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Abstract

Probabilistic Bayesian methods enable combination of information from various sources.
The Bayes theorem is explained and its use is illustrated on several examples of practical
importance, such as revealing the cause of an accident or reliability increasing of non-de‐
structive testing. Also its use for continuous quantities and for increasing the reliability of
the parameters of normal or Weibull distribution is shown.

Keywords: Statistics, probability, Bayes, Bayes theorem, reliability, non-destructive test‐
ing, normal distribution, Weibull distribution, combination of information

The term “Bayesian methods” denotes probabilistic methods that enable the combination of
information on some event or quantity with previous information from measurement or ex‐
perience. The use of additional information can increase the reliability of our information or
reduce the extent of measurements needed for making conclusions on certain event. Exam‐
ples of application are the determination of the most probable cause of a failure, increasing
the reliability of diagnostic methods or increasing the accuracy of the determination of dis‐
tribution parameters of random quantities.

Bayesian methods are based on the so-called Bayes theorem [1 – 6]. It was originally formulated
for discrete quantities, but extended later for continuous quantities as well. These methods
have also been included into standards. In this chapter, their principle will be explained, and
the use is shown on several practical examples.

1. Bayes theorem

Let us assume that an event (B) can occur if another event (A) has occured. The event A,
however, could occur by several ways (A1, A2,..., An), which are mutually exclusive. The
probability of simultaneous occurence of both events Aj and B is calculated as
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( ) ( ) ( )   ,|j j jBA P A P B A= ´ (1)

where P(Aj) is the probability of event Aj, and P(B|Aj) is (conditional) probability that event B
can occur provided that event Aj has happened. The total probability of event B is

( ) ( )   ;jP B P BA= å (2)

the summation is done for all possible cases j = 1, 2,..., n. Bayes theorem looks at the issue from
the opposite side: ”If event B has happened, what is the probability that it was as a consequence
of (or after) event Aj?“ With the use of Equations (1) and (2) and the fact that P(BAj) = P(AjB),
this probability can be expressed as [2 – 6]:

( ) ( ) ( ) ( )   /  | ,|P A B P A P B A P B= ´j j j (3)

where the total probability P(B) in the denominator is calculated from individual probabilities
via Equations (2) and (1). Equation (3) is the simplest form of Bayes theorem. Its use will be
shown on three examples. The first example, adapted from [4], does not solve a reliability
problem, but is very instructive.

Example 1. Identification of origin of a sample from several possible sources.

The materials for road building are delivered from two plants with daily capacities 300 t (plant
1) and 700 t (plant 2). The long-term monitoring of quality shows that plant 1 has 2% of all
batches faulty and plant 2 has 4% faulty batches. If now a sample is chosen at random at the
building site, and if this sample is faulty, which plant is the batch from?

From the total amount of 300 + 700 = 1000 t/day, plants 1 and 2 produce 30% and 70%,
respectively. Let us denote event A1: the sample is from plant 1; event A2: the sample is from
plant 2. The corresponding probabilities are P(A1) = 0.3; P(A2) = 0.7. Event B: the sample is
defective. The probability of defective sample from plant 1 is P(B|A1) = 0.02, and from plant
2, it is P(B|A2) = 0.04. The total fraction of faulty production is: P(B) = 0.3 × 0.02 + 0.7 × 0.04
= 0.034 = 3.4%. The defective material from plant 1 represents 0.02 × 0.3 = 0.006 from the total
production of both plants. This is 0.006/0.034 = 0.176 = 17.6% from the total faulty produc‐
tion.  Similarly,  plant  2  produces 82.4% of  the scrap.  These numbers also say that  if  the
randomly chosen sample was faulty, a probability of 17.6% exists that it is from plant 1 and
82.4% that it is from plant 2.

Using Bayes rule (3), one can express the probability that the defective specimen is from plant
1 as P(A1|B) = P(A1) × P(B|A1)/P(B). The values 0.3 × 0.02/0.034 yield the same result 0.176 as
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above. Similarly, the probability that the faulty sample is from plant 2, P(A2|B) = 0.7 × 0.04/0.034
= 0.824 (=1 – 0.176).

If the quality is not considered, the probability that a randomly chosen sample comes from
plant 1 equals 30% (i.e. the fraction of production from plant 1). If, however, additional
information ”the sample was defective“ was used together with the information on quality in
both plants, this probability has dropped to 17.6%. The same information has increased the
probability of the sample being from plant 2 from 70% to 82.4%. Although the probability that
a sample is from plant 2 was higher even without the Bayes rule (70%), the strengthening of
this hypothesis is obvious.

Further strengthening of the hypothesis by using more tests

The hypothesis ”the material is from plant 1 (or 2)“ can be strengthened (or mitigated) by
checking more specimens. If n specimens are taken from one batch, and if all appear to be
defective (= event B’), then the expression P(B|Ai) in Bayes rule (3) must be replaced by the
expression P(B’|Ai) = P(B|Ai)n. For example, if three specimens were taken from a batch from
the above example, and if all were faulty, then P(B’|A1) = 0.023, P(B’|A2) = 0.043, P(B’) = 0.3 ×
0.023 + 0.7 × 0.043 = 0.0000472, and P(A1|B’) = 0.3 × 0.023/0.0000472 = 0.05. Similarly, P(A2|B’) =
0.95. In such case, it is nearly sure that the batch was from plant 2.

Example 2. Revealing the most probable cause of an accident.

This example is adapted from [2]. An explosion occurred during a repair of a tank for liquid
natural gas. The accident could have happened due to (1) static electricity, (2) fault in the
electric equipment, (3) work with open flame during the repair, or (4) intentional act (sabotage).
Engineers for risk analysis estimated that the accident could happen with a probability of 25%
due to static electricity, 20% due to a fault in the electric equipment, 40% due to work with
open flame, and 75% due to a sabotage. The discussion with them also gave the following
subjective assessment of probability of individual causes: 0.30, 0.40, 0.15, and 0.15. What is the
most probable cause of the explosion in view of all this information?

Solution. Event A: presence of conditions for explosion: P(A1) = 0.30; P(A2) = 0.40; P(A3) = 0.15;
P(A4) = 0.15 (note: ΣP(Ai) = 1.00). Event B: explosion. The probabilities of explosion under
particular conditions are P(B|A1) = 0.25; P(B|A2) = 0.20; P(B|A3) = 0.40; P(B|A4) = 0.75. Total
probability of the accident: P(B) = 0.30 × 0.25 + 0.40 × 0.20 + 0.15 × 0.40 + 0.15 × 0.75 = 0.3275.
Probability that the explosion has happened due to: (1) static electricity: P(A1|B) = 0.30 ×
0.25/0.3275 = 0.229 = 22.9%, (2) electric appliance: P(A2|B) = 24.4%, (3) open flame: P(A3|B) =
18.3%, and (4) sabotage: P(A4|B) = 34.3%. [Compare these updated probabilities with the
original estimates P(Ai).]

Example 3. Increasing the reliability of nondestructive testing.

Welded components are tested for the occurrence of defects (cracks). The device used for
nondestructive testing is not perfect. It classifies defect correctly (as defect) only with proba‐
bility 98%, whereas, in 2% of all cases, it does not recognize the crack and classifies the
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component as good. On the contrary, the device marks 96% of good parts as good, but 4%
classifies as with a crack. According to long-term inspection records, 3% of all tested compo‐
nents contain cracks. The questions are: If the tested part was classified as ”wrong“ (i.e. with
a defect), what is the probability that it is actually (a) wrong or (b) good? And what about if
the component was classified as ”good“?

Solution. Event A1: Component contains a defect, A2: component is good. P(A1) = 0.03; P(A2) =
0.97. Event B: component is classified as wrong. P(B|A1) = 0.98; P(B|A2) = 0.04. The fraction of
tested components marked as wrong: P(B) = 0.03 × 0.98 + 0.97 × 0.04 = 0.0682.

Case 1a. Probability that the component marked as wrong is actually wrong, is P(A1|B) = P(A1) ×
P(B|A1)/P(B) = 0.03 × 0.98/0.0682 = 0.431 = 43.1%. Case 1b. Probability that the component
marked as wrong, is actually good, is P(A2|B) = 0.97 × 0.04/0.0682 = 0.569 = 56.9%. (Remark:
Due to the high proportion of good parts (98%), the proportion of good but rejected parts is
high.)

Event B’: Component is classified as good. P(B’|A1) = 0.02; P(B’|A2) = 0.96. The total fraction
of components, denoted as good, is P(B’) = 0.03 × 0.02 + 0.97 × 0.96 = 0.9318. Case 2a. Probability
that the component marked as good is actually wrong, is P(A1|B’) = 0.03 × 0.02/0.9318 = 0.00064
= 0.06%. Case 2b. Probability that the component marked as good is actually good is P(A2|B’)
= 0.99936 = 99.94%.

Recommendation: All rejected components could be tested once more to reduce the number
of discarded good components.

A similar approach can be used in medicine (e.g. in cancer screening).

2. Bayes rule for continuous quantities

If the probability of event B depends on the value of a continuous quantity A, described by the
probability density f(A), it is possible to calculate the total probability of this event as

( ) ( ) ( )|  d ;P B P B A f A Aé ùë û= ò (4)

the integration is performed over the whole domain A. [The integration has replaced the
summation in Equation (2).] An example is the nondestructive detection of cracks in welds:
P(B) is the probability of crack detection, f(A) is the probability distribution of cracks of size
A, and P(B|A) is the probability of detection of a crack of size A, the so-called ”probability of
detection“ curve (shortly POD curve) of the device.

Now, a question can be asked: If event B (result of the test) has occurred, what is the actual
distribution of random variable A? Bayes rule (3) can be modified also for this case; the formula
for updated distribution of quantity A is [1, 3]:
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( ) ( ) ( ) ( )   /  ,| |f A B f A P B A P B= ´ (5)

where P(B) is given by Equation (4). For example, the updated distribution of crack lengths
can be used for the estimation of time to fatigue failure by the Monte Carlo method [1, 2].

2. Other applications

Bayesian methods can also be used for the improvement of parameter estimate of various
probability distributions. Three examples follow.

Parameters of normal distribution

The mean value μ and standard deviation σ of a population with normal distribution are
usually unknown, so that they are replaced by their estimates m and s from a sample of size
n. The estimate of the mean value can be refined via confidence interval:

( ) ( ), ,– / /  ,m t s n m t s na n a nmÖ £ £ + Ö (6)

where tα,ν is α-critical value of Student’s t-distribution for ν = n – 1 degrees of freedom.

The estimate can be made more accurate if additional information is available (e.g. estimates
of m0 and s0 from previous measurements or records). If the number n0 of these values is known,
and if the assumption can be made that all samples (new and old) belong to the same popu‐
lation, the following procedure may be used. The updated average is calculated as the
weighted average of both sample averages:

0 0 0( ) / ; ,u u um nm n m n n n n= + = + (7)

where nu is the updated number of values. The updated standard deviation is

2 2 2 2 2
0 0 0 0( 1) ( 1)

.
1

u u
u

u

n s n s nm n m n ms
n

- + - + + -
=

-
(8)

Then, the updated confidence interval for μ can be calculated with m, s, and n in (9) replaced
by the updated values mu, su, and nu. If n0 is unknown, the literature on Bayesian methods
recommends an approximate formula [1, 5, 6]:

2 2
0 0/ ,n s s= (9)
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based on the idea that m0 and s0 carry information corresponding to a fictitious sample of certain
size n0. The smaller the scatter s0

2 compared to s2, the more important are the original results
and the larger is the size of the fictitious sample. (An important condition for this estimate is
that the ”a priori“ values of m0 and s0 were obtained from large samples.)

Quantiles of normal distribution

The ISO 12491 standard ”Statistical methods for quality control of building materials and
components“ recommends the following formula for the Bayesian estimate of p-quantile of
normal variable x:

( ), 1  1 /  ,p B u p u ux m t s n= + Ö + (10)

where tp = tp(α, p, νu) is p-quantile of Student’s t-distribution for νu = nu – 1 degrees of freedom.
If no additional information is available, the standard recommends the original values m, s,
and n.

Weibull distribution

Some quantities, such as the strength or time to failure due to fatigue, can often be approxi‐
mated by Weibull distribution:

( ) ( ){ }0  1 –  exp  –  – /  .
b

x x x aé ùë û= (11)

The parameters a, b, and x0 are determined from tests. (The threshold value x0 is often assumed
equal zero.) Sometimes, the number of tests is too low for obtaining reliable values of all
parameters. Fortunately, the investigated component or structure is often not a quite new
solution but rather an improvement of the current conception. In such case, one can expect
that the failure mechanism will be similar as in the previous construction. As the parameter b
is closely related to the character of failures, one can assume that the value b will be approxi‐
mately the same as for the previous components and use it as a known constant. Under this
assumption, the finding of the remaining parameters a and x0 from small amount values is
more reliable. This approach is called ”Weibayes“ [7]. The assumed value b is more reliable if
it was determined from many tests. It is thus suitable to keep records from all tests – for possible
use in the future!

4. Software for Bayesian methods

The problems from the above first three examples can be solved easily using Excel and standard
Bayesian notation. Some simple programs can be found in the literature, for example [2, 3]. At
ETH Zürich, a PC program Combinfo was created, which enables the combination of data from
various sources [8], including vague information, such as probability estimates by experts or
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by judgment. The program allows assigning various weights to individual information.

Bayesian methods are also incorporated into software packages for reliability analysis, such

as www.reliability.com, www.weibull.com, www.reliasoft.com, or www.itemsoft.com.
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