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Abstract

Face recognition has been widely applied in fast video surveillance and security systems
and smart home services in our daily lives. Over past years, subspace projection methods,
such as principal component analysis (PCA), linear discriminant analysis (LDA), are the
well-known algorithms for face recognition. Recently, linear regression classification
(LRC) is one of the most popular approaches through subspace projection optimiza‐
tions. However, there are still many problems unsolved in severe conditions with different
environments and various applications. In this chapter, the practical problems includ‐
ing partial occlusion, illumination variation, different expression, pose variation, and low
resolution are addressed and solved by several improved subspace projection methods
including robust  linear regression classification (RLRC),  ridge regression (RR),  im‐
proved principal component regression (IPCR), unitary regression classification (URC),
linear  discriminant  regression  classification  (LDRC),  generalized  linear  regression
classification (GLRC) and trimmed linear regression (TLR). Experimental results show
that these methods can perform well and possess high robustness against problems of
partial occlusion, illumination variation, different expression, pose variation and low
resolution.

Keywords: subspace projection, principal component analysis, linear discriminant
analysis, linear regression classification, robust linear regression classification, ridge
regression, improved principal component regression, unitary regression classifica‐
tion, linear discriminant regression classification, generalized linear regression classi‐
fication, trimmed linear regression
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1. Introduction

From the tragic 911 incident in 2011, more and more researches focus on the security issues with
computational intelligence. How to avoid the tragic event from happening again and how to
quickly identify the terrorists and suspects before or after the tragic event happens are very
important. Therefore, the effectiveness of security is being examined almost everywhere. The
discoveries of current security vulnerabilities along with the exploration of new methods should
be constantly investigated to improve the security systems. Security measures with computa‐
tional intelligence are used to improve the safety of our everyday lives.

The security issue is that we should recognize the wanted criminals and invaders from their
biometric characteristics such as face, fingerprint, iris, palm and so on. Among these biometrics
signals, the face image is easier and more direct to be captured by distanced cameras than
others. For instance, the face images of any suspect who walks through the hotel lobby will be
recorded by cameras. Hence, computer vision technologies with cameras can be applied to
realize intelligent video surveillance systems. Since many face images of criminals and
terrorists are available in the police department, they can be used to identify if the unknown
face images are them from the distributed cameras. Thus, an efficient face recognition system
could help to improve security. The face recognition systems would not only be helpful in
identifying the criminals and terrorists, but also be used to search missing persons or identify
the incident of weak person. Thus, face recognition systems with surveillance cameras have
been already installed in many locations such as department store, airports and supermarkets.
Besides, if the face recognition systems installed at home can timely detect the user’s facial
expression, the smart service for the user can be properly introduced accordingly.

The goal of face recognition is to distinguish a specific identity and its outlook from face images.
However, in realistic situations, such as video surveillance and access control, face recognition
task might encounter great challenges such as different facial expressions, illumination
variations, partial occlusions and even low resolution problems, which will degrade the face
recognition performance and result in severe security complications. For example, the image
captured by a CCTV camera at a distance would have a very low resolution which degrades
the recognition performance significantly. Besides, in the testing phase, the face image is a
factor which is out of control. In other words, the person may not be on a frontal pose and may
not be a pure image, that is the person may be wearing glasses, hat, or mask, or even with some
lighting influence and expressions. Over past years, subspace projection optimizations have
been widely proposed to solve this problem with linear [1] and non-linear [2] approaches. The
principal component analysis (PCA) [3, 4] and linear discriminant analysis (LDA) [5] are the
two typical examples of linear transform approaches which attempt to seek a low-dimensional
subspace for dimensionality reduction. The nonlinear projection approaches also have been
used in many literatures like the kernel PCA (KPCA) [6] and kernel LDA (KLDA) [7] which
can uncover the underlying structure when the samples lie on a nonlinear manifold structure
in the image space.

Recently, the linear regression classification (LRC) proposed in 2010 by Naseem et al. [8] has
been treated as an effective subspace projection method, which performs well on face recog‐
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nition. Moreover, the robust linear regression classification (RLRC) [9] estimating regression
parameters by using the robust Huber estimation was introduced to achieve robust face
recognition under illumination variation and random pixel corruption. Ridge regression (RR)
[10] estimated the regression parameters by using a regularized least square method to model
the linear dependency in the spatial domain. Huang et al. and Chou et al. presented several
improved approaches of LRC, including improved-PCA-LRC [11], LDA-LRC [12], unitary-
LRC [13], and generalized-LRC [14, 15] for dealing with different situations like facial expres‐
sions, lighting changes, and pose variations. Lai et al. [16] utilized the least trimmed square
(LTS) as a robust estimator to detect the contaminated pixels from query for boosting the
performance under the partial occlusion situation.

The rest of this chapter is organized as follows. With the overview of fundamentals and facial
representation, several famous face recognition algorithms are first presented in Section 2.
Section 3 is dedicated to present several advances of subspace projection optimizations for
robust face recognition technologies including RLRC, RR, improved principal component
regression (IPCR), unitary regression classification (URC), linear discriminant regression
classification (LDRC), generalized linear regression classification (GLRC) and trimmed linear
regression (TLR). The performances of the aforementioned projection methods will be shown
in Section 4. Finally, conclusions are drawn in Section 5.

2. Fundamentals of face recognition and representation

As shown in Figure 1, the typical face recognition system contains two major parts: face
detection and face recognition. In this section, the face detection methods are first briefly
introduced. Then, the well-known subspace project methods are reviewed. Finally, the
similarity measures of image feature vectors are overviewed. Generally, the unknown data
vector will be projected into a certain subspace, a similarity measure will be used to classify
it. To narrow down the computation and increase the recognition accuracy, the first step of the
recognition system, called face detection, is to detect and crop the face region from the image
or video.

Figure 1. The simplified flow chart of face recognition system.
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2.1. Face detection

The methods of face detection [17–20], can be separated into neural network, feature-based,
and color-based approaches. Neural network approach [21] trains the facial class and non-
facial class while a new image or video can be detected based on the prior training data. The
well-known method is AdaBoost learning algorithm [22, 23]. Feature-based approach is to
utilize the facial feature for detecting facial region. For example, the corresponding positions
of the eyes, nose, and mouth are useful features; moreover, the shape of face, which is almost
like an ellipse, can be included. Rule-based algorithm [24] and elliptical edge [25] are two
popular feature-based methods. Color-based approach as [26] adopts the variance of skin color
to detect if the region is face or not. For example, the face region in grayscale should not change
immense while the eyes, mouth and hair should be darker than the other part of face.

Once the face areas are detected by a selected face detection method, their face images in size
of a×b pixels could be projected into another subspace such as principal space, kernel space,
frequency space and so on, in order to find a proper set of features for boosting the recognition
performance. Assume there are C subjects. Each class is with N training color images. For the
ith class, i = 1, 2, …, C, the jth training color image in size of a×b pixels with K components is
formed a data matrix as νi,j,k ∈ Ra×b×K for j = 1, 2, …, N and k =1, 2, …, K. For example, K = 3 color
components, k =1, 2, and 3 denote the red, green, blue channels, respectively. For some
recognition algorithms, νi,j,k ∈ Ra×b×K is transformed to grayscale as gi,j=c1νi,j,1+c2νi,j,2 +c3νi,j,3, where
are c1, c2, and c3 are fixed in visualization. The gray image gi,j is reshaped into one column vector
as xi,j ∈ RM×1 where M = a×b. In the testing phase, an unknown color image, z ∈ RM×K, is given.
In order to predict unknown z by training data, it should be transformed to grayscale, be
normalized and be reshaped into a column vector as y ∈ RM×1.

2.2. Subspace projection methods

The famous subspace projection methods, such as PCA and LDA are reviewed in the following
sections.

2.2.1. Principal component analysis (PCA)

The PCA method is widely used for dimensionality reduction in the computer vision field,
especially for face recognition technology. In the PCA, the data is represented as a linear
combination of an orthonormal set of vectors that maximize the data scatter across all images.
The first principal component represents the most variability of the image as possible while
the second one represents the second most, and so on. The flow chart to find PCA transfor‐
mation bases is shown in Figure 2. The main objective of the PCA is to reduce the dimension
of the feature image xi,j to retain a few principal components. This means that most of the
useless information would be reduced, and the remaining data could be well represented in a
lower dimension space by the PCA.

As shown in Figure 2, the derivations of the PCA transformation bases are stated in the
following equations. First, the feature face image should remove the global mean to become:
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(1)

where x̄ global = 1
C ⋅ N ∑ C

∑
N
xi , j is a global mean vector of all facial image vectors.

Figure 2. The flow chart for finding PCA transformation.

After the computation of the feature face images, we can obtain M×M covariance matrix of all
feature face images as:

(2)

Based on the covariance matrix, the eigenvectors and eigenvalues can be retrieved by singular
value decomposition (SVD) or eigen-decomposition as:

(3)

where r = {r1, r2,…, rM} is a set of total M descending-ordered eigenvalues and their corre‐
sponding eigenvectors u = {u1, u2,…, uM} According to the expected dimension, we can choose
P principal components. Thus, the PCA transformation with the P largest eigenvectors, the
PCA transformation PPCAwith P×M size can be formed by the corresponding P eigenvalues as:

(4)

Finally, we can achieve the PCA features, wPCA,i , j ∈ RP×1, by multiplying PCA transformation

and the feature image vector as:

(5)
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On the other hand, the testing image vector y can be projected onto PCA subspace by PPCA.
The PCA subspace y

^
PCA can be written as:

(6)

And the similarity measure based on this feature data vector is calculated to determine the
final result.

2.2.2. Linear discriminant analysis

Fisher proposed the LDA for recognition which is a kind of statistical analysis method like the
PCA. But the difference is that the LDA can discriminate the different subjects even though
the maximum variance subspaces among them are overlapped as shown in Figure 3. The goal
of the LDA is that these projections onto a line will be well separated by disparate classes and
be well concentrated by the same class.

Figure 3. Comparison of LDA and PCA in projection space.

Thus, the concept of LDA is to seek the optimal projection by maximizing the ratio of between-
class and within-class scatter. Fisher utilizes a criterion to optimize this problem as:

(7)

where SB =∑i=1
C ∑q=1,q≠i

C (x̄ local ,i − x̄ local ,q)(x̄ local ,i − x̄ local ,q)T  is the between-class matrix where

x̄ local ,i = 1
N ∑ j=1

N xi , j is a local mean vector of the ith class. And SW = 1
C ∑i=1

C (X i − x̄ local ,i)(X i − x̄ local ,i)T

is the within-class matrix where Xi is concatenated by the ith data set of N training gray images.
Then, the optimal projection matrix, WLDA, can be solved by computing generalized SVD or
eigen-decomposition as:
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(8)

where Λ is the diagonal eigenvalue matrix. We apply the optimal projection matrix to convert
the face feature vector xi,j into a new discriminant vector, wFisher,i,j as:

(9)

In the same way, the testing image vector is projected onto LDA subspace by PLDA and can be
represented as:

(10)

And the final result can be determined by using similarity measure based on this feature vector.

2.3. Similarity measures

There exist three distance measures [27–29] such as the city block distance (Taxicab geometry,
L1), Euclidean distance (L2) and L∞ norm distance. These distance measures are defined from
two column vectors wi,j and ŷ which can be obtained from the subspace projection like PCA
subspace {wPCA,i , j, ŷPCA}, LDA subspace {wLDA,i , j, ŷ LDA}, and the other projections with
dimensionality of M or P. The distance measures, L1, L2, and L∞ can be respectively written as:

(11)

(12)

and

(13)

where xi , j
(m) and y (m) are the mth component of xi,j and y column vectors, respectively.

However, these vectors satisfy the Cauchy-Schwarz inequality as:

(14)

To ignore the amplitudes of two feature data vectors, the similarity measure can be also defined
by a cosine criterion as:
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(15)

3. Advances of subspace projection optimization

In this section, the advances of subspace projection optimization are presented for robust face
recognition system. Then, the well-known subspace projection methods including LRC, RLRC,
RR, IPCR, URC, LDRC, GLRC and TLR are introduced.

3.1. Linear regression classification (LRC)

For applying the linear regression to estimate the class specific model, all N training gray
images from the same class are concatenated as:

(16)

where Xi is in the size of M×N and is called class-specific model. In other words, the ith class is
represented by a vector space Xi, which is called the regressor for each subject, in the training
phase.

In the testing phase, if an unknown column vector y belongs to the ith class, its linear combi‐
nation can be rewritten in terms of the training data from the ith class and can be formulated
as:

(17)

where βi ∈ RN×1 is the vector of regression parameters. The goal of the linear regression is to
find the regression parameters by minimizing the residual errors as:

(18)

The regression coefficients, βi, can be solved through the least-square estimation method and
can be represented as:

(19)

For each class i, the regressed vector ŷ LRC ,i can be predicted through the regression parameters
β
^

LRC ,i and predictors X i as
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(20)

By substituting Equation (19) into Equation (20), the predicted response vector ŷ i can be
rewritten as:

(21)

Theoretically, we can treat Equation (21) as a class-specific projection as:

(22)

where ŷ LRC ,i is the projection of y onto the subspace of the ith class by the projection matrix

H i =X i(X i
T X i)−1X i

T .

In the LRC approach, the minimum reconstruction error is adopted for determining the final
result. In other words, the distance between predicted response vector ŷ LRC ,i and unknown
column vector y will be smallest when the unknown column vector belongs to the training
vector space of class i. Therefore, the identity i* can be determined by minimizing the Euclidean
distance between the predicted response vector and unknown vector as:

(23)

3.2. Robust linear regression classification (RLRC)

The LRC has been claimed that classical statistical methods are robust, but they are only robust
in the fact of true cases. Once the data distribution is in fact of false cases, the regression
parameter under original least square estimation could be inaccurate. In other words, the
original least square estimation is inefficient and can be biased in the presence of outliers. There
exist several approaches for robust estimation like R-estimator [30, 31] and L-estimator [30,
32]. However, M-estimator is now shown superiority due to their generality, efficiency and
high breakdown point [30, 33]. Based on the M-estimator, the optimal function becomes:

(24)

where
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(25)

and ρ(•) is a symmetric function and γ being a tuning constant, also called the Huber threshold.

3.3. Ridge regression (RR)

The goal of the RR is to find and minimize the residual errors and their penalty as:

(26)

where λ is the regularization parameter. Comparing with linear regression, the RR adds a
penalty, λ βi 2

2, to the regression model to reduce the variance of the model. The regression
parameter vectors can be computed by:

(27)

3.4. Improved principal component regression (IPCR)

Multicollinearity denotes the interrelations among the independent variables. In the linear
regression, the regression estimation could be imprecise because the multicollinearity phe‐
nomenon would inflate the variance and covariance. To overcome the problem of multicolli‐
nearity, various approaches have been proposed. IPCR is one of the powerful approaches.

The IPCR is a two-step classification method. In the first step, the PCAZ is adopted to transform
the observed variables into the new decorrelated components. Then, the first n components
are dropped because these components are very sensitive to the lighting changes. Mathemat‐
ically, the PCA process is used in all training samples including covariance matrix evaluation
as Equation (2), and eigen-decomposition estimation as Equation (3). Then, we can obtain a
set of eigenvectors, u={u1, u2,…, uM}, and a set of eigenvalues, r={r1, r2,…, rM} with r1≥r2≥…≥rM.
As above mentioned, we drop first n components and the projection matrix can be express as:

(28)

The PCAZ features, wPCAZ ,i , j∈ RP×1, can be obtained by multiplying the projection matrix and
the average image vector as:

(29)

In order to apply LRC to estimate class specific model, feature vectors should be grouped
according to the class-membership. Hence, for the ith class, we have

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods60



wPCAZ ,i = wPCAZ ,i ,1, wPCAZ ,i ,2, …, wPCAZ ,i ,N . In the testing phase, an unknown column vector,
y, is transformed to PCAZ subspace as y(PCAZ). In the second step, the new subspace of PCAZ
projection is used in LRC such that we can seek more reliable regression coefficients for each
subject for face recognition. The goal of regression becomes to minimize the residual errors as:

(30)

The regression parameter vectors can be rewritten as a matrix form as:

(31)

3.5. Unitary regression classification (URC)

The total within-class projection error from all classes cannot be taken in previous mentioned
methods for classification that would degrade the recognition accuracy. The URC is proposed
to minimize the total within-class projection error from all classes for LRC to improve the
robustness for pattern recognition.

Instead of original space, we hope to find a global unitary rotation PURC=[s1,…,sΨ] with Ψ≤M,
which can rotate the original data space to a new compact wURC data space as:

(32)

to achieve the total minimum projection error of all training data stated as:

(33)

where w̃ i = H̃ URC ,iwURC ,i , j is the within-class projection to make the objective function be well-
posed. In wURC data space, the ith class projection matrix can be obtained by following
H̃ URC ,i =WURC ,i(WURC ,i

T WURC ,i)−1WURC ,i
T  where WURC ,i = WURC ,i ,1, WURC ,i ,2, …, WURC ,i ,N . The

unitary rotation matrix, PURC, is used to achieve the total minimum within-class projection error
for LRC. From minimum reconstruction error, the objective function in T data space can be
represented as:

(34)

By substituting WURC ,i =PURC
T X i into H

^
URC ,i =WURC ,i(WURC ,i

T WURC ,i)−1WURC ,i
T , the objective

function becomes:
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(35)

where EURC =∑i=1
C ∑ j=1

N (xi , j − x̃ i)(xi , j − x̃ i)T , also called within-class projection error matrix. The
projection matrix, PURC= [s1,…,sΨ], can be solved by evaluating eigen-decomposition as:

(36)

where λΨ≧… ≧λl≧…≧λ1≧0.

3.6. Linear discriminant regression classification (LDRC)

Although the previous methods including LRC, RLRC, and IPCRC can perform well on face
recognition, we cannot guarantee that the projection subspace in LRC or IPCRC is most
discriminatory. When the projection subspaces among the different subjects overlap, the
recognition result would be incorrect. To obtain an effective discriminant subspace for LRC,
the LRC with discriminant analysis is presented by maximizing the ratio of the between-class
reconstruction error (BCRE) to the within-class reconstruction error (WCRE) by the LRC.

Mathematically, all images are collected from C classes as X = [X1,X2,…,XC] = [x1,1,…,xi,j,…,xC,N].
LDRC is to find an optimal projection by maximizing the BCRE over the WCRE for the LRC
such that the LRC on the optimal subspace has better discrimination for classification. The goal
of LDRC is to maximize the objective function as:

(37)

where PLDRC=[u1, u2,…, uφ] is the optimal projection matrix, and EBC and EWC denote the BCRE
and WCRE, respectively. The original space, xi,j, can be mapped into the subspace,
x̃ i , j =PLDRC

T xi , j. Hence, the objective function can be rewritten as:

(38)

where x̃ i , j ,q
inter =Hq

x̃ x̃ i , j denotes the inter-class projection of x̃ i , j by the LRC from the different qth

class and x
^

i , j
intra = H i , j

x̃ x̃ i , j denotes the intra-class projection of x̃ i , j by the LRC in the same class.
The xi,j is used to instead of x̃ i , j as:

(39)
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With some algebraic deduction, the form becomes:

(40)

where

(41)

and

(42)

is inter-class and intra-class reconstruction error, respectively. In other words, the objective
function can be represented as:

(43)

For solving the optimization problem, Equation (43) can be reformulated as the following:

(44)

where ϑ is a constant. The projection matrix, PLDRC=[u1, u2,…, uφ], can be solved by evaluating
eigen-decomposition as:

(45)

where λ1≧… ≧λl≧…≧λφ.

3.7. Generalized linear regression classification (GLRC)

In real-world recognition applications, the input images generally have multiple components
which can overcome the unexpected effects such as pose variations, limited image information
and so on. For color face recognition, the GLRC with membership grade (MG) criteria is
proposed to defend the unexpected effects.

Mathematically, each channel component is separately normalized and transformed to one
column vector such that νi,j,k∈Rp×q×K → xi,j,k∈Rd×K, where d = p⋅q. In the ith class, the kth component
of N training images is collected as:
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(46)

for i = 1, 2, …, C and k = 1, 2, …, K, where Xi,k is treated as the kth-channel collected training data
of the ith class in the training phase.

For the test image, the kth-channel testing image, zk, is normalized and reshaped into a column
vector as yk ∈ Rd×1. For the kth component, the linear combination of Xi,k from the ith class for the
test vector yk becomes:

(47)

where βGLRC,i∈RN×1 is an ideal projection vector of the ith-class regression parameter for all
channels. In order to estimate the projection vector, the objective function becomes:

(48)

After solving the optimization problem, the regression vector can be expressed as:

(49)

In order to achieve optimal performance, the different components should be treated as
unequally important. Thus, the absolute sum of prediction residual of the kth component after
the direct least square optimization is given as:

(50)

where ŷ i ,k =X i ,kβGLRC ,i, i =1, 2, …, C . Based on the statistical opinion, we define the importance

of the kth component to be inverse of the normalized absolute sum of prediction residual, which
is expressed by:

(51)

where ε is a tiny value which is used to avoid rk = 0. The larger the residual, rk is, the less
important the kth component will be. For the GRLC optimization, we propose the linear
combination of Xi,k of the kth component in the ith class for the test vector yk becomes:

(52)
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where β̃GLRC ,i∈RN×1 is the vector of the ith-class total regression parameters to achieve the GRLC
optimization as:

(53)

The optimal total regression parameter vector, β̃GLRC ,i can be given by:

(54)

The prediction, ŷ ′
i ,k  is then expressed as y

^ ′
i ,k =X i ,k β̃GLRC ,i.

For identity recognition, the minimum prediction error of the GRLC should be further
designed to compute the similarity between the prediction vector ŷ ′

i ,k  and the query vector
y. The similarity in terms of minimization of prediction errors of total K components can be
designed by the following MG criteria as:

(55)

where di ,k =αk ŷ′
i ,k − yk , d̄ k = 1

N ∑i=1
N αk ŷ ′

i ,k − yk  and t is the pre-selected fuzzy factor.

3.8. Trimmed linear regression (TLR)

For the occlusion situations, the previous methods including LRC, RLRC, IPCR, URC, LDRC,
and GLRC are not suitable because the existing methods treat all pixels as equally import.
Conversely, if the outliers can be detected and trimmed from the testing image and the
corresponding training samples, the mechanism still can work. Hampel identifier [34, 35] for
outlier detection is highly thought of by the researchers because it can make out the extreme
values easily. An advantage of Hampel identifier is that it adopts median absolution deviation
(MAD), which is a powerful measure in statistics, for removing the masking data. Mathemat‐
ically, the Hampel identifier can be expressed as:

(56)

where Δ is a data set, media(Δ) denotes the media value of Δ data set. The number of 0.6745
is a probable error of standard deviation. When the ratio is larger than 2.24, the data will be
abandoned. For example, there is a data set, [2, 3, 3, 4, 4, 250]. The sample mean is 44.33, sample
variance is 100.76, sample median is 3.5, MAD equals to 0.5, and the detection rule by mean
and median is:
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(57)

and

(58)

respectively. We can observe that the Hampel identifier excludes the outlier easier than the
other one.

For the face recognition, the error of estimation can be presented as:

(59)

where error is a zero mean distribution. In order to detect the occlusion part, each pixel should
suffice the Hampel identifier estimation as:

(60)

where ε ′ is the indices of all pixels, that is ε ′ = {1, 2, …, M }. The real median of noise is zero.
From the Equation (60), the pure pixels, ε ′, are found out. In other words, the pure pixels are
taken for regression estimation. The training data can be rewritten as
XTLR ,i = xTLR ,i ,1, xTLR ,i ,2, …, xTLR ,i ,N ∈R τ×N  and testing sample becomes yTLR∈R τ×1 where τ is
the number of elements in ε ′ and τ<M. The objective function becomes:

(61)

The regression parameter vectors can be represented as:

(62)

4. Experimental results

In order to verify the recognition accuracy, the well-known databases including Yale B, AR,
FERET, and FEI are utilized. In the experiments, we evaluate the mentioned method against
low resolution problem coupled with facial expressions, illumination changes, pose variations,
and partial occlusions.
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4.1. Yale B database

The Yale B database contains 10 subjects [36, 37]. Each subject has 64 illumination images with
9 different poses. The Yale B can be divided into five subset based on angle of the light source
directions as shown in Figure 4. In the experiments, the first subset with normal pose is used
for training and the remaining subsets (Subset 2 to 5) with normal pose are utilized for testing.
All images are cropped and resized to 30×25 pixels. Table 1 reveals that IPCRC performs better
than the traditional subspace projection like PCA and LDA. Moreover, the IPCRC can also
outperform the LRC, RLRC and RR. The reason is that the original subspace cannot represent
the data distribution very well. Besides, PCA subspace is very sensitive to illuminant varia‐
tions. However, IPCRC not only can transform to PCA subspace, but also can defend the
illumination variations by removing the top n components. Thus, IPCRC possesses higher
robustness to illuminations than the other methods.

Methods Subset 2 Subset 3 Subset 4 Subset 5

PCA 89.81 47.04 21.90 15.26

LDA 95.14 75.14 34.76 10.00

LRC 100.00 100.00 91.86 52.11

RLRC 100.00 100.00 92.86 60.00

RR 100.00 100.00 92.57 53.68

IPCRC 100.00 100.00 95.00 64.21

LDRC 100.00 100.00 97.14 56.84

URC 100.00 100.00 90.71 53.68

Table 1. Accuracy (%) comparisons on Yale B.

Figure 4. The experimental design and some samples of cropped and aligned illustration from Yale B face database.

4.2. FERET database

Furthermore, we experiment on the FERET face database [38, 39] for the purpose of verifying
the performance among the different subspace projections. In the experiments, we select four
facial images including fa, fb, ql, and qr from 300 subjects as Figure 5. All images are converted,
cropped, and downsampled to 30×25 pixels with grayscale. As the Figure 5 shown, the fa and
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fb samples are small pose and rotation changes; conversely, the ql and qr samples are major
pose variations. In order to obtain a reliable result, cross-validation experimental procedure
is adopted. In other words, three images per person are used for training while the fourth
image is used for testing. Table 2 shows that the average recognition accuracy (ARA) in URC
performs outstandingly. We can observe that the RLRC and IPCRC are highly sensitive to pose
variations but in spite of these, methods perform well in noisy and illuminated face images,
respectively.

PCA LDA LRC RLRC RR IPCRC URC

fa 80.67 87.33 94.00 91.67 85.67 92.33 96.00

fb 81.00 84.33 92.33 90.00 83.67 91.00 95.33

ql 65.67 63.00 71.00 69.33 63.33 66.00 73.00

qr 68.33 72.00 75.00 74.33 70.00 68.67 84.33

ARA 73.92 76.67 83.08 81.33 75.67 79.50 87.17

Table 2. Accuracy (%) comparisons on FERET.

Figure 5. Samples (fa, fb, ql, qr) of one subject from FERET face database.

4.3. AR database

AR face database [40, 41] was conducted by Martinez and Benavente in 1998. This database
contains 4000 mug shots of 126 subjects (70 males and 56 females) with different variations
such as facial expressions, lighting changes and partial occlusions. For normal case, each
subject contains 26 images in two sessions. The first session (AR1 ~ AR13), containing 13
photos, includes facial expression, different lighting changes, and partial occlusions (sun‐
glasses and scarf) with lighting changes. The second session (AR14 ~ AR26) duplicates the
same way of first session two weeks later as shown in Figure 6. In the experiments, 100 subjects
are selected and all images are cropped and resized into 30×25 pixels with grayscale. We
classify the images into four different expressions including neutral (AR4, AR14), happy (AR2,
AR3), angry (AR1, AR17), and screaming (AR15, AR16) expressions. The single-one-expres‐
sion training strategy is adopted to present the performance. For example, if neutral expression
images are used for training, the happy, angry, and screaming expressions are used as query
images. Table 3 reveals that the LDRC achieves the best performance in all cases. Moreover,
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we can observe that the happy expression images for training obtain higher performance than
the others; conversely, the screaming expression images for testing can obtain lowest per‐
formance. On the other hand, the partial occlusion situations are used to discussion. In this
experiments, the expression variation images (AR1~AR4, AR14~AR17) are utilized as training
set, and testing sets are separated in two cases including sunglasses (AR8, AR21) and scarf
(AR11, AR24). All images are cropped and resized into 42×30 pixels with grayscale. In the
Table 4, we can observe two points. First, the TLRC can perform better than the other methods
under sunglasses occlusion or scarf occlusion. Second, the upper bound occlusion seems to
obtain higher performance than the lower bound occlusion. In other words, the mouth features
are more useful than the eye features.

Training Set Testing Set PCA LDA LRC RLRC RR IPCRC LDRC GLRC

N H,A,S 88.75 86.53 89.03 87.50 84.17 88.19 91.39 89.00

H N,A,S 90.97 89.17 92.08 91.67 82.33 92.08 93.61 54.33

A N,H,S 90.00 85.69 90.00 89.17 83.33 89.44 90.42 89.83

S N,H,A 88.19 84.58 87.78 86.53 77.88 87.58 90.42 55.50

Table 3. Accuracy (%) comparisons on AR.

Figure 6. Samples of one subject from AR face database.
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Training Set Testing Set PCA LDA SRC LRC RLRC RR IPCRC GLRC TLRC

AR1~
AR4; AR14~
AR17

Sunglasses (AR8, AR21) 42.5 20.5 87.0 65.5 47.5 59.0 44.5 90.5 100.0

Scarf
(AR11, AR24)

7.0 33.5 59.5 12.5 9.5 10.5 6.0 35.5 94.5

Table 4. Accuracy (%) comparisons under partial occlusion problem on AR.

4.4. FEI database

The FEI face database [42, 43] contains 200 subjects (100 males and 100 females). Each subject

has 14 images with different pose variations (image1~image10), facial expressions (im‐

age11~image12), and illumination variations (image13~image14) as shown in Figure 7. In the

experiments, all images are resized to 24×20 pixels with grayscale and the “leave-one-out

strategy” is adopted. From Table 5, it can be seen that the IPCRC is more robust to severe

lighting variation (image 14) and URC is good at facial profiles (image 1, image 10). All in all,

the ARA of URC performs the best.

PCA LDA LRC RLRC RR IPCRC LDRC URC GLRC

Test Image 1 91.0 91.5 92.0 89.0 89.0 86.0 95.0 95.0 97.0

2 99.5 99.0 100.0 100.0 100.0 99.0 99.5 100.0 100.0

3 97.0 99.0 99.5 99.5 99.5 99.5 99.0 100.0 100.0

4 98.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 97.5 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 96.5 99.5 99.0 99.0 99.0 99.0 99.5 100.0 99.5

7 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

8 99.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

9 97.0 99.5 99.5 99.5 99.5 99.5 100.0 100.0 100.0

10 79.5 83.0 83.5 78.0 78.0 72.0 86.0 91.5 91.5

11 98.0 100.0 99.5 99.5 99.5 99.5 100.0 99.5 100.0

12 97.0 99.5 99.0 99.0 99.0 97.5 99.0 98.5 99.5

13 47.0 87.5 97.0 97.5 97.5 99.0 98.5 99.5 94.5

14 23.5 39.5 79.5 91.0 91.0 92.5 83.0 88.5 77.5

ARA 92.04 96.73 97.62 97.00 97.00 96.23 97.11 98.77 97.11

Table 5. Accuracy (%) comparisons on FEI.
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Figure 7. Samples of one subject from FEI database.

4.5. Discussions

From the experimental results, we can observe that IPCRC has a good performance under
illumination situation. The reason is that the first n components in IPCRC are removed. The
first n components are very sensitive to the lighting changes. However, although IPCRC has
better performance under the lighting changes, it cannot handle the pose variations and
occlusion problems very well. For the pose variations, the URC performs better than the other
subspace methods because URC attempts to minimize the total intra-class reconstruction error
to find an optimal projection which can decrease the pose influence. LDRC embeds discrimi‐
nant analysis into the LRC for seeking an optimal projection matrix such that the LRC on that
subspace has high discriminatory ability for classification. In other words, LDRC can perform
better than LRC and IPCRC in most cases. In the occlusion situation, the TLRC can effectively
remove the masking data and project onto a more reliable subspace.

5. Conclusions

In this chapter, we presented several subspace projection methods for robust face recognition
to deal with different practical situations such as pose variations, lighting changes, facial
expressions, and partial occlusions.

For illumination variation task in face recognition, an improved principal component classi‐
fication can be used to solve the multicollinearity problem and can perform better recognition
accuracy than the original linear regression and RR. For the pose variations, a URC has been
presented to minimize the total within-class projection error from all classes for LRC to
improve the robustness for pattern recognition. Moreover, a LDRC has been proposed to
overcome facial expressions by maximizing the ratio of the BCRE to the WCRE by the LRC.
For the partial occlusions, a trimmed regression classification is used to remove unreliable
pixels by the Hampel identifier. Finally, experimental results have revealed the comparisons
with different subspace projection optimizations.
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