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Abstract

Stem cell therapy is a promising option for regenerative of injured or diseased tissues.
However, the extremely low survival and engraftment of transplanted cells and the
obviously inadequate recruitment and activation of the endogenous resident stem cells
are the major challenges for stem cell therapy. Fortunately, recent progresses show that
extracellular matrix (ECM) could not only act as a spatial and mechanical scaffold to
enhance cell viability but also provide a supportive niche for engraftment or accelerat‐
ing stem cell differentiation. These findings provide a new approach for increasing the
efficiency of stem cell therapy and may lead to substantial changes in cell administra‐
tion. In order to take a giant stride forward in stem cell therapy, we need to know much
more about how the ECM affects cell behaviours. In this chapter, we provide an overview
of the influence of ECM on regulating stem cell maintenance and differentiation. Moreover,
the enhancement of supportive microenvironment function of natural or synthetic ECMs
in stem cell therapy is discussed.

Keywords: extracellular matrix (ECM), stem cell therapy, microenvironment, growth
factor, regenerative medicine

1. Introduction

Stem cells reside within a specific extracellular microenvironment, which consists of a com‐
plex mixture of soluble and insoluble, short- and long-range signals [1]. Extracellular matrix
(ECM) to which stem cells adheres is one of the microenvironmental parameters regulated stem-
cell fates [2–4]. Once moving outside of their niche, stem cells will quickly lose their develop‐
mental potential, which limits the application of stem cell therapy [5]. Besides, mounting evidence
on stem cells and their niche indicates that transplanted stem cells are unable to survive and
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adapt at the site of administration where there is lack of functional vascular network to transport
blood, supply oxygen and nutrients, and remove metabolites [6].

Through enhancing cell retention and engraftment after transplantation, modulating stem cell
fate, and promoting functional vasculature formation, co-transplantation stem cells with
natural or synthetic ECM that mimic natural extracellular milieu could be a potentially
powerful tool to break the current bottleneck and maximize the effectiveness of stem cell
therapy [7–9]. These strategies provide considerable hope for the development of stem cell
therapy in degenerative diseases. This chapter will provide the insights into the interaction
between stem cells and ECM, as well as current knowledge and involvement of stem cell
therapy. Moreover, we will discuss the strategy of co-transplantation stem cells and ECM for
tissue regeneration with enhanced therapeutic efficacy.

2. Why extracellular matrix is necessary for stem cell therapy

With the capacity of self-renewal and differentiation, stem cells have shown promising
potential in regenerative medicine and tissue engineering. So far, stem cell transplantation
have been proposed as future therapies for degenerative diseases or injury, including Alz‐
heimer's disease [10], type 1 diabetes [11], Parkinson's disease [12], cardiac disease [13], muscle
damage [14] and many others [15–17]. However, some studies showed that stem cell therapy
only had modest improvement, which could be attributed to the fact that transplanted cells
were unable to survive and adapt in the diseased area. For instance, low cell retention and
engraftment and remarkably cell death after transplantation have been observed by using
bioluminescence imaging (BLI) [18].

Though it is not clear what signals and underlying pathways cause the acute donor cell death
following transplantation, increasing evidence suggests that that a supportive microenviron‐
ment is of crucial importance for stem cell survival, proliferation and differentiation [5,19]. For
this reason, the strategy to seed stem cells on biomaterials that mimic the biochemical and
biophysical properties of native niche could be a viable solution to the above mentioned
problems [20] and optimize functional recovery of injured tissue (Figure 1). For instance,
Matrigel, a product derived from the Engelbroth-Holm-Swarm (EHS) mouse sarcoma, is one
of the most commonly used plate-coating materials for stem cell culture in vitro and effectively
applied vehicles for transplanted stem cells [21]. Mounting evidence has demonstrated that
Matrigel could affect cell fate in a variety of dimensions [21,22]. However, Matrigel is a complex
with unknown variable matrices and numerous mixed growth factors, which makes it
impossible for us to get further insights into the interplay of stem cells and ECM. Besides,
another reason for safety concern is that Matrigel has been reported contaminated with Lactate
Dehydrogenase Elevating Virus [23]. To avoid these problems, artificially synthetic ECM with
both high purity and defined components in qualitative and quantitative measures for safe
application is strongly demanded [24,25]. Recently, developments in engineered ECM-based
microenvironments have gradually exhibited their ability for directing stem cell behaviours,
such as adhesion, proliferation, and differentiation [26].
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Figure 1. Extracellular matrix(ECM) is necessary for stem cell therapy. A form of apoptosis, called “anoikis”, will be
initiated once interactions between stem cells and ECM are cut off. Re-establish the connection between ECM and de‐
tached cells could increase cell viability and promote function recovery of injured tissue [4]. Reprinted by permission
of the publisher.

3. Influence of the extracellular matrix on stem cell behaviour

Extracellular matrix (ECM), acting in conjunction with the biophysical properties and bio‐
chemical extracellular stimuli, is critical to regulate stem cell maintenance and differentiation
[27,28]. It has been reported that a form of apoptosis, called “anoikis”, would be initiated when
interactions between stem cells and ECM were cut off [19]. Great effort has been made in an
attempt to detail the mechanisms, which provides some key information for cell–ECM
interplay. For example, recent study investigated changes of genes’ expression after cell
detachment by using PCR Array [2]. In that study, researchers found that adhesion molecules
expression had no significant difference between cultured human embryonic stem cell-derived

Figure 2. ECM and cell adhesion related gene-expression patterns of hESC-EC at different conditions. Expression of
more than 4-fold changes genes of hESC-ECs in Matrigel compared with hESC-ECs in PBS [4]. Reprinted by permis‐
sion of the publisher.
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endothelial cells (hESC-ECs) and enzymatically dispersed hESC-ECs suspended in Matrigel.
However, a series of ECM and adhesion molecules-specific genes was considerably down-
regulated in hESC-EC suspended in PBS (Figure 2). These gene-expression data indicated that
adding ECM to detached cells could reverse genes down-regulation of ECM pathway, cell
adhesion molecules pathway, ECM and adhesion signalling.

3.1. Biochemical stimulus

The assignment of cell fate results from a response to sophisticated extracellular signals [29,30].
There is mounting evidence suggesting that ECM could deliver numerous soluble and
immobilized factors that play vital roles in making the fate choice between self-renewal and
lineage commitment [31]. Further insights and exquisite control of signals transported by ECM
could provide opportunities for enhancing the regenerative efficacy in both in vitro and in
vivo and further accelerating the translation of basic science to the clinical setting.

3.1.1. Release of soluble factors

The propagation of soluble signalling molecules controls a great variety of cellular responses,
including proliferation [32], polarity [33], migration [34], and differentiation [35]. It has been

Figure 3. Putative model outlining the controlled nitric oxide (NO)-releasing hydrogel enhances the therapeutic ef‐
fect of adipose derived-mesenchymal stem cells (ADSCs) for myocardial infarction. Encapsulation of ADSCs by
NO-releasing hydrogel prevented transplanted cells effusing from injection positions. NO molecule released from the
hydrogel catalyzed by β-galactosidase can facilitate angiogenic cytokines secretion of ADSCs, resulting in promoting
angiogenesis, ADSCs survival and cardiac function. β-gal, β-galactosidase [9]. Reprinted by permission of the publish‐
er.
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demonstrated that a specific interaction between cells and ECM is required for the ultimate
biological response of soluble molecules [29,36,37]. Interactions with ECM can affect the
responses of cell toward signalling messengers. For instance, insulin-triggered activation of
insulin receptor substrate (IRS) was intensely enhanced in cells cultured on basement mem‐
brane than on collagen I, whereas higher levels of tyrosine phosphorylation of the EGF receptor
and Erk was triggered by EGF in cell adhesion to collagen I [36].

In living systems, the coordinated effort among cells, growth factors and ECM is required for
the successful tissue regeneration. The ability of manipulating biological signals transduced
by ECM in a controlled and spatiotemporal manner that mimic the natural regenerative
process could provide specific control over the stem cell-based regenerative therapy [38]. The
potential therapeutic effect of a peptide-based ECM with the capacity of controlled release
nitric oxide (NO), NapFF-NO, was tested in a mouse model of myocardial infarction [9]. The
therapeutic effect of adipose-derived-mesenchymal stem cells (ADSCs) was elevated through
co-transplantation with NapFF-NO and on-demand NO release (Figure 3). Additionally, the
administration of growth factors within the context of the ECM niche could accentuate their
therapeutic effects for tissue repair [39]. It was reported that a recombinant fragment of
fibronectin (FN) could significantly enhance the regenerative effects of growth factors in
models of chronic wounds and bone defects [40].

3.1.2. Immobilized factors

Sustained release and improved local retention of regenerative factors, such as growth factors
and extracellular substances, are required during tissue regeneration [41]. However, these
molecules are suffering from rapid degradation, and therefore they will quickly lose their
functionality and clinical efficacy [42]. Additionally, there is evidence that cellular processes
are also affected by the interactions between cells and non-soluble constituents of the ECM
[43]. For these reasons, immobilization of signalling molecules or functional components to
ECM could be suitable for stabilizing these highly reactive molecules, increasing local
concentration of biochemical stimuli, and increasing the bioactivity of engineered ECM.

A growing number of studies have utilized short synthetic peptides to mimic the biological
properties of full-length growth factors and to substitute parent proteins [44,45]. For example,
insulin-like growth factor 1 (IGF-1) is considered as an essential biochemical stimulus in tissue
regeneration. The C domain of IGF-1 (IGF-1C), a 12 amino acids sequence, had already been
proved as the active region of IGF-1 [46]. IGF-1C has been used as substitute for IGF-1 and
applied into hydrogel biomaterials as biomimetic material for tissue engineering and regen‐
erative medicine. The proliferation, apoptosis resistance, and paracrine effects of ADSCs were
significantly enhanced after they were seeded on chitosan (CS) hydrogel with immobilization
of IGF-1C [47]. When co-transplanted ADSCs with CS-IGF-1C hydrogel into ischemic organ,
this biomimetic matrix could create a favourable microenvironment for the survival and
adaptation of transplanted cells and further promote functional and structural recovery of
injured organ (Figure 4).
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Figure 4. Schema of renoprotective effects of ADSCs and synthetic ECM (CS-IGF-1C hydrogel). When co-trans‐
planted into AKI model, CS-IGF-1C hydrogel could protect delivered ADSCs, facilitated their paracrine and anti-in‐
flammatory effects, and inhibit ECM synthesis in kidney, which result in enhanced angiogenesis, regeneration and
alleviated fibrosis after kidney injuries. Consequently, CS-IGF-1C hydrogel therapy leads to improved functional and
structural recovery of kidney [47]. Reprinted by permission of the publisher.

3.2. Physical interaction

Although it has commonly acknowledged that signals transduced by ECM could direct stem
cell fate, there is increasing evidence that physical properties of ECM could also make a great
impact on cell behaviours [48–50]. Some of these factors are proven to be of great influence,
but we still have a long way to go and a lot of work to do to establish a complete theory. For
example, in response to injury, the accumulation of ECM is excess and abnormal, which would
cause significant changes to the stiffness of ECM and ultimately lead to tissue fibrosis [51,52].

3.2.1. Stiffness and elasticity

To test the effect of different stiffness (EY) on cell behaviors, substrates with EY ranging from
<1 kPa to 30 kPa were synthesized [53]. The results showed that ECM stiffness has influence
on cell proliferation as well as cell differentiation. For instance, neural stem/progenitor cells
(NSPCs) could proliferated on substrates with EY <10 kPa. On soft substrates (<1 kPa), neuronal
differentiation was promoted; whereas, on relatively stiff substrates (>7 kPa), oligodendrocyte
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differentiation was favoured. This consequence indicated that matrix stiffness had effect on
lineage choice and differentiation. In light of previous data that stiffness was a regulator of
differentiation, Shih et al. further explore how matrix affects the osteogenic phenotype of MSCs
[54]. They found that the matrix rigidity promoted osteogenic commitment through a α2-
integrin-ROCK-FAK-ERK1/2 axis.

Fascinatingly, it was observed that mesenchymal stem cells all underwent osteogenic differ‐
entiation on both stiff and soft polydimethylsiloxane (PDMS) substrates; whereas, the osteo‐
blast differentiation of the same cells was promoted on stiff polyacrylamide (PAAm)
hydrogels, and more cell differentiated into adipocytes on soft PAAm hydrogels [55]. The
different cellular responses to different substrates indicated that stiffness was not an inde‐
pendent stimulus for differentiation. Further data provided in this study suggested that the
differentiation of human mesenchymal stem cells on PAAm was also regulated by the elastic
modulus. Consistent with the previous study, Xue et al. reported that matrix elasticity was the
main physical parameter directing stem cell differentiation at low cell density; with increased
cell density, the cell–cell contact force and interactions took priority over the matrix elasticity
[56]. Most notably, although cell differentiation was influenced by elastic modulus, recent
discovery found that matrix-promoted adipogenic or osteogenic differentiation could not
maintain when the cells were re-seeded into tissue culture plastic (TCP) [57]. Furthermore,
global gene expression profiles and DNA-methylation profiles revealed no significant impact
caused by matrix with different elasticity. These results indicated that matrix elasticity only
exerted a transient influence on stem cell lineage commitment.

3.2.2. Ligands and ligand densities

When cells were seeded on ECM with different ligand densities, changes in stem cell viability,
size, and shape provided the direct evidence that ligand immobilized to ECM could not be
easily separated from the biophysical effects of matrix [58,59]. The spatial arrangement of
ligands had a significant influence on MSC behavior [44]. Through manipulating of the ratio
of polystyrene-block-poly (ethylene oxide) copolymers (PS-PEO-Ma) in mixtures of block
copolymer and polystyrene homopolymer, the lateral spacing of RGD (arginine-glycine-
aspartic acid) peptides was under control. With increased lateral spacing, osteogenesis of MSC
was reduced while adipogenic differentiation was increased, which was consistent with the
results of gene expression levels and alkaline phosphatase activities.

Moreover, the type of ligands covalently linked to ECM could also influence stem cell fate
determination. The differentiation of MSCs on different composition of adhesion ligands with
the same concentration was various. MSCs cultured on fibronectin or laminin matrices tended
to undergo adipogenic differentiation; whereas, MSCs cultured on ECM containing collagen
preferred to adopt a neurogenic outcome [60].

3.2.3. Macro/nano-scale topography

Recent development also demonstrated that macro/nano-scale of ECM was another important
physical parameter that could not only change the shape of stem cells but also influence the
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behaviour of stem cells. A preliminary study demonstrated Zyxin played an important role in
nanotopographical feature-facilitated changes in stem cells [48]. On 350 nm grating, expression
of Zyxin was down-regulated, which was associated with the accelerated speed of migration
and the decreased intracellular tension. Likewise, McMurray et al. revealed that modification
in surface nanotopography of thermoplastic polycaprolactone (PCL) would influence intra‐
cellular tension, which could maintain the multipotency of stem cells and diminish spontane‐
ous differentiation of MSC [61]. Moreover, his current study further illustrated that nanoscale
spatial organization of cell-adhesive ligands bound to ECM could affect lineage commitment
of MSCs [62]. By using nanopatterning techniques, arginine-glycine-aspartate (RGD) was
covalently linked to the surface of poly (ethyleneglycol) (PEG) hydrogels with different
nanospacing. It was interesting to identify that large RGD nanospacing was beneficial for
osteogenesis; small RGD nanospacing was conducive to adipogenesis.

4. ECM augments therapeutic effects of stem cell therapy

Many attempts at cell therapy have employed ECM to improve efficacy for the following
reasons. First, the major obstacle to the application of stem cells, which is known as the
extremely poor survival and engraftment of transplanted stem cells, could be minimized by
co-transplantation stem cells with ECM [51,63,64]. Second, engineered ECM mimicking the
natural stem-cell microenvironments could provide plenty of subtle and instructive cues to
control the fate of both transplanted and endogenous cells, including stem cell self-renewal,
differentiation, and migration [7,65,66]. Taken together, the development of engineered
matrices is promising for the application of stem cells in regenerative medicine.

4.1. Enhance efficacy of transplanted cells

For both experimental studies and clinical applications, transplanted stem cells are commonly
prepared for transplantation as single cells. During this process, interactions between cells and
ECM are lost and adhesion-related survival signals are down-regulated, which could cause a
decrease in cell viability and initiated apoptosis [67]. Fortunately, recent research discovered
that the down-regulated molecules of detached cells could be regained in the presence of
Matrigel [4], which provided a theoretical rationale for using ECM as a protective scaffold to
enhance viability and to stimulate self-renewal of the transplanted cells.

In support of this finding, recent study demonstrated that biomimetic scaffold could protect
the transplanted stem cells, and further promote functional and structural recovery from acute
kidney injury (AKI). Through immobilization of the C-domain of insulin-like growth factor 1
(IGF-1C) to chitosan (CS) hydrogel (CS-IGF-1C), an artificial microenvironment for supporting
growth of stem cells was synthesized. The pro-proliferative, anti-apoptotic, and pro-angio‐
genic effects of CS-IGF-1C were demonstrably beneficial for enhancing survival of transplant‐
ed stem cells, which could ameliorate renal function [47] (Figure 5).
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Figure 5. CS-IGF-1C hydrogel increases ADSCs viability in vivo. (A) The fate of ADSCs after transplantation was
tracked by molecular imaging. Images are from representative animals receiving 1×106 ADSCs alone, with chitosan hy‐
drogel or CS-IGF-1C hydrogel. (B) Quantitative analysis of BLI signals demonstrated that cell survival was improved
by chitosan hydrogel and CS-IGF-1C hydrogel application at all time-points. CS-IGF-1C hydrogel group showed sig‐
nificantly better cell survival. Data are expressed as mean ± SEM. (C) Representative photomicrographs displayed the
engraftment of ADSCs (GFP, green) within kidneys at day 3 and 14. Proximal tubular epithelial cells were stained by
rhodamine-labeled lens culinaris agglutinin (LCA, red). (D) Quantitative analysis data revealed that chitosan hydrogel
improved cell engraftment and CS-IGF-1C hydrogel further increased this effect. Data are expressed as mean ± SEM.
*P<0.05 vs. ADSCs, #P<0.05 vs. ADSCs/CS. (E) Representative images showing the proliferation (Ki-67, red) of trans‐
planted ADSCs (GFP, green) in the border regions 3 days after AKI. DyLight 649-labeled LCA staining (cyan) was per‐
formed to reveal renal structure. (F) Quantification of the proliferation index of ADSCs. Data are expressed as mean ±
SEM. *P<0.05 vs. ADSCs, #P<0.05 vs. ADSCs/CS. (47). Reprinted by permission of the publisher.

Besides, we could attribute the efficacy of stem cell therapy partly to the pluripotency of stem
cells [68,69]. A morphological study of MSCs in collagen type I (Col I) hydrogel and in
interfacial polyelectrolyte complexation (IPC) based hydrogels containing Col I discovered
that cells were neatly arranged and closely packed in IPC- Col I hydrogel [70]. This uniform
arrangement results in notably enhanced commitment to the chondrogenic lineage of MSC,
which could be an attractive source of cartilage equivalents for tissue engineering.

Recently, a variety of studies have demonstrated that decellularized matrix could provide
tissue specific cues for cell growth and lineage commitment [71–73]. Decellularized myocardial
matrix hydrogel, which keeps the original structure and natural heart ECM, is the most
compelling example among these biomaterials. One of the most inspiring finding is that a
mouse heart could contract and beat again after removing its own cells and repopulating the
decellularized whole-heart ECMs (DC-ECMs) with multipotential cells that could differentiate
in response to the signals from the DC-ECMs. Through repopulating decellularized mouse
hearts with induced pluripotent stem cell (iPSC)-derived earliest heart progenitors, the
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recellularized DC-ECMs exhibited myocardium, vessel-like structures, intracellular Ca2+

transients (CaiT), spontaneous heart contractions and significant response to numerous drug
interventions [74].

4.2. Support the function of endogenous cells

MSCs could mobilize into circulating blood and be recruited to the injury site, which was
consistent with the evidence that numbers of MSCs were increased considerably in peripheral
blood [75]. Several approaches were used in an attempt to investigate this cell recruitment
event. It was unexpected to find that ECM was indispensable for the homing of MSCs toward
sites of injury [76]. The homing effect could be inhibited through adding inhibitor of serine
proteases and leupeptin to ECM, which illustrated the key role of matrix remodelling in MSC
migration. In addition, evidence also indicated that exposing MSCs to injury-associated ECM
prior to transplantation could augment the efficiency of MSCs’ intrinsic tropism for injury [77].

As resident stem cells and progenitor cells could be activated to participate tissue regeneration
after injury [78,79], ECM designed for cell seeding should also benefit the growth of host cells
and support the function of endogenous cells. Encouragingly, evidence suggested that host
cells could respond to ECM in the site of injury in vivo. Firstly, immune responses were elicited
in hosts, which was identified by the quickly infiltrated CD68+ cells throughout the entire ECM
within 3 days after implantation. Then there were indications of myogenesis in the muscle
injury area, which was confirmed by morphology and myosin heavy chain positive staining
[80].

Furthermore, accumulating data suggested that human mesenchymal stem cells (hMSCs)
could modulate immune system response through their paracrine effect and then create a
pro-regenerative environment in situ. Their paracrine effects could be optimized through
encapsulating hMSCs into protective ECM [81]. The recruitment of endogenous macrophag‐
es and the M1/M2 polarization were modulated by the trophic factors secreted by hMSCs,
which was possibly capable of counteracting the hostile environment and sustaining tissue
regeneration. This cell-friendly microenvironment could also be established by administra‐
tion of ECM alone. Increased stem cell tropism, revascularization, and improved cardiac
function induced by chitosan-based ECM were observed in ischemic myocardium [82],
which may be attributing to the mechanical support provided by ECM and the therapeutic
biomolecules enriched by ECM [83–85].

5. Future perspectives

The ECM is not only a simple scaffold that provides physical supports for stem cells but also
a dynamic and complex environment that is capable of regulating cell behaviours. Although
the application of natural or synthetic ECM with the aim to enhance therapeutic effects of stem
cells is highly appealing for promoting regenerative processes, issues related to efficiency and
safety limit their translational use as regenerative medicine. Further identifying specific
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biochemical and biophysical properties of ECM and understanding the interplay between stem
cells and ECM will provide knowledge of stem cell biology and fuel the development of
regenerative therapies based on stem cells.

Acknowledgements

This work was partially supported by grants from the National Natural Science Foundation
of China (81371620, 81320108014), Tianjin Natural Science Foundation (14JCZDJC35200) and
the Program for Changjiang Scholars and Innovative Research Team in University (IRT13023).

Author details

Yan Nie1, Shuaiqiang Zhang1, Na Liu2 and Zongjin Li1,2*

*Address all correspondence to: zongjinli@nankai.edu.cn

1 Nankai University School of Medicine, Tianjin, P.R. China

2 The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences,
Nankai University, Tianjin, P.R. China

References

[1] Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: A dynamic microenvironment
for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506-2519. DOI:10.1016/
j.bbagen.2014.01.010.

[2] Higuchi A, Ling Q-D, Hsu S-T, Umezawa A. Biomimetic cell culture proteins as
extracellular matrices for stem cell differentiation. Chemical Reviews. 2012;112(8):
4507-4540. DOI:10.1021/cr3000169.

[3] Murphy WL, Mc Devitt TC, Engler AJ. Materials as stem cell regulators. Nature
Materials. 2014;13(6):547-557. DOI:10.1038/nmat3937.

[4] He N, Xu Y, Du W, Qi X, Liang L, Wang Y, et al. Extracellular matrix can recover the
downregulation of adhesion molecules after cell detachment and enhance endothelial
cell engraftment. Sci Rep. 2015;5:10902. DOI:10.1038/srep10902.

[5] Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: An emerging hallmark in health
and diseases. The Journal of Pathology. 2012;226(2):380-393. DOI:10.1002/path.3000.

Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine
http://dx.doi.org/10.5772/62229

333



[6] Prestwich GD, Healy KE. Why regenerative medicine needs an extracellular matrix.
Expert Opin Biol Ther. 2015;15(1):3-7. DOI:10.1517/14712598.2015.975200.

[7] Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, et al. Extracellular matrix
promotes highly efficient cardiac differentiation of human pluripotent stem cells: The
matrix sandwich method. Circulation Research. 2012;111(9):1125-1136. DOI:10.1161/
CIRCRESAHA.112.273144.

[8] Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. Degradation-
mediated cellular traction directs stem cell fate in covalently crosslinked three-
dimensional hydrogels. Nat Mater. 2013;12(5):458-465. DOI:10.1038/nmat3586.

[9] Yao X, Liu Y, Gao J, Yang L, Mao D, Stefanitsch C, et al. Nitric oxide releasing hydrogel
enhances the therapeutic efficacy of mesenchymal stem cells for myocardial infarction.
Biomaterials. 2015;60:130-140. DOI:10.1016/j.biomaterials.2015.04.046.

[10] Israel MA, Yuan SH, Bardy C, Reyna SM, Mu Y, Herrera C, et al. Probing sporadic and
familial alzheimer's disease using induced pluripotent stem cells. Nature.
2012;482(7384):216-220. DOI:10.1038/nature10821.

[11] Jurewicz M, Yang S, Augello A, Godwin JG, Moore RF, Azzi J, et al. Congenic mesen‐
chymal stem cell therapy reverses hyperglycemia in experimental type 1 diabetes.
Diabetes. 2010;59(12):3139-3147. DOI:10.2337/db10-0542.

[12] Lindvall O, Kokaia Z. Prospects of stem cell therapy for replacing dopamine neurons
in parkinson's disease. Trends Pharmacol Sci. 2009;30(5):260-267. DOI:10.1016/j.tips.
2009.03.001.

[13] Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease.
Circ Res. 2015;116(8):1413-1430. DOI:10.1161/circresaha.116.303614.

[14] Quintero AJ, Wright VJ, Fu FH, Huard J. Stem cells for the treatment of skeletal muscle
injury. Clin Sports Med. 2009;28(1):1-11. DOI:10.1016/j.csm.2008.08.009.

[15] Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial
disease meta-analysis and systematic review of the literature. Atherosclerosis.
2010;209(1):10-17. DOI:10.1016/j.atherosclerosis.2009.08.033.

[16] Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion Rde N, Paris E, et al. Mesen‐
chymal stem cells as anti-inflammatories: Implications for treatment of duchenne
muscular dystrophy. Cell Immunol. 2010;260(2):75-82. DOI:10.1016/j.cellimm.
2009.10.006.

[17] Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies.
BMC Med. 2011;9:52. DOI:10.1186/1741-7015-9-52.

[18] van der Bogt KE, Hellingman AA, Lijkwan MA, Bos EJ, de Vries MR, van Rappard JR,
et al. Molecular imaging of bone marrow mononuclear cell survival and homing in

Composition and Function of the Extracellular Matrix in the Human Body334



murine peripheral artery disease. JACC Cardiovascular imaging. 2012;5(1):46-55. DOI:
10.1016/j.jcmg.2011.07.011.

[19] Gilmore AP. Anoikis. Cell Death Differ. 2005;12 Suppl 2:1473-1477. DOI:10.1038/sj.cdd.
4401723.

[20] Jhala D, Vasita R. A review on extracellular matrix mimicking strategies for an artificial
stem cell niche. Polymer Reviews. 2015;55(4):561-595. DOI:
10.1080/15583724.2015.1040552.

[21] Ou L, Li W, Zhang Y, Wang W, Liu J, Sorg H, et al. Intracardiac injection of matrigel
induces stem cell recruitment and improves cardiac functions in a rat myocardial
infarction model. J Cell Mol Med. 2011;15(6):1310-1318. DOI:10.1111/j.
1582-4934.2010.01086.x.

[22] Uemura M, Refaat MM, Shinoyama M, Hayashi H, Hashimoto N, Takahashi J. Matrigel
supports survival and neuronal differentiation of grafted embryonic stem cell-derived
neural precursor cells. J Neurosci Res. 2010;88(3):542-551. DOI:10.1002/jnr.22223.

[23] Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis
in mulv-infected icr-scid mice after injection of basement membrane matrix contami‐
nated with lactate dehydrogenase-elevating virus. Comp Med. 2011;61(5):404-411.

[24] Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, et al. Heparin promotes the
growth of human embryonic stem cells in a defined serum-free medium. Proc Natl
Acad Sci U S A. 2008;105(36):13409-13414. DOI:10.1073/pnas.0806136105.

[25] Nagaoka M, Si-Tayeb K, Akaike T, Duncan SA. Culture of human pluripotent stem
cells using completely defined conditions on a recombinant e-cadherin substratum.
BMC Dev Biol. 2010;10:60. DOI:10.1186/1471-213x-10-60.

[26] Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST, et al. Roles of
integrins in human induced pluripotent stem cell growth on matrigel and vitronectin.
Stem Cells Dev. 2010;19(8):1231-1240. DOI:10.1089/scd.2009.0328.

[27] Du J, Chen XF, Liang XD, Zhang GY, Xu J, He LR, et al. Integrin activation and
internalization on soft ecm as a mechanism of induction of stem cell differentiation by
ecm elasticity. Proc Natl Acad Sci U S A. 2011;108(23):9466-9471. DOI:10.1073/pnas.
1106467108.

[28] Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, et al. Nuclear lamin-
a scales with tissue stiffness and enhances matrix-directed differentiation. Science.
2013;341(6149):1240104. DOI:10.1126/science.1240104.

[29] Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: The dynamic
cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol.
2011;209(2):139-151. DOI:10.1530/joe-10-0377.

Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine
http://dx.doi.org/10.5772/62229

335



[30] Zouani OF, Kalisky J, Ibarboure E, Durrieu MC. Effect of bmp-2 from matrices of
different stiffnesses for the modulation of stem cell fate. Biomaterials. 2013;34(9):
2157-2166. DOI:10.1016/j.biomaterials.2012.12.007.

[31] Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL. Injectable extracellular
matrix derived hydrogel provides a platform for enhanced retention and delivery of a
heparin-binding growth factor. Acta Biomater. 2012;8(10):3695-3703. DOI:10.1016/
j.actbio.2012.06.030.

[32] Somaiah C, Kumar A, Mawrie D, Sharma A, Patil SD, Bhattacharyya J, et al. Collagen
promotes higher adhesion, survival and proliferation of mesenchymal stem cells. PLo
S One. 2015;10(12):e0145068. DOI:10.1371/journal.pone.0145068.

[33] Venero Galanternik M, Kramer KL, Piotrowski T. Heparan sulfate proteoglycans
regulate fgf signaling and cell polarity during collective cell migration. Cell Rep. 2015
DOI:10.1016/j.celrep.2014.12.043.

[34] Bowen CJ, Zhou J, Sung DC, Butcher JT. Cadherin-11 coordinates cellular migration
and extracellular matrix remodeling during aortic valve maturation. Dev Biol.
2015;407(1):145-157. DOI:10.1016/j.ydbio.2015.07.012.

[35] Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJ, et al. Dual
growth factor delivery from bilayered, biodegradable hydrogel composites for
spatially-guided osteochondral tissue repair. Biomaterials. 2014;35(31):8829-8839. DOI:
10.1016/j.biomaterials.2014.07.006.

[36] Lee Y-J, Streuli CH. Extracellular matrix selectively modulates the response of mam‐
mary epithelial cells to different soluble signaling ligands. Journal of Biological
Chemistry. 1999;274(32):22401-22408. DOI:10.1074/jbc.274.32.22401.

[37] Jeanes AI, Wang P, Moreno-Layseca P, Paul N, Cheung J, Tsang R, et al. Specific β-
containing integrins exert differential control on proliferation and two-dimensional
collective cell migration in mammary epithelial cells. Journal of Biological Chemistry.
2012;287(29):24103-24112. DOI:10.1074/jbc.M112.360834.

[38] Kim PH, Yim HG, Choi YJ, Kang BJ, Kim J, Kwon SM, et al. Injectable multifunctional
microgel encapsulating outgrowth endothelial cells and growth factors for enhanced
neovascularization. J Control Release. 2014;187:1-13. DOI:10.1016/j.jconrel.2014.05.010.

[39] Martino MM, Briquez PS, GüçE, Tortelli F, Kilarski WW, Metzger S, et al. Growth
factors engineered for super-affinity to the extracellular matrix enhance tissue healing.
Science. 2014;343(6173):885-888. DOI:10.1126/science.1247663.

[40] Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, et al. Engi‐
neering the growth factor microenvironment with fibronectin domains to promote
wound and bone tissue healing. Sci Transl Med. 2011;3(100):100ra189. DOI:10.1126/
scitranslmed.3002614.

[41] Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et
al. An alginate-based hybrid system for growth factor delivery in the functional repair

Composition and Function of the Extracellular Matrix in the Human Body336



of large bone defects. Biomaterials. 2011;32(1):65-74. DOI:10.1016/j.biomaterials.
2010.08.074.

[42] Grassian AR, Schafer ZT, Brugge JS. Erbb2 stabilizes epidermal growth factor receptor
(egfr) expression via erk and sprouty2 in extracellular matrix-detached cells. Journal
of Biological Chemistry. 2011;286(1):79-90. DOI:10.1074/jbc.M110.169821.

[43] Walters NJ, Gentleman E. Evolving insights in cell-matrix interactions: Elucidating how
non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater.
2015;11:3-16. DOI:10.1016/j.actbio.2014.09.038.

[44] Frith JE, Mills RJ, Cooper-White JJ. Lateral spacing of adhesion peptides influences
human mesenchymal stem cell behaviour. Journal of Cell Science. 2012;125(2):317-327.
DOI:10.1242/jcs.087916.

[45] Meng Q, Man Z, Dai L, Huang H, Zhang X, Hu X, et al. A composite scaffold of msc
affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel
for cartilage regeneration. Sci Rep. 2015;5:17802. DOI:10.1038/srep17802.

[46] Jansen M, van Schaik FM, Ricker AT, Bullock B, Woods DE, Gabbay KH, et al. Sequence
of cdna encoding human insulin-like growth factor i precursor. Nature. 1983;306(5943):
609-611.

[47] Feng G, Zhang J, Li Y, Nie Y, Zhu D, Wang R, et al. Igf-1c modified hydrogel enhances
cell therapy for acute kidney injury. Journal of the American Society of Nephrology.
2015. in press. doi: 10.1681/ASN.2015050578.

[48] Kulangara K, Yang Y, Yang J, Leong KW. Nanotopography as modulator of human
mesenchymal stem cell function. Biomaterials. 2012;33(20):4998-5003. DOI:10.1016/
j.biomaterials.2012.03.053.

[49] Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, et al.
Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat
Mater. 2014;13(10):979-987. DOI:10.1038/nmat4051.

[50] Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST, Darnell MC, et al. Matrix elasticity
of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation.
Nat Mater. 2015;14(12):1269-1277. DOI:10.1038/nmat4407.

[51] Georges PC, Hui JJ, Gombos Z, Mc Cormick ME, Wang AY, Uemura M, et al. Increased
stiffness of the rat liver precedes matrix deposition: Implications for fibrosis. Am J
Physiol Gastrointest Liver Physiol. 2007;293(6):G1147-1154. DOI:10.1152/ajpgi.
00032.2007.

[52] Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH, et al.
Extracellular matrix stiffness and composition jointly regulate the induction of malig‐
nant phenotypes in mammary epithelium. Nat Mater. 2014;13(10):970-978. DOI:
10.1038/nmat4009.

Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine
http://dx.doi.org/10.5772/62229

337



[53] Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell
behavior. Biomaterials. 2009;30(36):6867-6878. DOI:10.1016/j.biomaterials.2009.09.002.

[54] Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-
mediated mechanotransduction during osteogenic differentiation of human mesen‐
chymal stem cells. J Bone Miner Res. 2011;26(4):730-738. DOI:10.1002/jbmr.278.

[55] Trappmann B, Gautrot JE, Connelly JT, Strange DG, Li Y, Oyen ML, et al. Extracellular-
matrix tethering regulates stem-cell fate. Nat Mater. 2012;11(7):642-649. DOI:10.1038/
nmat3339.

[56] Xue R, Li JY, Yeh Y, Yang L, Chien S. Effects of matrix elasticity and cell density on
human mesenchymal stem cells differentiation. J Orthop Res. 2013;31(9):1360-1365.
DOI:10.1002/jor.22374.

[57] Schellenberg A, Joussen S, Moser K, Hampe N, Hersch N, Hemeda H, et al. Matrix
elasticity, replicative senescence and DNA methylation patterns of mesenchymal stem
cells. Biomaterials. 2014;35(24):6351-6358. DOI:10.1016/j.biomaterials.2014.04.079.

[58] Choi JS, Harley BA. The combined influence of substrate elasticity and ligand density
on the viability and biophysical properties of hematopoietic stem and progenitor cells.
Biomaterials. 2012;33(18):4460-4468. DOI:10.1016/j.biomaterials.2012.03.010.

[59] Kilian KA, Mrksich M. Directing stem cell fate by controlling the affinity and density
of ligand-receptor interactions at the biomaterials interface. Angew Chem Int Ed Engl.
2012;51(20):4891-4895. DOI:10.1002/anie.201108746.

[60] Lee J, Abdeen AA, Zhang D, Kilian KA. Directing stem cell fate on hydrogel substrates
by controlling cell geometry, matrix mechanics and adhesion ligand composition.
Biomaterials. 2013;34(33):8140-8148. DOI:10.1016/j.biomaterials.2013.07.074.

[61] Mc Murray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, Mc Namara LE, Tare R, et
al. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell
phenotype and multipotency. Nat Mater. 2011;10(8):637-644. DOI:10.1038/nmat3058.

[62] Ye K, Wang X, Cao L, Li S, Li Z, Yu L, et al. Matrix stiffness and nanoscale spatial
organization of cell-adhesive ligands direct stem cell fate. Nano Letters. 2015;15(7):
4720-4729. DOI:10.1021/acs.nanolett.5b01619.

[63] Mathieu E, Lamirault G, Toquet C, Lhommet P, Rederstorff E, Sourice S, et al. Intra‐
myocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac
function and attenuates ventricular remodeling after myocardial infarction. PLo S One.
2012;7(12):e51991. DOI:10.1371/journal.pone.0051991.

[64] Tzouanas SN, Ekenseair AK, Kasper FK, Mikos AG. Mesenchymal stem cell and gelatin
microparticle encapsulation in thermally and chemically gelling injectable hydrogels
for tissue engineering. Journal of Biomedical Materials Research Part A. 2014;102(5):
1222-1230. DOI:10.1002/jbm.a.35093.

Composition and Function of the Extracellular Matrix in the Human Body338



[65] Lei Y, Gojgini S, Lam J, Segura T. The spreading, migration and proliferation of mouse
mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials.
2011;32(1):39-47. DOI:10.1016/j.biomaterials.2010.08.103.

[66] Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, et
al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular
matrix increases endogenous cardiomyocytes and preserves cardiac function post-
myocardial infarction. Journal of the American College of Cardiology. 2012;59(8):
751-763. DOI:10.1016/j.jacc.2011.10.888.

[67] Livshits G, Kobielak A, Fuchs E. Governing epidermal homeostasis by coupling cell-
cell adhesion to integrin and growth factor signaling, proliferation, and apoptosis. Proc
Natl Acad Sci U S A. 2012;109(13):4886-4891. DOI:10.1073/pnas.1202120109.

[68] Toh WS, Lim TC, Kurisawa M, Spector M. Modulation of mesenchymal stem cell
chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomateri‐
als. 2012;33(15):3835-3845. DOI:10.1016/j.biomaterials.2012.01.065.

[69] Ansboro S, Hayes JS, Barron V, Browne S, Howard L, Greiser U, et al. A chondromimetic
microsphere for in situ spatially controlled chondrogenic differentiation of human
mesenchymal stem cells. J Control Release. 2014;179:42-51. DOI:10.1016/j.jconrel.
2014.01.023.

[70] Raghothaman D, Leong MF, Lim TC, Toh JK, Wan AC, Yang Z, et al. Engineering cell
matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem
cell chondrogenesis. Biomaterials. 2014;35(9):2607-2616. DOI:10.1016/j.biomaterials.
2013.12.008.

[71] Yin Z, Chen X, Zhu T, Hu JJ, Song HX, Shen WL, et al. The effect of decellularized
matrices on human tendon stem/progenitor cell differentiation and tendon repair. Acta
Biomater. 2013;9(12):9317-9329. DOI:10.1016/j.actbio.2013.07.022.

[72] Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE. Composite
hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineer‐
ing with adipose-derived stem cells. Biomaterials. 2014;35(6):1914-1923. DOI:10.1016/
j.biomaterials.2013.11.067.

[73] Wang RM, Christman KL. Decellularized myocardial matrix hydrogels: In basic
research and preclinical studies. Adv Drug Deliv Rev. 2015;96:77–82. DOI:10.1016/
j.addr.2015.06.002.

[74] Lu TY, Lin B, Kim J, Sullivan M, Tobita K, Salama G, et al. Repopulation of decellular‐
ized mouse heart with human induced pluripotent stem cell-derived cardiovascular
progenitor cells. Nat Commun. 2013;4:2307. DOI:10.1038/ncomms3307.

[75] Chen G, Tian F, Li C, Zhang Y, Weng Z, Zhang Y, et al. In vivo real-time visualization
of mesenchymal stem cells tropism for cutaneous regeneration using nir-ii fluorescence
imaging. Biomaterials. 2015;53:265-273. DOI:10.1016/j.biomaterials.2015.02.090.

Extracellular Matrix Enhances Therapeutic Effects of Stem Cells in Regenerative Medicine
http://dx.doi.org/10.5772/62229

339



[76] Mauney J, Olsen BR, Volloch V. Matrix remodeling as stem cell recruitment event: A
novel in vitro model for homing of human bone marrow stromal cells to the site of
injury shows crucial role of extracellular collagen matrix. Matrix Biol. 2010;29(8):
657-663. DOI:10.1016/j.matbio.2010.08.008.

[77] Smith CL, Chaichana KL, Lee YM, Lin B, Stanko KM, O'Donnell T, et al. Pre-exposure
of human adipose mesenchymal stem cells to soluble factors enhances their homing to
brain cancer. Stem Cells Transl Med. 2015;4(3):239-251. DOI:10.5966/sctm.2014-0149.

[78] Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):
937-942. DOI:10.1038/nature06800.

[79] Kim JY, Xin XJ, Moioli EK, Chung J, Lee CH, Chen M, et al. Regeneration of dental-
pulp-like tissue by chemotaxis-induced cell homing. Tissue Engineering Part A.
2010;16(10):3023-3031. DOI:10.1089/ten.tea.2010.0181.

[80] Wolf MT, Daly KA, Brennan-Pierce EP, Johnson SA, Carruthers CA, D'Amore A, et al.
A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials.
2012;33(29):7028-7038. DOI:10.1016/j.biomaterials.2012.06.051.

[81] Caron I, Rossi F, Papa S, Aloe R, Sculco M, Mauri E, et al. A new three dimensional
biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in
spinal cord injury. Biomaterials. 2016;75:135-147. DOI:10.1016/j.biomaterials.
2015.10.024.

[82] Liu Z, Wang H, Wang Y, Lin Q, Yao A, Cao F, et al. The influence of chitosan hydrogel
on stem cell engraftment, survival and homing in the ischemic myocardial microen‐
vironment. Biomaterials. 2012;33(11):3093-3106. DOI:10.1016/j.biomaterials.
2011.12.044.

[83] Lord MS, Cheng B, McCarthy SJ, Jung M, Whitelock JM. The modulation of platelet
adhesion and activation by chitosan through plasma and extracellular matrix proteins.
Biomaterials. 2011;32(28):6655-6662. DOI:10.1016/j.biomaterials.2011.05.062.

[84] Gu Y, Zhu J, Xue C, Li Z, Ding F, Yang Y, et al. Chitosan/silk fibroin-based, schwann
cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps.
Biomaterials. 2014;35(7):2253-2263. DOI:10.1016/j.biomaterials.2013.11.087.

[85] Lin CY, Li LT, Su WT. Three dimensional chitosan scaffolds influence the extra cellular
matrix expression in schwann cells. Mater Sci Eng C Mater Biol Appl. 2014;42:474-478.
DOI:10.1016/j.msec.2014.05.063.

Composition and Function of the Extracellular Matrix in the Human Body340


