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Abstract

Oceans are a vast, complex world where underwater sound is the most efficient tool
available to understand its detailed characteristics. However the underwater chan‐
nel has a very complex geometrical and material structure and hence special techni‐
ques are required to model it. Analytical solutions are feasible only when one
makes gross assumptions and approximations. Several numerical and semi-numeri‐
cal techniques have been developed for estimating the sound field in the ocean
channel. But no single method is capable of handling all possible environmental
conditions, frequency, and ranges of interest in remote sensing problems. We ex‐
plore in this chapter the scope and feasibility of finite element method in underwa‐
ter remote sensing. The current study is based on a channel model with cylindrical
symmetry and a time-harmonic source signal. A variational formulation is used to
derive the finite element model for acoustical radiation, scattering and propagation
in the ocean. A Bayliss-type radiation boundary condition is used to model the far
field behaviour without the need to deal with a large solution domain. Since the
ocean geometry can support several propagating, evanescent, and radiation modes,
a penalty function approach is employed to impose the far field radiation condition.
A distinct feature of the ocean channel is its depth-dependent sound speed. The ei‐
gensolution for this channel is required for imposing the radiation condition at the
truncation boundary. We have cast this eigenproblem in a variational form and em‐
ployed a Rayleigh-Ritz method to obtain an approximate eigensolution. This ap‐
proach has provided a good approximation of the depth eigenmodes in a compact
semi-analytic form. We have employed our finite element algorithm to model sever‐
al range- and depth-dependent ocean problems. Our numerical study has establish‐
ed that our finite element algorithm gives accurate results with reasonable effort. In
particular, our finite element approach is most appropriate for shallow water prob‐
lems where the interaction of wave modes with irregular ocean bottom is quite
complex. The penalty function approach employed to implement the radiation
boundary condition has been found to be robust over a wide range of penalty scale
factors. We have also extended this work for the case of irregular elastic sea bed. We
continue to explore and further develop our finite element approach by applying it
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to several other ocean acoustic problems encountered in the remote sensing of
ocean environment.

Keywords: Wave propagation, scattering, ocean wave guide, irregular boundaries

1. Introduction

Oceans are a vast, complex, mostly dark, optically opaque but acoustically transparent world
which is only thinly sampled by today’s limited science and technology. Underwater sound1

is used as the premier tool to determine the detailed characteristics of physical and biological
bodies and processes in the ocean. The distributions within the sea of the physical variables
affect the transmission of sound. The wide range of acoustic frequencies and wavelengths,
together with the diverse oceanographic phenomena that occur over full spectra of space and
time scales, thus give rise to a number of interesting effects and opportunities. Because of its
great practical importance, especially to naval submarine operations, ocean-acoustics research
[1-5] has been driven by applications more than other branches of ocean science.

Acoustic remote sensing in a generic sense refers to sending out acoustic signals and recording
the scattered waves, which is hence processed to ascertain the nature of target/obstruction that
was encountered by the transmitted signal. This remote sensing in general involves transmis‐
sion, processing of received signals and some form of inversion. This chapter is exclusively
dedicated to accurate modeling of propagation and scattering of acoustic signals in the ocean
channel.

The amplitude and phase of sound field generated by an acoustic source in the ocean can be
deduced, in principle, by solving either the wave equation or the Helmholtz equation in the
case of a harmonic acoustic source [1]. However, this procedure is generally difficult to
implement due to the complexity of the ocean-acoustic environment: the sound-speed profile
is usually non-uniform in depth and/or range, giving rise to waveguide focusing and shad‐
owing effects; the sea surface is rough and time-dependent; the ocean floor is typically a very
complex, rough boundary which may be inclined to the horizontal; and the bottom may be an
elastic medium, capable of supporting shear waves along the ocean-bottom boundary. To
compound the problem, various ocean processes, including internal waves and small-scale
turbulence, introduce small fluctuations in the sound speed, which are responsible for
significant acoustic fluctuations over long transmission paths.

Analytical solutions of the governing differential equations in underwater acoustics are not
always feasible and can only be obtained if the sound speed of the water column and physical
boundaries can be described in simple mathematical terms. This is rarely the case in reality
and so it is generally necessary to employ approximate models. A variety of numerical

1 There exists a vast body of literature in remote sensing of ocean using electromagnetic and optical sensors from satellites.
Although such methods have definite advantages in several aspects, they have serious limitations for sensing deep
underwater channels.

Environmental Applications of Remote Sensing198



techniques have been developed for estimating sound fields in the ocean, but no single method
is capable of handling all possible environmental conditions, frequencies, and transmission
ranges of interest in the applications. Even the existing ocean-acoustic propagation models
[6-7] with restricted scope often take several hours to run on a supercomputer.

Several different approaches for the solution of the sound field in the ocean have evolved
over the past few decades: ray tracing [8], normal-mode techniques [9] and coupled-mode
models [10], the parabolic-equation approximation [11] and fast field programs (FFP) [12]. In
this chapter, we will discuss in detail the scope of the finite element method [13-15] in ocean
remote sensing applications. In order to motivate our finite element approach and put it in
proper  context,  we  briefly  summarize  the  analytical  and  computational  tools  that  are
currently in use in the ocean remote sensing literature especially to point out their main merits
and shortcomings.

2. Background

Ray-based methods [8-9] involve following the paths of a set of rays as they leave the source
and tracking them as they propagate through the medium. They can be used for range-
dependent and range-independent problems, but are most commonly used for range-
independent problems. They are most useful for short-range, high-frequency modeling.
Straightforward ray theory suffers from following drawbacks: (i) Need to deal with situations
involving caustics and singularities. (ii) At each incidence on surface or bottom, each ray has
to be “told” at what angle to go off, and with what percentage of total reflection. (iii) Since
problems are almost entirely numerical, each variation is nearly as hard as the first try, e.g., a
new source depth or a greater range. The main shortcoming of the ray method is the inherent
high-frequency approximation.

A class of propagation models exist which gives the full-wave solution for the field in a
horizontally stratified medium. This type of a model is known as “fast field program”. This
technique is basically a numerical implementation of the integral transform technique for
horizontally stratified media [12, 9]. The field solution is in the form of a wavenumber integral
which is evaluated by numerical quadrature. This approach is distinguished by its use of the
fast Fourier transform (FFT) to calculate the integral. FFPs determine the field which satisfies
the Helmholtz equation or similar equations which include shear wave effects. The Helmholtz
equation for the stratified medium is a partial differential equation in two independent
variables, range and depth, and hence in principle could be solved by the application of two
integral transforms [12]. For certain specific sound-speed profiles having a particular analytical
form, this can be achieved, yielding an exact solution for the field. For a general sound-speed
profile, however, the transform over depth is intractable and an alternative technique must be
sought. Nevertheless, a transform over range can be applied, and this is the starting point of
the FFP argument [16]. In contrast to the ray solution, the FFP model yields a result which is
essentially exact. Starting from the Helmholtz equation for a stratified medium, the only
additional approximation is that of using the asymptotic approximation to the Bessel function.
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This approximation turns out to include negligible errors beyond a wavelength or so from the
source.

As an alternative to “exact” numerical propagation models, with their heavy computational
overhead, a number of methods have been developed whose starting point is a parabolic
equation [11]. Such an equation which is an approximation for the elliptic Helmholtz equation
is valid over a small range of angles, usually, but not necessarily, extending about the hori‐
zontal. Given their inherently approximate nature, the parabolic-equation (PE) models are
distinguished by a lack of precision, the extent of which depends by and large on the problem
under consideration. They have acquired popularity amongst the ocean-acoustics community
because they give the field over the entire water column with no additional effort and they can
handle range-dependent environments. PE methods are often said to be valid within a cone
of angles extending +/− 20° (narrow angle) and +/− 40° (wide angle) about the horizontal. One
of the shortcomings of the PE models is that, when these angles are exceeded, the output
continues to look reasonable, showing no obvious indication of error [7]. Apart from the
excessive inaccuracy of these results, the lack of consistency among the PE codes highlights
the general difficulty of assessing their performance in any given environment. Although the
PE is relatively easy to implement, there is a price to be paid: a) it is valid over only a limited
range of angles, a consequence of the paraxial approximation, and b) it is a one-way solution,
capable of handling only outgoing waves, since incoming radiation, represented by a Hankel
function of the second kind of zero order, is neglected in the solution. Little can be done to
remedy the backscatter limitation, but considerable effort has gone into extending the angular
range of the forward-scatter regime [17]. The advantage of the parabolic equation over the
original Helmholtz equation is that the PE can be solved by a straightforward marching in
range which requires much less computational effort. From a numerical point of view, this
range marching is typically implemented using either standard finite difference techniques or
using a fast Fourier transform as in the so-called split-step method. There are other approaches
to solve the parabolic wave equation in ocean waveguides. Lee et al. [18] employed the finite
difference method whereas Huang [19] used a finite element method to solve the PE.

The sound field in a horizontally stratified ocean can be expressed as an infinite sum of
uncoupled normal modes plus one or more branch line integrals [9, 1]. At large ranges from
sources, the branch line integral component is negligible and the field is given accurately by
the normal-mode sum, but in the vicinity of the source, within the cycle distance of each mode,
the integrals are significant and should be taken into account. If the environment shows some
range dependence, through either the sound-speed profile or the boundary conditions, the
field is no longer separable and strictly (uncoupled) normal-mode theory does not apply.
However, provided the range dependence is sufficiently slow, the adiabatic approximation is
valid, i.e. there is essentially no transfer of energy between modes as they propagate the
channel. If the range dependence is too fast for the adiabatic approximation to hold, mode
coupling is significant, which requires the calculation of the coupling coefficients—a time
consuming procedure. The normal-mode method is typically accurate for ranges greater than
the first 10 water depths or so, a figure which depends on the number of modes that are
included in the solution. In the near field, more modes should be computed to closely predict
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the fields accurately. The normal-mode models tend to be thought of as providing solutions
to range-independent problems. Range-dependent solutions can be obtained using (a)
adiabatic mode theory or (b) coupled-mode theory. The later approach involves more com‐
putational cost but can provide more accurate results.

When the range dependence is too strong for mode coupling to be neglected, a different
approach than the usual normal-mode theory is required. A complete two-way (i.e. including
backscattering) solution to this problem has been formulated in terms of stepwise coupled
normal modes [10]. The medium is sub-divided into a large number of thin vertical segments,
in each of which the acoustic parameters are held constant in the range direction but are
allowed to vary in depth. Across the segment boundaries, the pressure and horizontal particle
velocity are required to be continuous. In this method, the field is expressed as a sum of local
modes representing both outgoing and incoming cylindrical waves. Again, the modal
eigenvalue problem has to be solved, and in this case, the Galerkin method is used, whereby
the solution is expanded in a set of basis modes, yielding a tractable eigenvalue matrix problem
[20]. This involves rather, complex coupling integrals which have to be evaluated for all modes
at all segment boundaries. This method is computationally demanding, but it is essentially
exact and forms the basis of the model [10, 21-22]. When the coupling effects are neglected, the
full coupled-mode expressions reduce to the adiabatic approximation.

Ray tracing, normal-mode techniques, and coupled-mode models are accurate but computa‐
tionally intensive; the parabolic equation is an approximation to the wave equation that has
been solved using explicit and implicit finite difference schemes; Green’s function solutions
(fast field programs) are essentially models for which exact solutions are available that cannot
account for sound-speed variation. If the variation of sound-speed profile is independent of
range, the ocean is said to be horizontally stratified. Several of the numerical ocean-acoustic
propagation models assume horizontal stratification. The advantage, from the point of view
of the computation, is that the solution field separates into range and depth components, which
simplifies the calculation of the field considerably. The speed of sound in the ocean shows only
small departures from 1500 m/s, but nevertheless its effect on sound propagation on the ocean
is profound. In the deep ocean, for example, the profile acts as an acoustic waveguide,
supporting propagation to long ranges with little attenuation. However, for a general ocean
environment, which has a range-dependent sound-speed profile, an ocean bed having
irregular geometry, and turbulence in the water column, none of the existing methods
described above work satisfactorily.

3. Finite element method

For general ocean environments, the finite element method (FEM) [13-15] is a good choice for
the numerical modeling of ocean-acoustic wave propagation because it is exact within the
limits of numerical accuracy and can accurately account for all the scattering processes.
Although the literature on finite element technique on wave scattering and propagation is
extensive, the number of available FEM models for ocean remote sensing is fairly small [23-24].
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Part of the reason for this is the large computational cost involved. However, we feel that for
shallow-water applications, the FEM is both feasible and appropriate. The very nature of the
waves to radiate into the far field when unbounded requires the domain to be truncated with
an artificial boundary, on which an approximate radiation boundary condition should be
imposed [25-29]. In the present work, a variational approach is used to derive the finite element
approximation for time-harmonic acoustic wave propagation in an axisymmetric, heteroge‐
neous oceanic waveguide, and a BGT-type boundary damper [26] is used to model the effect
of the far field. Since a waveguide in general supports multiple propagating/radiation modes
in the far field, a penalty function approach has been employed to impose the modal radiation
boundary condition in conjunction with the orthogonality property of the depth modes of the
waveguide.

In our finite element model for depth- and range-dependent waveguides, the eigensolution of
the depth problem is required for the imposition of the radiation condition at the truncation
boundary. Unfortunately, the depth eigenproblem could be solved exactly only for a few
special profiles. In view of this, several numerical methods have been developed to solve the
depth problem [1]. Porter and Reiss [30] employ a finite difference model for the depth
equation, and the resulting algebraic eigenproblem has been solved using a combination of
iterative techniques and Richardson extrapolation to obtain the radial wavenumbers and
modal vectors to a great degree of precision. For our finite element model [31-32], it would be
convenient to have the depth modes in a compact analytical form. We have accomplished this
by adopting the following procedure: The depth eigenproblem is cast in a variational form by
suitably defining a functional. The classical Rayleigh–Ritz (RR) method is employed to find a
variational approximation to the eigensolution of the depth problem in ocean-acoustic
waveguides. The depth modes thus obtained have a compact semi-analytical form in contrast
to methods using finite difference or other finite element methods. An interesting feature of
the model is that the trial functions are derived from an isovelocity problem that has an exact
solution. It is important to note that such trial functions automatically satisfy even the dynamic
interface condition at the seabed, thus contributing to the accuracy of the numerical model.
Our procedure has been tested for several different ocean profiles and the results compare well
against those obtained using the method of Porter and Reis [33]. The proposed model thus
provides an accurate representation of the depth eigenmodes in a compact semi-analytical
form.

We have chosen several isovelocity waveguide examples, for which analytical solutions are
available, to validate the FE model developed and ascertain its versatility to impose modal
radiation boundary condition. We have confirmed the efficacy of the FE model by applying it
to several examples of depth- and range-dependent waveguides. This numerical study
establishes that our FE model gives accurate results with reasonable computational effort. The
penalty function approach employed to implement the radiation boundary condition has been
found to be robust over a wide range of penalty scale factors. We have also extended this work
for the case of irregular elastic seabed. We continue to explore and further develop our FE
model by applying it to several other ocean-acoustic problems encountered in the remote
sensing of ocean environment.
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4. Governing equations and boundary conditions

The fluid domain Ω=ΩI + ΩO  (Fig. 1) of the waveguide problem consists of the inner domain
ΩI  truncated by the artificial radiation boundary SR, and the outer domain ΩO  (far-field
domain). The waveguide is assumed to be axially symmetric about the vertical axis containing
a source at depth zs, with r  denoting the radial coordinate or the range. It is bounded at the
top by the z =0 plane, which is the air–sea interface (SF ), and at the bottom by a seabed of
arbitrary topography (SB). The waveguide is assumed to have unbounded range. For time-
harmonic linear acoustic waves with the pressure field denoted as p̂(r , z, t)= p(r , z)e −iωt , ω
being the circular frequency of the source, the governing equation is given by

( ) ( )21 1
2 ( ) ,o srp k p f r z zr pr d dÑ Ñ + = - - (1)

where ∇  is the gradient operator, ρ the density of the acoustic fluid, k the acoustic wavenum‐
ber, c the local speed of sound, and f o defines the point source at r =0 and z = zs.

Figure 1. Geometry of the ocean waveguide

Considering the large impedance mismatch between air and water, a pressure release boun‐
dary condition may be used at the free surface. Thus,

0 on Fp S= (2)

As the waves encounter the seabed, there is partial reflection and the remaining energy is
transmitted into the seabed. A part of the transmitted waves may be coupled back into the
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water column because of refraction through the sediment layers. However, for now, a rigid
bottom is assumed, for which the normal derivative of the pressure should vanish at the bottom
boundary. In other words,

B0 on ,p S
n
¶

=
¶

(3)

where SB denotes the sea bottom.

For the purpose of FE modeling, the waveguide, which is unbounded in range, is truncated at
r = rb, and the truncation boundary is treated as the radiation boundary SR, on which a suitable
approximate radiation condition should be imposed. Here, the boundary damper approach
[26] has been adopted. The first-order cylindrical damper equation may be written as

0, 1,2, , on ,m
m R

p p m M S
n

a
¶

+ = =
¶

L (4)

where M denotes the number of propagating modes, and the damper coefficient αm associated
with the m-th mode is given by

1
2 ,m rmr ika = - (5)

where krm denotes a horizontal wavenumber. It may be noted that Eq. (5) is exact for the
asymptotic form of a cylindrically symmetric wave. On the truncation boundary SR, acoustic
pressure may be expressed as a sum of normal pressure modes as

1
( ) ( ) ,

M

m
m

p z p z
=

=å (6)

where p(z), m=1,2,..., are the normal modes of propagation for the problem in Eq. (1). Following
Fix and Marin [31], the radiation boundary condition for the waveguide problem may be
written, using Eqs. (4) and (6), as

1
on .

M

m m R
m

p p S
r

a
=

¶
+

¶ å (7)

Denoting a normal-mode function at the radiation boundary by f m(z), which is associated with
the m-th propagating mode eigenvalue, the pressure modes in Eq. (6) may be written as

( ) ( ), 1,2, , ,m m mp z a f z m M= = L (8)
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where am denotes a modal participation factor. Then the radiation boundary condition in Eq.
(7) may be rewritten as

1
( ) ( ) 0 on ,

M

m m m R
m

p z a f z Sa
=

+ =å (9)

where the constants am are determined by using the (1 / ρ(z)) -orthogonality of the normal
modes. It has tacitly been assumed here that the waveguide has constant water depth and
range-independent but depth-dependent sound speed in the vicinity of the truncation
boundary SR and beyond, so that the depth eigenproblem corresponding to the problem in
Eq. (1) could be solved at least numerically [23].

Note that while the radiation condition in Eq. (4) on an individual mode is local, the radiation
condition in Eq. (9) is global, meaning that nodes of an element on the truncation boundary
are linked to other elements there in view of the coefficients am.

5. Constraints

In view of Eq. (8), Eq. (6) may be written as

{ }1 2[ ] ( ), , , , 0 on ,T
M RC p z a a a S=K (10)

where

1 2[ ] 1, ( ), ( ), , ( ) ,MC f z f z f zé ù= - - -ë ûK (11)

and the companion vector in Eq. (10) is unknown. Equation (10) will be treated as a constraint
in the following FE model.

6. Variational formulation

For the purpose of finite element modeling, it would be convenient to construct a variational
formulation [34-35]. In the present study, in order to avoid possible numerical difficulties with
handling a point source, a small fluid domain ΩS  surrounding the source has been excluded
so that the computational domain is Ω̄I =ΩI −ΩS . Consider the following axisymmetric
functional I (p) defined in the cylindrical coordinate system (r , z) (see Fig. 1):
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( ) ( )
R

D N

2 2
2 2 21 1 1 1 1

2 2
1

( ) ,
I

M
p p p

m mr z nS
m S S

I p k p r dr dz p rdz pdSr r ra¶ ¶ ¶

¶ ¶ ¶
=W +

ì ü= + - + -í ý
î þ

åò ò ò (12)

where SD denotes the surface on which a Dirichlet boundary condition is prescribed and SN

the surface with prescribed Neumann boundary condition, and the other domains of integra‐
tion are identified in Fig. 1.

It can readily be shown that the variational condition

0Id = (13)

leads to the governing differential equation in Eq. (1) and the boundary conditions in Eqs. (2)–
(4). Thus, Eqs. (12) and (13) can be used to develop an FE model using the Rayleigh–Ritz
approximation. However, the resulting solution should also obey the constraints in Eq. (10),
which will ensure the imposition of the radiation boundary condition as discussed above. This
will be achieved by modifying the discrete approximation to the functional in Eq. (12).

7. Finite element model

The finite fluid domain Ω̄I  (which excludes the source) of the axisymmetric waveguide in Fig.
1 may be discretized using eight-noded axisymmetric quadrilateral elements with Co -
continuity and the well-known isoparametric formulation [15]. The computational domain is
discretized into a mesh of finite elements. The finite element approximation for the field
variable p may then be written as

{ }
1

( , ) ( , ) ,
n T

ej j e
j

p r z p N N px z
=

é ù» = ë ûå
%

(14)

where ñ denotes the number of element nodes (eight in the present study), p̄ej the nodal
pressure variable/degrees of freedom (dofs) and N j(ξ, ζ) the polynomial shape function in the
parametric coordinates (ξ, ζ) in the (r , z) plane [15]. The subscript e is used to indicate the
quantity at the element. Substituting Eq. (14) into Eq. (12) yields the following discrete form:

{ } ( ){ } { } { } { } { }1 1
2 2

1
( ) ,

MT T T
e e e e e em em em e e

m
I p p K M p p R p p f

=

é ùé ù é ù» - + -ë û ë û ë ûå (15)

where { p̄em} denotes nodal pressure on the radiation boundary due to the m-th mode and the
various matrices above will be identified subsequently. The stationary condition of the
potential I (pe) above should be sought subject to the constraint in Eq. (10). There are two ways
of implementing this, one the classical Lagrangian multiplier approach and the other the
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penalty function approach; the latter, which is commonly used in the context of finite element
analysis [15, 13] is adopted in the present work. To achieve this, a modified potential I ′ may
be defined as

{ } { }1
2 ,T T

e e P e eI I p C C pb¢ ¢ ¢é ù é ù é ù= + ë û ë û ë û (16)

where Ce  denotes the constraint matrix in Eq. (11) specific to an element. The penalty
coefficient matrix βP  above may be chosen to be diagonal for convenience, with βPm denoting
the penalty parameter associated with the m-th mode. Equation (16) may be expanded as

{ } ( ){ } { } { }1
2( ) ,T T T

e e e e e e P e e e eI p p K M R C C p p fb¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢é ù é ù é ù é ù é ù é ù= - + + -ë û ë û ë û ë û ë û ë û

where the enlarged element dof vector is defined as

{ } { }
{ }

.e
e

p
p

a
ì üï ï¢ = í ý
ï ïî þ

(17)

The enlarged stiffness, mass and damping matrices, and load vector in expanded Eq. (16),
consistent with { p̄′

e} in Eq. (17), are given by

{ } { }0 00 0
.

00 0 0 0 0
e e e

e e e e
e

K M f
K M R f

R
é ù é ù ì üé ùé ù é ù ï ïë û ë û¢ ¢ ¢ ¢é ù é ù é ù= = = =ê ú ê ú ê ú í ýë û ë û ë û é ùê úê ú ê ú ï ïë ûë ûë û ë û î þ

(18)

The matrices Ke , Me , and Re  in Eq. (18) are traditionally called the element stiffness, mass
and radiation damping matrices, and { f e} the load vector, respectively. They are given as
follows:

{ } { }

{ }
{ }

2

1

1 2

1

1 2

1

(a)

(b)

diag , , , (c)

(d)

( ), ( ), , ( ) (e)

(f)

e

e

Re

Ne

T
e

Tk
e

e e e eM
T T

em zm em zm em m
S

T
zm zm zm zm n

T
e v

S

K N N d

M N N d

R R R R

R f R f R N N dS

f f z f z f z

f p N dS

r

r

r

r

a

W

W

é ù é ù é ù= Ñ Ñ Wë û ë û ë û

é ù é ù é ù= Wë û ë û ë û

é ù é ù=ë û ë û

é ù é ù é ù é ù= = ë û ë ûë û ë û

=

é ù= ë û

ò

ò

ò

ò

K

K

(19)
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where N  denotes the shape-function matrix [see Eq. (14)], pν =∂ p / ∂n, and f zm(zj) denotes the
j-th nodal value of the m-th mode on a finite element in contact with the radiation boundary
SRe. The steps required to derive Eq. (19c) are outlined in Appendix A. It is of interest to note
that the radiation-damping matrix Re  in Eq. (19c) implies uncoupled modal participation.
However, the constraint term involving the matrix Ce  in expanded Eq. (16) brings about
modal coupling. The various integrals above are defined over relevant finite element domains.
The stationary condition of the potential I ′ in expanded Eq. (16) is obtained by setting

{ } 0
e

I
p
¢¶

=
¢¶ (20)

Equation (20) leads to general element equations of the form

( ){ } { }.T
e e e e P e e eK M R C C p fb¢ ¢ ¢ ¢ ¢é ù é ù é ù é ù é ù é ù- + + =ë û ë û ë û ë û ë û ë û (21)

It may be noted that if the penalty matrix βP =0 in Eq. (21), the constraints are ignored; as the
penalty parameter values increase, the error in satisfying the constraint equations decreases,
and for very high values of penalty, the numerical solution may break down. Hence, a judicious
choice of the penalty parameters is essential. The radiation-damping matrix R ′

e  and the
constraint matrix Ce  in Eq. (21) correspond to elements on the radiation boundary. Hence,
for this case, the FE equation may be deduced from Eqs. (18) and (21) as

( ){ } { }.e e e eK M p fé ù é ù- =ë û ë û (22)

The radiation-damping matrix R ′
e  in Eq. (19c), which is complex in view of Eq. (5), is defined

only for elements that share one or more of their boundaries with the artificial boundary SR.
Carrying out thus the finite element assemblage operation, yields the following global finite
element equations:

( ){ } { } ,K M R C p f¢ ¢ ¢ ¢ ¢ ¢é ù é ù é ù é ù- + + =ë û ë û ë û ë û (23)

where the global solution vector { p̄′} consists of all the pressure dof in the computational
domain as well as the unknown vector {a} in Eq. (8).

The global finite element matrices in Eq. (23) may formally be written as

{ } { }

e e e
e e e

T
e P e e

e e
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¢ ¢ ¢é ù é ù é ù é ù= =ë û ë û ë û ë û

å å å

å å
(24)
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where Σe denotes the standard finite element assemblage operation [15].

8. Modeling of a point source

When the inhomogeneous Helmholtz equation in Eq. (1) is employed in the FE model, the
source term involving the delta function, as the other terms of the differential equation, is
satisfied only approximately over the finite elements in contact with the point source. Of
course, the error is expected to decrease with mesh refinement. The present FE formulation
uses the complex pressure p as the field variable. Hence, a kinematic/Dirichlet boundary
condition in terms of p would be satisfied exactly at the finite element nodes. In light of this,
it would be interesting to see whether the effect of the source could be modeled as a kinematic
boundary condition. To facilitate this, the computational domain employed above (see Eq.
(12)) excludes the source. This is achieved by matching each finite element node with the
source, and excluding all the finite elements that are in contact with the source node. Then the
free field pressure due to the source on the periphery of the excluded domain is imposed as a
kinematic boundary condition in the finite element model. The discontinuity of the fields on
the periphery of the region enclosing the source is our equivalent source. It may be argued
that the pressure distribution on the excluded domain boundary is not the actual one, which
would be known only after solving the FE equations. However, the following argument
justifies the approach. It is known that for small volume sources, the pressure in the far field
is not affected by the individual shape of a source, as long as the source strengths are equal.
Thus, this justifies the use of a computational domain that excludes a small FE domain around
a point source. In the present study, the size of the excluded domain has been kept at about a
tenth of the wavelength. Comparison of the FE results with an analytical solution indicates
that such a choice is satisfactory.

9. Solution of FE equations

The global FE equation in Eq. (23) may be written for brevity as

{ } { }A p f¢ ¢é ù =ë û (25)

It may be noted that for an acoustic medium with real sound speed, the coefficient matrix A
above is complex even though K ′ , M ′ , and C ′  are real. This is because { f ′} is complex.
Also, note that R ′  is complex due to the presence of αm in Eq. (19d). For a lossy medium
modeled with complex sound speed, M ′  is also complex. Although A  is non-self-adjoint, it
is a complex symmetric matrix and hence the Gauss solver employed here to obtain the solution
to Eq. (25) exploits the attendant computational advantage. Since such solvers for FE equations
are coded as block solvers with compact storage scheme, large finite element models can be

Remote Sensing of the Ocean Environment Using Finite Element Methods
http://dx.doi.org/10.5772/62193

209



handled even with modest computer storage. Of course, such a solution strategy involves
overhead in the form of read/write operations on secondary storage devices. This approach
may be contrasted against those of Bayliss et al. [36] and Athanassoulis et al. [37] who have
used iterative methods based on the conjugate-gradient technique. Solvers based on the
conjugate-gradient method have been found much more efficient than Gauss solvers when the
size of the matrix equation is very large, say, several tens of thousands of equations, and hence
they hold promise for high frequency FE models.

Since the present FE model adopts a penalty function approach to impose the radiation
boundary condition with multiple radiating modes, the choice of suitable penalty parameter
αPm is important. This can be resolved through numerical experiments. The penalty parameter
was obtained by prescribing a scale factor on the average value of the diagonals of the
coefficient matrix A  in Eq. (25); i.e.,

1
,

n
s

Pm ii
i

A
n
b

b
¢

=

=
¢å (26)

where n ′ denotes the total number of FE equations/dof and βs a user-specified penalty scale
factor. Computations indicate that the results are stable over a wide range of βs values. The
results reported here have been obtained using βs =100.

10. Normal modes in an ocean waveguide with depth dependence

The sound speed in an ocean-acoustic waveguide is in general both depth- and range-
dependent. Depth dependence is considered very important because it is responsible for many
interesting phenomena in waveguide propagation. The two well-known methods that have
been developed to study acoustic waves in depth-dependent waveguides are the fast-field
technique and the normal-mode expansion [9, 1], the latter being the method that we have
used. The normal-mode approach consists of first solving the depth eigenproblem for a given
sound-speed profile to obtain the radial wavenumbers and the associated depth modes, which
respectively are the eigenvalues and eigenfunctions. The depth eigenproblem could be solved
exactly only for a few special profiles. In the finite element model for depth- and range-
dependent waveguides [31-32], the eigensolution of the depth problem is required for
imposition of the radiation condition at the truncation boundary. For such applications, it
would be convenient to have the depth modes in a compact analytical form. We have explored
this aspect with specific reference to shallow-water waveguides.

The depth eigenproblem can be cast in a variational form by suitably defining a functional.
Then, the classical Rayleigh–Ritz method may be employed to find a variational approximation
to the eigensolution of the depth problem in ocean-acoustic waveguides. The depth modes
obtained would have a more compact analytical form than those derived using finite difference
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or finite element methods. The present work provides an RR model for the depth eigenproblem
and demonstrates its utility for shallow-water waveguides.

11. Mathematical model

For the cylindrically symmetric waveguide having depth-dependent density ρ and sound
speed c, the inhomogeneous pseudo Helmholtz equation governing the linear harmonic
acoustic pressure field p(r , z) in the waveguide is given in cylindrical coordinates (r,z) as [9, 1]

2

2

( ) ( )1 1( ) ,
( ) 2( )

sr z zp pr z p
r r r z z z rc z

d dwr
r p

-æ öæ ö¶ ¶¶ ¶
+ + = -ç ÷ç ÷¶ ¶ ¶ ¶è ø è ø

(27)

where r denotes the range coordinate and z the depth coordinate as shown in Fig. 2, and the
r.h.s. denotes a point source of unit amplitude located at r = 0 and z = zs, with δ denoting the
Dirac delta function. Eq. (27) can also be applied to problems with attenuation by introducing
a complex sound speed.

Figure 2. A two-layer cylindrically symmetric waveguide

A variable separable solution for the homogeneous form of Eq. (27) may be written as

( , ) ( ) ( )p r z R r Z z= (28)

Then, upon using Eq. (28) in the homogeneous form of Eq. (27), the following ordinary
differential equations are obtained:
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where ω denotes the circular frequency and kr
2, the separation constant, which turns out to be

the square of the radial/horizontal wavenumber. Eq. (29) evidently pertains to the radial/
horizontal modes R̄(r), and Eq. (30) pertains to the depth modes Z (z). Choosing a pressure
release boundary at the top (z =0) and a mixed/Robin boundary condition at the seabed
(z = D1), the boundary conditions of our problem are written as [1, 30, 33]

(0) 0Z = (31)

( )2
1

1
( )( ) 0rg k dZ DZ D
dzr
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with ρb denoting the density of the acoustic fluid in the isovelocity half-space underlying the
water column. Eq. (32) facilitates replacing the half-space in the Pekeris waveguide [38] by
means of an impedance-type boundary condition. It may be noted that Eq. (30) together with
the homogeneous boundary conditions in Eqs. (31) and (32) do not constitute a proper Sturm-
Liouville problem because Eq. (32) depends on the unknown eigenvalue kr

2. Porter and Reiss
[30] employed a finite difference model to solve Eq. (30) together with the boundary conditions
in Eqs. (31) and (32). As an alternative to the above formulation, the waves in the fluid half-
space below the water column are also considered here [1]. The governing equation for the
waves in this fluid half-space is given as,

2
2b

b b 12
b b

( )1( ) ( ) 0,
( ) ( ) r

dZ zdz k Z z D z
dz z dz c z

wr
r

æ öæ ö
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(33)

where Zb denotes the depth function in the fluid half-space having depth-dependent density
ρb and sound speed cb. The interface conditions at the seabed are given by the kinematic and
dynamic conditions,

Environmental Applications of Remote Sensing212



1 b 1

11

( ) ( ) (a)
( )( )1 1 (b)b

b

Z D Z D
dZ DdZ D

dz dzr r

=

= (34)

In addition, the depth mode Zb should remain bounded as z →∞. Our primary objective is to
consider a variational formulation for Eqs. (30) and (33), together with appropriate boundary
conditions, and obtain a RR approximation to the depth-dependent problem.

12. Variational formulation and Rayleigh–Ritz approximation

A variational formulation that leads to the boundary value problem in the last section is sought
now. The operator being symmetric, there exists a functional, the variation of which leads to
Eq. (30) and appropriate boundary conditions, and similarly for the half-space. Consider the
functional Π(Z ) and Πb(Zb) defined respectively in the water column and the half-space as
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where suffix ν denotes z-derivative. At the interface z = D1 between the water column and the
half-space, the conditions noted in Eq. (30) must be imposed. In view of Eq. (34b), this can be
achieved by setting in Eq. (35)

1
1

( )1 1( ) ,b

b

dZ DZ D
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and in Eq. (36),
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In addition, Eq. (34a) should be imposed. Then, it can be easily shown that the variational
condition δΠ =0 leads to Eq. (30) and the boundary conditions in Eq. (31) as well as the interface
condition in Eq. (37), where δ denotes the first variation. Similarly, the variational condition
δΠb =0 leads to Eq. (33), and the interface conditions in Eq. (34a) and Eq. (38). In addition, at
z = D2, we obtain the condition

2
2

( )
( ) 0,b

b
dZ D Z D

dz
b+ = (39)

where (see Eq. (32)),
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Note that there are three cases that can be analyzed using Eq. (36):

Case 1: D2 is finite, β →0

This corresponds to the case when a depth-dependent seabed of finite thickness is terminated
by a rigid boundary.

Case 2: β is finite, D2 →∞

This corresponds to a depth-dependent seabed of infinite thickness.

Case 3: D2 and β are finite

This is a three-layer problem, where the top layer is the water column, the second layer is a
layer of seabed with depth varying density and speed, and the bottom layer represents the
seabed of infinite extent with uniform sound speed and density.

We now seek an assumed mode solution with n terms to the above variational problem in the
form
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where n =n1 + n2, and ψj and ψbj denote the known mode function (coordinate function)
satisfying the kinematic boundary condition in the water column and ϕ̄ j an unknown constant,
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and their counterparts with suffix b correspond to those of the half-space. The two sets of mode
functions above are such that they satisfy the relevant boundary conditions as well as the
interface conditions in Eq. (34) and the conditions in Eq. (39). Such functions may readily be
constructed by solving a two-layer depth problem, which is nothing but the Pekeris waveguide
[38], with an appropriate choice of constant velocity and density in the water column and the
seabed half-space. This approach has been adopted here. Then, it follows that the continuity
of pressure field at the interface z = D1 implies that the assumed mode expansion in Eq. (40)
reduces as,

2
1

( ) ( ) 0
j

n

j
j

Z z z z Df y
=

» £ £å (41)

where we have combined the depth modes of a two-layer isovelocity waveguide as one
combined set with redefined coefficients ϕ̄. Then, using Eq. (40) in the functionals in Eqs. (35)
and (36), and combining them, an algebraic approximation for the functionals is obtained as
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It has been assumed in the above that the contribution due to the term in Eq. (36) is negligible
as D2 →∞. Further, it may be noted that since the boundary and interface conditions are
satisfied by the trial functions chosen above, when the functionals in Eqs. (35) and (36) are
combined to obtain Eq. (42), the boundary and interface terms add up to become trivial and
hence do not contribute to the discrete approximation in Eq. (42).

The variational condition is now replaced by the condition

0, 1,2,...,
j

j n
f
¶Õ

= =
¶ (44)
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Eq. (44) yields a symmetric algebraic eigenproblem given by

( ){ } { }2 II I 2 IIIK K Krkw f fé ù é ù é ù- =ë û ë û ë û (45)

The eigensolution of Eq. (45) may be denoted as

( ){ }( )2 , , 1,2,..j
rjk j nf = (46)

It may be noted here that the eigenproblem in Eq. (45) remains linear unlike the Porter and
Reiss model that is based on Eqs. (30)–(32). Having obtained the eigenvalues krj

2 and the

eigenvectors {ϕ̄( j)}, the eigenfunctions /depth modes may be written, using Eq. (40), as

( ) { } ( ){ }( ) Tj
j z zf=Ζ ψ (47)

where
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T

nz z z zy y y=ψ L (48)

Eq. (47) provides a compact semi-analytical form for the depth modes that are convenient to
employ in FE models such as those in Fix and Marin [31] and Vendhan et al. [32] for approx‐
imating the radiation condition at the truncation boundary. The depth modes obtained can of
course be used to set up the normal-mode solution to the forced Helmholtz equation in Eq.
(27). Note that for a Pekeris waveguide, the normal-mode solution based on the discrete
spectrum has to be augmented with the continuous spectrum contribution [1]. Since the
eigenvectors in Eq. (45) are KIII  -orthogonal, it can easily be shown that the eigenfunctions in
Eq. (47) satisfy the following orthogonality condition:
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The orthonormal depth functions are obtained as
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In terms of finite element terminology, the RR model for each layer may be looked upon as a
super-element with C1 continuity at the inter-element boundary and the operation leading to
Eq. (42) is equivalent to element-assemblage operation.

13. Numerical analysis and discussion

In our Rayleigh–Ritz model, the first task is to compute the symmetric matrices KI , KII , and
KIII  in Eq. (43). The next task is to find the eigensolution to Eq. (45). For problems with no

attenuation, the real eigenvalues have been obtained employing the bisection method. For
problems with attenuation, approximations to the complex roots have been obtained using a
search procedure [39] and the eigenvalues refined by employing Newton–Raphson iteration.
In all cases, the eigenvectors are obtained using inverse iteration.

To validate our algorithm, we applied the Rayleigh–Ritz model first to single-layer isovelocity
waveguide examples without attenuation for which exact solutions are available. Different
sound-speed profiles have been chosen to evaluate the accuracy of the RR model. Attenuation
in the fluid half-space has also been considered. Different sets of RR approximations have been
obtained by varying the number of assumed modes n in Eq. (41). The results for n = 2np, where
np denotes the number of propagating modes turned out to be of good accuracy.

One should note the following remarks in connection with the performance of the RR model
for the depth eigenproblem:

a. The mode shapes of an isovelocity waveguide have been chosen as trial functions, which
satisfy appropriate interface conditions and the condition at the free surface. This renders
the RR matrix highly diagonally dominant, which also greatly aids in numerical evalua‐
tion of the eigensolution.

b. For ocean waveguides, the depth variation of the sound speed is normally only a small
percentage of the unperturbed value.

c. When the variation in sound speed is large, the above procedure may not give good
results. One has to resort to high-order solutions. Even then, one can expect accurate
eigenvalues, but not eigenvectors. This is because the convergence rate for the eigenvec‐
tors is slower than that for the eigenvalues.

14. Numerical examples

We considered several examples to illustrate the versatility of our FEM approach in remote
sensing problems. In all our examples, we employed a Dirichlet boundary condition on the
air–sea interface, a Neumann boundary condition on the ocean bottom boundary, and a unit
point source at a depth of 36 m below the air–water interface. Both depth-dependent and
uniform sound-speed water columns are considered.
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14.1. Isovelocity case

The finite element method for the solution of inhomogeneous ocean-acoustic waveguide
problems is validated first with analytical results for isovelocity waveguides. A cylindrically
symmetric plane parallel waveguide of depth 100 m with a point source is shown in Fig. 3.
The finite element model consists of a uniform grid of isoparametric quadrilateral elements,
with the element length being about a tenth of the source signal wavelength. As discussed
previously, a domain of two elements has been excluded to remove the source from the
truncated domain (Fig. 1). The FE mesh consists of 1000 elements in range and 60 elements in
depth. The computed acoustic pressure along the range at the depth of the source is compared
in Fig. 3 with the normal-mode solution with 50 modes, of which only the leading few modes
are propagating. In all cases, the FEM results compared well with analytical results. The mesh
is chosen appropriately so that the modal error is less than 5%.

Figure 3. Idealized ocean waveguide

14.2. Rectangular hump

Sea mounts are often encountered in under-water ocean problems. In order to understand their
impact on wave propagation characteristics in shallow-water environment, we considered a
rigid rectangular hump of width 40 m and height 20 m on ocean bottom as shown in Fig. 4(a).
The contour map of transmission loss (TL) of a 60-Hz point source located on the z-axis at a
depth of 36 m from the water surface is shown in Fig. 4. Panel (a) shows the TL in the presence
of a rectangular hump on the seabed. Panel (b) shows the TL of the water column without the
rectangular hump. Notice that the rectangular hump has a distinct signature in TL pattern
especially on the right of the hump.

It is instructive to take a look at the acoustic power distribution in the modes. Figure 5 shows
the modal power spectrum of the shallow-water column with the rectangular hump in panel
(a) and without the rectangular hump in panel (b). Notice that there is a substantial redistrib‐
ution of power among the modes due to the presence of the rectangular hump.
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14.3. Down-sloping bottom

Shallow-water conditions are encountered in the near-coast context where the ocean bottom
has a sloping geometry. There are two situations to consider, up-slope and down-slope,
depending on the location of the source with respect to the slope. First we consider the down-
sloping case where the ocean-bottom slopes down from 100 m to 230 m over a distance of 600
m. The details of the geometry are shown in Fig. 6.
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Figure 7. Comparison of TL at 36 m depth of an ocean with down-sloping bottom and a flat bottom

Panel (a) shows the TL with the down-sloping bottom. Panel (b) shows the TL for a water
column with the flat bottom at depth 100 m. Both results are for the source frequency of 150
Hz. Notice the distinct spatial power distribution manifested by the sloping bottom. To

20 
 

 

 
Fig. 4. Transmission loss of a shallow-water column with a (a) rectangular hump on the seabed and 
(b) flat-bottom surface 
 
It is instructive to take a look at the acoustic power distribution in the modes. Figure 5 shows the 
modal power spectrum of the shallow-water column with the rectangular hump in panel (a) and 
without the rectangular hump in panel (b). Notice that there is a substantial redistribution of power 
among the modes due to the presence of the rectangular hump.  
 

 
       Fig. 5. Spectra of modal efficiencies for (a) seabed with a rectangular bump and  (b) a flat 
seabed 
 
 

Down-Sloping Bottom 
 
Shallow-water conditions are encountered in the near-coast context where the ocean bottom has a 
sloping geometry. There are two situations to consider, up-slope or down-slope, depending on the 
location of the source with respect to the slope. First we consider the down-sloping case where the 
ocean-bottom slopes down from 100 m to 230 m over a distance of 600 m. The details of the 
geometry are shown in Fig. 6. 
 

                             
                             (a)                                                                         (b) 

            Fig. 6. Transmission loss of a shallow-water column with (a) down-sloping bottom and (b) 
flat bottom of depth 100 m 
 
 
Panel (a) shows the TL with the down-sloping bottom. Panel (b) shows the TL for a water column 
with the flat bottom at 100 m. Both results are for the source frequency of 150 Hz. Notice the 

Figure 6. Transmission loss of a shallow-water column with (a) down-sloping bottom and (b) flat bottom of depth 100 m

Environmental Applications of Remote Sensing220



facilitate a better comparison, we have shown in Fig. 7 the TL at 36 m depth corresponding to
the flat and sloping bottoms. Notice that the TLs for the two cases are similar in the region
between the source and the middle of the slope. Beyond that, the TL corresponding to the
sloping bottom is significantly larger than that of the flat bottom.
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Figure 8. Modal power spectrum of shallow-water column with (a) down-sloping bottom and (b) flat bottom of depth
100 m

In order to better understand the propagation phenomenology, the modal power spectrum for
the shallow-water ocean with (a) down-sloping bottom and (b) flat bottom are shown in Fig.
8. Notice that there is a significant redistribution of energy in the case of sloping bottom
although the total power flows in both cases are approximately the same.

14.4. Up-sloping bottom

Next we consider the problem of sloping bottom where the ocean bottom slopes up (with
respect to location of the source) from 230 m to 100 m over a distance of 600 m. The details of
the geometry are shown in Fig. 9. The acoustic source is located at 36 m below the water surface
on the left.

Panel (a) shows TL for the case of 105Hz and panel (b) shows the case of 150 Hz. We notice
that at 105 Hz there is a substantial reduction in power flow. However, at 150 Hz the power
flow is as good as that of a flat-bottom waveguide. The mode spectral distribution in Fig. 10
shows the details of how the power flows in the two cases. We notice that for the up-slope
case, power flow can be good at certain frequencies and not good at others, depending on the
impedance matching conditions. In contrast, for the case of down slope the power flow is good
for all the frequencies that we studied.
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14.5. Object in the water column

Characterizing the signatures of objects in the ocean is an important remote sensing problem.
We consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown
in Fig. 11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL
for the source frequency at 150 Hz. We notice that the power flow can be substantially
influenced by the object, depending on the frequency of operation. This is because of the
interference phenomena involving the object and the boundaries of the waveguide.
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Ripples on the water surface can be generated by gravity and wind conditions. Such surface 
undulations can considerably influence the wave propagation in the shallow-water waveguide. To 
illustrate this phenomenon, we have taken a periodic structure on the air–water interface as shown 
in Fig. 12. The top surface has a sinusoidal undulation of amplitude 5 m and period 50 m.  
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14.6. Shallow-water column with rippled top surface

Ripples on the water surface can be generated by gravity and wind conditions. Such surface
undulations can considerably influence the wave propagation in the shallow-water wave‐
guide. To illustrate this phenomenon, we have taken a periodic structure on the air–water
interface as shown in Fig. 12. The top surface has a sinusoidal undulation of amplitude 5 m
and period 50 m.
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Figure 12. TL in a shallow-water column with (a) wind-generated rippled air–water interface, and (b) flat water surface
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Our FEM results show that the surface ripples causes substantial transmission loss compared
to that of the flat water surface for the case when the source frequency is 120 Hz. However,
this pattern is quite sensitive to source frequency. For some frequencies, the TL may be large
and for others, TL can be low. Dimensions of the waveguide and ripple geometry in terms of
the source signal wavelength are key factors influencing the physics.

14.7. Shallow-water column with depth-dependent sound speed

In all the examples considered thus far, we have assumed that the water column has uniform
sound speed. This is rarely true in practice even for the shallow-water ocean. The normal
modes for the depth-dependent waveguide are required to impose the radiation boundary
condition in our finite element procedure. The Rayleigh–Ritz approximation is used for
obtaining normal modes for this problem. The sound-speed profile taken for this study is
shown in Fig. 13.

Figure 13. Sound-speed profile (S1) used for our study

The TL for our geometry with the sound-speed profile given in Fig. 13 is shown in Fig. 14. The
result for source frequency of 150 Hz is shown in Panel (a) and that corresponding to isovelocity
is shown in Panel (b). Although the sound-speed variation is very small, we notice the impact
of depth dependence of sound speed on TL is substantial. However, at lower frequencies, this
kind of sound-speed variation does not influence the TL much.
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14.8. Shallow-water column with depth-dependent sound speed and a rectangular bump on
seabed

Next, we consider the case of shallow-water ocean with depth-dependent sound speed and a
rigid rectangular hump on the seabed.
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We observe that, for the case when the source frequency is 60Hz, the presence of the small 
rectangular hump on the seabed has a significant effect on the transmission loss of a depth-
dependent ocean. 
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Finally, we consider the case of shallow-water ocean with depth-dependent sound speed (Fig. 13) 
and a rippled air–water surface. The results are shown in Fig. 16. 
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Figure 15. TL for the shallow-water ocean with (a) depth-dependent sound speed and a rectangular bump on the sea‐
bed, and (b) depth-dependent sound speed and flat bottom

We observe that, for the case when the source frequency is 60Hz, the presence of the small
rectangular hump on the seabed has a significant effect on the transmission loss of a depth-
dependent ocean.
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The TL for our geometry with the sound-speed profile given in Fig. 13 is shown in Fig. 14. The 
result for source frequency of 150 Hz is shown in Panel (a) and that corresponding to isovelocity is 

Figure 14. TL for the shallow-water ocean with (a) depth-dependent sound speed, and (b) uniform sound speed
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14.9. Shallow-water column with depth-dependent sound speed and rippled top surface

Finally, we consider the case of shallow-water ocean with depth-dependent sound speed (Fig.
13) and a rippled air–water surface. The results are shown in Fig. 16.
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Note that for source frequency of 30Hz, the presence of ripples has reduced the transmission loss in 
most regions. This is in contrast to the last case (Fig. 15) where there is a rectangular bump on the 
seabed. However, these characteristics are due to interference phenomenon and hence have strong 
frequency dependence. The important point is that small features such as ripples can have a 
significant impact on the underwater propagation characteristics. 
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A finite element approach has been presented for remote sensing in shallow-water ocean 
environment. The three principal elements of remote sensing are: (a) signal propagation and 

Figure 16. TL for the shallow-water ocean with (a) depth-dependent sound speed and a rippled air–water interface,
and (b) depth-dependent sound speed

Note that for source frequency of 30Hz, the presence of ripples has reduced the transmission
loss in most regions. This is in contrast to the last case (Fig. 15) where there is a rectangular
bump on the seabed. However, these characteristics are due to interference phenomenon and
hence have strong frequency dependence. The important point is that small features such as
ripples can have a significant impact on the underwater propagation characteristics.

15. Conclusion

A finite element approach has been presented for remote sensing in shallow-water ocean
environment. The three principal elements of remote sensing are: (a) signal propagation and
reception, (b) data analysis, and (c) inversion or retrieval. This chapter exclusively deals with
part (a) of the trilogy of remote sensing. Although several approaches have been developed
for wave propagation studies in underwater ocean, they all have limitations when encountered
with complex geometries and environments as in shallow-water ocean. An FE approach is
both accurate and feasible for such applications. In order to minimize the problem size, a
Bayliss-type damper was imposed to truncate the solution domain. Since several propagating
modes can exist in the ocean waveguide, a penalty function approach was used to impose the
radiation boundary condition in the variational finite element formulation of the problem. This
penalty function approach was found to be robust over a wide range of penalty scale factors.
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For the shallow-water ocean waveguide with depth-dependent sound-speed problem, the
eigensolution was obtained using a Rayleigh–Ritz approximation. The trial functions are
derived from an isovelocity problem that has exact solution. It is important to note that such
trial functions automatically satisfy even the dynamic interface condition at the seabed, thus
contributing to the accuracy of the numerical model. The proposed model is accurate and
provides a compact semi-analytical form for the depth modes.

We thus have an accurate FE model for the remote sensing in range- and depth-dependent
ocean-acoustic waveguides. Numerous examples were considered to illustrate the accuracy
and versatility of this model. Admittedly, the computational effort in setting up the matrix in
the proposed RR model using numerical quadrature is high compared to setting up the finite-
difference-based matrix in the Porter and Reiss approach. However, noting the diagonal
dominance of the matrix obtained in the RR model, it would be worthwhile exploring the
possibility of approximating it by a narrow banded matrix in order to reduce the volume of
computation in setting up the matrix and possibly in obtaining the eigensolution. We have
also extended this work for the case of irregular elastic seabed. We continue to explore and
further develop our finite element approach by applying it to several other ocean-acoustic
problems encountered in the remote sensing of ocean environment.

16. Appendix A: Derivation of multimode radiation damping matrix

Consider the functional in Eq. (12). The contribution, IR(pe), from the radiation boundary of a
finite element is represented by the second integral in that equation; i.e.,

21 1
2

1
( )
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R e m m
m S

I p p rdzra
=

= å ò (51)

where M denotes the number of propagating modes, αm the damper coefficient associated with
the m-th mode [see Eq. (5)], pm(z) the pressure associated with the m-th normal mode, and SRe

the element surface on the radiation boundary (see Fig. 1).

The modal pressure on the radiation boundary is given by Eq. (8):

( ) ( ) 1,2, , ,m m mp z a f z m M= = K (52)

where f m(z) denotes the normal-mode function and am the modal coefficient. Using the finite
element representation, the modal pressure on the radiation boundary may be written as
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where N  denotes the shape functions and { p̄em} the nodal pressure vector on an element edge
on the radiation boundary due to the m-th mode. The summation symbol is used to indicate
that Eq. (53) is a piecewise polynomial representation over the entire depth of the waveguide.
Using Eqs. (52) and (53), Eq. (51) may be written in a discrete form for a finite element as [also
see Eq. (15)]
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where
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In view of Eq. (52), the vector of modal pressure at the nodes of an element in Eq. (53) may be
written as

{ } { }1 2( ), ( ), , ( ) ,T
em m zm zm zm n m zmp a f z f z f z a f= =K (56)

where f zm(zj) denotes the j-th nodal value of the m-th eigenmode on a finite element in contact
with the radiation boundary. Now, using Eqs. (55) and (56), the functional in Eq. (54) may be
written as
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The foregoing steps form the basis for Eq. (19c).

17. Appendix B: Normal-mode functions for isovelocity waveguides

The Rayleigh–Ritz model presented for the depth eigenproblems employs the analytical depth
modes for an isovelocity waveguide as the trial functions. The details of the various isovelocity
waveguide examples encountered in the ocean context are presented here. It should be kept
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in mind that in our problem, the acoustic source and reception points are both in the water
column. Therefore, the wave functions given here have been chosen particularly for this
application.

For a single-layer waveguide of depth D with Dirichlet boundary condition on top and
Neumann boundary condition on the bottom surface, the trial functions are given by

sin( )j j zja k zy = (59)

where

( )0.5
, 1,2,...zj

j
k j

D
p-

= = (60)

where aj is chosen to normalize the mode functions.

For a two-layer waveguide shown in Fig. 17, the trial functions are given by
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Figure 17. A bounded two-layer waveguide
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In the case of a Pekeris waveguide (for which D2 →∞ in Fig. 17), the trial functions are given
by

1

1

( )
1 1

( ) sin 0

sin( ) bzj

j j zj

ik D z
j bzj

z a k z z D

a k D e D z

y
- -

= £ £

= £ £ ¥
(63)

where kzj = ω 2 / c 2−krj
2, kbzj = i krj

2−ω 2 / cb
2 and krj is the solution of the transcendental equation
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Note that discrete guided modes in the water column exist only for the case when krj
2 >ω 2 / cb

2.

There are two cases to consider:

Case 1: k <kb

This applies to the situation when the sound-speed velocity in the seabed is smaller than that
in the water column. In this case, there are no guided modes. The entire spectrum is continuous
and does not have contribution to sound transmission in the water column at long distances.

Case 2: k >kb

This applies to the situation when the sound speed in the seabed is larger than that in the water
column. Here the spectrum consists of (a) discrete guided modes, (b) continuous radiation
modes, and (c) surface modes. Among the three, it is the discrete guided modes that carry the
sound signal over long distances in the water column.

Since our interest is in long-range sound transmission in the water column, we have restricted
attention to discrete guided modes as shown above.

One should observe that our two-layer waveguide problem does not share the above men‐
tioned behavior. Note that the two-layer waveguide is terminated at the bottom by a rigid
boundary. Therefore, the underlying physical processes are different.

Case 1: k <kb

Here the entire spectrum in the waveguide consists of discrete guided modes.

Case 2: k >kb

In this case, the spectrum consists of discrete guided modes and surface modes. However, for
long range propagation, the modes of significance are the discrete guided modes.
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