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Abstract

Over the past 20 years, RNA interference (RNAi) technology has provided a new regula‐
tory paradigm in biology. This technique can efficiently suppress target genes of interest
in mammalian cells. Small non-coding RNAs play important roles in gene regulation, in‐
cluding both in post-transcriptional and in translational regulation. For in vivo experi‐
ments, continuous development has resulted in successful new ways of designing,
identifying, and delivering small interfering RNAs (siRNAs). Proof-of-principle studies
in vivo have clearly demonstrated that both viral and non-viral delivery methods can pro‐
vide selective and potent target gene suppression without any clear toxic effects. There
are also the persistent problems with off-target effects (OTEs), competition with cellular
RNAi components, and effective delivery in vivo. Although recent researches and trials
from a large number of animal model studies have confirmed that most OTEs are not
dangerous, other important issues need to be addressed before RNAi-based drugs are
ready for clinical use. Currently, RNAi may be harnessed as a new therapeutic modality
for brain diseases. Finally, there are already several RNAi-based human clinical trials in
progress. It is hoped that this technology will have also effective applications in human
central nervous system (CNS)-related disease.

Keywords: RNAi therapy, brain, neurodegenerative disease, allele-specific, neurovascu‐
lar

1. Introduction

During developmental stage and in response to internal and external cellular stresses, small
RNA molecules regulate gene expression [1]. Specialized ribonucleases and RNA-binding
proteins govern the production and action of small regulatory RNAs [2]. In most eukaryotic
cells, RNA interference (RNAi) is a regulatory mechanism using small double-stranded RNA
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(dsRNA) molecules to direct homology-dependent control of gene activity [3, 4]. Small size
[20–30 nucleotide (nt)] non-coding RNAs and associated proteins regulate the expression of
genetic information [5]. The discovery of RNAi phenomenon widened our understanding of
gene regulation and revealed related pathways in small RNAs [6]. As it processes, RNAi has
been finding widespread in plants [7] and animals [8]. Each small RNA associates with an
Argonaute (AGO) family protein to form a sequence-specific complex. After then, gene-
silencing ribonucleo-protein complex with specificity conferred by base pairing between the
small RNA (guide RNA) and its target mRNA [5]. The pathway is well known as the RNA-
induced silencing complex (RISC), which gives a target mRNA silencing by degradation or
transcriptional regression [2]. Small interfering RNAs (siRNAs) loaded into RISC are double-
stranded, and AGO-2, which having an active catalytic domain in human, cleaves and releases
the “passenger” strand. RISC is activated with a single-stranded “guide RNA” molecule to
impose the specificity recognizing the target by intermolecular base pairing [9].

MicroRNAs (miRNAs) are other endogenous substrates for the RNAi machinery, but the
cellular origins of miRNA and siRNA are distinct. miRNAs are derived from the genome,
whereas siRNAs may be endogenous or arise through viral infection or other exogenous
sources [2]. Typically, miRNAs are initially expressed in the nucleus with a transcript as long
as primary miRNA (pri-miRNA), and the transcripts are at least over 1000 nt. Pri-miRNAs are
processed by the microprocessor complex (histone deacetylase proteins) consisting in Drosha-
DGCR8 [DiGeorge critical region 8 (a double cysteine-ligated Fe (III) heme protein)—DGCR8]
in the nucleus [10, 11]. They are cleaved in the nucleus into 60–70 base pair (bp) hairpins, which
are consisted in single-stranded 5′- and 3′-terminal overhangs and about 10-nt distal loops [12].
In cytoplasm, the loop is further processed by the RNAse III Dicer, and one strand is loaded
onto RISC. The mature miRNAs bind to the 3′ UTR of target mRNAs and then degrade the
target [13]. Despite their differing origins, these RNA processing pathways converge once
either type of RNA assembles into the RISC.

With development of an efficient delivery system in various diseases, RNAi has been an
emerging therapeutic approach for in vivo studies with specific synthetic siRNAs against each
disease. It should be considered as novel and interesting therapeutic challenge with the major
concern how to administer the siRNAs with specific, efficient, and targeted way. Despite some
hurdles for applying to clinical challenges such as anatomical barriers, drug stability and
availability, various delivery routes, and different genetic backgrounds, an application of
siRNAs has become extremely attractive in development of new drugs. Currently, one of the
important challenges in siRNA bioinformatics is target prediction, when there is still no proper
tool with certain drug design grade. Besides specific challenges in siRNA therapeutics, an
efficient delivery method, targeting a specific tissue or cell, is another fundamental challenge.

This chapter introduced two of main themes. The first is the possibilities of therapeutics using
RNAi principles and technique. The second is the challenges with siRNAs or miRNAs
specifically in the area of brain disease. In addition, this chapter provided some prospects of
siRNAs or miRNAs on disease prognosis, progress, and therapeutics in the present and future.
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2. Principles of RNAi therapy

As far as it is true that siRNA has promising benefits, and, concomitantly, siRNA has still some
of technological barriers to be widely used in clinical therapy, which generally due to the lack
of efficient delivery tools. To success with siRNA therapies, an effective and safe carrier system
is required that would overcome the inherent defects of siRNA and achieve maximum gene-
silencing effect. There are many approaches that are being developed to achieve the efficient
delivery of siRNA. In that, non-viral vectors have advantages of reproducibility, low immu‐
nogenicity, and relatively low production cost [14]; therefore, non-viral vectors made siRNA
to be a potential therapeutic and nucleic acid–based drugs, such as plasmid DNAs or antisense
oligonucleotides (ASOs) [15].

2.1. Advantages of RNAi

Theoretically, all disease-associated genes could be amenable to antisense-mediated RNAi
suppression. RNAi can be a strategy for silencing of virtually all annotated protein-encoding
genes in the human genome in large scale. The high specificity of siRNA lets targeting of
disease-specific alleles that differ from the normal allele by only one or few nucleotide
substitutions. This high fidelity and specificity of siRNAs are useful for targeting for some
oncogenes, too.

The first advantage is the powerfulness of RNAi when compared with other antisense
strategies, such as antisense DNA oligonucleotides and ribozymes [16]. It is important fact that
the effector molecules work at much lower concentration than any other antisense oligomers
or ribozymes, suggesting that RNAi has higher potency. This is a critical point to set thera‐
peutics.

The second is efficacy. The efficacy is generally presented by the half level of maximal
inhibition or the value of IC50 against target site. The efficacy level is crucial for determining
thermodynamic stability [17], targeted gene accessibility [18], or structure [18] of designed
siRNA. For designing siRNA, the most important thing is end stability that is different from
each end and is also meaning asymmetry and consistent with selected miRNA [19]. However,
to date, our knowledge of siRNA and the selection of targets are incomplete and being
explored. The identification of “hyperfunctional” siRNAs, functioning at sub-nanomolar
concentration, remains an elusive task.

2.2. Basic strategies for targeting-specific molecules

RNAi can be triggered by two different pathways: (1) a RNA-based approach, where the 21-
nt long duplexed siRNA effectors are delivered to target cells, and (2) a DNA-based strategy,
where the siRNA effectors are produced by intracellular processing of longer RNA hairpin
transcripts [3]. DNA-based strategy is based on short hairpin RNA (shRNA) synthesis in
nucleus and transportation to the cytoplasm through miRNA machinery, which subsequently
is processed by Dicer. Although the direct use of siRNA effectors is simple and effective way
for gene silencing, the effect is transient. Therefore, it is costly for clinical usage due to the need
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of multiple large-scale application. In contrast, DNA-based RNAi drugs have the potential and
stably introduced for application in a gene therapy. In principle, DNA-based RNAi allows a
single treatment of viral vector that delivers shRNA genes to the targeted cells/or tissues.

2.3. Delivery routes for targeting

The effective delivery of siRNAs acts to be significant step in accelerating RNAi-based
treatments. The instability of RNA and the relatively inefficient encapsulation process of
siRNA remain critical issues toward the clinical translation of RNAi as a therapeutic tool. There
are several obstacles for extracellular introduction of siRNA to deliver the target. Under normal
physiological condition, the introduced molecules ought to have a positive charge to diffuse
to cell membrane [20]. It is the simplest way of naked nucleotides or transfecting siRNAs to
deliver into cells [21]. Another technique is microinjection and electroporation for direct
delivery, but it has higher level of cellular toxicity [22]. The delivery routes can be intra-
peritoneal, intra-vascular, intra-muscular, intra-splenic, intra-cranial, and intra-tumoral
injection. In addition, siRNAs can be delivered through subretinal, subcutaneous, mucosal,
topical application, and oral ingestion to improve delivery [22]. However, these transfection
processes should be optimized for siRNA concentration, cell density, and ratio of transfection
reagent to siRNA [23]. Carriers for delivery of siRNA with cationic environment surrounding
of siRNAs can be liposomes and dendrimers. These carriers reduce the nuclease activity and
improve siRNA delivery into cells [24].

Microsponge is one of the mediators for siRNA delivery. Carrier and cargo combine and self-
assemble into nanoscale pleated sheets of hairpin RNA. Subsequently, this complex forms
sponge-like microspheres [25]. The complex of siRNA and microsponges consists in cleavable
RNA strands, and the stable hairpin RNA converts into working siRNA once cells uptake the
complex. Therefore, it can provide a protection for siRNA during delivery and transport it to
the cytoplasm. Single microsponge complex can deliver more than half a million copies of
siRNA when uptaken into a cell [25].

2.4. Stabilizing the siRNA delivery

The stability of the siRNA complexes, penetrating into target cells without stimulating immune
responses, is one of the limiting factors and the major bottleneck for developing siRNA
therapeutic tools. It restricts the delivery of siRNA macromolecular complexes to the desired
cell types, tissues, or organs. Usually, siRNAs do not easily penetrate the cellular membrane
because of their negative charge and macromolecular size. Manipulation of nucleotide bases
is needed to increase stability and protein interactions, which can harness to increase the
structural improvement of siRNAs [26]. The delivery systems for siRNA consist of four main
methods, namely naked, lipid-based, peptide-based, and polymer-based delivery [27].
Basically, polymer-based methods are similar to lipid-based methods in targeting, except some
special triggers, such as temperature, pH, or pulse release [28].

Initial efforts to improve stability addressed above were focused on incorporating chemical
modifications into the sugar backbone or bases of siRNA duplexes [29]. The modified siRNA
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molecules increased stability, which effectively lowered the dose to achieve measurable and
reproducible gene silencing [30]. Several modifications were introduced. The thio (−SH),
hydroxyl (−OH), or iodo (−I) can modify bases in specific sites or utilize the pseudouracil base
in siRNA, which would augment potency of naked siRNA [31]. There are three most popular
chemical modification sites on siRNA structure containing the phosphodiester backbone,
ribose 2′-hydroxyl group (R-2′-OH), and ribose ring. Endogenous cellular endonucleases can
easily digest phosphodiester bond in RNA backbone [32]. Alternative modification is oxygen
bridges of RNA backbone that can be replaced with phosphorothioate, although it would
increase toxicity and reduce silencing activity [33, 34]. Another alternative is boranophosphate
linkages. These are more nuclease resistant and less toxic compared to phosphorothioate [35].
Phosphonoacetate linkages are other candidates [36]. The linkage is completely resistant to
nuclease and is electrochemically neutral when they are esterified [36, 37]. Another modifica‐
tion is 2′-O-methoxyethyl (2′-O-MOE), 2′-O-alkyl, and other bulky groups. These modifica‐
tions can improve anti-nuclease shield of siRNA that simultaneously makes them less tolerable
when they are positioned on 3′ overhangs [38]. Despite disturbing thermodynamic asymmetry
of siRNA by addition of 2′-aminoethyl at 3′ end of passenger strand, this modification
improves efficiency of target silencing [39].

On the other hand, alterations in sugar compartment of nucleotides reduced flexibility and
nuclease sensitivity of siRNA structure [39, 40]. Binding of ribose 2′O into 1′C with methylene
bridges, which finally produces oxetane, forms a locked conformation nucleic acid (locked
nucleic acid—LNA) [41]. In vivo nuclease resistance of this structure is enhanced [42]. In
contrast to LNA, derivatives of RNA without C2′–C3′ sugar bonds (unlocked nucleic acid—
UNA) destabilize a sequence structure [43]. Substitution of pentose with hexose monosac‐
charides, such as cyclohexenyl, anitrol, and arabinose, was applied to develop CeNA, ANA,
and 2′-F-ANA [44], subsequently resulting in enhanced stability of siRNA in vivo [45]. During
systemic delivery, however, internal modifications failed to improve central nervous system
(CNS) entry and uptake. Researchers put new efforts to move toward using liposomes,
nanoparticles, and cell-penetrating peptides (CPPs), among others, to stabilize and navigate
siRNAs into and throughout the brain [46].

2.4.1. Liposomes

Generally, liposomes are classified into three classes: multilmellar vesicle (0.5~20 μm), small
unilamellar vesicles (25~100 nm), and large unilamellar vesicles (100~500 nm) [47]. Liposomes
are developed for passive or active targeting mechanisms in different complexes of liposome
and other interacting molecules, namely lipoplex (cationic liposome-pDNA complex),
liposome polycationic DNA, mannose liposome, and so on [48, 49]. The siRNA with mannose
(Man)-coated liposomes would be useful for treatment of some cancers, especially liver and
brain cancers [50].

2.4.2. Dendrimers

Dendrimers are hyper-branched, tree-shaped, and 3-D structures [51]. Dendrimer can utilize
broad spectrum, and the broad range of functional groups makes it possible to introduce
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dendrimers with extensive applications. There are different classes of cationic and anionic
dendrimers, such as polyamidoamine (PAMAM), polypropylene imine (PPI), and polyethy‐
lene glycol (PEG)-grafted carbosilane [52]. Specific dendritic polymers like PAMAM have been
widely utilized in in vivo drug delivery [53]. Conjugation of Tat peptide (GRKKRRQRRRPQ)
with PAMAM-G5 can efficiently inhibit multi-drug resistance-1 (MDR-1) gene expression in
vitro [51]. Capping poly-l-lysine (PLL) dendrimers with methotrexate enhances stability and
decreases toxicity [54].

2.4.3. Cationic polymers

Cationic polymers include chitosan, gelatin, cationic dextran, cationic cellulose, and cationic
cyclodextrin and some synthetic biocompatible polyethyleneimine (PEI), PLL, poly(amidoa‐
mine)s (PAAs), poly(amino-co-ester), and poly(2-N,N-dimethylaminoethylmethacrylate).
Moreover, they are less immunogenic response because these polymers are natural biode‐
gradable [55].

2.4.4. Cationic peptides

CPPs are cationic peptides. CPPs interact covalently or non-covalently through disulfide or
electrostatic–hydrogen interactions with siRNAs [56]. Viral protein (VP22) [57], MPG (a
peptide vector) [58], amphipathic peptide [59], and poly-arginine [60] were reported the same
abilities. In addition, small cationic polypeptides (poly His, Lys, and Arg) coat and neutralize
siRNA helping to pass through membrane [61].

2.4.5. Nanoparticles

For systemic delivery, a targeted nanocarrier-siRNA complex has been used. There are some
studies that have experimentally condensed DNA or RNA into cancer-targeted nanoparticles
with PEI, PLL, and cyclodextrin-containing polymers [62]. PEI–PEG–arginine–glycine–
aspartic acid (RGD) fusion was used to inhibit vascular endothelial growth factor receptor-2
(VEGFR-2) expression [63]. Angiogenesis can be inhibited by downregulation or silencing of
VEGFR-2 expression [64]. PEGylation of nanoparticles causes “muco-inert” properties, which
enhances diffusion process through mucus and peptidoglycan barriers [65].

2.4.6. Aptamer

siRNAs can be coupled with aptamers or oligodeoxynucleotide through a disulfide bond. This
releases actively into targeted cells siRNAs before cytosolic uptake. Conjugate of aptamer
siRNA has suggested a novel therapeutics with widespread applications in medicine [66].

2.5. Limitations

2.5.1. Competition with endogenous RNAs

In human brain diseases and normal brain development, RNAi potentiates the important role
in normal neuronal function, although it is underestimated. When exogenous shRNA is
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introduced into the neuron, it might be considered whether the RNAi machinery perturbs
normal physiologic condition of the system. Bioactive drugs that rely on cellular processing
to exert their action face the risk of saturating such pathways and hence perturb the natural
system. Sometimes, ectopically introduced RNAi does not trigger the silencing process because
siRNA/shRNA activity may depend on the endogenous miRNA to achieve efficient target
silencing. Mice that received liver-directed associate adeovirus (AAV)-encoded shRNAs were
damaged in liver with dose-dependent manner. Within 2 months, the mice were killed by
introducing high doses of AAV-encoded shRNAs. It was interpreted that the liver-specific
miRNA was unexpectedly down-regulated by introducing shRNA [67]. The enhanced
expression of Exportin 5, the nuclear export component, increased RNAi efficacy, which was
shown by competition assay [68].

2.5.2. Stimulation of innate immune responses

RNAi therapy is importantly considered because of its potential for generating an adverse
immune response, particularly in neurodegenerative diseases with affected brain. It has been
already known as “heightened state of alert” to start chronic pro-inflammatory signaling
cascades [30]. All evolutionary conserved mechanisms aimed at combating against invading
viral pathogens [69]. In general, innate immune responses to non-virally delivered siRNAs are
mediated by members of the toll-like receptor (TLR) family or by the two different dsRNA-
sensing proteins: retinoic acid-inducible gene-1 and dsRNA-binding protein kinase [70].
Certain siRNA sequence motifs invoked TLR7-dependent immune stimulation [71]. The
particular sequence motif (5′-GUCCUUCAA-3′) seems to be recognized by TLR7 in plasma‐
cytoid dendritic cells and activates immune responses. The GU-rich regions, so-called “danger
motifs,” stimulated innate immune responses and lead to secretion of inflammatory cytokines
in a cell type and sequence-specific manner. As siRNA-mediated immune induction seems to
rely on endosome-located TLR receptors (TLR7 and TLR8) [72], the delivery and compart‐
mentalization of the siRNA significantly influence the cellular responses [3]. These interactions
can occur during endosomal or lysosomal compartments’ internalization or intracellular
release of the siRNA molecule. It has a manner of dose and sequence dependence. Importantly,
the chemically modified or nanoparticle-encased siRNA complexes avoid stimulation of
immune response.

2.5.3. Suppression of off targets

Harmfulness of RNAi is “OTE.” Genome-wide sequencing analyses have clearly demonstrat‐
ed that siRNA-treated cells show off-target silencing of a large number of genes [73]. The
research result suggests that siRNAs with a 2′-O-MOE modification at the second base can
significantly reduce off target without compromising the degree of silencing target [74].
Experimentally, it has been verified that off targets have 6~7-nt long matching to the siRNA,
and it is called “seed” region [75]. When the siRNA guide strand contains seed-sequence
matching to mRNA 3′-UTR regions, the siRNA guide strand functions as a miRNA, which
might lead to harmful OTEs by translational repression [76]. To avoid siRNA seed matching
with mRNA 3′ UTRs, the use of online 3′-UTR search algorithms would potentially reduce the
detrimental OTEs [75].
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The OTEs can also derive from non-specific changes in gene expression due to the activation
of the interferon response (IR) [77]. The OTEs can change another gene by binding either strand
of the shRNA to partially complementary sequences rather than binding to the intended target
gene [77]. In case of dsRNA, it can result in a signaling cascade that culminates with the
activation of interferon responsive genes and global translational repression [78]. Neverthe‐
less, IR activation was variable among the siRNAs used for each of these studies, and one recent
report did not detect IR activation by siRNAs [79]. In mice, injection of naked siRNA did not
show detectable induction of an IR in one study while another study showed sequence-
dependent induction of innate immunity [79, 80].

3. Applications of RNAi

RNAi has been used to generate model systems to identify novel molecular targets [81], to
study gene function [82], and to create a new niche for clinical therapeutics [83]. Many
researchers reported that siRNAs have successfully been tested in various disease animal
models. Recent reports reviewed the therapeutic potential of synthetic siRNAs in various
human diseases and disorders [84].

3.1. Application for therapy with RNAi in vivo

Applications, such as gene function analysis, target identification and validation, and thera‐
peutic agents, are the main spots of this new technology [26]. Although RNAi is an efficient
technique for in vitro studies, there are some challenges for in vivo applications. siRNAs have
undesired characteristics, such as non-specific silencing of non-targeted genes and dose-
dependent immunogenic response [85]. In addition, it is extremely complicated to avoid the
OTEs due to spatiotemporal gene expression pattern of these molecules [73]. Furthermore, age,
sex, tissue, organ, tumor, and individual-specific specificity should be also considered as other
variables [86]. Prediction of susceptible off-target domains that can influence silencing
efficiency is the first step for applying in vivo therapy [73, 87]. Some studies recommend
utilization of more sensitive alignment algorithms or siDirect instead of BLAST database [85,
88] to predict a target for siRNA matching without cross-reactivity [89].

The administration route for siRNA, such as oral or intravenous, is not feasible and not
efficiently delivered the siRNA into target cells. A single injection of naked siRNA into the
brain parenchyma failed to good efficacy [90]. A study reported that continuous infusion of
siRNA into the ventricular CSF success with very high concentration [91]. To penetrate the
blood–brain barrier (BBB) and reach the target cells in the interesting site, receptor-specific
pegylated immunoliposome (PIG) is used. PIGs encapsulate the plasmid vector–encoding
siRNA or shRNA and are administered with peripheral route to the brain. This tool has been
tried in brain cancer animal model and successfully worked [92]. Another study showed
effective and long-term knock down of endogenous tyrosine hydroxylase (TH) in rodent brain
using shRNA-expressing adeno-associated virus (AAV) [93]. There have been many successful
in vivo studies with using viral vector. They are included two models of autoimmune hepatitis
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[94], hepatitis B virus [95], respiratory viruses such as influenza virus [96], respiratory syncytial
virus [97], parainfluenza virus, and sexually transmitted disease such as herpes simplex virus-2
[98]. Both non-viral and viral shRNA delivery systems have been trailed.

3.2. Application for therapy with RNAi in brain diseases

Many works using RNAi to suppress dominant disease genes have occurred primarily in cell
culture models [99, 100]. Allele-specific silencing aims to suppress the disease gene without
affecting any other normal genes. The possible therapeutic applications of RNAi for neuro‐
logical diseases are broad, ranging from acquired diseases, such as viral infections, to purely
genetic disorders.

Particularly, one attractive group of candidate diseases for RNAi therapy is the dominantly
inherited neurodegenerative diseases, including polyglutamine disorders such as Hunting‐
ton’s disease (HD) [101], amyotrophic lateral sclerosis (ALS) [102], familial Alzheimer’s disease
(AD) [103], and frontotemporal dementia caused by tau mutations [104]. HD has been
approaching with animal model mimicking the human disease to provide some therapeutic
clues with various ways. In the new preclinical study, single injection of a cholesterol conju‐
gated-siRNA was targeting mutant Huntingtin (mhtt), and, subsequently, the pathologic
symptoms containing behavioral dysfunction were improved [105].

The exciting recent works have taken place in vivo in mouse models of neurodegenerative brain
disease. The best example of RNAi-mediated therapy to date is in spinocerebellar ataxia type-1
(SCA-1) [106]. As another case, RNAi-mediated therapy was tried on DYT1 dystonia with
animal disease model. DYT1 dystonia is another inherited dystonia. DYT1 dystonia is caused
by deletion of GAG that is coding TOR1A, which results in one of a pair of glutamic acid from
the carboxyl terminal of the torsin A (TA) protein-coding region [107].

Prion disease is one of the brain diseases that is invariably fatal, and no therapy is available.
Once serious damage to the brain has already occurred, clinical symptoms manifest after the
untreatable brain damage. Causing this reason, prion disease treatments have aimed not to
cure the disease but to slow disease progression [108]. Prion disease is caused by prions, in
which a self-replicating, infectious protease resistant form of PrP (termed PrPSc), is the only
essential component identified to date. PrPSc multiplies through conversion of the normal
cellular PrP (PrPC) [109]. Some reviews are presenting that lentivector-mediated anti-PrPC
shRNA expression effectively suppressed prion replication in a murine neuroblastoma cell
line, and researchers created chimeric mice using embryonic stem cells, which were transfected
with a lentiviral vector carrying an anti-PrPC shRNA. Results showed that the survival time
after prion inoculation was markedly prolonged [110, 111].

4. Prospects of RNA therapeutics in CNS disease

The current phamaceuticals required more knowledge to decipher potentials of the RNAi in
spite of flourishing future. It is crucial that each disease has not only a unique pattern but also
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the understanding for pathogenesis relating pathways and activating or inhibiting factors
[112]. To introduce the DNA therapeutics into the CNS is much more complicated due to the
BBB, which can be only permeable to lipophilic molecules of less than 400 Da [113]. Using
human viruses, DNA delivery system has been extensively trailed for over three decades.
However, the results have been not satisfactory. Therefore, a critical goal for clinical neuro‐
science is to develop the efficient RNAi therapy to prevent the neuronal damage [77]. We
categorized the neurological disease containing cancers in below sections.

4.1. Genetic neuronal disease-familial neurological disease

The application of siRNA has been advanced in development of various incurable disease
therapies, apart from the widespread usage of RNAi in fundamental biological application.
Particularly, dominant inherited disorders are major application field. Among familial
neurobiological diseases, HD has been tried to lots of therapies based on RNAi and may be
beneficial effect from the therapy using siRNA. In the N171-82Q transgenic HD mouse model,
a study using shRNA showed a 50–55% decrease in the N171-82Q mRNA when injected to
striatum and a complete elimination of mHtt protein inclusions from the neuronal cells [114].
There was also a rescue of motor dysfunctions. siRNAs against the “R6/2 huntingtin (htt)
mRNA” reduced brain atrophy and neuronal inclusions in the R6/2 transgenic mouse model
[115]. With using a rAAV5 vector and administrating to the striatum, long-term expression of
a mHtt-siRNA partially reduced in neuropathology condition [116].

Besides AAV, there is lentiviral vector that can be applied after onset of symptoms [117]. Using
lentivirus vector decreased htt protein expression by up to 35% and altered htt-related
pathways but did not reduce cellular viability for at least 9 months after treatment. To enhance
cellular uptake of siRNA, cholesterol-conjugated duplexes (cc-siRNA) have been applied to
target htt mRNA [118]. Allele-specific targeting of mhtt helped to overcome the side effects of
RNAi where ASO or single nucleotide polymorphisms (SNPs) in the mHtt allele have been
used to specifically target only the mutant gene product [119]. Intra-cellular antibody frag‐
ments bind to abnormal aggregations, and allele-specific siRNA disrupts mhtt gene [120,
121]. Targeting of just three SNPs with five siRNAs covered most of the HD patients in the
population studied [122].

Tuberous sclerosis is a common, dominantly inherited disorder caused by mutations in the
tumor suppressor complex-1 (TSC1) or tumor suppressor complex-2 (TSC2) genes [123]. The
proteins hamartin (encoded by TSC1) and tuberin (encoded by TSC2) form a complex. This
protein complex represses mTOR-S6K-4E-BP signaling pathway [123]. Mutated TSC1 and
TSC2 lead to loss of activity resulting in unchecked cell growth and hamartoma formation in
the CNS. Recent studies propose that the target may be the GTPase Rheb [124]. RNAi sup‐
pression of Rheb might respond the dysregulated cell proliferation in tuberous sclerosis.

Particularly, allele-specific silencing is apt for inherited neurological diseases. DYT1 is the most
commonly inherited dystonia [125]. Although the pathogenesis of DYT1 is unclear, several
facts make DYT1 a good candidate to explore the therapeutic potential of RNAi [77]. The three
nucleotide difference between the wild type and the mutated gene has been enough to allow
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allele-specific silencing against mutant TA (the mutated protein in DYT1) in cultured cells
using in vitro synthesized siRNA [107].

Allelic discrimination has also been demonstrated for superoxide dismutase (SOD) mutations
responsible for familial ALS [100], and also a mutation in an acetylcholine receptor subunit
causes congenital myasthenia [126]. In a tau mutation responsible for fronto-temporal
dementia, siRNAs can act by discriminating between sequences differing by a single nucleo‐
tide [99].

An important role for RNAi in the brain is also presented for Fragile X syndrome (FXS) in
human [127]. FXS is the one of the most common forms of inherited mental retardation caused
by mutations in Fragile X Mental Retardation Protein (FMRP), a protein influencing synaptic
plasticity [127]. FXS is stemmed from mutations in FMRP and is supported by the involvement
of the RNAi process in human neurological disease [127]. Increasing evidences from different
studies support the view that FMRP regulates protein translation by regulating RNAi in
neurons [128, 129].

4.2. Sporadic neurodegenerative diseases

Neurodegenerative diseases are age dependent, and many of them are inherited. However,
non-genetic neurological diseases, such as sporadic AD or migraine, are much more common
than diseases due to single-gene mutations.

The most common sporadic neurodegenerative disease, AD, is also the best studied with
siRNA therapy. Many studies of AD pathogenesis investigate an essential role for β-amyloid
(Aβ) in familial and sporadic forms of AD [130]. Different RNAi strategies have been applied
to regulate this pathogenic cascade. Researchers tried by directly silencing of amyloid
precursor protein (APP) [131], by silencing of β-secretase (BACE1) that is one of two proteases
required for Aβ production but not essential gene in mice [132], or by silencing of tau expres‐
sion that is a component of the neurofibrillary tangles of AD neurons. Therapeutic use of RNAi
is now being tested in animal models of AD targeting these proteins.

Migraine, one of the most common neurological disorders, is caused by diminished production
of calcitonin gene-related peptide (CGPR) in the trigeminal system. CGPR can protect from
migraine attacks [133]. The CGPR-limited animals are normal, but the paroxysmal nature of
this disorder necessitates to use promoters for CGPR. From the beginning of the pathogenic
cascade, expression of the shRNA targeting CGPR can terminate the growing pain of this
disease. This pain alleviating therapy for migraine is limited because of high threshold dose
needed for RNAi [133].

4.3. Motor dysfunction disease

A viral delivery of shRNA was used to achieve a long-term RNAi in the CNS. In some reports,
the delivery of shRNA-expressing lentivirus showed a rescue of spinal motor neurons with
behavioral and histopathological phenotypes in a mouse model having dominant familial
ALS [134].
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Parkinson’s disease (PD) is the second most common neurodegenerative disease. Patient brain
of PD is often littered with Lewy body, which is abnormal protein aggregate primarily of alpha-
synuclein (α-syn) [135, 136]. parkinsonism is linked to hereditary to a single-point mutation
in the α-syn as well as genetic duplication or triplication of the α-syn (SCNA) [104]. The studies
targeting the α-syn expression revealed RNAi as a therapeutic approach to PD [30, 137]. To
date, conflicting results were reported. Regarding the effectiveness and tolerability, there is a
report that nigrostriatal degeneration was detected after depleting the α-syn level in the brain
[138]. It can be inferred that RNAi approaches can be used to validate them in genetic and
sporadic models of PD.

4.4. Neurovascular disease

RNAi can be applied to cardiovascular and cerebrovascular diseases. Cardiovascular disease
results from the progressive occlusion of arteries, and it is most common in a process called
atherosclerosis, which can ultimately culminate in a myocardial infarction or stroke [139]. It
may be a trigger for the death of cardiac muscle cells or neurons [139]. Although some of the
cells die rapidly by necrosis, many other cells die more slowly by apoptosis in such cardiac
myocytes and brain neurons [140, 141]. RNAi technology may be used to intervene in athero‐
sclerosis or to reduce the damage of heart tissue and brain cells following a myocardial
infarction or stroke [142].

Another vascular disease is an ocular disease. Representatively, there were two RNAi clinical
trials. The trials performed direct intra-vitreal injection of siRNAs that are targeting VEGF or
the VEGFR to test for the safety and efficacy in ocular diseases [143]. siRNAs, targeting VEGF
and VEGFR1, are currently in the early stages of clinical trials. The direct injection approach
can also prove its usefulness for the other ocular diseases.

4.5. Cancer

A chemo-resistance or radio resistance is a major obstacle in cancer treatment. Targeted
therapies that enhance cancer cell sensitivity have the potential to increase drug efficacy while
reducing toxic effects on untargeted cells (144). Actually, oncogenes expressed at abnormally
high levels are attractive targets for RNAi-based therapies against cancers [145], and such
approaches have effectively inhibited tumor growth in vivo in mouse models.

In nasopharyngeal carcinoma, hyaluronan receptor (CD44) gene silencing resulted in pro‐
found reduction of malignant potential of the cells: tumorigenesis and metastasis of tumors in
nude mice [105, 146]. It is also suggested a possible therapeutic effect of direct introduction of
siRNA to CD44 into some human solid tumors with high expression of the CD44 gene [146].
Although the role of epidermal growth factor receptor (EGFR) in altering tumor chemosensi‐
tivity has not yet been fully elucidated, selectively targeting EGFR supplies the reversal
possibility of chemoresistance in many tumor types [147]. Reduction of EGFR expression and
increased chemosensitivity to docetaxel are emerging an effective strategy for the sensitization
of cancer cells to taxane chemotherapy [147]. siRNA-PG-Amine polyplexes can be systemically
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delivered to tumors in mice [148], and siRNA-nanocarrier system can efficiently inhibit
expression of a specific gene in tumor cells. Once the intact siRNA molecule moves to the target,
the gene of interest gets silenced. The PG-amine-based delivery system actually combines both
tumor passive targeting with the sequence selectivity of siRNA [148].

The limiting point of targeted therapy is alternative pathway compensation by gene amplifi‐
cation. The “synthetic lethality” is proposed idea to overcome the above problem [149]. This
concept suggests that two genes may be considered to have a synthetically lethal relationship
[150]. When a mutation is existed either of the two genes alone has no effect on cell survival,
but when mutations in both genes cell death is triggered at the same time. By genome-wide
RNAi library screening, some synthetic lethal molecules have been discovered. Anaphase-
promoting complex/cyclosome (APC/C) and polo-like kinase (PLK) are synthetically lethal
with the RAS oncogene in colorectal cancer [151]. The STK33 gene is also synthetic lethal
interacting with a RAS mutation in multiple cancer cells from different tumor types [152].
Modified EGFR (amplification or truncation) and hyperactivation of AKT play a major role in
the development of glioblastoma, one of the extreme malignancies [153]. There are approaches
to develop the siRNA delivery efficiency such as the use of dsRNA-binding domain (DRBD)
with a TAT peptide transduction domain (PTD) delivery peptide [154]. These facilities are
stable and efficient delivery of siRNAs into cells [155].

5. Conclusions

Small RNAs and non-coding small RNAs were important discovery for molecular cell biology;
these small RNAs have a vital role in gene regulation that can be controlled by RNA interfering
technology. Presently, attempts to integrate gene expression profiling and protein interaction
mapping are the main research objectives. The proof-of-principle studies in vivo have clearly
demonstrated that both viral and non-viral delivery methods can provide selective and
efficient target gene suppression without any clear toxic effects. Initial results have been very
promising, and many pharmaceutical companies are already focusing on commercialization
of various disease-specific RNAi drugs. Despite successful trials in a large number of animal
model studies including brain diseases, to develop an efficient therapeutic application, there
are numerous hurdles and concerns regarding targeted delivery of siRNAs into brain subre‐
gions that must be overcome before wide clinical application of RNAi as a new therapeutic
solution. The OTEs, competition with endogenous cellular RNAi components, and effective
delivery in vivo remain to be optimized. Although recent research has improved the safety and
toxicity from the OTEs, it still remains a crucial issue and needs to be addressed before RNAi-
based drugs are ready for clinical use. Translational research using RNAi has taken place with
an unprecedented speed, and already there are several RNAi-based human clinical trials in
progress that will provide breakthrough therapeutic tools for effective treatment human CNS-
related disease.
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