
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322426185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 6

Case Studies in Using MATLAB to Build Model
Calibration Tools for Multiscale Modeling

Ricolindo L. Carino and Mark .F. Horstemeyer

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62348

Abstract

This chapter illustrates the versatility of MATLAB for building interactive end-user
software applications to support the pedagogy of a multiscale modeling approach to
computational materials engineering. The case studies presented here demonstrate how
preexisting codes that model complex material behavior, even if written in compiled
computer languages such as Fortran or C++, may be utilized as computational libraries
for model calibration software tools built with MATLAB. Intended for students in
computational engineering (mechanics and materials), these tools execute on personal
computers without MATLAB if the MATLAB Runtime shared libraries are installed.
Publications coauthored by students using these tools to calibrate material models and
to investigate the performance of engineering materials indicate that the tools enable
advances in engineering design from a computational engineering perspective.

Keywords: multiscale modeling, interactive model calibration, parallel optimization,
mixed-language programming, MATLAB

1. Introduction

The book “Integrated Computational Materials Engineering (ICME) for metals: using multi‐
scale modeling to invigorate engineering design with science” by Mark F. Horstemeyer [1] aims
to educate the next generation of practitioners of a simulation-based approach for the under‐
standing, design, development, and manufacturing of load-bearing structural products.
Intended as a textbook for senior undergraduate and graduate students of computational
materials engineering, the book contains lecture notes, questions and solutions manual, and
tutorials on the model codes at each length scale. The book has a companion website [2] with a

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

section each dedicated to the classes of materials (metals, ceramics, polymers, biomaterials, etc.)
and to material models at the different length scales. Many of the model codes discussed in the
book have been incorporated into compiled MATLAB [3] applications for students to run on
personal computers and research workstations with or without MATLAB installed. The design
of these MATLAB applications and examples of their use as computational tools to investi‐
gate materials for engineering products is the subject of this chapter.

Section 2 provides an overview of the multiscale modeling approach to the study material
behavior. Section 3 describes the general design considerations and requirements for model
calibration tools built on top of the preexisting model codes for multiscale modeling. The first
MATLAB application built by the authors based on these requirements is DMGfit [4] for
calibrating the internal state variable (ISV) damage and plasticity model [5, 6] written as a
Fortran subroutine. Section 4 describes DMGfit in some detail as its support for user interac‐
tivity and its exploitation of multiprocessing capability in hardware heavily influenced the
development of subsequent applications built by the authors. Section 5 describes TPgui [7], a
graphical user interface (GUI) and calibration tool for a thermoplastic model of polymers [8].
TPgui was developed at about the same time as the underlying model; hence, flexibility was
built into the interface to accommodate model revisions. Section 6 focuses on VPSCgui [9], a
GUI to the viscoplastic self-consistent (VPSC) model of polycrystalline aggregates [10]. VPSC
is a self-contained Fortran program, raising the issue of information exchange with the
interface. Section 7 provides screenshots and summaries of the calibration tool for the multi‐
stage fatigue (MSF) model of crystal plasticity [11] and the modified embedded atom method
(MEAM) parameter calibration (MPC) tool [12] that embeds LAMMPS-MEAM (large-scale
atomic/molecular massively parallel simulator with the MEAM package for many-body
potentials) [13–15]. Section 8 summarizes some lessons learned in building MATLAB appli‐
cations for pedagogy and research in the multiscale modeling of materials.

2. Multiscale modeling of materials

Consider an engineering metallic product that is a component of a larger system. Of particular
interest is a reliable prediction for the failure of the component. The simulation-based design
of the component to satisfy specified engineering objectives would use information provided
by material models at all involved length scales. See Figure 1 for an illustration.

The larger system is the vehicle, with the automotive control arm as the component of interest.
Pertinent questions regarding the component may include the following: As designed, where
will failure occur, and what is the expected lifetime of the component? Can the component
design be optimized and/or can the component be built using a different material such that
the component will cost less, weigh less, and last longer? These questions may be investigated
using a hierarchical multiscale model. Based on the illustration in Figure 1, the length scales
and some of the computational models that have been used at each scale are listed in Table 1.

Applications from Engineering with MATLAB Concepts140

Length scale Computational model

L1: Electrons (Å) M1: Electronics principles (DFT)

L2: Atoms (nm) M2: Atomistic (EAM, MEAM, MD, MS)

L3: Dislocations (100 nm) M3: Dislocation dynamics

L4a: Grains (1 μm) M4a: Crystal plasticity (1 μm ISV+FEA)

L4b: Grains (10–100 μm) M4b: Crystal plasticity (10–100 μm ISV+FEA

L4c: Grains (100–500 μm) M4c: Crystal plasticity (100–500 μm ISV+FEA)

L5: Macroscale continuum M5: Macroscale ISV

L6: Component M6: ISV

L7: Whole system M7: ISV

FEA, finite element analysis; MD, molecular dynamics; MS, molecular statics.

Table 1. Multiscale modeling length scales and computational models.

Figure 1. Multiscale modeling example of an automobile component made from metal (from [1], p. 11).

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

141

The computational material codes typically solve complicated physics-based formulas for
material behavior and are written in procedural computer languages, such as Fortran, C, or
C++, or may even be mixed-language programs. These material model codes usually require
an input file containing values of the model parameters and computational settings. Output
files generated by these model codes are typically postprocessed or visualized by other
software.

Computational simulations at lower-length scales generate information that will be used by
material models at the higher-length scales (upscaling). Alternatively, models at higher-length
scales may specify information that imposes boundary conditions on simulations at the lower-
length scales (downscaling). The upscaling and downscaling calculations form “bridges”
between material models and simulations. Table 2 lists the model-bridging calculations based
on the illustration in Figure 1.

Model #1 Model #2 Bridging calculation Model #1 Model #2 Bridging calculation

M1 M2 Bridge 1=Interfacial energy; elasticity M1 M5 Bridge 6=Elastic moduli

M2 M3 Bridge 2=Mobility M2 M5 Bridge 7=High rate mechanisms

M3 M4a Bridge 3=Hardening rules M3 M5 Bridge 8=Dislocation motion

M4a M4b Bridge 4=Particle interaction M4a M5 Bridge 9=Void/crack nucleation

M4b M4c Bridge 5=Particle-void interactions M4b M5 Bridge 10=Void/crack growth

M4c M5 Bridge 11=Void-crack interactions M5 M6 Bridge 12=FEA

M6 M7 Bridge 13=FEA

Table 2. Model-bridging calculations in multiscale modeling.

3. Design considerations for model calibration tools

The applications described here are intended to support pedagogy and research in a multiscale
modeling approach to computational materials engineering. Because students who are
learning complex models of material behavior will use the applications, interactivity is an
important consideration. In addition, automation is also important so that the applications can
save time for busy researchers who are already familiar with the models and just need to
calculate a few sets of model parameters. Students may be using personal computers running
Microsoft Windows or Mac OS or research workstations running Linux. Whatever is the
operating system, most modern laptops and workstations already have built-in multiprocess‐
ing capabilities that may be harnessed to speed up intensive computations. In addition, the
model codes may undergo revisions as research progresses. Finally, the application may need
to be shared with collaborators for exchange of ideas. Thus, many issues pertaining to students,
research collaborators, computing platforms, and the certainty of incremental model revisions
need to be addressed in the design of applications for both pedagogy and research in multiscale
modeling.

Applications from Engineering with MATLAB Concepts142

At the core of the multiscale modeling approach are mathematical constitutive models
representing material behavior at various length scales. These models are typically expressed
as complex mathematical functions with several parameters. For a specific material, some of
these model parameters may be known from the scientific literature or from the material data
sheet prepared by the manufacturer, whereas other parameters are to be determined from
material characterization experiments or from results of other computational simulations. The
process of determining model parameters from experimental or simulation data is referred to
here as model calibration.

Figure 2 depicts an interactive model calibration process. The model parameters produced as
outputs of the process may be used in the model-bridging calculations in Table 2 or by models
in the higher-length scales. The model calibration tools described here were initially developed
for students of computational engineering. A student may use a tool to complete an assign‐
ment, to model experimental data that are collected during a research project, or to learn about
and revise its underlying material model.

Interactivity in a model calibration tool is a requirement so that end-users are able to imme‐
diately visualize the effect of changing a model parameter. This is important, as an incremental
and heuristic strategy to calibration is sometimes necessary, owing to the complexity of a

Figure 2. Interactive model calibration to determine model parameters from experimental data. The user specifies the
experimental data, initial model parameters, and solution settings (the inputs) through the User interface. The Plot
Module invokes the Model Evaluation module (the model code) to calculate a model curve from the model parameters
currently on display. The model points are plotted alongside the experimental data. Individual parameters may be
manually edited on the User interface to change the shape of model curve. The Optimization Module attempts to auto‐
matically find values for a set of parameters (the output) that will generate model curves that are “close” to the experi‐
mental data.

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

143

material model. Another requirement is that a calibration tool must run on stand-alone
personal computers commonly used by students (usually Microsoft Windows or Mac OS) and
on research workstations (typically Linux). Further, because modern personal computers and
workstations typically have built-in multiprocessing capabilities, another design requirement
is that the tool must be able to exploit parallelism available in the runtime system for the faster
execution of applicable steps in the interactive model calibration process.

The scientific theory underlying a material model is always a work in progress. Revisions to
theory translate into changes in the constitutive model code, such as the addition of model
parameters or extended formulas to better capture material behavior. Therefore, another
design requirement for the tool is that code changes to accommodate additional model
parameters or updates to model formulas should be confined to the Model Evaluation module.
This will enable students who are doing research on improving the underlying material model
to concentrate on the model code with very minimal changes in the Model Evaluation module
and the User Interface.

Research collaborations typically involve the transmission of software for evaluation or trial
use by interested parties. In many cases, constitutive model codes written as part of sponsored
research have disclosure restrictions. To facilitate the exchange of novel ideas embedded in
material models without disclosing source codes, the binary executable for a model calibration
tool will have to be transmitted. Thus, the programming environment for the tool must be
capable of building a binary executable that is royalty free when redistributed.

MATLAB was selected as the programming environment for building the model calibration
tools because of the following features:

1. Availability of numerical libraries, graphical functions, parallel code development, and
GUI-building tools in a single environment;

2. Constitutive model codes written in other languages (Fortran, C/C++) can be integrated
without rewrite with MATLAB code;

3. The same MATLAB application source code runs on multiple operating systems
(Windows, Linux, and Mac OS); and

4. The MATLAB application can be compiled into an executable that is freely redistributable.

The succeeding sections describe some of the model calibration tools built using MATLAB by
the authors primarily for graduate research assistants in the Center for Advanced Vehicular
Systems (CAVS), Mississippi State University. These tools are interactive and at the same time
support a semiautomated process of model calibration. The tools run on personal laptops and
desktop workstations with or without MATLAB and can exploit multiprocessing capabilities
provided by hardware. For some model codes that are subroutines written in Fortran only or
in C/C++ with Fortran, MATLAB gateway functions (mexfunctions) were written to facilitate
the invocation of the subroutines as library calls from the Plot and Optimization modules of
the tool. For other single-program model codes that read input decks and write output to text
files, MATLAB functions were written to generate the input decks from entries in the User
Interface and to extract relevant values from the program outputs. MATLAB-generated binary

Applications from Engineering with MATLAB Concepts144

executables of the tools have been used by collaborators and other interested researchers. Each
tool also has a website that provides usage instructions and links to download the executable
or the sources if made publicly available.

4. DMGfit—damage and plasticity model-fitting tool

DMGfit is an interactive calibration tool for the ISV damage and plasticity model [5, 6]. The
model is written in Fortran as an ABAQUS User Material subroutine (UMAT or VUMAT) [16].
DMGfit executes the UMAT/VUMAT as a library routine, not as a separate external process.
DMGfit inputs comprise experimental stress-strain data to determine ”material properties”
that are subsequently used along with the UMAT/VUMAT by an ABAQUS simulation in
length scale L6. Figure 3 depicts the component modules of DMGfit, its interface to the model
code UMAT/VUMAT, and how a finite element simulation consumes the DMGfit output. The
source codes of DMGfit are online [17].

The damage and plasticity model is specified by 55 parameters (material properties) at the
time of this writing. Some properties, such as bulk modulus, shear modulus, and melting
temperature, are fixed constants for a given material and may be obtained from the literature.
Other properties, such as average radius of voids, average size of particles, and average grain

Figure 3. DMGfit screenshot, component modules (blue boxes, in MATLAB), damage and plasticity model subroutine
(yellow, in Fortran), and model driver (orange, in Fortran). Experimental data inputs to DMGfit are stress-strain
curves. The Material properties output by DMGfit and the model subroutine are inputs to a finite element simulation
in ABAQUS. The bridge between MATLAB and Fortran is a mexfunction in the Model Evaluation Wrapper.

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

145

size, are measured from characterization experiments on samples of the material. DMGfit
calibrates the remaining properties using stress-strain data collected from tension, compres‐
sion, and shear experiments on the samples at various combinations of strain rates and
temperatures.

The interactive calibration of the damage and plasticity model using DMGfit typically proceeds
as follows:

1. Load all experimental data sets. For each data set, establish the experiment settings (initial
temperature, strain rate, stress units, etc.), loading parameters, and fixed constants.

2. Start by fitting the experimental data set with the lowest temperature and lowest rate.
Temporarily exclude the rest of the data sets. If there are different tests, fit the compression
data sets first followed by tension data sets and then torsion data sets.

3. For the first data set, adjust the parameters as follows: yield C3; kinematic hardening C9
and dynamic recovery C7; isotropic hardening C15 and dynamic recovery C13.

4. Restore second data set. If it has a different temperature than the first, adjust the param‐
eters as follows: {C3, C4} if yield is temperature dependent, then {C10, C8, C16, C14}. If
the data set has a different strain rate, adjust C1 and C5 if yield is strain rate dependent,
then {C9, C7, C11} and {C15, C13, C17}.

5. Repeat step 4 for the rest of the data sets. If adjusting the temperature dependence
parameters (even Cs) does not produce good models for high temperature data, adjust
C19 and C20. Adjust torsion, compression, and tension differentiation parameters, if
adding stress state-dependent experimental data.

6. Adjust damage parameters. Readjust parameters in other boxes as necessary.

7. Create a ”restart” file to record calibration session for resumption later. Merge the material
constants with an existing ABAQUS input deck if one has been prepared previously or
write results to text files for postprocessing by other applications such as Microsoft Excel.

The user may specify the number of plots to be displayed on the interface. There are three
plotting strategies: a single plot for all data sets, which may result in an overcrowded plot area;
one data set per plot, which may produce many small plots; and, as a compromise, one plot
per data set type (i.e., one plot for tension data sets, another plot for compression data sets,
etc.). After a data set is loaded into the application, it may be included or excluded from plots
and from participating in the calibration process. See [4] for details about all features of DMGfit.
Figure 4 depicts a sample screenshot of DMGfit when used to calibrate the material properties
for a 7075-T651 aluminum plate [18].

DMGfit provides three methods of adjusting the model parameters. First, a user can manually
adjust model parameters by directly editing their values and clicking the “Apply changes”
button to regenerate the model curves. Second, a user can activate the “Parameter study” slider
by a right click on a parameter. A click or drag on the slider will vary the parameter and
regenerate the model curves. The third method allows two or more parameters to be adjusted

Applications from Engineering with MATLAB Concepts146

simultaneously using optimization. The optimization objective is to minimize the distance
between the model curve and the experimental stress-strain data. The optimization variables
are the unchecked parameters. Clicking the “Optimize” button runs the optimization using
the displayed values of the unchecked parameters as the starting solution. The optimization
methods available in DMGfit are the MATLAB functions fminsearch (simplex search),
lsqnonlin (nonlinear least squares) fmincon (constrained minimization), patternsearch
(pattern search optimization), and ga (genetic algorithm).

DMGfit uses multiple computational cores depending on the settings of the menu item
“Optimization|Enable parallelism” and pop-up menu beside the Optimize button. This pop-
up determines the number of starting solutions when the Optimize button is clicked. If one
starting solution is specified (i.e., “Optimize 1”) and the optimization method is fmincon or
patternsearch or ga, then DMGfit will use the multiple cores. These optimization methods
have parallel implementations in MATLAB; hence, the optimization process will benefit from
the multiple cores. The methods fminsearch and lsqnonlin do not have parallel implemen‐
tations (in MATLAB R2012a), so optimization with these methods will not benefit from
multiple cores with “Optimize 1”; however, fminsearch and lsqnonlin will still find final
solutions. If “Optimize N” is specified for a small value of N, then DMGfit will automatically
generate a number of starting solutions as follows. Let K be the number of parameters that are
unchecked in the DMGfit user interface. The “global” search space for the optimization is the
K-dimensional hyperrectangular region R:

[] [] []R min_1, max_1 * min_ 2, max_ 2 * * min_K, max_K ,= ¼

Figure 4. DMGfit screenshot showing the material properties for an aluminum 7075-T651 plate [18]. The damage and
plasticity model parameters calibrated by DMGfit predict the strength, failure, and other mechanical characteristics of
the plate.

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

147

where [min_i, max_i] is the range for the ith optimization variable. DMGfit will divide each
range into N subintervals so that there will be N^K (N to the power K) hyperrectangular
subregions. DMGfit will generate a random starting solution within each subregion and run
an optimization from the random starting point. The optimization variables will be bounded
by the limits of the subregion (except if the method is fminsearch). The “spmd…end” (single
program, multiple data) MATLAB statement will be used to execute the N^K optimization
runs in parallel. Because one run might take several seconds or a few minutes, the parallel run
may still require a significant wait. DMGfit will collect a number of “locally good” results along
with the limits of the subregions returning such results. When all N^K searches are complete,
the results can be browsed manually to decide which are “really good”. Not all subregions
will produce “good” results; hence, much less than N^K results will be returned.

5. TPgui—a flexible GUI and fitting tool for a thermoplastic polymer
model

Many engineering products include components made from polymers. A modern automotive
vehicle, for example, has polymer parts such as plastics, rubbers, fibers, foams, and adhesives.
Thus, it is important to predict the mechanical responses of polymer components, as these may
be subjected to high strain rates during crash scenarios. In general, there are three groups of
polymers: thermosets, which are rigid materials that do not flow under the action of heat;
thermoplastics, which become fluid when heat is applied; and, elastomers, which can be easily
deformed but will return to the original size when the loading is released. This section briefly
describes TPgui, a GUI and calibration tool for an ISV model for thermoplastics. Figure 5
provides a TPgui screenshot. The model equations are described in [8], and a TPgui tutorial
may be downloaded from [19].

Figure 5. TPgui screenshot showing the material properties for a polycarbonate.

Applications from Engineering with MATLAB Concepts148

The TPgui user interface code is derived from DMGfit; hence, TPgui inherits all the interactive
and parallel-enabled features of DMGfit. Unlike the model code of DMGfit that is a Fortran
subroutine, the ISV thermoplastic model code is written as a MATLAB function; therefore, a
mexfunction is not necessary in TPgui. A theoretician was developing the thermoplastic model
code at the same time the authors were building the user interface. Therefore, to accommodate
additional model parameters, experimental data, and computational settings, the TPgui
interface was designed with placeholders for items that were yet to be specified by the
theoretician. These placeholders are the gray (disabled) textboxes in Figure 5 under the “DATA
SET” label for experimental data, under the “SOLUTION SETTINGS” label for computational
settings, and on the lower portion of the user interface for model parameters. The interface
allows up to 60 model parameters arranged in a 6×10 grid. More placeholders for model
parameter may be added if necessary by copy-pasting the bottom row in MATLAB’s GUIDE
(GUI Design Environment). To activate, for example, the placeholder in grid positions (4,1)
and (4,2) (below C3 and C4, respectively) for new model parameters “C3a” and “C4a”, the
initialization routine only have to be edited like the highlighted lines in following code
fragment:

Similar edits may be used to activate placeholders for experimental data and computational
settings. Column labels for related model parameters are also customizable. To use the new
parameters “C3a” and “C4a” in the thermoplastic model, the initializations in model code only
have to be edited like in the following fragment:

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

149

TPgui demonstrates the versatility of MATLAB in facilitating the development of dual-
purpose model calibration tools. The TPgui code is a result of a strategy for building a flexible
user interface that supports interactive calibration of model parameters by student researchers
and at the same time serves as a test environment for theoreticians investigating alternate
formulations of the underlying model. Just like an end-user being able to immediately visualize
the effect of changing the value of a model parameter on the model curve, a theoretician can
revise a model formula and immediately visualize its effect on the model curve.

6. VPSCgui—VPSC model calibration interface

VPSC is a Fortran 77 program that simulates the plastic deformation of polycrystalline
aggregates subjected to external strains and stresses. VPSC stands for viscoplastic self-
consistent and refers to the particular mechanical regime addressed (VP) and to the approach
used (SC). VPSC accounts for the following material behavior: full anisotropy in properties
and response of the single crystals; the hardening, reorientation, and shape change of indi‐
vidual grains; and grain interaction effects. In addition to providing the macroscopic stress-
strain response, VPSC predicts the evolution of hardening and texture associated with plastic
forming. The simulation procedure can be applied to deformation of metals, intermetallics,
and geologic aggregates [10].

As of version 7b, the VPSC code is text-based and is executed from a command line. One or
more of four input files have to be manually edited before a computational deformation
experiment can be started. The program produces up to 10 output files; the files containing
results of interest have to be postprocessed and transformed as inputs for other applications
for visualization. In addition, manual calibration of the model parameters to produce a stress-
strain curve that will match an experimental stress-strain data set is a very tedious, mechanical,
and error-prone undertaking. Such was the experience of graduate students when they first
used the VPSC to model deformation of magnesium and thus motivated the development of
a user-friendly GUI to VPSC that incorporates a model-fitting functionality.

VPSCgui, a GUI to the VPSC executable, was built by the authors with the following require‐
ments: it must be “point and click”; it must incorporate an interactive model calibration
functionality; and revisions to the VPSC source code must be minimal, with no changes to the
program logic. The source code, sample input, and documentation for VPSCgui are online [9],
excluding the VPSC sources. The only changes to the VPSC code to make it work with the
interface involved the renumbering some of the I/O units, and the addition of write statements

Applications from Engineering with MATLAB Concepts150

at several places in the code so that VPSC will write ”STOPPED” to standard output just before
it ends as a completion signal to the interface. Figure 6 is a screenshot of VPSCgui in modeling
the behavior of magnesium AM30 undergoing channel die compression [20].

Figure 6. VPSCgui screenshot: experimental data controls (top left), deformation simulation settings (middle left),
model parameters (bottom), experimental stress-strain data plots (discrete points), and VPSC model plots (solid lines).

VPSCgui implements the interactive model calibration process outlined by Figure 2. Unlike
DMGfit and TPgui that execute their underlying models via library calls, VPSCgui invokes the
VPSC program as a separate external process, and the two processes communicate through
the relevant input and output files of VPSC. The input files are initially loaded into VPSCgui
where a user can edit the model parameters and specify the settings for a deformation
simulation. When the user clicks the “Evaluate” button, the input files are updated with the
changes made on the interface, and the VPSC executable is invoked to run the deformation
simulation. When the VPSC simulation completes, the interface retrieves and displays the
model curves from the output files. The “Optimize” button follows the same sequence, where
the optimization algorithm automatically adjusts user-selected model parameters.

VPSCgui demonstrates how MATLAB can be used to build a model calibration interface for
preexisting model code (VPSC) that is a self-contained program. In this case, a mexfunction is
not applicable, as VPSC has to execute as a process that is separate from VPSCgui. Data must
be exchanged through the input and output files of VPSC; therefore, VPSCgui includes
routines to read/write the input files of VPSC and to read the relevant output files for the model
curves. Developing these routines for VPSCgui required much effort, as the Fortran subrou‐
tines in VPSC to read the input files were practically translated into MATLAB.

VPSCgui also exploits multiprocessing capability provided by hardware. Because one
deformation simulation is required to model a single data set, parallelism occurs when there
are several data sets being modeled. The VPSC program is inherently serial; however, several
VPSC instances can run in parallel, one instance per data set. VPSCgui invokes the VPSC
instances in separate directories to avoid collisions when writing the output files, as the file

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

151

unit numbers will be the same across instances. After parallel invocation, VPSCgui periodically
checks the files that are piped from the standard output of each VPSC instance for the ”STOP‐
PED” signal.

7. Other model calibration tools

Experience gained in building the model calibration tools described in the previous sections
guided the development of more tools for other length scales. This section briefly describes
the calibration tools for the MSF model and the MEAM.

Figure 7 shows a screenshot of the MSF model calibration tool [11]. The MSF model predicts
the amount of fatigue cycling required for the appearance of a measurable crack, the crack size
as a function of and loading cycles. The model incorporates microstructural features that affect
the fatigue life predictions for incubation, microstructurally small crack growth, and long crack
growth stages in both high-cycle and low-cycle regimes [21].

Figure 7. Screenshot of the MSF model calibration tool with model parameters to predict the fatigue life for aluminum
7075-T651 [18].

The MSF model code is an ABAQUS VUMAT written in Fortran, similar to the damage and
plasticity model used by DMGfit. The MSF interface implements the same interactive and
parallel features of DMGfit.

Applications from Engineering with MATLAB Concepts152

Figure 8. Screenshot of MPC tool.

Figure 8 shows a screenshot of MPC tool [12] for the interactive editing of MEAM library and
parameter files and for the semiautomated calibration of MEAM parameters. The calibration
targets may be density functional theory (DFT) simulation data and/or experimental data.
Similar to VPSCgui, MPC reads and writes the LAMMPS input files; however, unlike VPSCgui,
MPC does not execute the model code as a separate external process. Instead, MPC executes
LAMMPS-MEAM, the large-scale atomic/molecular massively parallel simulator (in C++/C)
with the MEAM package for many-body potentials (in Fortran) [15] as a library call such as in
DMGfit.

A prior version of MPC [22,23] invokes a Python script that in turn executes LAMMPS-MEAM
as a separate external program. The Python script also retrieves the relevant information to be
returned to MPC from the LAMMPS-generated log file. This strategy of using Python as an
intermediary between MPC and LAMMPS incurs significant file I/O overhead. Further, it was
cumbersome to revise the Python scripts to set up additional LAMMPS calculations. As a
consequence, the current MPC version is designed to use mexfunctions for invoking LAMMPS-
MEAM as a library call, eliminating the need to run the Python interpreter and significantly
reducing file I/O overhead.

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

153

8. Concluding remarks

Several issues need to be addressed when building a model calibration tool for a preexisting
material model code. A potential end-user of the tool may be a student learning about the
model, a researcher who needs the tool to model experimental data for some new material, or
a theoretician seeking to improve the underlying model formulas so that it better captures
material behavior. In each case, interactivity is a very important feature of the tool. A user may
have a choice between a Microsoft Windows and a Mac OS personal machine to run the tool,
or only a Linux workstation may be available. The model code may be written as a Fortran
subroutine, a MATLAB script, or as a complete stand-alone mixed-language program.

The following MATLAB features were found to be sufficient in addressing all of the afore‐
mentioned issues. MATLAB GUIDE enables the creation of interfaces that support an inter‐
active and semiautomated model calibration process. MATLAB Optimization Toolbox
provides a variety of optimization techniques for automatically adjusting selected model
parameters to fit experimental data. MATLAB Parallel Computing Toolbox enables the writing
of parallel code that exploits multiprocessing features of modern personal computers to
accelerate the model calibration process. MATLAB MEX files enable model codes written as
Fortran subroutines or C/C++ functions to be invoked directly by MATLAB. In addition, model
codes that are stand-alone programs can be executed as external processes through the
MATLAB system() command. The model calibration tools described in this chapter demon‐
strate the versatility of MATLAB as a programming environment for building such tools.

Author details

Ricolindo L. Carino1* and Mark .F. Horstemeyer1,2

*Address all correspondence to: carino@cavs.msstate.edu

1 Center for Advanced Vehicular Systems, Mississippi State University, Mississippi, USA

2 Department of Mechanical Engineering, Mississippi State University, Mississippi, USA

References

[1] Horstemeyer MF. Integrated Computational Materials Engineering (ICME) for Metals:
Using Multiscale Modeling to Invigorate Engineering Design with Science. Hoboken:
John Wiley & Sons; 2012. 472 p. DOI: 10.1002/9781118342664p.

[2] Mississippi State University Center for Advanced Vehicular Systems. Engineering
Virtual Organization for CyberDesign [Internet]. 2011 [Updated 2014]. Available at:

Applications from Engineering with MATLAB Concepts154

https://icme.hpc.msstate.edu/mediawiki/index.php/Main_Page [Accessed:
2016-01-14].

[3] MathWorks. MathWorks—MATLAB and Simulink for Technical Computing [Inter‐
net]. 1994 [Updated 2016]. Available at: http://www.mathworks.com [Accessed:
2016-01-14].

[4] Cariño RL. DMGfit User Guide [Internet]. 2012 [Updated 2015]. Available at: https://
icme.hpc.msstate.edu/mediawiki/index.php/DMGfit_55p_v1p1 [Accessed:
2016-01-14].

[5] Bammann DJ, Chiesa ML, Horstemeyer MF, Weingarten LI. Failure in ductile materials
using finite element methods. In: Jones N, Wierzbicki T, editors. Structural Crashwor‐
thiness and Failure. Barking (England): Elsevier Science Publishers Ltd.; 1993. pp. 1–
54.

[6] Horstemeyer MF, Lathrop J, Gokhale AM, Dighe M. Modeling stress state dependent
damage evolution in a cast Al-Si-Mg aluminum alloy. Theoretical and Applied Fracture
Mechanics. 2000;33(1):31–47. DOI: 10.1016/S0167-8442(99)00049-X.

[7] Bouvard JL, Cariño RL. CMD Codes Repository—TPgui [Internet]. 2010 [Updated
2012]. Available at: https://icme.hpc.msstate.edu/viewvc/CMD%20Codes%20Reposi‐
tory/TPgui/ [Accessed: 2016-01-14].

[8] Bouvard JL, Ward DK, Hossain D, Marin EB, Bammann DJ, Horstemeyer MF. A general
inelastic internal state variable model for amorphous glassy polymers. Acta Mechanica.
2010;213(1):71–96. DOI: 10.1007/s00707-010-0349-y.

[9] Cariño RL. CMD Codes Repository—VPSC7b_gui [Internet]. [2009]. Available at:
https://icme.hpc.msstate.edu/viewvc/CMD%20Codes%20Repository/VPSC7b_gui/
[Accessed: 2016-01-14].

[10] Tomé CN, Lebensohn RA. Manual for Code Visco-Plastic Self-Consistent (VPSC),
Version 7b [Internet]. 2007. Available at: https://icme.hpc.msstate.edu/viewvc/CMD
%20Codes%20Repository/VPSC7b_gui/trunk/doc/VPSC7b_manual.pdf?view=log
[Accessed: 2016-01-14].

[11] Cariño RL. Multistage Fatigue Model Calibration Tool (v2) User Guide [Internet]. 2012.
Available at: https://icme.hpc.msstate.edu/mediawiki/index.php/MSF_v2 [Accessed:
2016-01-14].

[12] Cariño RL. MEAM Parameter Calibration Tool (Version 4) User Guide [Internet]. 2015.
Available at: https://icme.hpc.msstate.edu/mediawiki/index.php/MPC [Accessed:
2016-01-14].

[13] Sandia Corporation. LAMMPS Molecular Dynamics Simulator [Internet]. 1997 [Up‐
dated 2015]. Available at: http://LAMMPS.sandia.gov [Accessed: 2016-01-14].

Case Studies in Using MATLAB to Build Model Calibration Tools for Multiscale Modeling
http://dx.doi.org/10.5772/62348

155

[14] Sandia Corporation. pair_style MEAM command [Internet]. 2013. Available at: http://
LAMMPS.sandia.gov/doc/pair_MEAM.html [Accessed: 2016-01-14].

[15] Baskes MI, Johnson RA. Modified embedded atom potentials for HCP metals. Model‐
ling and Simulation in Materials Science and Engineering. 1994;2(1):147–163. DOI:
10.1088/0965-0393/2/1/011.

[16] Dassault Systèmes. Abaqus Analysis User’s Manual [Internet]. 2007. Available at:
http://www.egr.msu.edu/software/abaqus/Documentation/docs/v6.7/books/usb/
default.htm?startat=pt05ch20s08abm59.html [Accessed: 2016-01-14].

[17] Horstemeyer MF, Cariño RL, Hammi Y, Solanki KN. CMD Codes Repository: DMG
[Internet]. 2009 [Updated 2012]. Available at: https://icme.hpc.msstate.edu/
viewvc/CMD%20Codes%20Repository/DMG/ [Accessed: 2016-01-14].

[18] Jordon JB, Horstemeyer MF, Solanki KN, Bernard JD, Berry J, Williams TN. Damage
characterization and modeling of 7075-T651 aluminum plate. Materials Science and
Engineering A. 2009;527(1):169–178. DOI: 10.1016/j.msea.2009.07.049.

[19] Bouvard JL, Cariño RL. Tutorial on the thermoplastic model calibration tool [Internet].
2014. Available at: https://icme.hpc.msstate.edu/mediawiki/index.php/File:TPgui-1.2-
Tutorial.zip [Accessed: 2016-01-14].

[20] Ma Q, Marin EB, Antonyraj A, Hammi Y, El Kadiri H, Wang PT, Horstemeyer MF. On
predicting the channel die compression behavior of HCP magnesium AM30 using
crystal plasticity FEM. In: Sillekens WH, Agnew SR, Neelameggham NR, Mathaudhu
SN, editors. Magnesium Technology 2011. Hoboken: John Wiley & Sons, Inc.; 2011. pp.
583–587. DOI: 10.1002/9781118062029.ch107.

[21] McDowell DL, Gall K, Horstemeyer MF, Fan J. Microstructure-based fatigue modeling
of cast A356-T6 alloy. Engineering Fracture Mechanics. 2003;70(1):49–80. DOI: 10.1016/
S0013-7944(02)00021-8.

[22] Cariño RL, Kim S. MEAM Parameter Calibration Tool (Version 3) User Guide [Internet].
2014 [Updated 2015]. Available at: https://icme.hpc.msstate.edu/mediawiki/
index.php/MPCv3 [Accessed: 2016-01-14].

[23] Horstemeyer MF, Hughes JM, Sukhija N, Lawrimore WBII, Kim S, Carino RL, Baskes
MI. Hierarchical bridging between ab initio and atomistic level computations: calibrat‐
ing the modified embedded atom method (MEAM) potential (part A). Journal of
Materials. 2015;67(1):143–147. DOI: 10.1007/s11837-014-1244-0.

Applications from Engineering with MATLAB Concepts156

