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Abstract

The numerical solution of a time-dependent PDE generally involves the solution of a stiff
system of ODEs arising from spatial discretization of the PDE. There are many methods
in the literature for solving such systems, such as exponential propagation iterative (EPI)
methods, that rely on Krylov projection to compute matrix function-vector products.
Unfortunately,  as spatial  resolution increases,  these products require an increasing
number of Krylov projection steps, thus drastically increasing computational expense.

This paper describes a modification of EPI methods that uses Krylov subspace spectral
(KSS) methods, to compute these matrix function-vector products. KSS methods represent
a balance between the efficiency of explicit methods and the stability of implicit methods.
This  balance  is  achieved  by  approximating  the  matrix  exponential  with  different
polynomials for each Fourier coefficient of the solution. These polynomials arise from
techniques due to Golub and Meurant for computing bilinear forms involving matrix
functions by treating them as Riemann-Stieltjes integrals, which are then approximated
using Gaussian quadrature rules.

This paper describes how the nodes for the quadrature rules required by KSS methods
can be estimated very rapidly through asymptotic analysis of block Lanczos iteration,
thus drastically reducing computational expense without sacrificing accuracy. Numeri‐
cal experiments demonstrate that this modification causes the number of Krylov projection
steps to become bounded independently of the grid size, thus dramatically improving
efficiency and scalability.

Keywords: exponential propagation iterative methods, Krylov subspace spectral
methods, stiffness, Gaussian quadrature, Lanczos iteration
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1. Introduction

Consider an autonomous system of ordinary differential equations (ODEs) of the form

0 0' = ( ), ( ) = ,F ty y y y (1)

such as one that would naturally arise from spatial discretization of a partial differential
equation (PDE). Such systems are generally stiff when the underlying PDE has significant
diffusive or advective terms, and this stiffness is exacerbated by increasing the spatial resolu‐
tion. Stiffness leads to significantly increased computational expense for both explicit and
implicit time-stepping methods. For explicit methods, the time step is severely restricted by
the CFL condition, while implicit methods require the solution of ill-conditioned systems of
linear equations during each time step. Such systems are generally sparse and therefore best
suited for iterative methods, but for these stiff systems of ODEs, iterative methods require
many iterations or a specially developed preconditioner [1].

Exponential propagation iterative (EPI) methods, introduced by Tokman et al. [1, 2], are
Runge-Kutta like time-stepping methods that are designed to minimize the number of matrix
function-vector products of the form w = φ(Aτ)b, where φ is a smooth function, A is a square
matrix, τ is a parameter determined by the time step, and b is a column vector. The approach
used by EPI methods to compute w for a given symmetric matrix A is to apply the Lanczos
algorithm to A with the initial vector b, until we obtain a matrix Xj with orthonormal columns
and a tridiagonal matrix Tj such that X j

T AX j =T j. Then, we can compute the approximation

2 1= ( ) ,j j jX Tj tw b eP P (2)

where e1 = 1 0 ⋯ 0 T . Since each column xk of the matrix Xj is of the form xk = pk − 1(A)b, where
pn(A) is a polynomial of degree n in A, wj is the product of a polynomial in A of degree j − 1
and b. Since the matrix A arises from a stiff PDE, the eigenvalues of A are distributed over
several orders of magnitude. As it is generally not possible to accurately approximate φ(λ) on
such a large interval with a low-degree polynomial, a large number of Lanczos iterations is
generally necessary in order to obtain a sufficiently accurate of w.

The difficulty that time-stepping methods have with stiffness stems from the fact that low- and
high-frequency components of the solution, which change at widely varying speeds, are
coupled and therefore must be evolved using a common time step. While the low-frequency
components generally make the most significant contribution to the solution, the high-
frequency components change most rapidly, and therefore constrain the time step. The greater
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the spatial resolution, the greater the bandwidth of the solution, thus constraining the time
step even further.

This coupling, however, is not the only cause of the greater computational expense incurred
by time-stepping methods applied to stiff systems. A key contributing factor is the use of the
same polynomial or rational function to approximate all of these components of φ(Aτ)b, when
such a function cannot effectively approximate φ(λτ) on a large interval except at high degree,
which increases computational expense. An alternative is to use Krylov subspace spectral
(KSS) methods [3, 4], which employ a component-wise approach to these matrix function-
vector products. In KSS methods, which are explicit, each Fourier coefficient of the solution is
computed using an interpolating polynomial with frequency-dependent interpolation points.
This individualized approach to computing each Fourier component yields high-order
accuracy and stability like that of implicit methods, even though KSS methods themselves are
explicit.

To date, KSS methods have been applied mostly to linear PDEs on d-dimensional boxes, for
d = 1, 2, 3, with either periodic or homogeneous Dirichlet or Neumann boundary conditions.
A first-order KSS method was applied to nonlinear diffusion equations for image processing
by Guidotti et al. [5], but for that problem, a straightforward linearization was used during
each time step. In order to compute solutions of nonlinear PDEs with higher-order accuracy
in time, it is necessary to treat the nonlinearity more carefully. This can be accomplished by
combining KSS methods with another high-order time-stepping method, such as EPI methods.

In this paper, this combination is presented, for the purpose of solving systems of ODEs of the
form (1) that are obtained through spatial discretization of nonlinear PDEs defined on
rectangular domains with periodic, homogeneous Dirichlet, or homogeneous Neumann
boundary conditions. The proposed algorithm, first described in [6, 7], uses the component-
wise approach of KSS methods to more efficiently compute matrix function-vector products
of the form y = φ(Aτ)b. The following features distinguish the combined approach from
previous work on either EPI or KSS methods:

• Instead of applying Krylov projection (e.g., see [8–10]) with initial vector b to compute y, it
is applied only to a low-frequency projection of b, in order to avoid the larger number of
iterations that Krylov projection typically incurs at higher spatial resolution. Furthermore,
for advection-dominated problems, denoising is applied to the Krylov subspace basis
vectors, to eliminate spurious high-frequency oscillations in these vectors which slow
convergence.

• For the high-frequency portion of b, a KSS method, as described in [11], is used to apply
φ(Aτ). In this latest version of KSS methods, each Fourier component of the output vector
y is still approximated using its own block quadrature rule, as before. However, now the
quadrature nodes (i.e., frequency-dependent interpolation points for φ) are obtained
through high-frequency analysis of block Lanczos iteration, which yields simple formulas
for the nodes, instead of having to obtain them by solving an eigenvalue problem [3]. This
greatly improves efficiency over the approach used in [3, 4], in which the nodes are obtained
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by explicitly applying block Lanczos iteration to A for each Fourier component, without
sacrificing accuracy [11].

• Once the frequency-dependent interpolation points are obtained, it is necessary to construct
and apply frequency-dependent interpolating polynomial approximations pω(λ) of φ to A,
for each wave number ω, and then the Fourier coefficients of the solution are inner products
of the form êω

H pω(Aτ)b, where êω is a discretization of an appropriate Fourier basis function.
This paper provides implementation details for this task, and explains how it can be
accomplished with as few Fourier transforms as possible [6, 7].

The outline of the paper is as follows. Section 2 gives an overview of KSS methods. Section 3
reviews their acceleration based on asymptotic analysis of recursion coefficients, first present‐
ed in [11], and discusses extension to non-self-adjoint operators. Section 4 provides a brief
overview of EPI methods and demonstrates the spurious high-frequency oscillations that can
occur when using standard Krylov projection within an EPI method. Section 5 describes how
KSS and EPI methods are combined. Numerical results are presented in Section 6. Concluding
remarks and directions for future work are given in Section 7.

2. Matrices, moments, quadrature, and PDE

To provide context for the latest advancements with KSS methods, we begin with an overview
of KSS methods as described in [3], applied to the 1-D parabolic PDE

= 0, 0 < < 2 , > 0, = ( ( ) ) ( ) ,t x xu Lu x t Lu p x u q x up+ - + (3)

( ,0) = ( ), 0 < < 2 ,u x f x x p (4)

(0, ) = (2 , ), > 0.u t u t tp (5)

where p(x) > 0 and q(x) ≥ 0 on [0, 2π], and q(x) is not identically zero. In KSS methods, each
Fourier coefficient of the solution ũ(x, tn + 1) is obtained by applying the exact solution operator
of the PDE to ũ(x, tn). For a given wave number ω, such a Fourier coefficient is given by

1
1ˆ( , ) = , ( , ) ,
2

i x L t
n nu t e e u x tww

p
- D

+ % (6)

where
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2

0
, = ( ) ( )f g f x g x dx

p
á ñ ò

is the standard inner product on [0, 2π] and e− LΔt is the solution operator of the PDE (3).

2.1. Matrices, moments, and quadrature

The spatial discretization of (6) yields the bilinear form

( ) ,H Aju v (7)

where u= 1

2π
e iωx and v = ũ(x, tn) are N-vectors, A = LN, where LN is a spectral discretization of

L, and φ(λ) = e− λt.

Because the Sturm-Liouville operator L is self-adjoint and positive definite, it follows that the
matrix A is symmetric positive definite. As such, it has real eigenvalues b = λ1 ≥ λ2 ≥ ⋯ ≥ λN = a > 0,
and corresponding orthonormal eigenvectors qj, j = 1, …, N. From the spectral decomposition
of A, we obtain the following representation of (6):

=1
( ) = ( ) .

N
H H H

j j j
j

Aj j låu v u q q v (8)

As described by Golub and Meurant in [12], (8) can be viewed as a Riemann-Stieltjes integral

( ) = ( ) ( ),
bH

a
A dj j l a lòu v (9)

where the measure α(λ) is defined by

1

1

0 if <
( ) = , if < , = , = .

if,

N H H
j j i i j j j jj i

N
j jj

a
u v u v

bu v

l
a l l l l

l
-=

=

ì
ï
ï £í
ï £ïî

å
å

u q q v

This allows approximation of (6) using Gaussian quadrature rules, where the nodes and
weights are obtained by applying the Lanczos algorithm to A with initial vectors u and v [12].

Figure 1 demonstrates why integrals of the form (8) can be approximated accurately with a
small number of nodes in the case where A is a discretization of a differential operator and the
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vector u is used to extract a particular Fourier coefficient of f(A)v. We examine the distribution
dα(λ) in the case where u = v = eiωx for small and large values of ω, and for A discretizing a
differential operator of the form − ∂x a(x)∂x, with a(x) > 0 being a smooth function or a piecewise
constant function. In either case, dα(λ) is mostly concentrated within a portion of the interval
of integration [a, b]. Gaussian quadrature rules for such integrals naturally target these relevant
portions [3, 13].

Figure 1. The distribution dα(λ) from (8) where the matrix A represents a spectral discretization of a 1-D, second-order
differential operator with smooth leading coefficient (top plot) and discontinuous leading coefficient (bottom plot),
where u = v is a discretization of e2ix (solid curve) or e64ix (dashed curve).

Block Lanczos algorithm

X0 = 0, R0 = u v , R0 = X1 B0 (QR factorization)

for n = 1, 2, …, K

  V = AXn

  Mn = Xn
H V

  Rn =V −Xn−1Bn−1
H −XnMn

  Rn = Xn + 1 Bn (QR factorization)

end

In the case where u ≠ v, the presence of a negative weight would destabilize the quadrature
rule [14]. Alternatively, we consider the approximation of the 2 × 2 matrix integral

[ ] [ ]( ) .H Aju v u v (10)

We use the most general K-node quadrature formula, as described in [12], to get an approxi‐
mation for (9) of the form

Applied Linear Algebra in Action6



2

=1
( ) ( ) = ( ) ,

Kb H
j j ja

j
d errorj l m l j l +åò v v (11)

where, for each j, λj is a scalar and vj is a 2-vector. Each node λj is an eigenvalue of the matrix

1 1

1 2 2

1

= ,

H

H

K

K K

M B
B M B

T

B M-

é ù
ê ú
ê ú
ê ú
ê ú
ê úë û

O O O
(12)

which is a block-tridiagonal matrix of order 2K. The vector vj consists of the first two ele‐
ments of the corresponding normalized eigenvector. The matrices Mj and Bj are computed
using the block Lanczos algorithm [15], described below.

2.2. Krylov subspace spectral methods

The block KSS method [3, 4] for (3) begins by defining

0 ˆ= ,nR wé ùë ûe u (13)

where êω is a discretization of 1

2π
e iωx and un is a discretization of the approximate solution

u(x, t) at time tn = nΔt. Next, we compute the QR factorization of R0,

0 1 0= ( ) ( )R X Bw w

which outputs

1
2

ˆ( ) = w
w

w

w
é ù
ê ú
ë ûP P

n

nX ue
u (14)

and

0
2

ˆ1
( ) = ,

0
w

w

w
é ù
ê ú
ë ûP P

H n

nB
e u
u

(15)

where
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ˆ ˆ ˆ ˆ= = ( , ).n n H n n
nu tw w w w w- -u u e e u u e (16)

Then we apply the block Lanczos algorithm [15] to the matrix LN, which comes from the
discretization of L, with initial block X1(ω). This produces a block tridiagonal matrix TK  of the
form (12), where every entry of TK  is a function of ω. Then, at time tn + 1, each Fourier coefficient
of the solution is

[ ]1
0 12 12 0 12 12 1 2ˆ[ ] = [ ( ) exp[ ( ) ] ( )] , = .n H H

KB E t E B Ew w w w+ - Du e eT (17)

An inverse FFT applied to the vector of Fourier coefficients ûn + 1 yields the vector ûn + 1, which
consists of the values of the solution u(x, tn + 1) at the grid points.

This algorithm has temporal accuracy O(Δt2K − 1) for parabolic problems [3]. Even higher-order
accuracy, O(Δt4K − 2), is obtained for the second-order wave equation [4], due to the second-
order time derivative. Furthermore, under appropriate assumptions on the coefficients of the
PDE, the 1-node KSS method is unconditionally stable [3, 4]. More generally, the temporal
order of accuracy is O(Δt(2K − 1)d), where d is the highest order of a time derivative in the PDE;
this order of accuracy has been observed with the Schrödinger equation [16] and Maxwell’s
equations [18].

3. Asymptotic analysis of block Lanczos iteration

For each Fourier coefficient of the solution, KSS methods use a different quadrature rule,
because the measure α(λ) in (8) is defined in terms of the frequency. It follows that if S(L; Δt)
is the solution operator of the PDE (e.g. S(L; Δt) = e− LΔt for the PDE (3)), then the function
S(λ; Δt) is approximated by a polynomial of degree 2K that interpolates S(λ; Δt) at different
points for each frequency, which are the block Gaussian quadrature nodes λj in (11). Taking
all Fourier coefficients together, the computed solution at time tn + 1, un + 1 can be expressed as

2 1
1

=0
= ( ) ,

K
n j n

j N
j
D t L

-
+ Dåu u

where LN is a discretization of L on an N-point grid and Dj(Δt) is a matrix that is diagonal in
discrete Fourier space. The diagonal entries are the coefficients of these frequency-dependent
interpolating polynomials in power form, with each row corresponding to a different fre‐
quency.

In the block KSS method described in [3, 4] and reviewed in the previous section, these
interpolation points are the eigenvalues of the block tridiagonal matrix TK  from (12) that is
produced by block Lanczos iteration. Although each such matrix is small, computing the
eigenvalues and eigenvectors for each frequency is computationally expensive. Therefore, in
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this section, we describe a much faster approach to obtaining estimates of these nodes, at least
for high frequencies. This approach was first presented in [11] and generalized in [6, 7]. The
basic idea is to examine the entries of TK  as |ω| → ∞, where ω is the wave number.

3.1. The block case

As in the previous section, let un be a discretization of the approximate solution u(x, t) at time
tn = nΔt on a uniform N-point grid. Then, KSS methods use the initial block R0 = êω un , for
each ω = − N/2 + 1, …, N/2. We start the first iteration of the block Lanczos algorithm by finding
the QR-factorization of R0:

0 1 0= ,R X B

where

1 0
22

ˆ1 ( , )
ˆX = and = .

0

n
n

nn

u t
Bw

w
ww

wé ù é ù
ê ú ê ú

ë ûë û

ue
uu P PP P

(18)

with uω
n  is defined as in (16). We note that if the solution u is continuous, then as |ω| → ∞, |

ûn(ω)| → 0, so that in the limit B0 is diagonal.

The next step is to compute

1 1 1= ,H
NM X L X (19)

where the matrix LN is a spectral discretization of the operator L defined by Lu = puxx + q(x)u,
with p being a constant. Substituting the value of X1 from (18) into (19) yields

·

·

2

2
1

2

( )

= ,
( ) ( , )

w

w

w
w

w

ww

w

é ù
ê ú+
ê ú
ê ú
ê ú
ê ú
ë û

P P

P P

n
N

n

n
nN

Nn

Lp q
M

L R L

u
u

u u
u

where q̄ is the mean of q(x) on (0, 2π), L N uω
n̂ (ω)= êω

H L N uω
n  is the Fourier coefficient of the

grid function LN un corresponding to the wave number ω, and R(L N , uω
n )=

uω
n , L N uω

n

uω
n , uω

n  is the

Rayleigh quotient of LN and uω
n . As |ω| increases, the Fourier coefficients of a continuous
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function decay to zero; therefore, as long as the solution is sufficiently regular, the non-diag‐
onal entries of M1 become negligible, that is,

2

1
0

.
0 ( , )nN

p q
M

R L
wé ù+

» ê ú
ë ûu

Proceeding with the iteration, and neglecting any terms that are Fourier coefficients or are of
lower order in ω, we obtain

1 1 1 1
2 2

ˆ= ( , ) ,w w
w w

w w

é ù
- » -ê ú

ë û
%

P P P P

n n
nN

N Nn n

LR L X X M R Lu uqe u
u u

where q is a vector consisting of the value of q(x) at the grid points, q̃=q− q̄, and multiplication
of vectors is component-wise.

To obtain X2, we perform the QR-factorization R1 = X2 B1. We note that the (1, 2) entry of B1,
modulo lower-order terms, is the Fourier coefficient v̂1(ω), where

1
2 2

= ( , ) .w w
w

w w

æ ö
-ç ÷

è ø
%
P P P P

n n
nN

Nn n

L R Lu uv q u
u u

It follows that if the coefficient q(x) and solution u(x, t) are sufficiently regular, then B1

approaches a diagonal matrix as |ω| → ∞, just as B0 does. Continuing this process, it can be
shown that given sufficient regularity of the solution and coefficients of L, each block Mj or Bj

of TK  from (12) becomes approximately diagonal at high frequencies.

Because TK ij ≈0 when i + j is odd in the high-frequency case, it follows that if the rows and

columns of TK  are permuted so that odd-numbered and even-numbered rows and columns
are grouped together and in order, then the eigenvalue problem for TK  approximately
decouples. Therefore, approximate eigenvalues of TK  can be obtained by computing the
eigenvalues of the tridiagonal matrices obtained by performing “non-block” Lanczos on LN

with initial vectors equal to the two columns of R0 separately, rather than applying block
Lanczos with these two columns together in the initial block. In [11], it is shown that this
decoupling also takes place if the leading coefficient p(x) of L is not constant.
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3.2. The non-block case

The decoupling observed in the preceding discussion reveals that we can obtain approxima‐
tions of half of the block Gaussian quadrature nodes for all Fourier coefficients by applying
“non-block” Lanczos iteration to the matrix LN with initial vector un, the computed solution,
as is done in Krylov projection methods such as those described in [8–10]. These nodes, denoted
by λ1, …, λm where m is the number of iterations, will be referred to as frequency-independent
nodes. Because this iteration does not depend on the wave number ω, the frequency-inde‐
pendent nodes need only be computed once for each vector u for which an expression of the
form φ(LN τ)un is required. The other half of the nodes can be estimated through an asymptotic
analysis of Lanczos iteration applied to LN with initial vector êω [11]; these are called frequency-
dependent nodes and will be denoted by λ1,ω, …, λm,ω.

As an example, we consider the case where the matrix A comes from a spectral discretization
of the operator Lu = − puxx + q(x)u, where p is a constant, and assuming periodic boundary
conditions [11]. Carrying out three iterations, which corresponds to a fifth-order accurate KSS
method for a parabolic PDE, yields the following recursion coefficients as functions of the wave
number ω, after neglecting lower-order terms:

2
1 1 2

2
1 2 2 2 2 2

2
2 3 2 2

0 0
2 | | / .

0 0 2 | | /

a b w
b a b w w

b a w w

é ù é ù
ê ú ê ú»ê ú ê ú
ê ú ê úë ûê úë û

%P P
% %P P P P P P

%P P P P
x

x

p
p p

p p

q
q q q

q q

It follows that the frequency-dependent nodes can easily be estimated as

2 2 2 2
1, , 1 2= , = , = 2,3ip p iw wl w l w b b± + (20)

whereas for a third-order KSS method, the frequency-dependent nodes are

2 2
1, 1 2, 1= , = .p pw wl w b l w b+ -

In [6, 7], similar formulas for the nodes are derived for a PDE with homogeneous Neumann
boundary conditions, and for a 2-D PDE with periodic boundary conditions.

When the matrix A is a finite-difference representation of the underlying differential operator,
the block Gaussian quadrature nodes can be represented more accurately if formulas for the
eigenvalues of symmetric Toeplitz matrices are used for the leading-order terms in the nodes.
For example, in (20), pω2 is replaced by 2p(N/π)2(1 − cos(πω/N)), where N is the number of grid
points.
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3.3. Non-self-adjoint operators

The theory developed in [12] applies to symmetric positive definite matrices, but this prop‐
erty is not essential [17, 18]. That said, care must be taken with nonsymmetric matrices, as a
straightforward use of unsymmetric Lanczos to treat bilinear forms as Riemann-Stiejtjes in‐
tegrals, as described in [19], can suffer from “serious breakdown” [20]. Therefore, a more ro‐
bust approach for applying KSS methods to linear PDE with non-self-adjoint spatial
differential operators is to use Arnoldi iteration to approximate φ(Aτ)b. The algorithm for
Arnoldi iteration, applied to a matrix A and initial vector z0, is as follows:

Arnoldi iteration

v1 = z0/∥z0 ∥ 2

for j = 1, 2, …

   zj = Avj

   for k = 1, 2, …, j

     h kj =vk
H z j

     zj = zj − hkj vk

   end

   hj + 1,j = ∥ zj ∥ 2

   vj + 1 = zj/hj + 1,j

end

The output of Arnoldi iteration is an upper Hessenberg matrix Hm, and a matrix Vm with or‐
thonormal columns, such that

1, 1= .Hm m m m m m mAV V H h + ++ z e (21)

By analogy with (17), to approximate un + 1 = φ(Aτ)un, we can compute each Fourier coefficient
[ûn + 1]ω of un + 1 by applying block Arnoldi iteration [21] to A, with initial block R0(ω) as defined
in (13). After m iterations, this iteration produces a block upper Hessenberg matrix Hm(ω), from
which we obtain

1
0 12 12 0 12

ˆ[ ] = ( ) ( ( ) ) ( ) ,n H H
mB E H E Bw w j w t w+ é ùë ûu (22)

where B0(ω) and E12 are as defined in (15) and (17), respectively. As shown in [6, 7], like with
block Lanczos, the eigenvalue problem for Hm(ω) approximately decouples for high frequen‐
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cies, due to the decay of the Fourier coefficients of un. It follows that we can easily estimate the
frequency-dependent eigenvalues of Hm(ω), which are used as interpolation points for a
polynomial approximation of φ(λ), by applying “non-block” Arnoldi iteration, as described
in the above algorithm, with an initial vector z0 chosen to be a discretization of an appropriate
Fourier basis function. Additional details can be found in [6, 7].

4. EPI methods

In this section, we give an overview of EPI methods, as developed by Tokman et al. in [1, 2].
To solve an autonomous system of ODEs of the form (1), a time step from time tn to time
tn + 1 = tn + Δt is taken as follows. First, the time derivative F(y) is expressed in terms of its Taylor
expansion around y(tn), which yields

= ( ( )) ( ( ) ( )) ( ( )),n n n
d F t A t t R t
dt

+ - +
y y y y y (23)

where An is the Jacobian matrix of F(y) evaluated at y(tn), and R(y(t)) is the Taylor remainder.
Next, we multiply both sides by an integrating factor e −Ant  and then integrate from tn to tn + 1 to
obtain

( )11 1
1( ) = ( ) [ ] ( ( )) ( ( )) .

tA t A tnn n n
n n n n tn
t t e I A F t e R dt t tD -+- +

+ + - + òy y y y (24)

The integral on the right side is then approximated using a quadrature rule. This requires the
evaluation of matrix function-vector products of the form φ(Aτ)b, with A = An, for various “φ-
functions” and various choices of the vectors b and scaling factors τ, which are determined so
as to satisfy order conditions.

Any such matrix function-vector product is computed using Krylov projection. Arnoldi
iteration is applied to A (or Lanczos iteration, if A is symmetric) with initial vector b. After m
iterations, we obtain (21), from which we obtain an approximation

2 1( ) ( ) ,j t j t»P P m mA V Hb b e (25)

where, as before, Hm is upper Hessenberg (or tridiagonal of A is symmetric), and the columns
of Vm form an orthonormal basis for the Krylov subspace

2 1( , , ) span{ , , , , }.mA m Ab A A -=b b b bKK
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The accuracy of this approximation is discussed in [9]. In the case where A is ill-conditioned,
the number of iterations m needed for convergence of (25) can be quite large, and this is exa‐
cerbated by increasing the spatial resolution in the discretization of the underlying PDE
from which (1) arises.

When the number of iterations is large, an additional issue, particularly for advection-
dominated problems, is the appearance of spurious high-frequency oscillations in the columns
of Vm, even if the initial vector b represents a smooth function. As can be seen in Figure 2, even
after relatively few iterations, these oscillations can occur and reduce the columns of Vm to
essentially noise.

Figure 2. Columns of Vm from (25) generated by Arnoldi iteration applied to the matrix from Burgers’ equation (see
Section 6.2).

This can be alleviated by filtering out high-frequency components of the columns of Vm after
each matrix-vector multiplication. As can be seen in Figure 3, the spurious high-frequency
oscillations are reduced, resulting in more meaningful data in Vm. Future work will include
the automatic, adaptive selection of an appropriate threshold for filtering high-frequency
components.

Figure 3. Columns of Vm from (25) generated by Arnoldi iteration, with denoising, applied to the matrix from Burgers’
equation (see Section 6.2).
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The behavior of the unfiltered Krylov vectors is not surprising, as similar behavior is dis‐
played by the unsmoothed Fourier method applied to hyperbolic PDEs [22]. In that work,
the proposed remedies were to either use filtering, or increase the number of grid points; the
former remedy serves as the motivation for denoising in this context. It is worth noting that
in both the unfiltered and filtered cases, no loss of orthogonality was observed in the Krylov
vectors; that is, 1 / m∥Vm

T Vm− Im∥F  was negligibly small (that is, on the order of 10− 10 or
smaller) in both cases.

5. KSS-EPI methods

We now describe the combination of KSS and EPI methods. The EPI method itself is not
changed; what is modified is the approach to computing any matrix function-vector product
of the form φ(Aτ)b. The main steps in the new approach are as follows:

1. First, it is necessary to determine a cutoff frequency Nc. In the numerical experiments
presented in this paper, the value of Nc has been determined by experimentation; it is
demonstrated in [7] that the performance is not unduly sensitive to the choice of Nc. In
future work, an adaptive approach to choosing Nc will be developed.

2. Using an FFT, b is decomposed into low-frequency and high-frequency components bL

and bH. Specifically, b = bL + bH, where each Fourier coefficient of bL with wave number
ω→  is zero if ∥ω→∥∞ ≥Nc.

3. φ(Aτ)bL is computed using Krylov projection, as is normally done in EPI methods.

4. φ(Aτ)bH is computed using a KSS method, as described in Section 3.

5. The results of the preceding two steps are added to obtain an approximation of φ(Aτ)b.

We now provide details on how step 4 can be performed efficiently, by minimizing the number
of FFTs. To simplify the exposition, we consider the 1-D case, with periodic boundary
conditions. For each wave number ω, we obtain the frequency-dependent nodes
{λ1,ω, λ2,ω, …, λK,ω}, as described in Section 3, by approximating the entries of the tridiagonal
matrix TK (ω) produced by Lanczos iteration with initial vector êω. As demonstrated in
Section 3, this is readily accomplished using the coefficients of the spatial differential operator.
Next, we use Krylov projection with initial vector bH, as in Section 4, and compute the
eigenvalues of the resulting tridiagonal (or Hessenberg, if A is nonsymmetric) matrix. These
are the frequency-independent nodes {λ1, λ2, …, λK}.

The Fourier coefficient of φ(Aτ)bH corresponding to the wave number ω is obtained by
computing the same Fourier coefficient of p2K − 1,ω(Aτ)bH, where p2K − 1,ω is the polynomial
interpolant of φ(λ) with interpolation points {λi, λi ,ω}i=1

K . Expressing this interpolant in Newton
form, we have
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Arranging the interpolation points in the order indicated above allows us to reduce the number
of FFTs needed. Using the relation from Lanczos iteration,

= ,TK K K K KAX X T + r e (27)

we define
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where Cj
ω, for j = 0, 1, …, K − 1, are the coefficients of p̃ K −1,ω in power form, which can easily

be computed by repeated application of nested multiplication to the last K terms of the Newton
form of p2K − 1,ω.

Finally, using F to denote the discrete Fourier transform, we have

1
1

2 1, 1,
=0

( ) ( ) = ( ) = [ ] ,
K

j
H K H K j

j
A p A p A v C Aw

w wj t t
-

-
- -» + + åb b v w w% FF (28)

and it can easily be seen that the solution at each time step requires K FFTs and one inverse
FFT. It is worth noting that once the Krylov subspace vectors Aj w, j = 0, 1, …, K − 1 are
computed, the K FFTs can be performed in parallel.
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6. Numerical results

In this section, we compare several versions of EPI methods, as applied to two test problems;
additional test problems are featured in [6, 7]. The versions differ in the way in which they
compute matrix function-vector products of the form φ(Aτ)b:

• standard Krylov projection, as in (25), hereafter referred to as “Krylov-EPI”, either with or
without denoising as in Section 4;

• using the KSS approach, as described in Section 5, hereafter referred to as “KSS-EPI”;

• Newton interpolation using Leja points [23], hereafter referred to as “LEJA”; and

• adaptive Krylov projection [24], hereafter referred to as “AKP”.

All of these approaches are used in the context of two EPI methods. The first is a third-order,
two-stage EPI method [1]

1 11 1

1 1 1 2 1 1

1 1= ( ),
3 3

= ( ) ( ) 3 ( )[ ( ) ( ) ( )],

n n

n n n n n

Y ha hA F

h hA F hb hA F Y F A Y
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è ø

+ + - - -

y y

y y y y y
(29)

where a11 = 9/4 and b1 = 32/81, and

1 1 1( ) = ( ) ( ) ( ).n nR Y F Y F A Y- - -y y

For this method,

2

1 2 32 3

1 1 (6 ) (6 5 2 )( ) = , ( ) = , ( ) = .e e el l ll l l lj l j l j l
l l l
- - - - - + +

The second is a fifth-order, three-stage EPI method [25]
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where

=1
( ) = ( ), = 1,2,3,

j

i ij j
j

z p z iy jå

and the coefficients gij, aij, bj, and pij are obtained from the description of the EPIRK5s3 method
in [25].

For all methods used to compute matrix function-vector products, efficiency will be measured
in two ways: (1) total execution time required to integrate over the entire time interval, and (2)
the average number of matrix-vector products (plus the average number of FFTs, in the case
of KSS-EPI) performed for each evaluation of a matrix function-vector product of the form
φ(Aτ)b. The phrase “number of iterations” is used throughout this section to refer to this
quantity. Throughout this section, for the purpose of discussing performance as a function of
spatial resolution, N refers to the number of grid points per dimension.

6.1. Diffusive problem

For our first test problem, we choose a diffusion-dominated PDE: the 2-D Allen-Cahn equation,

2 3= , , [0,1], [0,0.2]tu u u u x y taÑ + - Î Î (31)

with α = 0.1. We impose homogeneous Neumann boundary conditions, and the initial
condition

Figure 4. Relative error plotted against execution time for solving the Allen-Cahn equation (31) using the third-order
EPI method (29). Matrix function-vector products are computed using KSS-EPI with denoising (solid curves), Krylov-
EPI (dashed curves), AKP (dashed-dotted curves), and LEJA (dotted curves), on grids with N = 50 (‘+’ markers), 150
(‘x’ markers) and 300 (‘o’ markers) points per dimension. Time steps used are Δt = (0.2)2− p, for p = 0, 1, 2, 3, 4.
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The Laplacian is discretized using a centered finite difference. For KSS-EPI, the low-frequency
portion bL consists of all components with wave numbers ωi ≤ 7, i = 1, 2. That is, for this problem,
the value of Nc, as defined in the previous section, is 7. The low value of this threshold is due
to the smoothness of the initial data.

Figure 5. Average number of matrix-vector products, shown on a logarithmic scale, per matrix function-vector product
evaluation for each method when solving the Allen-Cahn equation (31) using the third-order EPI method (29). For KSS
and KSS denoised, FFTs are also included. For each method, bars correspond to grid sizes of N = 50, 150, 300 points per
dimension, from left to right. Left plot: Δt = 0.2. Right plot: Δt = 0.0125.

Figure 6. Relative error plotted against execution time for solving the Allen-Cahn equation (31) using the fifth-order
EPI method (30). Matrix function-vector products are computed using KSS-EPI with denoising (solid curves), Krylov-
EPI (dashed curves), AKP (dashed-dotted curves), and LEJA (dotted curves), on grids with N = 50 (‘+’ markers), 150
(‘x’ markers), and 300 (‘o’ markers) points per dimension. Time steps used are Δt = (0.2)2− p, for p = 0, 1, 2, 3, 4.

The results are shown in Figures 4 and 5 for the third-order EPI method (29), and in Fig‐
ures 6 and 7 for the firth-order EPI method (30). It can be seen from Figures 4 and 6 that for
both EPI methods, the accuracy of all four approaches to computing matrix function-vector
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products are comparable. However, the efficiency and scalability of these four approaches are
very different. In particular, these figures show that for KSS-EPI methods, the growth in
execution time as a function of the number of grid points per dimension is much less. For
example, note that for the coarsest grid, with N = 50, the speed of KSS-EPI is similar to that of
Krylov-EPI, but for N = 150 and N = 300, KSS-EPI is much faster. Furthermore, as N increases,
this gap in performance grows. This is due to the fact that while both methods use Krylov
projection, KSS-EPI applies it to an initial vector with only low-frequency components, thus
significantly reducing the number of iterations needed for convergence.

Figure 7. Average number of matrix-vector products, shown on a logarithmic scale, per matrix function-vector product
evaluation for each method when solving the Allen-Cahn equation (31) using the fifth-order EPI method (29). For KSS
and KSS denoised, FFTs are also included. For each method, bars correspond to grid sizes of N = 50, 150, 300 points per
dimension, from left to right. Left plot: Δt = 0.2. Right plot: Δt = 0.0125.

The difference in scalability is more clearly illustrated in Figures 5 and 7. It can be seen that
for KSS-EPI, the number of overall iterations (matrix-vector multiplications + FFTs) shows
almost no sensitivity to the grid size, compared to Krylov-EPI, AKP and Leja interpolation, all
of which exhibit substantial growth as the number of grid points increases. It can also be seen
that denoising results in a slightly higher number of overall iterations, so it is not beneficial
for this problem. This is not surprising, as this is a diffusive problem that has a smooth solution
and is therefore less susceptible to high-frequency oscillations during Lanczos iteration.
Although AKP is slightly more accurate than KSS-EPI for fifth order, this is more than offset
by the superior efficiency of KSS-EPI with denoising, particularly at larger grid sizes and larger
time steps.

6.2. Advective problem

For our second test problem, we choose an advection-dominated PDE: a 1-D Burgers’ equation

= , [0,1], [0,1]t x xxu uu u x tn+ Î Î (32)

with ν = 0.03. We impose homogeneous Dirichlet boundary conditions, and the initial condition

3/23
0 ( ) = (3 )(1 ) .sinu x x xp -
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Figure 8. Relative error plotted against execution time for solving Burgers’ equation (32) using the third-order EPI
method (29). Matrix function-vector products are computed using KSS-EPI with denoising (solid curves), Krylov-EPI
(dashed curves), AKP (dashed-dotted curves), and LEJA (dotted curves), on grids with N = 500 (‘+’ markers), 1500 (‘x’
markers), and 3000 (‘o’ markers) points. Time steps used are Δt = (0.01)2− p, for p = 0, 1, 2, 3, 4.

Figure 9. Average number of matrix-vector products, shown on a logarithmic scale, per matrix function-vector product
evaluation for each method when solving Burgers’ equation (32) using the third-order EPI method (29). For KSS and
KSS denoised, FFTs are also included. For each method, bars correspond to grid sizes of N = 500, 1500, 3000 points,
from left to right. Left plot: Δt = 0.01. Right plot: Δt = 0.000625.

For KSS-EPI, the low-frequency portion bL consists of all components with wave numbers
ω ≤ Nc = 40. The higher threshold for this problem, compared to the Allen-Cahn equation (31),
is due to the fact that the initial data is less smooth.

The results are shown in Figures 8 and 9 for the third-order EPI method (29), and in Fig‐
ures 10 and 11 for the fifth-order EPI method (30). From Figures 8 and 10, it can be seen that
Krylov-EPI and KSS-EPI have comparable accuracy, but even for the coarsest grid with N = 500
points, KSS-EPI is much faster, and as with the Allen-Cahn equation, this gap in performance
only grows with N. As shown in Figures 9 and 11, this is again due to the increasing number
of Krylov projection steps needed for Krylov-EPI. While Leja interpolation is more accurate
than KSS-EPI for both the third- and fifth-order EPI methods, and AKP is also more accurate
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in the fifth-order case, both of these methods are still significantly slower than KSS-EPI, and a
similar scalability gap can also be observed.

Figure 10. Relative error plotted against execution time for solving Burgers’ equation (32) using the fifth-order EPI
method (30). Matrix function-vector products are computed using KSS-EPI with denoising (solid curves), Krylov-EPI
(dashed curves), AKP (dashed-dotted curves), and LEJA (dotted curves), on grids with N = 500 (‘+’ markers), 1500 (‘x’
markers), and 3000 (‘o’ markers) points. Time steps used are Δt = (0.01)2− p, for p = 0, 1, 2, 3, 4.

Figure 11. Average number of matrix-vector products, shown on a logarithmic scale, per matrix function-vector prod‐
uct evaluation for each method when solving Burgers’ equation (32) using the fifth-order EPI method (30). For KSS and
KSS denoised, FFTs are also included. For each method, bars correspond to grid sizes of N = 500, 1500, 3000 points,
from left to right. Left plot: Δt = 0.01. Right plot: Δt = 0.000625.

The difference in scalability among the four approaches to computing matrix function-vector
products is more apparent in Figures 9 and 11. Denoising applied to KSS-EPI is advantageous
for this problem, unlike with the Allen-Cahn equation. As can be seen in these figures, for KSS-
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EPI without denoising, the number of iterations is increasing with the number of grid points,
though not nearly as rapidly as with the other methods. However, with denoising included,
the insensitivity of the number of iterations to the grid size is restored.

6.3. Discussion of efficiency

The major components of the computational cost of KSS-EPI stem from Krylov projection that
is applied to low-frequency parts, and FFTs that are applied to both the low- and high-
frequency parts. Specifically, suppose the EPI method is of order p, and q Krylov projection
steps are needed for convergence of the low-frequency part. Then, the task of evaluating φ(Aτ)b
requires q + p matrix-vector multiplications, (p + 3)/2 FFTs and 2 inverse FFTs if denoising is
not used, and q + p matrix-vector multiplications, q + (p + 3)/2 FFTs and q + 2 inverse FFTs if
denoising is used. Denoising, therefore, is only worthwhile if the value of q can be substantially
reduced, as in the case of Burgers’ equation.

7. Conclusions and future work

We have demonstrated that when solving stiff systems of nonlinear ODEs derived from PDEs,
the growth in the computational cost that results from an increase in the number of grid points
can be significantly reduced by performing a relatively low and grid-insensitive number of
Krylov projection steps and FFTs on low- and high-frequency portions of the solution
separately, instead of a number of Krylov projection steps on the entire solution that grows
substantially with the number of grid points. The component-wise approach employed by KSS
methods, in which each Fourier coefficient of a matrix function-vector product φ(τA)b is
computed using a frequency-dependent interpolant of φ, allows the Krylov subspace dimen‐
sion to be bounded independently of the grid size and instead determined by the desired
temporal order of accuracy (for the high-frequency part) and by the number of Krylov
projection steps required on a coarse grid (for the low-frequency part).

Future work on KSS-EPI methods will focus on the computation of low-frequency Fourier
components of the solution, as this step accounts for the most significant part of the running
time. This work requires an efficient approach to automatically selecting the threshold Nc that
is used to distinguish low-frequency from high-frequency components. Such adaptivity can
be based on the smoothness of the solution and the performance of Krylov projection during
previous time steps. In addition, computing low-frequency components with methods other
than Krylov projection, including Leja interpolation and adaptive Krylov projection, will be
investigated. Such combination requires examination of error estimation and stopping criteria
for these methods, to determine whether their convergence can be accelerated if it is known
that the initial vector represents a bandlimited function.

It is important to note that the decomposition of the block Gaussian quadrature nodes into
frequency-dependent and frequency-independent nodes is not limited to cases in which
Fourier decomposition is used. In [26], the same idea is used for PDEs defined on a disk, in
which a Legendre polynomial expansion is used for the radial part of the solution. The
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decoupling of the eigenvalue problem for TK  first observed in [11], and further exploited in [6,
7], occurs due to the rapid decay of the coefficients in whatever series expansion is used to
represent the solution. Future work will include taking advantage of this behavior in order to
generalize KSS methods to PDEs defined on non-rectangular domains.
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