ASE=0.03 
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MODEL NOx LPVD Emissions Estimation (N=769) 

 
Type 3 Analysis of Effects Model Fit Statistics 

  

Analysis of Maximum Likelihood Estimates 

      

 
 

ASE= 0,006057 
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MODEL PM LPDP Emissions Estimation (N=731) 

 

 
Type 3 Analysis of Effects Model Fit Statistics 

 

 
 

Analysis of Maximum Likelihood Estimates 

        

 
ASE=0,000274 

 

 


