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Abstract

Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and
developed to solve the navigation problem in Apollo Project. Since then, numerous
applications  were  developed  with  the  implementation  of  Kalman  filter,  such  as
applications in the fields of navigation and computer vision's object tracking. Kalman
filter consists of two separate processes, namely the prediction process and the measure‐
ment process, which work in a recursive manner. Both processes are modeled by groups
of equations in the state space model to achieve optimal estimation outputs.  Prior
knowledge on the state space model is needed, and it differs between different systems.
In this chapter, the authors outlined and explained the fundamental Kalman filtering
model in real‐time discrete form and devised two real‐time applications that implement‐
ed Kalman filter. The first application involved using vision camera to perform real‐
time image processing for vehicle tracking, whereas the second application discussed the
real‐time Global Positioning System (GPS)‐aided Strapdown Inertial Navigation Unit
(SINU)  system  implementation  using  Kalman  filter.  Detail  descriptions,  model
derivations, and results are outlined in both applications.

Keywords: Kalman filter, real‐time, navigation, vehicle tracking, GPS‐aided‐INS

1. Introduction

Kalman filter exists for the past 50 years. It was first introduced by Rudolf Emil Kalman in 1960
[1] and was implemented on the Apollo Project in 1961 to solve the space navigation problem
[2]. Kalman filter is claimed to be an optimal estimator [1] due to its ability to optimally estimate
the system's error covariance and use the prediction in a recursive manner to improve the system
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measurements from time to time. As such, Kalman filter was implemented as the estimator in
various applications, such as in navigations [3, 4], image processing [5, 6], and finance [7].

One of the uniqueness in Kalman filter is that it consists of two distinct processes, namely, the
prediction process and the measurement process. Both processes are combined and operated
in a recursive manner to achieve optimal Kalman filtering process [8]. Another uniqueness of
Kalman filter is the incorporation of prediction errors and measurement errors into the overall
Kalman filtering process. It is common that each prediction and measurement process consists
of errors in random nature. These errors or “noise” are normally being described using the
stochastic process. On the other hand, a real‐time application can be defined as an application
or program that reacts or responses within a predefined time frame, where such predefined
time frame is a quantified time using a physical clock [9]. From a real‐time application's point
of view, the real world's continuous time is turned into discrete time frame Δ. Different real‐
time applications have different Δ, which in turn defined the response time of the applications.
The real‐time application must react within the predefined time frame to provide an up‐to‐
date response. Such real‐time constraint forced the application to complete its routine within
the time frame, else the output may not be accurately reflecting the current state of input [10].

Note that the realization of Kalman filter, in its recursive nature, can be described as a real‐
time implementation. In this book chapter, the authors will demonstrate two real‐time Kalman
filtering examples. The first example demonstrated the real‐time Kalman filter implementation
on vehicle tracking application using vision camera's image processing. A Kalman filtering
model is established to estimate the positions and velocities of the moving vehicles and to
provide tracking on the vehicles at a normally visible condition [11]. The second example
demonstrated the Kalman filter implementation on the real‐time Global Positioning System
(GPS)‐aided Strapdown Inertial Navigation Unit (SINU) System or GPS‐aided INU system for
Unmanned Aerial Vehicle (UAV) motion sensing. The results obtained from both experiments
will be illustrated and discussed in this book chapter.

The outline of this chapter is as follows. Section 2 illustrates the generalized Kalman filter
model from real‐time system's point of view. Section 3 outlines the real‐time vehicle tracking
system using vision camera. The contents include the elaboration of image processing
algorithms, illustration of the Kalman filtering model on the tracking system, result in
acquisition, and discussions. Section 4 depicts the real‐time GPS‐aided SINU system for UAV
motion sensing using Kalman filter. The contents included the derivation of Kalman filter for
the GPS‐aided SINU system, the offline and real‐time implementation of the Kalman filter on
the GPS‐aided SINU system, results and discussions, and conclusion. Lastly, Section 5
concludes the chapter.

2. Kalman filter

Kalman filtering is a popular technique used to solve observer problems [12] in control
engineering [13]. Numerous derivations of the Kalman filter model can be obtained from
various researchers’ works [3, 8, 12, 14, 15], where detailed elaborations and explanations of
the Kalman filter, which included the derivation of the prerequisites such as the state space
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model and random variables, are outlined. Hence, in this chapter, the authors derived and
explained the discrete real‐time Kalman filter model from the implementation point of view
to ensure readers can understand the idea of Kalman filter from the real‐time implementation
angle.

2.1. Discrete Kalman filter model

A typical Kalman filtering process is separated into two distinct processes, namely, the
prediction process and the measurement process [14]. In general, the Kalman filter prediction
model and the measurement model of a real‐time system, expressed in discrete form, are as
follows:

1k k k-= + +x x Bu wf (1)

k k kz v= +Hx (2)

where xk  is the predicted output, zk  is the measurement output, ϕ denotes the state transition
matrix, B is the control input matrix, and u is the optional control input matrix. H  is the
measurement transformation matrix, whereas wk  and vk  are the process noise matrix and
measurement noise matrix, respectively. Both Equations (1) and (2) depict the general
expression of the Kalman filtering process [14, 15]. In terms of real‐time implementation,
however, further elaborations are to be performed on Equations (1) and (2).

2.2. Kalman filter algorithm

The Kalman filtering algorithm starts from the prediction process by estimating the prediction
state based on the derived state space equation. The state space equation, or state transition
equation, may differ in different systems. From the implementation point of view, the
expression of the prediction state, similar to Equation (1), is outlined as follows:

1k kf-
-= +% %x x Bu (3)

where x̃k
− is defined as the a priori state estimated at the discrete instant k, and x̃k   is defined

as the a posteriori state illustrated at the discrete instant k given the measurement zk . Note that,

from Equation (3), the a priori state x̃k
− can be elaborated as a hypothesized state predicted from

the system's state transition equations, whereas the a posteriori state x̃k  can be elaborated as the
measured state obtained by the system's observation. By letting xk  be the true value of state

measurement, the a priori prediction error  ek
−   and a posteriori estimation error ek  can be

expressed as:
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k k k
- -= - %e x x (4)

k k k= - %e x x (5)

From Equation (4), the a priori prediction error covariance can be expressed as:

( )( )TT
k k k k k k kE E- - - - -é ùé ù= = - -ë û ê úë û

% %P e e x x x x (6)

From Equation (6), substituting xk. Equation (1) and x̃k
− with Equation (3) yielded:
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(7)

Because the state estimation error and the process noise error are uncorrelated,

( ) ( )1 1 1 1 0TT
k k k k k kE E- - - -

é ùé ù- × = - =ë û ë û% %x x w w x x (8)

Therefore, Equation (7) can be simplified into:
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1 
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f f
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é ùæ ö æ ö
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ê úè ø è øë û
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w w P

(9)

Equation (9) yielded an important step in the prediction process of the Kalman filtering
algorithm in obtaining the a priori prediction error covariance using the system's state transition
matrix ϕ, the a posteriori measurement error covariance from previous estimation Pk−1 and the

process noise covariance Qk = E wkwk
T . Hence, in summary, Equations (3) and (9) summarized

the two most important equations in deriving the prediction process of the Kalman filter
algorithm.

The next stage of the Kalman filtering algorithm is the measurement process. Equation (2)
depicts the observation equation, or the actual measurement equation, of the system. The
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measurement output zk  is normally obtained from the system's measurement sensors or
devices. From here, it is possible to express the a posteriori measurement x̃k  as follows [16]:

( )-
k k k k k

-= + -% % %x x K z Hx (10)

where Kk is the Kalman gain, and the term (zk −H x̃k
−) is commonly known as the measurement

residual or innovation [14–16]. Substituting Equation (2) into Equation (10) yielded:

( ) ( )k k k k k k k k k k k k
- - - -= + + - = + - +% % % % %x x K Hx v Hx x K H x x K v (11)

Given the a posteriori measurement error covariance, with reference to Equation (5):

( )( )TT
k k k k k k kE E é ùé ù= = - -ë û ë û% %P e e x x x x (12)

Substituting Equation (11) into Equation (12) yielded:
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(13)

Because the state estimation error and measurement noise error are uncorrelated,

( ) ( ) ( )( ) 0
TT

k k k k k k k kE E- -é ùé ù- × = - =ê ú× ×ë û ë û
% %x x K v K v x x (14)

Therefore, Equation (13) can be simplified into:

Pk = (I −KkH )·E (xk − x̃k
−)·(xk − x̃k

−)T ·(I −KkH )T + Kk ·E vk ·vk
T ·Kk

T

      = (I −KkH )·Pk
−·(I −KkH )T + Kk ·Rk ·Kk

T (15)

Equation (15) depicts the error covariance update equation in the measurement process of the
Kalman filtering algorithm. From Equation (15), one could obtain the optimal Kalman gain Kk
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with minimal mean squared error, where the mean squared error is reflected by the trace of Pk

[16], in which the trace is defined as the sum of the diagonal elements in the matrix. To do so,
the error covariance update equation from Equation (15) can be rewritten as:

( )T T T T
k k k k k k k k k k

- - - -× × ×= - × × ×- + × + ×P P K H P P H K K H P H R K (16)

The mean squared error reflected by the trace of the error covariance Pk  can be expressed as:

T Pk =T Pk
− −T Kk ·H ·Pk

− −T Pk
−·H T ·Kk

T + T Kk ·(H ·Pk
−·H T + Rk )·Kk

T

=T Pk
− −2T Kk ·H ·Pk

− + T Kk ·(H ·Pk
−·H T + Rk )·Kk

T (17)

where T ·  denote the trace of matrix and T Kk ·H ·Pk
− =  T Pk

−·H T ·Kk
T , as the diagonals of both

matrixes are identical. Performing the first derivative of Equation (17) with respect to Kalman
gain Kk  yielded:

[ ] 2 2 2 0
Tk T

k k k k k
k

d
d

- -é ù= - × + × + =ë û × × ×
T P

H P K H P H K R
K

(18)

where 
d T Kk ·H·Pk

−

d Kk
= H·Pk

− T  and 
d T Kk ·(H·Pk

−·H T + Rk )· Kk
T

d Kk
=2Kk ·(H ·Pk

−·H T + Rk ). Rearranging

Equation (18) yielded the optimal Kalman gain with minimal mean squared error, as follows:

( ) 1T T
k k k k

-- -= ×× × +×K P H H P H R (19)

Lastly, substituting Equation (19) into Equation (16) yielded:

( ) ( )
1T T

k k k k k k k k

-- - - - -= - × +× × × × = - ×××P P P H H P H R H P I K H P (20)

where Equation (20) is the simplified version of error covariance update equation expressed
in terms of optimal Kalman gain obtained from Equation (19) and the a priori prediction error
covariance obtained from Equation (9).

In summary, the Kalman filtering algorithm can be summarized and is shown in Figure 1. The
prediction process, as shown in Figure 1, covers the prediction of a priori state and a priori error
covariance. The measurement process, on the contrary, covers the calculation of optimal
Kalman gain, updating the a posteriori estimation state and the a posteriori error covariance.
Both processes run in a recursive manner, forming the well‐known Kalman filtering algorithm.
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Figure 1. Block diagram of the Kalman filtering algorithm.

2.3. Real‐time consideration of Kalman filter

Figure 1 depicts a typical Kalman filtering process algorithm in its recursive form. Notice from
the block diagram that the algorithm processed each stage one by one and rewind back to the
initial block for the next cycle of processing. From the real‐time perspective, there are certain
time critical events that need to be handled within a specific time frame. In this subsection, the
time critical events are analyzed and discussed as part of the consideration of real‐time Kalman
filtering algorithm.

The pseudo code of the Kalman filtering algorithm is outlined in Figure 2. It is divided into
three sections. The first section denotes the system initialization, and it is covered from steps
100 and 101. The second section is the prediction process section, covered from steps 200 to
202. The third and final section is the measurement process section, covered from steps 300 to
310. Note that the second and third sections run recursively.

Figure 2. A typical Kalman filtering algorithm process pseudo code.
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Figure 3 depicts the timing diagram of the real‐time Kalman filtering algorithm based on the
pseudo code illustrated in Figure 2. The following observations are obtained by examining
Figure 3:

1. ΔT21 can be defined as the time required for Kalman filter prediction process from steps
200 to 202.

2. ΔT32 is defined as the time required for the measurement sensor's data preparation from
steps 300 to 305. The time consists of reading the measurement data from the sensors and
performs the preprocessing on the data as part of the measurement process preparation.
Note that ΔT32 may be the most time‐consuming factor in Kalman filtering process due to
the preprocessing step 302. Depending on the application, the preprocessing of measure‐
ment data may require a substantial amount of processing power to complete.

3. ΔT43 depicts the time required for the measurement data computation process from steps
306 to 310. Three important parameters were computed within this time frame, namely,
the optimal Kalman gain, the measurement states, and the error covariance measure‐
ments.

4. The total duration for a single iteration is ΔT41, which is equal to ΔT21+ΔT32+ΔT43. Note that
ΔT41 shall not exceed Δ, where ΔT is defined as the fixed time‐step of iteration. In most
Kalman filter applications, ΔT is normally adopted as the sampling duration of incoming
data. If the processing time for a single iteration exceeded Δ, then the next prediction will
not be accurate.

Figure 3. A typical timing diagram of real‐time Kalman filtering algorithm process.

3. Vision‐based real‐time vehicle tracking system

A vision‐based real‐time vehicle tracking system used vision camera to achieve target track‐
ing [17]. The number of tracked vehicle can be single or multiple. The detection and tracking
of vehicles are done through the image processing of consecutive frames of video. Before
tracking the vehicles across frames, target detection algorithm such as background subtrac‐
tion is responsible for isolating the position of the moving vehicles in every frame. The
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tracking algorithm used the measurements from the detection stage to relate the moving ve‐
hicles from frame to frame. However, due to the limitation of performance in the target de‐
tection algorithm, it is not reliable to solely depending on the measurements computed from
the detection stage. As such, Kalman filtering algorithm can be adopted to compensate the
fluctuation and missing measurements whenever the detection stage fails. The missing
measurements are predicted based on the center position and velocity of the detected vehi‐
cle. An experimental study was conducted on the real‐time vehicle tracking at a road junc‐
tion. The results showed that the Kalman filtering algorithm is capable of tracking the
vehicles even with loss measurements appeared on the scene.

3.1. Preprocessing of vision‐based vehicle tracking system

Traditionally, the road traffic monitoring is analyzed based on the data collected from the
electronic sensor (i.e., loop detector) and manual observation by the human operator. The
integration of multiple targets tracking algorithms in the vision‐based vehicle tracking system
offers an attractive alternative with additional potential to collect a variety of traffic parameters
[18]. As illustrated in Figure 4, that the vehicle tracking process is the second processing stage
in the existing vision‐based traffic monitoring system. The performance of this stage greatly
depends on the output from the first stage (i.e., the vehicle detection stage). The frames from
the video input are recognized as image sequences and fed into the first stage of traffic
monitoring system. Moving vehicles are segmented from the stationary background. Because
a moving vehicle is formed by a sequence of images from the consecutive frames, the fore‐
ground images are matched and combined into its respective tracked objects.

Figure 4. Processing stages of the vehicle monitoring system.

Background subtraction technique is the most widely used image processing algorithm for
moving vehicle segmentation [19]. The basic idea of background subtraction algorithm is to
subtract (in pixel‐wise) all consecutive frames from an occupied background frame. As a result,
this algorithm can be easily affected by sudden changes in background and illumination. Since
then, numerous researches on updating the background image have been carried out to create
a more adaptive background model. However, the contribution effort is still not able to
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perform vehicle segmentation perfectly, which indirectly affects the performance of vehicle
tracking. This is where the Kalman filtering algorithm comes into the picture to improve the
tracking performance.

3.2. Kalman filter model for vehicle tracking system

From the vehicle tracking system's point of view, the Kalman filter is to be designed to have
the ability to predict the movement of vehicles in the future video frames. The prediction
provides a suitable area for searching vehicles in the future frames. Consequently, it shortens
the processing time by excluding the foreground images that is not located in the search area
[14]. Besides, it also assists the tracking process in the situations where vehicles are temporarily
lost due to failed detection.

In the common road traffic flow, vehicle movements can be sufficiently recorded with an
optical sensor (i.e., camera) of 25 frames per second. This is because the changes in displace‐
ment of moving vehicles in x‐ and y‐positions have been monitored to be small and do not
show drastic changes, even at the road junction [20]. Kalman filter can be adopted for predict‐
ing the position of the vehicle, particularly during the loss of measurement detections. As
discussed previously in Section 2.2, the Kalman filter is a recursive model between the
prediction process and the measurement process. The prediction model of the vision‐based
vehicle tracking system, expressed in real‐time discrete form, is outlined as follows:

, , , , , , , , , , , , , , 1              
T

n k n x k n y k n x k n y k n x k n y k n kp p v v a a- - - - - - -
-é ù= = ×ë ûx x% % % % % % % f (21)
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where p̃n,x,k,  p̃n,y,k  denote the predicted vehicle location in pixels, ṽn,x ,k, ṽn,y ,k  denote the
predicted velocities of the vehicle in pixels per second,  ãn,x ,k, ãn,y ,k  denote the predicted
vehicle acceleration, and ΔT and n are the sampling instant between image frames and the
detected vehicle number, respectively. The predicted error covariance can be calculated as:

1 1  T T T
k k k k k k kE-

- - é ù= × + =× ×× + + ë ûQ QP P P w wf f f f (23)
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where Qk  is assumed to be Gaussian noise of prediction process.

On the contrary, the measurement model of the vision‐based vehicle tracking system, ex‐
pressed in terms of real‐time algorithm, is outlined as follows:
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where pn,x ,k ,  pn,y ,k
T  is the measured vehicle position in pixels, vn,x ,k ,  vn,y ,k

T  is the measured
vehicle velocity in pixels per second, and an,x ,k ,  an,y ,k

T  is the measured vehicle acceleration
in pixels per square second. The measured velocity and acceleration can be expressed as:

( ), , , , ,x,k 1 /n x k n x k np p Tn -= - D (25a)

( ), , , , , ,k 1 /n y k n y k n yp p Tn -= - D (25b)

( ) ( )2, , , , , , 1 , , 22 /n x k n x k n x k n x ka p p p T- -= - + D (26a)

( ) ( )2, , , , , , 1 , , 22 /n y k n y k n y k n y ka p p p T- -= - + D (26b)

With Equations (24) to (26), the optimal Kalman gain can thus be derived using Equation (19)
followed by the updates of the estimation state variables x̃n,k  using Equation (10) and the
updates of error covariance Pk  using Equation (20). Note that the measurement noise cova‐
riance matrix Rk  is assumed to be Gaussian noise.

3.3. Experiments and results

An experimental study was carried out using the Kalman filtering model derived in Section
3.2 for real‐time vehicle tracking. The experiment used the video stream captured from a static
camera installed on a pedestrian bridge above the road, somewhere near the Multimedia
University, Melaka, Malaysia. The Kalman filtering model is implemented with C++ program‐
ming language. The Open source Computer Vision (OpenCV) library [21] is used for the
vehicle detection stage using the background subtraction method based on adaptive Gaussian
mixture model in OpenCV. The tracking stage is demonstrated with the Kalman filtering
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algorithm for associating the foreground images with tracked vehicles from the previous
frame.

Figure 5 depicts one of the image frames of the experiment. During the experiment, the
tracking of vehicle number 8 (Figure 5, left) suffered lost detections due to the imperfection
of background subtraction technique. Figure 6 illustrates the tracking results comparison in
terms of x‐ and y‐positions in the image frames for the experiment. Note that there were lost
detections in position of vehicle number 8 from frames 190 to 197, as shown in Figure 6. No‐
tice that, despite the loss measurements of vehicle number 8, the Kalman filter algorithm can
still provide adequate estimations to the vehicle's positions. Note that, although vehicle
number 8 was not moving in a straight line, the tracking process was able to update the pre‐
diction according to the computed velocity and acceleration from the measurement model.
This result shows that the Kalman filtering algorithm assures the continuous tracking of ve‐
hicles, although there are several lost measurements during the process.

Figure 5. Illustration of one of the image frames of Experiment 2.

Figure 6. Comparison of vehicle number 8's tracking results for (a) x‐position and (b) y‐position in image frame.
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3.4. Conclusion

This section demonstrated the experimental study of the Kalman filter model for multiple
vehicle tracking. The model has incorporated the measurements of center positions of mov‐
ing vehicles together with the computed velocity and acceleration from the displacement
changes in the prediction phase. The tracking results show that the derived Kalman filter
model is suitable for tracking multiple vehicles, although measurements are lost in a short
period of time.

4. Real‐time GPS‐aided INU system

Inertial navigation system, which relied on inertial sensors [22] to operate, existed for the
past few decades for navigation applications. The SINU is a low‐cost inertial sensor devel‐
oped to substitute the high‐cost, high‐performance inertial sensors. High‐performance iner‐
tial sensors are commonly being controlled by government regulations, resulting in
unattainable of the sensors in civilian applications. On the contrary, the low‐cost, low‐per‐
formance SINU sensors can be easily acquired, but its measurement data suffered from vari‐
ous errors [23] that jeopardized its accuracy. Due to this issue, the GPS data are adopted as
an external reference source to minimize the SINU's errors through the implementation of
the Kalman filter.

A typical SINU consists of three orthogonally aligned accelerometers and three orthogonally
aligned gyroscopes that provide direct measurement on 3 degrees‐of‐freedom (DOF) accel‐
erations and 3‐DOF angular velocities. Some SINU consists of extra three orthogonally
aligned magnetometers for true north measurement. These measurements, as discussed pre‐
viously, are not accurate. To increase the SINU's accuracy, the GPS's position data obtained
from dead reckoning technique is fused with the SINU data through the Kalman filtering
algorithm. The system that used such fusion technique is commonly known as the GPS‐aid‐
ed SINU system, in which this fusion is known to retain the advantages of both SINU and
GPS while discarding the disadvantages [4].

4.1. Inertial navigation equations

The GPS‐aided SINU system is supposed to provide outputs in terms of position, velocity,
and orientation. However, the direct outputs provided by the SINU are in terms of accelera‐
tions and angular velocities. Hence, the inertial navigation equations, or navigation equa‐
tions, are formulated to describe the relationship between the GPS‐aided SINU system's
outputs in terms of the accelerations and angular velocities.

The general form of navigation equations can be derived as follows:
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where ΔT  represents the sampling time instant of the SINU sensor, pk
n = px ,k

n py ,k
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n = vx ,k

n vy ,k
n vz ,k

n T  are the three‐dimensional position and velocity in navigation frame (or n‐

frame), Rb,k
n  represents the direct‐cosine‐matrix (DCM) that transforms body frame (or b‐frame)

to n‐frame, sk
b = sx ,k

n sy ,k
n sz ,k

n T  and gn = 0 0 −9.80665 T  represent the three‐dimensional
acceleration measurement (from the accelerometers) in b‐frame and the gravitational force in
n‐frame, Ωie

n  is the skewed rotation rate matrix in earth frame [or e‐frame with respect to inertia‐

frame (or i‐frame)] projected to n‐frame, Ωib
b  is the skew matrix of angular velocity measurement

(from the gyroscopes) in b‐frame with respect to i‐frame projected to b‐frame, and Ωin
b  is the

skewed transport rate matrix in n‐frame with respect to i‐frame projected to b‐frame. Note that
the definition of different frames can be found in [4].

4.2. Dynamic error model of inertial navigation equations

The navigation equations outlined in Equation (27) served as the ideal equations to calculate
the position, velocity, and orientation based on the data measured from the SINU. However,
as discussed earlier, the measurement data from the low‐cost SINU contained various dynamic
errors that were not reflected in Equation (27). Hence, perturbation process is applied on the
navigation equations to acquire the dynamic error equations.

The dynamic error equations, expressed in continuous time, can be elaborated as:

δẋ=
δṗn

δv̇n

ε̇n

=

A pp⋅δrn + A pv⋅δvn

Avp⋅δrn + Avv⋅δvn + (sn × )εn + Rb
n⋅δsb

Aep⋅δrn + Aev⋅δvn − (ωin
n × )εn −Rb

n⋅δωib
b

(28)

where A pp, A pv, Avp, Avv, Aep, and Aev represent the Jacobians of position, velocity, and
orientation error equations [24], respectively, with the subscripts p, v, and e representing the
position, velocity, and orientation, respectively. A full description and elaboration of the
Jacobians can be found in [24]. εn denotes the orientation errors, the ( * × ) operator represents
the matrix's cross‐product, sn and ωin

n  denote the three‐dimensional acceleration measurement
in n‐frame and three‐dimensional angular velocity measurement in n‐frame with respect to i‐
frame projected in n‐frame, δsb and δωib

b  denote the three‐dimensional acceleration measurement
errors in b‐frame and three‐dimensional angular velocity measurement error in b‐frame with
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respect to i‐frame projected in b‐frame. Note that both δsb and δωib
b  are the random errors that

reside in the SINU that causes the inaccuracy of the sensor [23].

Equation (28) can be expressed in the state space model as follows:

δ δ= × + ×x A x B u& (29)

with

A=

A pp A pv 03×3

Avp Avv (sn × )
Aep Aev − (ωin

n × )
, B=

03×3 03×3

Rb
n 03×3

03×3 −Rb
n

, δx=
δrn

δvn

εn

,  u=
δsb

δωib
b (30)

where 03×3 is a three‐by‐three zero matrix. It should be noted that the error matrix u in Equation
(30b) can be modeled using the Gauss‐Markov model or through the Allan variance analysis
[23].

4.3. Kalman filtering model of GPS‐aided SINU

The Kalman filter prediction stage of GPS‐aided SINU system used the state space model of
the dynamic error equations of the SINU to predict the errors. For real‐time implementation,
the dynamic error equations stated in Equation (29) are to be transformed into its discrete form
as follows:

1k kd d -= F × +k-1x x w% (31)

where Φ denotes the transition matrix approximated to:

Φ= I9×9 + A⋅ΔT =

I3×3 + A pp⋅ΔT A pv⋅ΔT 03×3

Avp⋅ΔT I3×3 + Avv⋅ΔT (sn × )⋅ΔT
Aep⋅ΔT Aev⋅ΔT I3×3− (ωin

n × )⋅ΔT

(32)

and wk−1 is the error covariance matrix expressed as:

,    
0,        
kT

k i

i k
E

i k
=ìé ù = íë û ¹î

×
Q

w w (33)

where Qk  represents the process noise covariance.
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The observation equations of the dynamic errors, on the contrary, can be modeled as follows:

δk k k= × +kz H x e (34)

with

,

,

,

δ

n n
k GPS j
n n

k k GPS j
n n
k MEAS kJ J

æ ö-
ç ÷

= -ç ÷
ç ÷-è ø

p p
x v v

%
%
%

(35)

where p̃k
n, ṽk

n and ϑ̃k
n denote the three‐dimensional position, velocity, and orientation vectors

calculated from the navigation equations, expressed in n‐frame. On the contrary, pGPS , j
n , vGPS , j

n

and ϑMEAS ,k
n  denote the three‐dimensional position, velocity, and orientation vectors obtained

from sensors measurement. The variables with subscript GPS indicate the parameters obtained
from GPS measurements, whereas the orientation vector ϑ˜k

n can be obtained from the DCM

of R̃b,k
n  [25]. Meanwhile, the orientation measurement vector ϑMEAS , j

n  is derived as:

( ) ( )

( ) ( )
( )

2 2

, , ,

,
2 2

, , , , ,

,
1 2

Atan2 ,

Atan2 ,  

Atan2 ,

n n n
y k x k z k

n
MAG k

n n n n n
MEAS k MAG k x k y k z k

n
MAG k

s s s

s s s
f
q
y

y y

æ öæ ö- +ç ç ÷÷
è øç ÷æ ö

ç ÷ç ÷ æ ö= = - +ç ÷ç ÷ç ÷ è øç ÷ç ÷
è ø ç ÷-

ç ÷
è ø

J (36)

with

( ) ( ) ( )
( ) ( )

1 , , ,

, ,

n n n n n
x MAG k y MAG k MAG k

n n n
z MAG k MAG k

m cos m sin sin

m cos cos

y q f q

f q

= +

-
(37a)

( ) ( )1 , ,
n n n n
y MAG k z MAG km cos m siny f f= + (37b)

where Equations (36) and (37) represent the orientation measurement vectors. Note that the
vector mx

n my
n mz

n T  refers to the three‐dimensional magnetic field strength in n‐frame
obtained from the magnetometers, and the operator atan2 represents the four‐quadrant inverse
tangent function.
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Notice from Equation (35) that there are two different discrete instants described by subscripts
j and k. These two different subscripts described two different discrete instants, with subscript
k depicts the SINU's discrete instant, whereas subscript j depicts the GPS's discrete instant. In
most cases, the SINU's sampling rate is much faster than the GPS's sampling rate. This creates
phenomena in GPS‐aided SINU system's Kalman filtering process that the filter will need to
predict a multiple number of predictions before obtaining a measurement from GPS to correct
the errors. Figure 7 illustrates the time operation diagram of the matching of 5 Hz GPS data
with the 40 Hz SINU data.

Figure 7. Real‐time operational diagram of the GPS‐aided SINU system.

4.4. GPS‐aided SINU system design and its real‐time implementation

Figure 8 delineates the operational block diagram of the design of GPS‐aided SINU system.
As shown in Figure 8, that the SINU consists of three‐dimensional accelerometers, gyroscopes,
and magnetometers that output three‐dimensional accelerations, angular velocities, and
magnetic field strengths, respectively. The sampling rate of the SINU is 40 Hz. By combining
these data with the GPS data (5 Hz) through the Kalman filtering model, the system is able to
compute the estimated position, velocity, and orientation errors, which could be used to
improve the overall estimations.

Figure 8. GPS‐aided SINU system operational block diagram.
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Offline field experiment using a moving car was carried out to verify the performance of the
GPS‐aided SINU system before real‐time implementation. The Kalman filtering process is
carried out in offline mode to verify the performance of the developed system. Note that, in
the experiment, the SINU and GPS data rate are 40 and 5 Hz, respectively. The data obtained
from the offline experiment was fed into the Kalman filtering model to obtain the offline
measurements. To test the performance of the proposed GPS‐aided SINU system, the same set
of offline data was also fed into a conventional GPS‐aided SINU system with no magnetome‐
ters. The result obtained from the conventional GPS‐aided SINU system without magnetome‐
ters is compared to the result obtained from the proposed GPS‐aided SINU system with
magnetometers to verify the performance of the proposed system. From the results of the
offline experiment, there is an average difference computed to be 2.84 m between the naviga‐
tion paths of GPS‐aided SINU system with and without magnetometers. The mean difference
between the navigation paths of GPS measurements and the GPS‐aided SINU system with
magnetometers is computed to be ′0.173 m. On the contrary, the mean difference between the
navigation paths of GPS measurements and the GPS‐aided SINU system without magneto‐
meters is calculated to be ′2.67 m, much higher than the mean difference from the previous
calculation. Such results indicate that the proposed system work well in offline mode.

With the success offline implementation on the moving car, the system is now ready for real‐
time implementation. Both the GPS module and the SINU are connected to an embedded high‐
performance computer (HPC) through RS‐232 for data acquisition and real‐time processing.
The embedded HPC used in the system come with an Intel Core™ 2 Duo Processor E7500, 4
GB DDR2 RAM, 40 GB hard drive integrated into Zotac Nforce 9300‐ITX motherboard. Similar
to the previous setting, the SINU's data rate is 40 Hz, which is relatively faster than the GPS
data rate of 5 Hz. During the data acquisition stage, the embedded HPC acquired one set of
SINU data every 25 ms (equivalent to 40 Hz). On the contrary, the embedded computer
acquired one full GPS data every 0.2 s (equivalent to 5 Hz). Hence, it is obvious that there is a
mismatch of GPS data to SINU data. As shown in Figure 7, when both GPS and SINU data are
updated with the newest measurements, the real‐time processing system will proceed with
the Kalman filtering process to provide a new update on the error prediction. At the instances
where newest GPS data were not available, the real‐time system will compute the error
prediction solely depending on the previous error prediction obtained from the Kalman
filtering process and the newest SINU measurements.

A graphical user interface (GUI) is developed using Visual Basic software (from Microsoft
Corporation) for the real‐time implementation. A total of 31 variables will be saved into the
solid‐state hard disk continuously in binary file format. The first nine variables represent the
raw data from the SINU, which serves the inputs of the GPS‐aided SINU system. The subse‐
quent 15 variables represent the computed three‐dimensional position, velocity, orientation,
acceleration errors, and orientation errors, which serve as the outputs of the GPS‐aided SINU
system. The last seven variables are the GPS data. Figure 9 shows the GUI layout and the real‐
time experimental results of the developed real‐time GPS SINU system. Figure 9 (top left)
indicates the serial ports setting for the SINU and the GPS. An”Operation Start“button is
located beneath the serial ports frame. An X‐Y graph is used to display both the real‐time GPS
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path in green color line and the real‐time SINU's navigation path in red color line. A group of
real‐time parameters could be found below the X‐Y graph. These parameters included the real‐
time updated position, velocity, orientation, and GPS information. The incoming raw SINU
data are displayed at the bottom of the GUI. Note that the position plots shown in Figure 9 X‐
Y graph are the results from one of the field experiments conducted in Kampung Seri Pantai,
Mersing, Malaysia. In this experiment, the GPS‐aided SINU system is installed inside an UAV
for motion sensing. The navigation path of the UAV, in GPS data, is shown using the Google
Earth in Figure 10. The duration of the experiments was approximately 50 min. The recorded
average flight speed was 145 km/h.

Figure 9. GUI of the real‐time GPS‐aided SINU system and its field experiment result.

Figure 10. Navigation path of the real‐time GPS‐aided SINU system experiment on a UAV in Google Earth.
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Figures 11 and 12 illustrate the results obtained from the real‐time experiment, with Fig‐
ure 11 depicting the real‐time velocity plot and Figure 12 depicting the real‐time orientation
plot. The motion sensing results are compared to the UAV's onboard Piccolo II Autopilot
Navigation System [26] outputs. Note that the Piccolo II Autopilot Navigation System is a
high‐performance, commercial‐grade navigation system for UAV autopilot. The mean
square differences of position, velocity, and orientation were computed between the devel‐
oped system and the Piccolo II system and the comparison results are outlined in Table 1.
Such results indicate that the low‐cost GPS‐aided SINU system achieved a comparable, ade‐
quate performance when compared to a high‐performance, high‐cost system.

Mean square difference

Position (m) 0.3081

Velocity (m/s) 0.0077

Orientation (°) 2.5930

Table 1. Mean square difference of position, velocity, and orientation estimation between the proposed GPS‐aided
SINU system's output with Piccolo II's output.

Figure 11. Real‐time GPS‐aided SINU system velocity plot.
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Figure 12. Real‐time GPS‐aided SINU system orientation plot.

5. Conclusion

This chapter illustrated the real‐time implementation of Kalman filter in two applications,
namely, the vision‐based vehicle tracking system and the GPS‐aided SINU system. The
Kalman filtering algorithm was derived with the consideration of real‐time element. Detail
illustrations on deriving the Kalman filtering models for the vision‐based vehicle tracking
system and the GPS‐aided SINU system were outlined and discussed. Both implementations
were put on real‐time experiments, and the results from both implementations were recorded
and analyzed. The results show that the real‐time Kalman filtering algorithms work well in
the applications.
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