
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322426442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 6

Genomic Instability of Pluripotent Stem Cells: Origin and
Consequences

Elena Lo Furno, Siem van der Laan and
Domenico Maiorano

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62906

Abstract

Maintenance  of  genomic  stability  is  crucial  in  ensuring  cellular  homeostasis  and
perpetuation  of  life.  Perpetuation  of  the  genetic  information  relies  upon  faithful
replication of the genome. Mutations, generated during DNA synthesis and/or cell
division and induced by exposure to external chemical agents, are drivers of genetic
and associated genomic instability believed to fuel malignant transformation. Curious‐
ly,  pluripotent  stem  cells  (PSCs)  are  characterized  by  a  high  degree  of  genomic
instability of  unknown origin,  which resembles that  observed in cancer cells.  This
peculiar feature of PSCs raises the questions of the reasons responsible for this apparent
aberrant  regulation  and of  how genome integrity  is  kept  under  control.  Genomic
instability  of  PSCs  also  raises  important  concerns  about  their  use  in  regenerative
medicine, which sets severe limitations in clinical applications. The aim of this chapter
is to review current knowledge about the molecular grounds of genomic instability of
PSCs of diverse origin, such as embryonic (ESCs), induced pluripotent (iPSCs), and
adult (ASCs) stem cells. We will also review how these features undermine the use of
PSCs in clinical applications and discuss new emerging perspectives aimed at reducing
genomic instability so to improve their use in clinical applications.

Keywords: DNA damage, checkpoints, replication stress, oncogenesis, nucleus, chro‐
matin

1. Introduction

Maintenance of genome stability is primordial for stem cells, given their potential to generate
multiple distinct cell lineages. Mutations may lead to the inheritance of DNA discontinuities in
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differentiated cells with potentially catastrophic consequences such as chromosomal rearrange‐
ments and deletions [1]. Genetic aberrancies can affect the stem cell pool or increase the chances
of  malignant  transformation  since  these  can  lead  to  oncogenes  activation  and/or  tumor
suppressors silencing [2, 3]. Paradoxically, embryonic stem cells (ESCs) and induced pluripo‐
tent stem cells (iPSCs) display signs of genomic instability, to a level comparable to that observed
in cancer cells [4]. In contrast, adult stem cells (ASCs), which have a strongly reduced pluripo‐
tency,  appear  to  have  more  stable  genomes.  The  occurrence  of  genomic  instability  also
undermines the use of PSCs in regenerative medicine since these cells are known to induce
tumors once injected in the organism.

2. Molecular basis of genomic instability

Genomic instability consists in the tendency of cells to accumulate mutations that directly or
indirectly affect the structure of the genome, such as deletions, translocations, variation in the
chromosomes copy number (CNVs) [5]. Maintenance of genome stability depends upon
cellular processes that regulate DNA metabolism, such as DNA replication, transcription,
repair, chromatin remodeling and their coordination with the cell cycle. Such coordination is
orchestrated by cell cycle checkpoints [6]. Once activated, these signaling pathways slow down
the cell cycle, activate DNA repair, and promote recovery of proliferation so to ensure that
genetic information is faithfully transmitted to the daughter cells. For instance, the S-phase
checkpoint restrains the onset of M-phase so to ensure that all DNA has been replicated before
cells enter division. On the other hand, M-phase checkpoint delays anaphase so to ensure that
condensed chromosomes are faithfully transmitted to the daughter cell. Importantly, check‐
points also preserve tissues homeostasis, since they can trigger cell death to avoid propagation
of cells with unstable and/or highly damaged genomes [5, 7] (see also Figure 1).

Figure 1. Main causes of genomic instability. Schematic representation of the main causes of genomic instability ob‐
served in cells. See text for more details.
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2.1. DNA damage

Exogenous cues, such as chemical and radiations, for instance, but equally the metabolism of
the DNA itself, generate DNA damage that threatens genome integrity. DNA damage elicits
a DNA damage response (DDR) by activating cell cycle checkpoints [8]. Efficient DNA repair
mechanisms ensure that DNA lesions are fixed to minimize loss or modification of the genetic
information; among these are nucleotide excision repair (NER), base excision repair (BER),
mismatch repair (MMR), post-replication repair (PRR), interstrand crosslinks (ICL) repair,
homologous recombination (HR), and non-homologous end joining (NHEJ). A defect in any
of these DNA repair pathways can compromise genome stability directly, by affecting the
structure of the chromosome, or indirectly by generating mutations in genes important for the
maintenance of genomic stability. Hence, occurrence of mutations in genes controlling cell
cycle checkpoints, promote strong chromosome imbalance [9]. Notwithstanding, not all of
these pathways allow faithfully repair of DNA lesions. For instance, repair of double-strand
breaks (DSBs) by NHEJ, which involves fusion of broken DNA ends after processing without
template assistance, is error-prone [10], in contrast to HR which requires a DNA template for
repair and is more error-free. Equally, ICL repair and PRR, both involving DNA translesion
synthesis, are also error-prone.

2.2. DDR

The DDR involves the activation of apical PI3KK protein kinases DNA–PKcs, ATR, and ATM.
ATR is most closely related to ATM, a protein kinase encoded by the gene mutated in the ataxia
telangiectasia syndrome. This disorder is characterized by a greatly reduced ability to repair
radiation-induced DSBs and increased risk of developing cancer [11]. Activation of PI3KK
follows a phosphorylation cascade that leads to the activation of a large number of substrates
[12], among which the tumor suppressor proteins p53, BRCA1, and CHK1. These proteins also
gather at sites of DNA damage and inhibit DNA replication and cell division apart from
promoting DNA repair, recombination, or apoptosis. For example, activated CHK1 (its
phosphorylated form) delays cell cycle progression, stabilizes stalled replication forks, and
induces the S-phase checkpoint [13]. ATR is activated following several forms of DNA damage,
including damaged nucleotides, stalled replication forks, and indirectly by DSBs [14]. ATM
instead is more specialized in the response to DSBs and in sensing modifications of the
chromatin state. DNA–PKcs is involved in the repair of DSBs by non-homologous recombi‐
nation, and more recently, it has also been implicated in signaling DNA damage synergistically
with ATR [15–17]. CHK1 and/or CHK2 phosphorylation mediates cell cycle slow down or
arrest by affecting the stability and post-translational state of master cell cycle regulators, such
as CDC25 proteins (A, B, and C) and CDKs.

In S-phase, ATR is chromatin-bound to monitor replication fork progression [18] and is
activated following generation of excess single-stranded (ss) DNA as a result of replication
forks delay or stalling at damaged sites [19]. ATR activation requires synthesis of replication
intermediates onto ssDNA followed by the recruitment of specific proteins that recognize this
substrate, such as Rad17 and the 9-1-1 checkpoint clamp [20–24]. ATR-dependent phosphor‐
ylation of the histone variant H2AX (γH2AX) constitutes a widely used marker of replication
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stress (RS) and genomic instability [25]. ATR can be also recruited and activated at DSBs
following generation of ssDNA by resection [14].

ATM assembles at DSBs immediately after their formation. Its recruitment depends upon the
MRN trimeric complex (made of Mre11, Rad50, and Nbs1 proteins), which holds two DNA
ends together, by interacting with Nbs1. DNA damage results in ATM conversion from an
inactive homodimer into an active monomer with protein kinase activity [26], which phos‐
phorylates effector molecules that carry out the DDR including H2AX, p53, BRCA1, CHK2,
RAD17, RAD9, NBS1 to form repair foci. The MDC1 protein is recruited by γH2AX via its BRCT
domains and is phosphorylated by ATM, mediating the localization of ubiquitin ligase RNF8
that triggers monoubiquitination of H2AX. RNF168, a second ubiquitin ligase, is recruited and
amplifies the ubiquitination response resulting in γH2AX polyubiquitination, which leads to
the recruitment of Rad18, p53-binding protein 1 (53BP1), and BRCA1, among other proteins
thus promoting DBSs repair by either HR or NHEJ [27].

2.3. RS

RS, defined as a more or less pronounced slow down or arrest of the DNA replication process,
is a major source of genomic instability in proliferating cells [28]. Many obstacles can interfere
with DNA synthesis. These can be specialized DNA or chromatin structures, or DNA damage
(see below). The metabolism of the cell can also induce RS by affecting the availability of
nucleotides and/or proteins required for DNA synthesis [29], as well as by production of
reactive oxygen species (ROS) that generate a large amount of DNA lesions (about 100,000 per
cell per day in an organism) [30]. RS is also generated by interference between DNA synthesis
and DNA transcription induced, for instance, by unscheduled re-entry into the cell cycle, a
situation observed during malignant transformation [31] and during reprogramming of
somatic cells into iPSCs (see Section 3.2). Conflicts between DNA replication and transcription
may lead to under replication of the genome [32, 33] as a result of DNA synthesis arrest, or to
over replication as a result of aberrant reinitiation of DNA synthesis induced by certain
oncogenes [32]. RS induces DNA damage (whose molecular bases are not completely under‐
stood) and thus generates a cellular response similar to that observed when cells are challenged
with DNA damaging agents.

At the molecular level, the consequence of RS can be: (a) generation of excess ssDNA if the
progression of the DNA polymerases and not that of the replicative DNA helicase is perturbed.
In this situation, the ssDNA binding protein RPA is recruited and the replication fork can
undergo remodeling in a process known as fork regression, dependent upon the Rad51 protein,
to limit the extent of ssDNA; (b) a pause or a permanent arrest of the replication fork with no
excess ssDNA formation due to an impediment to both DNA polymerases and helicase
activities ([34] for review). In this situation, stalled replication forks can restart through
generation of DSBs followed by resection and HR mediated by the PARP-1 enzyme [28]. (c)
Generation of extra copies of the DNA as a result of over replication of the genome leading to
collision between replication forks [32]. Recent evidence highlights the presence of regressed
replication forks in G2/M phases generated by unscheduled activation of Cyclin E and CDC25A
[35]. At this stage, the endonuclease Mus81 can cleave the DNA and replication can occur to
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minimize the lost of genetic information. Nevertheless, DNA damage that could not be fixed
before entering mitosis persists in the next cell cycle leading to the formation of nuclear bodies
containing 53BP1 in G1 phase [36]. These nuclear bodies appear symmetrical in the two
daughter cells suggesting that they probably mark sister loci from the previous S-phase, where
unresolved replication intermediates are still present. This ATM-dependent process hints to
the possibility that ATM activation by RS is necessary to preserve genome integrity into
following cell cycles.

RS-induced genome instability is a feature of almost all human cancers which can arise from
mutations in DNA repair genes as stated by the mutator hypothesis [37]. According to this
model, genomic instability is present in precancerous lesions and causes tumor development
by increasing the spontaneous mutation rate. Then, mutations occurring in genes controlling
the DNA damage checkpoint would allow anarchic proliferation of cells having collapsed
replication forks and unstable genomes [38, 39]. The main instability found in cancer cells is
chromosomal instability (CIN) or CNVs, where chromosome structure and number varies
significantly in comparison with normal cells. Cancer cells can show other forms of genomic
instability, including microsatellite instability (MSI or MIN), in which the number of DNA
repeats present in microsatellite sequences increases or decreases [40, 41] in addition to
increased frequencies of base pair mutations [42, 43].

3. Genomic instability of stem cells

Genomic instability has been extensively reported for ESCs, while ASCs appear to have a much
more stable genome. Chromosomes 8 and 11 trisomy in ESCs [44, 45] and trisomy of chromo‐
somes 12 and 17 in hESCs [46] with the amplification of the chromosome arm 20p in these
latter have been observed [47]. These changes were reported to confer proliferation advantage.
In addition, hESCs were reported to have the tendency to become aneuploid [48]. Very recent
data now suggest that aneuploidy in hESCs arises as consequence of RS and chromosome
condensation defects [49]. Detection of several markers of RS has been reported in ESCs
(though without full activating the DDR) compared with somatic cells, suggesting that ESCs
have a strong predisposition to genetic instability. One explanation for this feature may be that
ESCs exhibit a contracted cell cycle structure, consisting of a short G1- and G2-phase and a high
proportion of cells in S-phase [50–53]. These cells are also marked by open heterochromatic
structure and an abundance of chromatin-remodeling factors [54, 55].

3.1. ESCs

Due to a highly contracted cell cycle, mESCs have an inefficient G1/S checkpoint which does
not allow them to arrest in G1 in the presence of DNA damage [56–58], while the S-phase
checkpoint is normally activated [53]. The consequence of this regulation is that lesions
generated in G1 are not sensed and therefore cannot be efficiently repaired, so they will persist
in S-phase. For instance, unrepaired ssDNA breaks generated in G1 may be replicated during
S-phase, thus generating DSBs that in turn can induce genomic rearrangements. Curiously,
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the situation seems to be inversed in hESCs, where the G1/S checkpoint has been suggested to
be functional [59], while the S-phase checkpoint appears to be inefficient [60]. This difference
can be explained as possible differences in the molecular circuits that regulate pluripotency
between mouse and human stem cells. Absence of a G1/S checkpoint in mESCs was originally
suggested to be due to inefficient p53 function [57]. However, it has been shown that p53 can
transactivate target genes in these cells [53, 56, 61]. The molecular grounds of inefficient G1/S
checkpoint in mESCs have been more recently explained by the presence of high levels of the
CDC25A phosphatase [58] due to its stabilization by the ubiquitin hydrolase DUB3 which is
expressed at high levels in mESCs [53]. This results in constitutive dephosphorylation of the
CDK2 kinase, which pushes cells into S-phase even in the presence of DNA damage, similar
to the phenotype observed in cancer cells overexpressing CDC25A [62]. Interestingly, DUB3
has been shown to regulate the ubiquitination of both H2AX and γH2AX in somatic cells [63].
If this is also the case in mESCs, then it may explain why these cells repair inefficiently DSBs
[64], aside from expressing low levels of DNA–PKcs [65]. Suppression of the G1/S checkpoint
is untimely linked to pluripotency. The expression of the DUB3 gene in mESCs [53] and that
of the CDC25A gene in hESCs [66] are under control of pluripotency factors. Indeed, down‐
regulation of CDC25A induces a G1/S delay upon DNA damage and cells spontaneously
differentiate [53]. Consistent with this observation, DUB3 is more rapidly downregulated than
OCT4 upon onset of differentiation (starting from day 1), making this gene a novel and highly
specific marker of pluripotency in mESCs. Another work has shown that the contraction of the
G1 phase is crucial to suppress differentiation of mESCs [67]. Collectively these observations
suggest that cell cycle contraction is an essential feature of pluripotency in mESCs.

mESCs exhibit spontaneous formation of γH2AX, RPA, and Rad51 foci but do not appear to
display DSBs accumulation consistent with the absence of 53BP1 foci [68, 69], although
activation of downstream DDR transducers (CHK1/2, CDC25A) does not seem to be affected
[53]. It is possible to envisage the presence of multiple levels of regulation of the S-phase
checkpoint by various factors, such as effectors of signaling pathways, unique to stem cells.
One example is provided by the observation that the CHK2 kinase appears to be sequestered
at the centrosome in mESCs so that it is not activated following induction of DSBs [70]. New
evidence suggests that H2AX phosphorylation in cultured ESCs is neither DNA–PKcs- nor
ATM-dependent but is in part ATR-dependent. This is associated with ssDNA gaps accumu‐
lation, reduced fork speed, and frequent fork reversal. All these features are lost upon onset
of differentiation [71]. Why is ATR spontaneously activated in mESCs? Ahuja et al. [71] show
that hypoxia, DNA methylation, and transcription do not seem to be the main cause of RS in
mESCs. RS appears to be linked to the maintenance of self-renewal of embryonic stem cells.
Turinetto et al. [68] demonstrated that γH2AX level decrease during mESCs differentiation,
while it increases upon treatment with self-renewal-enhancing small molecules such as GSK
and MEK inhibitor, which correlates with increased OCT4 and NANOG expression. Further,
a pluripotent state-specific gene, named FILIA, has been recently shown to be important for
genomic stability in mESCs [72]. This protein is constitutively localized to the centrosomes, is
recruited to DNA damage sites, where it stimulates PARP1 enzymatic activity, and contributes
to CHK2 activation independently of ATM.
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The main kind of spontaneous mutations observed in mESCs are loss of heterozygosity as a
consequence of chromosome loss/reduplication. However, the mutation rate of mESCs has
been found be to 100 times lower than that of isogenic somatic cells [73]. This is surprising
given the high level of RS observed in mESCs and may suggest that these cells could counter‐
balance genetic instability by increased DNA repair efficiency [74]. One of this could be
reduced efficiency of mitotic recombination in ESCs compared to somatic cells as observed
([73] and references therein). In addition, because mESCs have an inefficient G1/S checkpoint,
they activate DNA damage- and p53-dependent differentiation if injured, as a way to enter
apoptosis more easily since this checkpoint is restored in differentiated cells [75]. This latter
control mechanism then avoids that damaged cells would be part of the pool of differentiated
cells.

3.2. iPSCs

Somatic cells expressing defined pluripotency factors can be reprogrammed into iPSCs [76].
These cells share several similarities with ESCs such as a similar contracted cell cycle [77], the
ability to undergo self-renewal and differentiation, as well as expression of pluripotency
markers such as NANOG, OCT4, SOX2, and SSE-4 amongst others. Reprogramming increases
γH2AX levels [78–80] and induces accumulation of genomic aberrancies ranging from whole
chromosome aneuploidies, CNVs to point mutations [81], as well as epigenetic abnormalities
[82]. The mutation frequency of iPSCs is also increased and has been estimated to be 10 times
higher than that of ESCs [83–84]. This is in some way not surprising since the reprogramming
protocol involves overexpression of oncogenes, such as c-myc, that introduces RS. Decreased
genomic instability can be achieved by overexpression of the CHK1 kinase or by nucleosides
supplementation during reprogramming [80]. ATM is also important for reprogramming. It
has been reported that iPSCs deleted of ATM reprogram less efficiently and have increased
genomic instability. Interestingly, these cells display gene expression profiles similar to wild-
type ESCs and maintain the ability to differentiate into all three germ layers [85]. In line with
this data, iPSCs exhibit G2/M cell cycle arrest and efficient DSB repair if ATM-dependent
checkpoint activation signaling cascade is activated by ionizing radiation. iPSCs arrest the cell
cycle in G2-phase and repair DSB by HR probably by overexpressing DNA repair genes [86].
Altogether these observations point out to a general requirement for the DNA damage
checkpoint in sustaining reprogramming, suggesting that forced induction of proliferation
induces RS and cells need a functional DDR to cope with this.

3.3. ASCs

ASCs are characterized by a narrower differentiation potential than ESCs. These cells self-
renew to preserve both specific tissue and organ homeostasis throughout the life of an
individual. Although ASCs show much less signs of genomic instability than ESCs, they
deteriorate with age [87]. It is likely that the accumulation of lesions and mutations observed
during ageing of stem cells is caused by acquired defects in DNA repair pathways that reduce
stem cell potential. Interestingly, defective DNA repair is tightly linked to regeneration failure
in certain tissues. Fanconi anemia patients, who are deficient in ICL repair, are characterized
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by a premature failure of bone marrow hematopoiesis. This event is triggered by the accumu‐
lation of DNA lesions leading to excessive DDR activation in hematopoietic stem cells (HSCs)
and their progenitors [88]. In addition, NER is required for the maintenance of HSCs and
prevention of premature ageing [89]. NHEJ is critical for the maintenance of skeletal muscle
and muscle stem cells, since decreased Ku80 expression (a subunit of the heterodimeric
complex made of Ku70 and 80 proteins that that functions with DNA–PKcs in NHEJ) causes
accelerated exhaustion of stem cell pool and ageing [90]. In HSCs and their progenitors, ROS
accumulation can be provoked by loss of ATM, affecting cell cycle progression. Conditional
depletion of ATR or its downstream effector CHK1 is responsible for premature ageing
phenotypes in skin, bones, small intestine, and the hematopoietic system [91, 92], resulting in
apoptosis and cell cycle arrest because of rapid accumulation of DNA lesions [93, 94].

Interestingly, it has been reported that aging HSCs have a higher rate of genomic instability
than young HSCs, fuelled by a high level of RS generated by the reduced expression of
components of the MCM2-7 replicative helicase [95]. Reduced expression of the MCM3 gene
was also recently shown to be sufficient to impair hematopoietic progenitor cells due to RS
[94]. A recently identified protein, NUCLEOSTEMIN, rules a primary function in maintaining
the genomic stability of neural stem cells. This protein promotes recruitment of RAD51 to
replication-induced DNA damage foci and activates growth arrest independently of p53 [96].
Analysis of the transcriptional program of ESCs compared to ASCs (i.e., neural and hemato‐
poietic) showed unexpected high similarities of gene expression profiles and identified a core
set of about 200 genes expressed in all three cell types, accordingly coined as the “stemness”
factors [97].

Cell type Causes of genomic instability of stem cells

ESCs Short cell cycle

Inefficient checkpoints

RS

iPSCs

ASCs

Short cell cycle

Inefficient checkpoints

RS

Reprogramming-induced DNA damage

Mutations carry over

High mutation frequency

Aging-induced RS*

* Observed in HSCs [100].

Table 1. Summary of main causes of genomic instability of pluripotent stem cells.
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The cell cycle of ASCs is remarkably different from that of ESCs. ASCs are mostly quiescent
(being mostly in the G0 state) and display a very slow cell cycle. For example, about 75% of
HSCs reside in G0 [98], whereas ESCs grown in culture display less than 20% of cells in G1. It
has been suggested that HSCs may divide once every 145 days (about five times during a
mouse lifetime [99]), while ESCs divide every 11–12 h. These features make ASCs able to
activate checkpoints and allow efficient repair. Since NHEJ can also act during G0/G1 because
of its template independency, HSCs make an attempt to avoid DNA lesions by maintaining a
hypoxic status [100] and decreasing the generation of ROS. In these conditions, ATP is
generated mainly through glycolysis rather than mitochondrial respiration. Since this latter is
activated only following cell cycle entry [101, 102], it explains why the first process is mainly
employed by HSCs that are usually quiescent (Table 1).

4. Implications of PSCs genomic instability in regenerative medicine

PSCs are of great interest for their use in cell-based therapy. Current protocols involve PSCs
differentiation into a specific cell type and then injection into an organ in the aim of replacing
existing faulty cells. From a clinical point of view, this is a major concern due to the threat of
transplanting immature cells with instable genome. Indeed, when injected in mice, immature
PSCs induce teratoma. Hence, a greater understanding of the factors that regulate genomic
stability in PSCs is critical to address this issue.

4.1. Hurdles in translating iPSCs technology into the clinic: problems and perspectives

Genetic instability and a high mutation rate constitute the dark side of iPSCs when taken into
the clinic [4]. Hence, current efforts are made to generate iPSCs with reduced mutation load
and having more stable genomes. Ji et al. [103] have shown that antioxydants reduce the level
of γH2AX and de novo formation of CNVs in iPSCs suggesting that excessive ROS production
in iPSCs increases their genetic instability. Indeed, a very recent report that analyzed the
“metabolome” of naïve ESCs compared to that of primed ESCs show significant differences
between these two cell types, which in turn may impinge on the level of ROS [104]. Further,
recent work suggests that the use of non-integrative vectors to induce reprogramming
significantly reduces the number of CNVs in the resulting iPSCs [105, 106]. Furthermore, a
recent report that analyzed the mutational load of three distinct pluripotency induction
methods shows that a non-integrative approach results in lower mutation load than either
retrovirus or Sendai virus-based reprogramming methods [104]. Because integrative vectors
induce DNA damage by generating DSBs, this suggests that the manipulation of the DDR can
be a useful tool to reduce the genetic instability of iPSCs. It is then conceivable to think that
DNA damage generated during reprogramming may be not well taken care, one reason being
that iPSCs have inefficient checkpoints [86]. Indeed, a recent report indicates that manipulating
the DDR can decrease the genomic instability of iPSCs [80]. This work shows that increasing
the cellular levels of the CHK1 protein kinase decreases the level of γH2AX in these cells. In
sum, in order to reduce undesired genetic burden arising during reprogramming of somatic
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cells, supplementing medium with both antioxidants and nucleoside should be combined to
significantly reduce RS and CNVs in iPSCs.

In an effort to reduce genetic manipulation and consequent DNA damage, it has been shown
that several transcription factors needed for iPSCs generation (except OCT4) can be replaced
with a cocktail of chemical compounds [107]. More recently, generating iPSCs with a mix of
small molecules inhibitors that can also replace OCT4 appears to strongly suppress the level
of γH2AX, suggesting a reduction in spontaneous DNA damage, while keeping these cells
pluripotent [108, 109]. As an example for the downside of genetic manipulation, NANOG
expression has been shown to be cell cycle-regulated in human and mouse ESCs [53, 66, 110],
whereas during reprogramming, this transcription factor is under constitutive expression.
Altogether these data suggest that the use of an optimized set of chemical compounds may
not alter natural gene expression during reprogramming and therefore would likely reduce
unwanted off-target effects otherwise generated using genetic manipulation for reprogram‐
ming. Hence, chemical reprogramming remains a potentially more appropriate method since
standardization of the approach is foreseeable and paves a new way of keeping genomic
instability of iPSCs under control using pharmacological inhibitors.

Interestingly, mutation in the cell surface protein Glypican4 (Gpc4), implicated in the control
of the Wnt/ß-catenin signaling pathway, has been reported to strongly reduce formation of
teratoma upon implantation of mESCs in nude mice without affecting pluripotency [111]. Gpc4
mutant ESCs appear to be able to differentiate in all three embryonic layers when injected into
developing blastocysts, although with faster kinetics compared to wild-type ESCs. These data
propose Gpc4 as a promising target to modulate the teratogenic potential of ESCs. Indeed,
more recent data show that ESCs bearing a hypomorphic Gpc4 allele improve recovery of
motoneuron defects in a rat model for Parkinson disease without generating teratoma [112].
It is not yet known whether Gpc4 mutations have a similar effect also on human ESCs or iPSCs,
and whether spontaneous DNA damage and/or genomic instability are affected.

5. Conclusions and perspectives

Differentiation of iPSCs has been successfully achieved to generate hematopoietic cells,
neurons, pancreatic β-islet, and cardiomyocytes; however, production of other cell types is still
challenging. One major hurdle is the efficiency of differentiation that still remains very low.
In addition, PSCs show several signs of genetic instability, not only in culture but also in vivo
[71, 106], yet embryos manage to keep this instability under control by generating viable and
healthy organisms. Hence, the question arises of how this control is achieved. First, cells with
unstable genomes can be eliminated by apoptosis during differentiation, which is actually
what it is observed during in vitro differentiation. However, γH2AX detection in blastocysts
shows that most of the cells stain positive for this marker [71, 106], which makes unlikely that
most of them bear indeed highly unstable genomes. Another possibility is that the γH2AX
observed in these cells is not only a mark of genetic instability but perhaps also a marker of
other DNA transactions, including chromatin remodeling. Chromatin remodeling is known
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to change dramatically during differentiation; hence, the decrease of γH2AX observed upon
differentiation onset may be also due to changes in chromatin structure. If this is the case, the
chromatin structure and epigenetic marks responsible for constitutive γH2AX in ESCs remain
to be discovered. Furthermore, recent data show the presence of a high proportion of ssDNA
gaps in mESCs; however, the link between these gaps and the level of γH2AX is unclear.
Despite the high level of genetic instability, a highly contracted cell cycle and an inefficient
G1/S checkpoint, the mutation rate of mESCs has been surprisingly reported to be lower than
that of isogenic somatic cells. The significance of this discrepancy needs to be further under‐
stood.

How our current knowledge on PSCs can be translated into improving their genetic stability
so to foster the development of PSCs with lower mutation load that can be used with success
in regenerative medicine? In principle, identifying the molecular basis of genomic instability
of PSCs opens the perspective of manipulating the genes implicated, in the aim to decrease
their tendency to introduce mutations and so doing, reduce their teratogenicity. For instance,
being able to manipulate the structure of the cell cycle of PSCs so to decrease RS and still
maintain pluripotency may be of value. Further work in this direction is expected to generate
novel insights and hopes into this rather difficult though exciting task. Clinically-compatible
quantitative methods to comprehensively analyze the genetic stability of iPSCs would greatly
facilitate the selection process of most appropriate iPSCs clones. Recent efforts have shifted
the practice and proposed pathway signaling as readout to compare for functionality [113].
Ease of application and selection would guarantee large-scale testing in clinics.
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