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Abstract

A nanoparticle can be defined as a small object that behaves as a whole unit in terms of
its transport and properties. Nanoparticles are sized between 1 and 100 nm in diameter.
Nanoparticles can act against the microbes in multiple ways, and the microbes are less
likely to develop resistance against nanoparticles because it requires multiple gene
mutations. Thelargesurface-to-volumeratioofnanoparticles, theirability toeasilyinteract
withother particles, and several other features make them attractive toolsin variousfields.
Nanoparticles are widely used various fields such as electronics, cosmetics, biomedical,
and biotechnology. Nanoparticles can be synthesized by physical methods such as
attrition, pyrolysis, and using some wet chemical methods. The physical and chemical
methods have various drawbacks such as high cost of production, require high energy
input and generation of toxic by-products. To overcome this, several biological meth-
ods are employed in the synthesis of nanoparticles. The biological methods are general-
ly cost effective, nontoxic, and ecofriendly. This chapter focuses on the methods involved
in algal-synthesized nanoparticles and its applications.

Keywords: Nanoparticles, Green synthesis, Antibiotic activity, Antitumor, Antibio-
film

1. Introduction

Nanotechnology is a vibrant and developing area of science, engineering, and technology
accomplished at the nanoscale level. The products of nanotechnology are nanoparticles or
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nanomaterials (NPs), lying in the range of 10~ m and having dimensions of 1-100 nm. NPs are
categorized into three types: natural nanoparticles, incidental nanoparticles, and engineered
nanoparticles [1]. The large surface-to-volume ratio of nanoparticles, their ability of easy
interaction with other particles, and several other features make them as an attractive tool in
various fields. NPs are widely used in electronic, cosmetic, biomedical, and biotechnological
applications. The efficient crystallographic and physiochemical properties of NPs make
nanotechnology as an excellent area to focus. The synthesis of NPs can be achieved by some
physical methods and chemical methods. The traditional and commonly used method for
nanoparticles synthesisis wetmethod. In chemical synthesis, nanoparticles are growninaliquid
medium containing various reactants particularly reducing agents such as sodium borohy-
dride [2], potassium bitartartarate [3], methoxypolyethylene glycol [4], or hydrazine [5]. Some
stabilizing agents such as sodium dodecyl benzyl sulfate [5] or polyvinyl pyrrolidone [3] are
added to the reaction mixture to prevent the agglomeration of metallic nanoparticles. Most
commonly used chemical methods are chemical reduction [6], electrochemical techniques [7],
and photochemical reactions in reverse micelles [8]. Commonly used physical methods are
attrition and pyrolysis. Attrition involves grinding of the particles by a size-reducing mecha-
nism. The particles are then air-classified, and oxidized nanoparticles are recovered. Pyrolysis
involves burning of the precursor by passing them through an orifice at high pressure. The ash
obtained is air classified to recover the oxidized nanoparticles [9]. Chemical methods are of low
cost for high volume, and their major drawbacks include contamination from precursor
chemicals, use of toxic solvents, and generation of hazardous by products, and the demerits of
physical methods are low production rate, high cost of production, and high energy consump-
tion [5]. There is need for replacing the toxic ingredients with environmentally safe method for
synthesizing NPs. To overcome this, researchers are focusing on employing biological meth-
od for the synthesis of nanoparticles. They are generally cost effective, nontoxic, and ecofriend-
ly [10]. So far, several plant extract [11], bacteria [12], fungi [13], enzymes [14], and algae [15]
have been used for the synthesis of NPs. To our surprise, an emerging trend of synthesizing NPs
using algae is developing in the recent years.

Algae are economically and ecologically important group of photosynthetic organism. They
are unicellular or multicellular organisms dwelling in different environment such as freshwa-
ter, marine water, or surface of moist rocks [16-18]. Algae are categorized as microalgae
(microscopic) and macroalgae (macroscopic). They play a key role in medical, pharmaceutical,
agriculture, aquaculture, cosmetics applications. Algae are valuable source for various
commercial products such as natural dyes and biofuels [19-22]. Till now, for the biosynthesis
of metallic NPs, different group of algae such as Chlorophyceae, Phaeophyceae, Cyanophy-
ceae, Rhodophyceae, and others (diatoms and euglenoids) have been used [23]. The ability of
algae to accumulate metals and reduce metal ions makes them the superior contender for the
biosynthesis of nanoparticles. Furthermore, algae are relatively convenient and easy to handle,
along with several other advantages such as synthesis at low temperature with greater energy
efficiency, less toxicity, and risk to the environment. In physical and chemical method, different
commercially available surfactants were used as templates and capping agents in NPs
synthesis with different morphologies. Removal of the residual components becomes a major
issue. Considering this utilization of naturally eco-friendly methods having been developed
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which involves the synthesis of NP using different biological sources which could naturally
modify the shape or size of a crystal with superior quality [24].

Among the biological materials, algae are called as —bionanofactories|| because both the live
and dead dried biomasses were used for the synthesis of metallic nanoparticles [25]. Several
algae such as Lyngbya majuscule, Spirulina platensis, and Chlorella vulgaris were used as a cost
effective method for silver nanoparticles synthesis [26, 27]. The synthesis of silver nanoparticles
using Ulva fasciata extract as a reducing agent and this nanoparticles inhibited the growth of
Xanthomonas campestris pv. malvacearum [28]. In addition to seaweeds, microalgae such as
diatoms (Navicula atomus and Diadesmis gallica) have the ability to synthesize gold nanoparti-
cles, gold, and silica—gold bionanocomposites [29]. Comparing with other organism such as
fungi, yeast, and bacteria, algae is equally an important organism in the synthesis of NPs;
therefore, the study of algae-mediated biosynthesis of nanometals can be taken towards a
newer branch and it has been termed as phyconanotechnology [10, 23, 30]. Thus, this work
explains the potential and beneficial application of algal-mediated synthesized nanoparticles
for present and future perspectives.

2. Types of nanoparticles

There are two different types of NPs, inorganic NPs and organic NPs. The inorganic NPs
include metal and metal oxides, which are potent antibacterial agents [31] (Figure 1). Metal
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e Zinc oxide (ZnO) * N- halamine compounds
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Figure 1. Different types of nanoparticles.
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oxide nanoparticles such as silver (Ag), iron oxide (Fe;O,), titanium oxide (TiO,), copper oxide
(CuO), and zinc oxide (ZnO) are certain examples of inorganic NPs. Organic NPs includes
poly-e-lysine, quaternary ammonium compounds, cationic quaternary polyelectrolytes, N-
halamine compounds, and chitosan . Organic nanoparticles are generally less stable at high
temperatures. Due this reason, inorganic nanoparticles are more preferred as antimicrobial
polymers [32].

2.1. Inorganic nanoparticles

So far, there are different types of inorganic metals and metal oxide NPs, which have been
studied. Some important examples are detailed (Figure 2)

Inorganic

Nanoparti

Platinum
(Pt)

Figure 2. Types of inorganic nanoparticles.

2.1.1. Silver

Silver nanoparticle (AgNP) is the most widely used antimicrobial agent against many bacteria,
fungi, and viruses [33]. The antimicrobial activity AgNP was found to be size dependent, and
larger particles are less active than smaller one against many pathogens in both in vitro and in
vivo analysis [34-36]. The resistance of bacteria towards antibiotics has made AgNPs more
effective than antibiotics [37, 38]. Though there is plenty of research in AgNPs, the actual mode
of action of AgNPs is still unclear [39]. In E. coli, the AgNPs create holes in the cell wall and
increase the membrane permeability, thereby inactivating the cell activity [40, 41]. Some
reports revealed that the Ag ions disrupt the protein structure by binding to thiol and amino
groups [42]. AgNPs are photocatalytic [43], and they can generate reactive oxygenic species
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(ROS) [44, 45]. AgNPs are effective against both Gram-positive and Gram-negative bacteria
[46, 47].

2.1.2. Titanium oxide

Titanium oxide (TiO,) is found to be effective against both Gram-positive/Gram-negative
bacteria, viral, and parasitic infections [48, 49]. They are photocatalytic; their toxicity can be
induced by visible light, or UV light, generates ROS [50]. TiO, is an effective bactericidal agent
and a potent sporicidal agent against wide range of bacteria [51].

2.1.3. Zinc oxide

ZnO nanoparticles (ZnONPs) are another broad spectrum antibacterial agent, based on
concentration and size of the NPs, and they are effective against methicillin-sensitive Staphy-
lococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and methicillin-resistant
Streptococcus epidermis (MSSE) [52]. They are of low cost and found to inhibit the growth of a
wide range of pathogenic bacteria (Klebsiella pneumoniae, Listeria monocytogenes, Salmonella
enteritidis) [53], S. mutants, Lactobacillus sp., and E. coli [53, 54], with less toxicity to human cells.
Their UV blocking and anti-biofilm activity makes them as a suitable coating material for
medical and other devices, and it is approved by the Food and Drug Administration (FDA) in
the treatment of disease and ingredients in food additives [50, 55].

2.1.4. Iron oxide

Iron oxide is generally inactive in their bulk form. Reducing their size to nanoscale makes them
a potential antimicrobial agent. Iron oxide nanoparticles-coated surfaces prevent the adhesion
and colonization of Gram-positive and Gram-negative bacteria [56].

2.1.5. Gold

As compared to Ag, Au nanoparticles are less effective and lack antimicrobial properties when
used alone but found to be effective when used in combination with antibiotics such as
ampicillin [57, 58], vancomycin [59], and lysozyme (an antibacterial enzyme) [60]. The Au
nanoparticles can also be used in combination with nonantibiotic molecules such as amino
substituted pyrimidines [61] and citrate, which induces the generation of ROS and mutations,
hence used in cancer therapy [62].

2.1.6. Copper oxide

Despite copper oxide (CuO) nanoparticles are used as antibacterial agents, they are less
effective than that of Ag and ZnO. So a comparatively higher concentration is required to get
desired results. But some bacteria are more susceptible to CuO than Ag. For example, E. coli
and S. aureus were more sensitive to silver but B. subtilis and B. anthracis were more sensitive
to Cu [63, 64]. The cell wall composition of B. subtilis and B. anthracis is rich in amine and
carboxyl groups, which allow the strong affinity of CuO towards the bacteria [65, 66]. CuO
NPs exhibit antibacterial activity by membrane disruption and ROS production [65].
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2.1.7. Magnesium oxide

Magnesium oxide (MgO) nanoparticles are efficient antimicrobial agent exhibiting bactericidal
activity against both Gram-positive and Gram-negative bacteria, spores and viruses. The MgO
NPs can be prepared from available and economical precursors. Along with membrane
disruption and ROS generation, it also inhibits the essential enzymes of bacteria [50, 67].

2.1.8. Nitric oxide

Nitric oxide (NO) nanoparticles are highly reactive antibacterial agent. Similar to other
nanoparticles, the activity of NO is also size dependent [68, 69]. The mode of inhibition is by
the production of reactive nitrogen species (RNS) rather than ROS. They are effective against
MRSA and various biofilm forming bacterial species [70, 71].

2.1.9. Aluminium oxide

Aluminium oxide is a mild antibacterial agent effective only at higher concentrations [65].
There mode of inhibition is by pit formation, perforation, and membrane disruption leading
to cell death [66].

2.2. Organic nanoparticles

Some of the well-known examples of organic NPs are discussed below (Figure 3).

Quaternary
ammonium
compounds

Organic
Nanoparticles

Cationic
quaternary
polyelectrolytes

N- halamine
compounds

Figure 3. Types of organic nanoparticles.
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2.2.1. Poly-~—-lysine

Poly-e-lysine, a cationic homopeptide of L-lysine is effective against Gram-positive bacteria
and spores of B. coagulans, B. subtilis, and B. stearothermophilus [72].

2.2.2. Quaternary ammonium compounds

Quaternary ammonium compounds are well known disinfectants and their antimicrobial
property dependents on the chain length. The positively charged moieties of the compounds
are attached to the negatively charged bacterial membrane by weak electrostatic interaction,
followed by the insertion of hydrophobic tail of the compound in to the bacterial hydrophobic
membrane core leading to the denaturation of structural proteins and enzymes [73].

2.2.3. Cationic quaternary polyelectrolytes

They are synthesized from methacrylic monomers such as 2-(dimethylamino) ethyl
methacrylate and majority of them are derivatives of acrylic and methacrylic compounds.
These molecules possess a wide range of biological applications due to their structural
flexibility through the alteration of hydrophobicity, molecular weight, surface charge and
other factors [74].

2.2.4. N-halamine compounds

N-halamine compounds are formed by the halogenation of imide amide or amine groups with
one or more nitrogen-halogen covalent bonds. These are high stable compounds releasing free
active halogen groups slowly in to the environment leading to the inhibition or inactivation
of the microbial cells [75].

2.2.5. Chitosan

Chitosan NPs are biocompatible, nontoxic, and have the ability to act as absorption enhancer.
These characteristics make the chitosan nanoparticles as an effective antimicrobial agent with
broad spectrum activity against a wide range of bacteria, fungi and viruses. The antibacterial
activity of chitosan nanoparticles depends on several factors such as pH and the nature of
solvent [76, 77]. The use of chitosan along with metal nanoparticles is not feasible since chitosan
reduced the activity of metal nanoparticles such as Zn. It can be used in combination with
antibiotics [76, 78]. Even though some studies state that the interaction of cells with chitosan
lead to membrane destabilization, followed by lysis and cell death, the detailed mode of action
is unclear [79].

2.3. Synthesis of NPs using algae

The abundance and ease of availability of algae make them good and worthwhile sources for
the synthesis of metallic nanoparticles [80]. Synthesis of nanoparticles using algae can be
performed in three important steps, (i) preparation of algal extract in water or in an organic
solvent by heating or boiling it for a certain duration, (ii) preparation of molar solutions of
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ionic metallic compounds and (iii) incubation of algal solutions and molar solutions of ionic
metallic compounds followed either by continuous stirring or without stirring for a certain
duration under controlled conditions [10, 30]. The synthesis of NPs is dose dependent and it
is also related to the type of algae used. There are a variety of biomolecules responsible for the
reduction of metals which include polysaccharides, peptides, and pigments. Stabilizing and
capping the metal nanoparticles in aqueous solutions is done by proteins through amino
groups or cysteine residues and sulfated polysaccharides [81]. Synthesis of nanoparticles using
algae takes comparatively shorter time period than the other biosynthesizing methods [10,
30]. So far, several seaweeds (Sargassum wightii and Fucus vesiculosus) have been used for the
synthesizing AgNPs of different sizes and shapes [81, 82]. Marine algae are meagerly explored
for the synthesis of NPs. C. vulgaris has strong binding ability towards tetrachloroaurate ions
to form algal-bound gold reducing into Au(O). Approximately 88% of algal-bound gold
attained metallic state, and the crystals of gold were accumulated in the inner and outer parts
of cell surfaces with tetrahedral, decahedral, and icosahedral structures [83]. S. platensis has
been for the extracellular synthesis of gold, silver, and Au/Ag bimetallic NPs [26]. Senapati et
al. [84] reported the intracellular production of gold nanoparticles using Tetraselmis kochinen-
sis. The biomass of the brown alga F. vesiculosus was reported for the reduction of Au(III)-
Au(O) [82]. In addition to seaweeds, microalgae such as diatoms (N. atomus and D. gallica) have
the ability to synthesize gold nanoparticles, gold, and silica—gold bionanocomposites [15].

2.4. Application of algal-synthesized NPs

The biomedical application of algal-synthesized NPs is significantly becoming more important
due to their antibacterial, antifungal, anti-cancer, and wound healing activity. They are given
(Figure 4).
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Figure 4. Applications of algal-synthesized nanoparticles.
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2.4.1. Antibacterial activity

Algal-synthesized NPs are known to possess efficient antibacterial activity (Figure 5; Table
1). Brown alga (Bifurcaria bifurcate) is reported for the synthesis of copper oxide nanoparticle
(5—45 nm) exhibiting antibacterial activity against Enterobacter aerogenes (Gram-negative) and
S. aureus (Gram-positive) [85]. Gold nanoparticles synthesized using Galaxaura elongata
(powder or extract) were evaluated for their antibacterial activities which showed better
antibacterial effects against E. coli, K. pneumoniae, MRSA, S. aureus, and Pseudomonas aerugino-
sa [86]. In another work, silver chloride (AgCl) NPs synthesized using marine alga Sargassum
plagiophyllum were analyzed using fluorescence and electron microscopy showed bactericidal
activity against E. coli [87]. Synthesis of AgNPs using fresh extract and whole cell of microalga
Chlorococcum humicola inhibited the growth of Gram-negative bacteria E. coli (ATCC 1105) [88].
In a recent report, the aqueous extract of a diatom Amphora-46 was used for the light-induced
biosynthesis of polycrystalline AgNPs, in which fucoxanthin a photosynthetic pigment was
responsible for the reduction of Ag ion. Furthermore, the synthesized AgNPs were tested
against Gram-positive and Gram-negative bacteria for its antibacterial activity [89].

Degrading receptor

Damage of DNA or protein

inhibition of membrane Damage to

. ribosome
> @ (o

Damage the cell wall

Copper containing
Nanoparticles

Figure 5. Different nanoparticles and their mode of inhibition against bacteria.

AgNPs synthesized using Caulerpa racemose, a marine algae, exhibited antibacterial activity
against human pathogens such as S. aureus and Proteus mirabilis [90]. The cellular metabolites
of Microcoleus sp. used to synthesize AgNPs, and it enhanced the antibacterial activity of
antibiotics against Proteus vulgaris, Salmonella typhi, Vibrio cholera, Streptococcus sp., Bacillus
subtilis, S. aureus, and E. coli [91]. In a work done by Merin et al. [92], he used marine microalgae
C. calcitrans, C. salina, 1. galbana, and T. gracilis were used for the synthesis of AgNPs and tested
the antibacterial activity of AgNPs against E. coli, Klebsiella sp., Proteus sp., and Pseudomonas
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sp. were tested high inhibitions over the growth of E. aerogenes, S. typhi, and P. vulgaris was
exhibited by AgNPs synthesized using seaweed extracts of Sargassum cinereum [93]. In addition
to antibacterial activity, the nanoparticles synthesized by seaweed extracts do have stabilizing

effect on cotton fabrics [94].

Algae NPs Size Shape Intracellular ~ Pathogens References
(IC) or
extracellular
(EO)
Bifurcaria bifurcate CuO  5-45nm Spherical and IC E. aerogenes [85]
elongated S. aureus
Galaxaura elongata  Au  3.85-77.13nm  Spherical IC E. coli [86]
K. pneumoniae
MRSA
S. aureus
P. aeruginosa
Sargassum AgCl 18-42nm Spherical IC E. coli [87]
plagiophyllum
Chlorococcum Ag 4 and 6 nm Spherical IC E. coli (ATCC 1105) [88]
humicola
Amphora-46 Ag 5-70 nm Spherical IC [89]
Caulerpa racemose ~ Ag 5-25nm Spherical and S. aureus and P. mirabilis [90]
triangle
Microcoleus sp. Ag - - P. vulgaris, S. typhi, V. cholera, [91]
Streptococcus sp., B. subtilis, S.
aureus, E. coli
Ulva fasciata Ag 28-41 nm Spherical IC Xanthomonas campestris pv. [96]
malvacearum
Turbinaria conoides Au 60 nm Triangle, IC Streptococcus sp., B. subtilis and [97]
rectangle & K. pneumoniae
square
Padina pavonica Ag 10-72 nm Spherical IC Fusarium oxysporum f. sp. vas ~ [99]
infectum
Xanthomonas campestris po.
malvacearum
Gracilaria dura Ag 6 nm Spherical IC B. pumilus (accession number [100]
HQ318731)
Spirulina platensis Au 5nm - IC B. subtilis and S. aureus [101]

Table 1. Different types of algal-synthesized NPs and its antibacterial activity.
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The aqueous extract of red marine algae Gracilaria corticata as the reducing agent was explored
for its antibacterial activity against Gram-positive and Gram-negative bacteria [95]. U.
fasciata-based AgNPs were synthesized and used to inhibit the growth of Xanthomonas
campestris pv. malvacearum [96]. Another work shows the antibacterial activity of AuNPs
synthesized using marine brown algae Turbinaria conoides, against Streptococcus sp., B.
subtilis, and K. pneumoniae [97]. Ag, Au, and bimetallic alloy Ag-Au nanoparticles were
synthesized from marine red alga, Gracilaria sp., exhibited good antibacterial activity against
Gram-positive bacteria S. aureus and Gram-negative bacteria K. pneumoniae [98]. Extracellular
synthesis of AgNPs from the thallus broth of marine algae Padina pavonica (Linn.) inhibited the
growth of cotton Fusarium wilts (Fusarium oxysporum £. sp. vasinfectum) and bacterial leaf blight
(Xanthomonas campestris pv. malvacearum) [99]. Bactericidal activity of AgNPs and
nanocomposite material synthesized using agar extracted from the red alga Gracilaria dura was
tested against B. pumilus (accession number HQ318731) [100]. In a work done by Suganya et
al. [101] blue green alga S. platensis protein mediated synthesis of AuNPs was performed;
turther, it showed efficient antibacterial activity against Gram-positive bacteria (B. subtilis and
S. aureus) (Table 2)

Nanoparticle Target organism References
Silver nanoparticles S. paratyphi, P. aeruginosa, S. [112,113]
epidermidis
Bismuth oxide aqueous colloidal nanoparticles C. albicans, S. mutans [114, 115]
Nano-oil formulation from Mentha piperita L Staphylococcus sp. [116]
Nano-emulsion (detergent, oil, and water) in combination with A. baumannii [117]
cetylpyridinium chloride
Silver- and gold-incorporated polyurethane, polycaprolactam, E. coli [118]
polycarbonate, and polymethylmethacrylate
Silver nanoparticles in combination with nystatin and chlorhexidine  C. albicans, C. glabrata [119]
Silver nanoparticle and 12-methacryloyloxydodecylpyridinium Dental plaque microcosm biofilms  [120, 121]
bromide (MDPB)
Copper P. aeruginosa [108]
Zinc Actinobacillus pleuropneumoniae, S.  [122]
Typhimurium, Haemophilus parasuis,
E. coli, S. aureus, S. suis
Magnetite nanoparticles C. albicans [56]
Eugenia carryophyllata essential oil stabilized by iron S. aureus [123, 124]
oxide/oleic acid core/shell nanostructures
Zinc and copper oxide nanoparticles S. mutans [125]
Zerovalent bismuth nanoparticle S. mutans [114]
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Nanoparticle Target organism References
Dextran sulfate nanoparticle complex containing ofloxacin and P. aeruginosa [126]
levofloxacin

PEG-stabilized lipid nanoparticles loaded with terpinen-4-ol C. albicans [127]
Magnesium fluoride nanoparticles S. aureus, E. coli [128-130]
Yttrium fluoride nanoparticles S. aureus, E. coli [131]
Iron oxide/oleic acid in combination with essential oil from Rosmarinus C. albicans, C. tropicalis [132]
officinalis

Gold nanoparticles and methylene blue C. albicans [133]
Starch-stabilized silver nanoparticles S. aureus, P. aeruginosa [134]
Iron oxide—-oleic acid nanofluid S. aureus [124]
Quaternary ammonium polyethylenimine nanoparticles Oral biofilms [41]

Zinc oxide nanoparticles, chitosan nanoparticles, and combination of  E. faecalis [135]
both

Polyurethane nanocomposite S. epidermidis [136]

Table 2. Antibiofilm activity of different NPs against microbial pathogen.

2.4.2. Antifungal activity

Algal-synthesized NPs were used as efficient antifungal agents. Only countable number of
work has been carried out in this aspect. This includes the synthesis AgNPs using the aqueous
extract of red seaweed Gelidiella acerosa as the reducing agent exhibited antifungal property
against Humicola insolens (MTCC 4520), Fusarium dimerum (MTCC 6583), Mucor indicus (MTCC
3318), and Trichoderma reesei (MTCC 3929) [102]. In another report, the effect of the algal
(Sargassum longifolium)-mediated AgNPs against the pathogenic fungi Aspergillus fumigatus,
Candida albicans, and Fusarium sp. was determined [103].

2.4.3. Anticancer activity

In a work done by Boca et al. [104] synthesized chitosan-coated silver nano-triangles (Chit-
AgNPs) were used as a photothermal agents against a line of human nonsmall lung cancer
cells (NCI-H460) [104]. In another work, AgNPs (10 nm) were synthesized using Sargassum
vulgare and its ability to kill cancerous human myeloblastic leukemic cells HL60 and cervical
cancer cells HelLa was tested [105].

2.4.4. Other applications

Algal-synthesized NPs are explored in certain other area of applications, which include the
synthesis of spherical palladium nanocrystals via aqueous Na, [PdCl,] solution using the
photosynthetic reaction within C. vulgaris, which can be used as a material for recycling as a
catalyst for the Mizoroki-Heck cross-coupling reaction [106]. The antioxidant potentials of
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AgNPs synthesized using G. corticata was also determined [95]. In another work, AuNPs were
synthesized using the dried biomass of an edible freshwater epilithic red alga, Lemanea
fluviatilis (L.) C. Ag., as both reductant and stabilizer; further, its antioxidant property was
determined using DPPH assay [107].

2.5. Future application of algal-synthesized NPs

2.5.1. Antibiofilm agents

The use of nanoparticles as antibiofilm agents is an emerging area of research. Due to the
extensive use and misuse of antibiotics, many of the pathogens acquired resistance toward
multiple drugs. As the bacteria are less likely to develop resistance against nanoparticles, they
can be used as a promising therapeutic agent against biofilms. Nanoparticles have the ability
to penetrate EPS and the cell membranes (Figure 6). Silver nanoparticles were found to be
more prevalent than the other ones, and they exhibit antibiofilm activity against both Gram-
positive and Gram-negative pathogens. In a work done by LewisOscar et al. [108]. Chemical
synthesis of CuNPs was performed by one-pot synthesized method and used for biofilm
inhibition against P. aeruginosa PA14, P. aeruginosa ATCC10145 and some clinical isolated of
P. aeruginosa. Along with the biofilm, CuNPs also weakened the extracellular polymeric
substance and cell surface hydrophobicity of P. aeruginosa.

)

Free floating
planktonic cells

N NPs

> o0® s

N

F\J\s\%

Initial Attachment Mature Biofilm Penetration of NPs Dispersion of
formation Biofilm
1 2 3 4 )

Figure 6. Antibiofilm activity of different nanoparticles.

The zero-valent selenium and tellurium NPs synthesized using Stenotrophomonas maltophilia
and Ochrobacterium sp. were found to be effective against biofilms of E. coli, P. aeruginosa, and
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S. aureus [109]. Similarly, AgNP synthesized from E. faecalis, when used in the form of
nanocolloids, inhibited the biofilm of multidrug resistant pathogens [110]. Green-synthesized
AgNP coated on medical devices inhibited the S. aureus biofilms [111]. Some other potential
NPs against biofilm of different Gram-negative and Gram-positive bacteria are given below
in Table 2.

2.5.2. Nanocomposite

The diatom Stauroneis sp. was used for the preparation of silicon-germanium nanocomposite,
and this method of nanocomposite preparation has great importance for possible future
applications due to its accessibility, simplicity, and effectiveness [137].

2.5.3. Lipid nanoparticles

There are possibilities for the production of lipid nanoparticles with the help of lipid-rich
marine organisms such as algae, fungi, and bacteria [138]. Lipid nanoparticles can be synthe-
sized from the organisms through heating to liquefy fatty acids; incorporating active agents
of pharmacological and cosmetics importance; adding a hot surfactant; and stirring or
homogenized under high pressure by ultrasound. These can be used in the production of food
stuffs, cosmetics, and medicines [139].

2.5.4. Biosensing

Algal-synthesized NPs can be explored in biosensing applications. Such as, AuNPs has been
proved as an important tool for hormone (HCG) detection in pregnant women urine sample
[140]. Platinum (Pt) NPs act as a novel biosensor with high sensitivity for the determination
of adrenaline for the treatment of allergies, heart attack, asthma, and cardiac surgery [141].
Synthesis of nanoscale Au-Ag alloy prepared using chloroplasts exhibited high electrocata-
lytic activity for 2-butanone at room temperature which can be developed as a tool for detecting
cancer at early stages [142].

2.6. Conclusion

The developing era of nanoscience is a renowned gift for the development of science all over
the world. Despite numerous studies conducted over the last decade, there are still consider-
able gaps in our knowledge about the biotechnological potential of green-synthesized
nanoparticles. Furthermore, the precise basis of their antibiotic and antibiofilm activity has yet
to be defined. However, the toxicity of nanoparticles to eukaryotic cells is a legitimate concern
and still remains uncharacterized. One way of avoiding this potential drawback might be to
target green-synthesized nanoparticles to the specific site of an infection so that toxic nano-
particles concentrations are localized. In addition, improvements in the way that green-
synthesized nanoparticles are incorporated into medical devices could increase their efficacy
and diminish any side effects, but considerable research effort is still required to perfect this
technology.
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