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Abstract

Skeletal muscle tissue makes up approximately 40% of the total body mass in adult
mammals. Contractile muscle fibers building skeletal muscle tissue are coated by an
extracellular matrix material (ECM), accounting for 1–10% of the muscle mass. The ECM
in skeletal muscle was initially considered as a structure, providing mechanical support
for bearing force transmission. Now it is evident that muscle cells adhere to and connect
with the ECM, also for signaling, and the ECM provides an appropriate and permissive
environment for muscle development and functioning. This chapter summarizes current
knowledge on the role of ECM components in skeletal muscle growth and regenera‐
tion, which is of great importance for potential therapeutic interventions. It also focuses
on the contribution of ECM in the motor function of skeletal muscle as well as on
mechanisms mediating muscle ECM remodeling during adaptation to physical activity.
The role of the ECM in the metabolic function of skeletal muscle tissue and the ECM
disturbances associated with insulin resistance are described. Finally, the attention is paid
on potential implications of changes in skeletal muscle ECM assembly and function in
health and disease.

Keywords: myogenesis, satellite cell niche, exercise, insulin signaling, myopathies

1. Introduction

Skeletal muscle tissue, making up approximately 40% of the total body mass in adult mam‐
mals,  is  composed  of  multinucleated  contractile  muscle  cells,  myofibers.  Intramuscular
connective tissue accounts for 1–10% of the skeletal muscle mass and varies substantially between
muscles [1]. Muscle fibers are coated by an extracellular matrix material (ECM), called the
basement membrane, and composed of two layers: an internal, basal lamina, directly linked to
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the plasma membrane of myofibers (sarcolemma), and an external, reticular lamina. Extracel‐
lular matrix surrounding muscle fibers is composed of collagens (dominated by collagen IV),
laminins, fibronectin, and proteoglycans, formed by glycosaminoglycans bound to a protein
core. Initially, it was considered as a structure that provides mechanical support for bearing
force transmission [2]. The ECM gives mechanical structure to myofibers during contractions,
provides the tissue with elastic properties, and participates in the transmission of force from the
myofiber to tendon. It also serves as a basic mechanical support for nerves and vessels present
in skeletal muscle tissue, and determines the spatial barrier between endothelium and muscle
cell surface. A great progress in cell biology, molecular biology and genetics, gives new insight
into skeletal muscle biology, and now it becomes evident that cells adhere to and connect with
the ECM not only for structural stability but also for signaling. The integrins, heterodimeric
transmembrane receptors comprising unrelated alpha and beta subunits, play critical roles in
converting extracellular signals to intracellular responses (outside-in signaling) as well as in
extracellular matrix interactions based upon intracellular changes (inside-out signaling) [3].
They bind to ECM or cell surface ligands and link the actin microfilament system with ECM,
providing a connection between the ECM, the cytoskeleton, and signaling molecules. Integ‐
rins are considered as sensors of tensile strain at the cell surface, and together with the cytos‐
keleton form a mechanically sensitive organelle. Despite the large overall number of integrin
receptor complexes, skeletal muscle integrin receptors are limited to seven alpha subunits, all
associated with the beta1 integrin subunit. Integrin signal transmission depends on the activation
of focal adhesion kinase (FAK), a nonreceptor tyrosine kinase, localized at focal adhesions.
Integrin engagement causes the formation of transient signaling complex, initiated by the
recruitment of Src-family protein SH2 to the FAK Tyr-397 autophosphorylation site, and by
serving as a signaling element in cytoskeleton-associated networks [4]. Integrin-linked kinase
(ILK), initially considered as a kinase, but, in fact, incapable to perform phosphorylation due to
pseudoactive domain, mediates interactions of integrins with numerous cellular proteins and
regulates focal adhesion assembly, cytoskeleton organization, and signaling [5]. The major
enzymes responsible for the ECM breakdown under physiological  conditions are matrix
metalloproteinases (MMPs, or matrixins), which belong to a family of zinc-dependent and
calcium-activated neutral  endopeptidases,  comprising secreted and membrane-associated
members. MMPs are involved in degradation of the ECM and basement membrane; however,
they also cleave a variety of other ECM-related proteins, including cytokines, chemokines, and
growth factors [6]. There is some specificity of certain MMPs toward collagen types, that is,
MMP-2 and 9 (gelatinases) primarily degrade type IV collagen and other compounds of the
ECM in muscle, whereas MMP-1 and 8 (collagenases) traditionally are thought to break down
types I and III collagen, being more relevant for tendon. MMP activities are regulated by tissue
inhibitors of matrix metalloproteinases (TIMPs). Four TIMPs, responsible for the inhibition of
over 20 MMPs, are identified; of these, TIMP-1 and TIMP-2 are capable of inhibiting, of all MMPs,
preferably MMP-2 and 9, respectively [1]. In addition to MMP-dependent mechanisms, TIMPs
can alter cell growth and survival in an MMP-independent manner, mediated by integrins. A
good example is TIMP-2, which regulates beta1 integrin expression and the size of myotubes
formed during myoblast differentiation [7]. MMPs play an important role in skeletal muscle cell
growth and differentiation, as they are engaged in release and activation of cytokines and growth
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factors. The main contributors to ECM assembly in skeletal muscle are resident fibroblasts;
however, muscle cells also synthesize and secrete numerous ECM components and ECM-
related molecules, suggesting their active and direct participation in ECM remodeling. Thus,
the composition of the ECM exerts mechanical, metabolic, hemodynamic, and angiogenic effects
in skeletal muscle tissue. The extracellular matrix and its receptors also provide an appropri‐
ate and permissive environment for muscle development and some ECM components, in
addition to muscle-specific factors, can serve as good indicators of skeletal muscle function‐
ing. This chapter summarizes current knowledge on the role of ECM components related to
skeletal muscle development and regeneration, which is of great importance for potential
therapeutic interventions. It also focuses on the contribution of ECM in motor and metabolic
functions of skeletal muscle tissue. Finally, the attention is paid on potential implications of
changes in ECM assembly and function in health and disease.

2. Extracellular matrix in regulation of muscle stem cell niche

Fetal stage is crucial for skeletal muscle development, when muscle fibers are formed by fusion
of mesodermal progenitor cells, myoblasts. During postnatal period, the number of myofibers
remains constant; however, the size of each myofiber can increase by fusion with muscle stem
cells, called satellite cells. Skeletal muscle is one of the most adaptive tissues in the body, and
the adult regenerative myogenesis after muscle injury depends on satellite cells. These cells
are normally quiescent, but in response to overloading or muscle damage, they become
activated; that is, they begin to proliferate, and their progeny myoblasts terminally differen‐
tiate and fuse with one another or with existing myofibers to restore the contractile muscle
apparatus and normal tissue architecture [8].

Proper muscle regeneration depends on the cross-talk between the satellite cells and their
microenvironment (cell niche). According to the stem cell niche concept, the structural and
biochemical stimuli emanating from surrounding environment determine the fate of stem cells
present in tissues. Muscle satellite cells exist in highly specific niches, consisting of the
basement membrane of myofibers, different types of resident cells (i.e., fibroblasts, adipocytes,
etc.), vascular and neural systems, and extracellular matrix [9]. Each of these niche elements
exerts profound effects on satellite cell functioning. Satellite cells reside between the basal
lamina and the apical sarcolemma of myofibers, covered in laminin. They bind to collagen type
IV and laminin through integrins, which also connect with collagen type VI and several
proteoglycans, that is, perlecan and decorin. The ECM protein, nidogen (or entactin), supports
cross-links between laminin and collagens. Basal lamina directly contacts satellite cells and
separates them from muscle interstitium. It also acts as a mechanical barrier to prevent
migration of satellite cells and their loss from normal muscle, and could be involved in
repressing satellite cell mitosis and differentiation in the absence of muscle injury [2]. On the
other site of the satellite cell niche, the myofiber sarcolemma links to the basal lamina, more
particularly to laminin, through the dystroglycan complex [10]. Myofibers influence satellite
cell behavior as a result of the physical interactions and by the secretion of paracrine factors.
Nerves and associated neuromuscular apparatus exert their effects through the control of
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myofiber activity. Fibroblasts primarily contribute to matrix formation and, as adipocytes,
secrete paracrine factors. Circulating blood transports hormones and other systemic factors;
endothelial cells lining blood vessels serve as a source of growth factors, whereas immune
cells, infiltrating muscle tissue upon injury, transiently affect satellite cells through the
secretion of cytokines [11].

An important function of muscle progenitor cell niche is maintaining the balance between
quiescence and activation. The quiescent satellite cells sense the stiffness of their niche through
integrins and express various matrix proteins to maintain the stable ECM structure. Within
the ECM, growth factors and other bioactive molecules are sequestered, supporting the “quiet”
state [10]. Communication between the ECM and satellite cells is essential in the regulation of
cellular events crucial for muscle growth and repair, such as gene expression, cell proliferation,
adhesion, and differentiation of activated satellite cells. In response to muscle injury, compo‐
nents of the basal lamina are degraded by matrix metalloproteinases, and growth factors and
signaling molecules are liberated, which is essential for regulation of processes ongoing in
activated satellite cells. Presence of the ECM is required for muscle stem cells to respond to
growth factors [12]. Proteoglycans expressed on the surface of satellite cells function as low-
affinity receptors and bind to the secreted, inactive growth factor precursors, including
hepatocyte growth factor (HGF), basic fibroblast growth factor (bFGF), epidermal growth
factor (EGF), insulin-like growth factor isoforms (IGF-1, IGF-2), originating from myofibers,
satellite cells, muscle-residing cells, or serum. All these growth factors play crucial roles in
myogenesis, and in vivo exist in matrix-associated form. Some ECM molecules, that is, decorin
[13], fibronectin [14], and laminin [15], can bind to and suppress the activity of myostatin, a
negative regulator of muscle cell proliferation and differentiation. Through interactions with
these growth factors, the extracellular matrix regulates the ability of skeletal muscle satellite
cells to proliferate or differentiate. Differences in the expression of proteoglycans alter satellite
cell responsiveness to the growth factor, that is, overexpression of glypican-1 (heparin sulfate
proteoglycan) in satellite cells increases their responsiveness to FGF-2, whereas underexpres‐
sion diminishes cell proliferation and differentiation [12]. Taken together, the major compo‐
nents of basal lamina orchestrate muscle satellite cell development by presentation of
mitogenic and myogenic factors. Muscle cells play an active role in creating their own
microenvironment via ECM remodeling. Supporting this idea, numerous studies prove
changes in expression and/or secretion of proteoglycans, metalloproteinases, adhesion
molecules, and growth factors in regenerating muscle tissue and differentiating myoblasts [8,
16–18]. Activated satellite cells dynamically remodel their niche via transient high expression
of fibronectin, and knockdown of this protein expression in satellite cells markedly impaired
the ability to repopulate the niche [19].

When satellite cells move to the injured site, the surrounding ECM should be degraded for
allowing cell migration. Matrix metalloproteinases degrade extracellular matrix components
such as collagens, elastin, fibronectin, laminin, and proteoglycans. MMPs play an important
role in creating cell niche in regenerating muscle and are essential for satellite cell activation,
migration, and differentiation. Expression of matrix metalloproteases is up-regulated upon
satellite cell activation, whereas transcripts for proteinase inhibitors are high in quiescent cells
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[20]. Migration of satellite cells underneath the basement membrane requires the expression
of MMP-2, 3, 7, 9, and 10. The specific inhibition of these MMPs decreases the migration velocity
and increases the sustainability of moving direction of myoblasts in vitro [21]. Among the
MMPs expressed in skeletal muscle, MMP-2 and 9 appear particularly critical. MMP-2 is
secreted by satellite cells and regenerating myofibers, whereas MMP-9 is expressed by
leukocytes and macrophages. Upon injury, the release of the nitric oxide synthase (NOS) from
damaged basal lamina leads to nitric oxide (NO) production, which in turn up-regulates
protein level and activity of MMP-2 and 9. Activated proteases degrade collagen IV, facilitating
satellite cell migration across the basement membrane to injured regions [22]. The most
important details concerning the ECM structure and cues emanating from cellular elements
of muscle satellite cell niche are summarized in Figure 1.

Figure 1. Schematic representation of the complex microenvironment (niche) of satellite cells in skeletal muscle. Left
part illustrates the networks and cross-linkings of major ECM proteins in the immediate environment of muscle satel‐
lite cells. Right part presents contributions of cellular components in creating the satellite cell niche. The small symbols
represent humoral factors released by different types of cells (the colors used correspond with the source of appropri‐
ate bioactive factors).

The role of specific niche for muscle stem cell’s self-renewal and differentiation is supported
by observations, that after removal from the microenvironment, the satellite cells quickly
withdraw from quiescence, begin to proliferate, and lose their myogenic properties. On the
other hand, myogenic cells cultured on the ECM extracted from large thigh adult muscles
manifest enhanced proliferation and differentiation in comparison to standard growth
surfaces [23]. In order to study the role of specific ECM components in creating the niche of
muscle stem cells, in vitro cell culture models are employed, where the environmental
conditions can be easily controlled. In such experiments, primary muscle stem cells derived
from muscle tissue are cultured in vitro on surfaces coated with the ECM components (i.e.
collagen, laminin, fibronectin, gelatin, or Matrigel––a balanced mixture of different ECM
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proteins) to mimic the muscle extracellular environment. Usually, the primary muscle stem
cells show distinct proliferation and differentiation pattern, as well as different muscle-specific
and ECM-related gene expressions, dependent on the coating type used [9]. These experiments
reveal that the loss of mitogenic and/or myogenic potential of muscle stem cells, due to their
transfer from the specific niche to an ex vivo situation, could be reduced by using some ECM
components/mixture coating. For example, fibronectin and laminin could be used for sorting
myoblasts from fibroblasts. Such observations are of great interest and importance in tissue
engineering and stem cell therapies.

3. Changes in ECM assembly and function during myogenesis

Skeletal muscle growth and development is a complex process controlled by interactions
between muscle cells and surrounding microenvironment. Several cellular events take place
during skeletal myogenesis, that is, migration of muscle precursor cells, proliferation of
myoblasts, cell cycle arrest, and myoblast terminal differentiation, followed by transcription
of muscle-specific genes and myoblast fusion. Muscle cell differentiation is governed by an
ordered sequence of the expression of muscle regulatory factors (MRFs) such as MyoD
(Myoblast determination protein), Myf-5 (Myogenic factor-5), myogenin, and MRF-4 [24]. The
commitment of muscle precursor cells requires MyoD expression, whereas the proliferation
arrest and terminal myoblast differentiation are driven by myogenin, a key transcription factor,
which activates skeletal muscle-specific genes encoding creatine kinase, myosin heavy chain,
and acetylcholine receptor. The formation of myotubes expressing muscle-specific genes is
essential for the specialization of myofiber function.

The importance of extracellular matrix molecules as a part of myogenesis signaling mechanism
has also been demonstrated. An inhibition of cell-surface transmembrane proteoglycan
sulfation results in delayed proliferation and altered MyoD expression, indicating that heparan
sulfate is required for proper progression of the early myogenic program [25]. Neither the
expression of myogenin nor its localization to myoblast nuclei was sufficient to drive skeletal
muscle differentiation, if the cell–ECM interactions were inhibited [26]. Inhibition of proteo‐
glycan sulfation in myoblast cultures strongly affects ECM synthesis and deposition, and
induces the expression of the osteogenic markers (alkaline phosphatase and osteocalcin),
without alterations in expression of specific muscle transcription factors, such as MyoD and
Myf-5 [27]. The above observations support the idea that extracellular matrix provides stimuli
for muscle cell development, which are independent of muscle-specific factor expression.

Myogenesis is accompanied by remodeling of ECM proteins as well as by changes in integrin
receptor expression pattern [28]. Fibronectin and laminins display an opposite pattern of
changes in time during myogenesis, that is, myoblasts secrete a large amount of fibronectin,
which is replaced by laminins in myotubes. As a consequence, the location of these proteins
in muscle is different, that is, fibronectin is absent in regions manifesting active myogenesis,
whereas laminin adjoins myotubes. In myoblasts subjected to differentiation in vitro, fibro‐
nectin is detected primarily in the extracellular environment as a thick mesh. At the same time,
laminin appears ultimately in the cytosolic fraction, which confirms delayed synthesis of this
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protein during myogenesis, in comparison to fibronectin [29]. During myogenic differentia‐
tion, the laminin synthesis increases, and laminin begins to accumulate in the medium in
soluble form, followed by the formation of insoluble cell-associated fraction [30]. Both
fibronectin and laminin per se can affect myogenesis. Fibronectin promotes myoblast adhesion
and proliferation; however, it inhibits differentiation and participates in collagen fibrillogen‐
esis, thus providing the ECM assembly [1]. Fibronectin also stimulates adhesion of fibroblasts
and may facilitate dedifferentiation of myoblasts. This protein is required for somitogenesis,
and it may function to regulate fiber organization and limit fast-twitch muscle fiber length [31].
Laminin is crucial for several processes involved in myogenesis, as it enhances myoblast
proliferation, migration, and alignment preceding the fusion. Myotube formation is markedly
impaired in the absence of laminin [2]. Changes in integrin receptor expression pattern reflect
the ECM remodeling during myogenesis. Proliferating and migrating myoblasts express high
amounts of the fibronectin-binding alpha5beta1 integrin, while during myotube formation
they switch to the laminin-binding alpha7beta1 integrin, which is the major integrin receptor
in adult muscles [32]. Moreover, there is a negative cooperativity between alpha7 and alpha5
integrin subunits. Transfection with integrin alpha7 resulted in the marked reduction of
alpha5beta1 surface complex expression and its decreased affinity to fibronectin in myoblasts.
Such a relationship may play an important role in determining functional regulation of
integrins during myogenesis. A critical phase of myogenesis is the fusion of mononucleated
myoblasts and the formation of long multinucleated myotubes. Myoblast fusion and myotube
formation are associated with increased expression of integrin alpha3, particularly abundant
in myotube membrane [29]. Overexpression of the full-length integrin alpha3 subunit induces
myoblast fusion, whereas the inhibition of integrin alpha3 extracellular domain impairs this
process [33]. Myogenesis is largely normal in the absence of alpha4, alpha5, alpha6, and alpha7
integrin subunits, indicating the redundancy in integrin functions. In contrast, disruption of
the integrin beta1 in vivo and in vitro profoundly influences myogenesis. Lack of integrin beta1
had no apparent effect on the migration and proliferation of myoblasts; however, clear
alterations occur at the later stages of myogenesis and are manifested by impaired fusion [34].
According to an early study, muscle-specific integrin beta1, appearing in a doublet form, was
used as a marker of differentiation [35]. Integrin beta1 subunit is also involved in muscle cell
survival. In response to the activation of integrin beta1, focal adhesion kinase phosphorylates
tyrosine at residue 397, leading to the activation of cell survival signal transduction and
inhibition of apoptosis [36]. Moreover, FAK appears as a mediator by which integrins may
regulate myoblast fusion. Specific disruption of gene encoding FAK suppresses the transcrip‐
tion of caveolin 3 and integrin subunit beta1D isoform, both considered as essential for
morphological muscle differentiation. As a consequence, the cell fusion and myotube forma‐
tion are defective, while the expression of muscle terminal differentiation genes, such as
sarcomeric alpha-actin, alpha-actinin, and vinculin, remain unaltered [37]. It suggests a specific
role of FAK in the regulation of cell fusion, as a part of the myogenic differentiation program.

A characteristic feature of proliferating and quiescent undifferentiated myoblasts is the high
expression of a disintegrin and metalloprotease, ADAM12, which combines features of
adhesion molecules and proteinases [38]. ADAM12 cleaves insulin-like growth factor binding
proteins IGFBP3 and IGFBP5, and heparin binding-EGF. The cysteine-rich domain of
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ADAM12 supports cell adhesion by binding to syndecan-4, whereas the cytoplasmic domain
interacts with signaling proteins, that is, tyrosine kinase Src phosphatidylinositol-3-kinase, and
cytoskeletal alpha-actinin 1 and 2 [38]. ADAM12 in transiently upregulated at the onset of
differentiation, whereas other ADAMs, such as ADAM9, 10, 15, 17, and 19 are expressed at all
stages of myogenesis [35]. Inhibition of ADAM12 by siRNA approach in myogenic cell cultures
was accompanied by lower expression of both quiescent markers (p130 and p27 proteins) and
differentiation markers (cell cycle inhibitor p21 and myogenin). Overexpression of ADAM12
induces a quiescent-like phenotype and does not stimulate differentiation. Possible role of
ADAM12 in myogenesis is associated with the preservation of “reserve pool” of myoblasts,
which do not trigger the myogenic differentiation program and maintain regeneration
potential. A 100 kDa long isoform of ADAM12 is increased in myoblasts differentiating for 3
days in the presence of IL-1beta [39] and IGF-I [29], suggesting similar effects of proinflam‐
matory cytokines and anabolic growth factors on ECM regulation at early stages of myogen‐
esis. On the other hand, there are studies that implicate the involvement of ADAM12 in the
fusion of muscle cells. The expression of ADAM12 and integrin alpha9 subunit parallels and
culminates at the time of myoblast fusion, and inhibition of ADAM12/alpha9beta1 integrin
interaction dramatically impairs this process [40]. ADAM12 is linked to the cytoskeleton via
alpha-actinin [35], and thus the cytoskeleton may regulate the distribution of ADAM12 on the
cell surface, where localized proteolysis and/or cell–cell contacts occur [41]. The most impor‐
tant modifications of the ECM structure and function associated with skeletal myogenesis are
depicted in Figure 2.

Figure 2. Schematic illustration of ECM remodeling and ECM-related proteins level/activity during skeletal myogene‐
sis. The most important events during myogenic development are presented in the upper panel.
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4. ECM and the motor function of skeletal muscle

Skeletal muscle provides structural support, enables the body to maintain posture, and
controls motor movements. Muscle tissue is strong, flexible, stress-resistant, and in view of its
mechanical properties, it consists of contractile elements (i.e. sarcomeres) and elastic compo‐
nents, supported by extracellular matrix. Majority of ECM elements, which account for muscle
strength and elasticity, reside in the basement membrane, especially in basal lamina. The basic
structure of basal lamina consists of different networks of triple-helical collagen IV, composed
of alpha chains, and the major noncollagenous protein, laminin, which is a heterodimer of
alpha, beta and gamma chains. The collagen network contains covalent cross-links; moreover,
distinct networks are linked by another noncollagenous protein, nidogen (entactin). These
major elements display several further functions: (i) they possess multiple sites binding other
protein of basal lamina, (ii) they anchor components of reticular lamina to basal lamina, and
(iii) they serve as ligands for membrane-associated receptors (i.e., integrins, dystroglycans,
etc.), which interact with cytoskeleton [2]. Taken together, in the context of the mechanical
function of skeletal muscle, the extracellular matrix may be considered as a series of networks
that connect reticular lamina, basal lamina, sarcolemma, and cytoskeletal structure.

Overload of healthy skeletal muscle leads to myofiber hypertrophy and ECM remodeling, the
processes that are thought to contribute to muscle growth. Several ECM components are
controlled by the level of mechanical loading, and multiple intracellular proteins involved in
mechanotransduction signaling are suggested, including focal adhesion kinase (FAK),
paxillin, integrin-linked kinase (ILK), and mitogen-activated protein kinase (MAPK) [1]. The
latter is crucial for the conversion of mechanical load to tissue adaptation, transmitting
signaling from the cytosol to the nucleus. Laminin, integrin alpha7, and integrin-linked kinase
(ILK) are all critical for mechanical stability of skeletal muscle [42]. ILK is recruited to the
myotendinous junction, which requires the presence of laminin in the ECM and integrin alpha7
in sarcolemma. Moreover, ILK is essential for strengthening the adhesion of the muscle fibers
with the ECM and acts with the dystrophin/dystroglycan adhesion complex in maintaining
mechanical stability of skeletal muscles.

Endurance and resistance exercises accelerate the turnover of ECM components in skeletal
muscle. Several studies reveal an increase in collagen synthesis and accumulation induced by
exercise (summarized in [43]). Transcription of genes encoding types I, III, and IV collagen
increases after endurance training. In another study, endurance exercise augments concentra‐
tion of type IV collagen in slow (soleus), but not in fast (rectus femoris) muscle. Matrix
metalloproteinases are activated in human skeletal muscle in response to voluntary exercise,
and the expression and time pattern indicate differences between the MMPs in regards of
production sites as well as in the regulating mechanism. TIMPs are often activated together
with MMPs in response to physical activity, indicating the simultaneous stimulation and
inhibition of the ECM degradation. Probably, MMPs’ activation precede TIMPs’ activation,
and the latter serve as “guardians” of degradation termination, providing limits in the ECM
breakdown [1]. Levels of MMP-2, 14, and TIMP-1 mRNA in muscle tissue increase after 10
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days of training. MMP-2 and 9 proteins were both present in the ECM, around myofibers and
capillaries, but MMP-2 was also visible within the skeletal muscle fibers [44].

Mechanical loading induces the secretion of TGF-beta, PDGF, and bFGF in tendon fibroblasts;
moreover, it increases the expression of collagen and other ECM components, such as proteo‐
glycans. TGF-beta stimulates collagen formation and reduces its degradation, also via
activation of the TIMPs, together with a suppression of MMPs, leading to the ECM accumu‐
lation. TGF-beta is known to function as a modulator of ECM proteins and to induce both
collagen gene activation and protein formation. In a human model of microdialysis of the
Achilles tendon, both local and systemic levels of TGF-beta increase in response to 1 h of
running, proving a release of this cytokine from tissues that are mechanically activated during
exercise and suggesting a role in the response to mechanical loading in vivo [1]. Mechanical
loading induces FGF release from skeletal muscle cells in vitro. Several isoforms of FGFs exist;
of these, basic FGF (or FGF2) and, to a lesser extent, the acidic FGF (FGF1) stimulate fibroblast
proliferation and collagen synthesis. Interleukin-6 (IL-6) is considered as a physical activity-
associated myokine released from working muscles [45]. It can stimulate fibroblasts to increase
the synthesis of collagens, glycosaminoglycans, hyaluronic acid, and chondroitin sulfates.
Increased expression of IL-6 is necessary for the regulation of ECM remodeling during the
hypertrophic response of skeletal muscle to overload [46]. Mechanical activity increases
expression of IL-1beta in human and rabbit tendon cells, leading to increased MMPs activity,
diminished collagen synthesis, and initiating tissue degradation and remodeling in response
to loading. IGF-I is directly involved in skeletal muscle ECM synthesis after mechanical
loading. This growth factor increases the expression of types I and III collagen in intramuscular
fibroblasts. Bioavailability of IGF-I is controlled by IGF-binding proteins, and increased
proteolysis of IGFBPs occurs in response to prolonged training in humans. Interestingly,
MMPs can degrade IGFBPs, which provides a possible mechanism of regulation of the free
IGF-I in skeletal muscle tissue and circulation.

The blood flow in skeletal muscle is tightly coupled with the metabolic demands of contracting
myofibers. During exercise, local mechanisms cause rapid dilation of muscle arterioles to
increase the flow of blood to the working muscle. It appears that fibronectin fibrils in the
extracellular matrix transduce signals from actively shortening skeletal muscle fibers to local
blood vessels to increase blood flow. Skeletal muscle contraction alters the conformation of
ECM fibronectin, which results in transient exposure of specific matricryptic sites. These
sequences are not exposed in the soluble form of ECM molecules, but may be expressed due
to structural or conformational changes, providing “a reserve” of signaling sites activated
during ECM remodeling. Matricryptic fibronectin sites (FNIII-1) interact with FNIII-1H
receptors on smooth muscle cells and/or skeletal muscle fibers. This activates the neuronal
nitrogen oxide (NO) synthase to release NO, which leads to smooth muscle relaxation,
vasodilation, and increased blood flow. Thus, FNIII-1 sites in ECM fibronectin serve as
important mechanical coupling between skeletal muscle contraction and arteriolar dilation
[47]. Figure 3 summarizes the cellular mechanisms activated during exercise leading to skeletal
muscle ECM remodeling.
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Figure 3. Proposed schema illustrating the mechanisms of alterations in the ECM in skeletal muscle induced by me‐
chanical loading. → means activation/stimulation, ┤means inhibition. Gray block arrows indicate total stimulation of
particular processes resulting from the regulation of upstream pathways.

5. ECM and the metabolic function of skeletal muscle

Skeletal muscle is a key insulin-sensitive tissue, important in maintaining homeostasis, due to
its relatively large mass and energy needs [48,49]. Postprandial, insulin-stimulated glucose
disposal in skeletal muscle results from the activation of a complex signaling network with
multiple alternative and complementary pathways. Insulin binding to the insulin receptor
causes tyrosine autophosphorylation of the receptor beta-subunit, activation of its intrinsic
tyrosine kinase, and subsequent phosphorylation of several intracellular proteins, including
insulin receptor substrate (IRS) proteins [50]. This leads to the recruitment of further signaling
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components such as phosphatidylinositol-3 kinase (PI-3 kinase), the tyrosine phosphatase
SHPTP2, the growth factor receptor-binding protein-2 (GRB-2), as well as protein serine/
threonine kinases: phosphoinositide-dependent protein kinase (PDK1), protein kinase B
(PKB), atypical isoforms of protein kinase C (PKC) lambda and zeta, mitogen-activated protein
kinase (MAPK), and others, which support the signal divergency and function as messengers
for various biological effects of insulin. Regarding postprandial glucose uptake in skeletal
muscle, the activation of insulin signaling leads to the translocation of the insulin-responsive
glucose transporter, Glut4, from intracellular storage sites to cell surface membrane, which is
a critical step in cellular glucose utilization. Dysregulation of any step of this process in skeletal
muscle results in insulin resistance, predisposing for diabetes.

There is an important cross-talk between extracellular matrix and insulin signaling in skeletal
muscle. Integrin engagement stimulates both IRS-1-associated PI-3 kinase activity and
PKB/Akt pathway. Integrin receptor beta1 subunit increases insulin-stimulated IRS phos‐
phorylation, IRS-associated PI-3 kinase, and activation of PKB (summarized in [51]). Regula‐
tion of focal adhesion kinase (FAK) by integrin receptors modulates insulin-dependent
cytoskeleton organization, glucose transport, and glycogen synthesis in myoblasts [4]. FAK
can interact with IRS-1, PI-3 kinase, PKC, and glycogen synthase kinase-3beta, leading to
translocation of Glut4. A decrease in tyrosine phosphorylation and activation of FAK was
reported in skeletal muscle of insulin-resistant Spraque-Dowley rats fed with a high-fat diet,
as well as in insulin-resistant C2C12 myoblasts [52]. The expression of IRS-1 mRNA is
abolished in FAK knockout mouse fibroblasts. Apart from the regulation of skeletal muscle
insulin signaling and action by FAK, the reciprocal interaction is documented. It appears that
FAK tyrosine phosphorylation, essential for skeletal muscle differentiation, is modulated by
insulin. Insulin causes an increase in FAK phosphorylation in proliferating myoblasts, while
in differentiating cells, there is an inhibition of FAK phosphorylation [53]. Under insulin
resistance, the phosphatase PTEN and SHIP2, usually recognized as negative regulators of
insulin signaling, are up-regulated, and they impair insulin action through FAK dephosphor‐
ylation [54]. The integrin-linked kinase (ILK) can phosphorylate and activate PKB, and
function as its potential upstream regulator. Integrin beta1 knockout mice manifest an
impairment of insulin-stimulated skeletal muscle glucose uptake and glycogen synthesis in
skeletal muscle, resulting from marked reduction in ILK expression and concomitant decrease
in PKB phosphorylation.

Insulin resistance is tightly associated with the ECM remodeling in muscle, and the ECM
defects predisposing to diabetes-related symptoms are known. The deposition of collagens,
the most abundant structural ECM components, is increased in insulin-resistant muscles, both
in humans and rodent experimental models [55]. Synthesis of fibronectin, laminin, and
collagen IV is up-regulated by high glucose and diabetes [56], which may lead to basement
membrane thickening and the development of diabetes-associated microangiopathy.
Similarly, a high-fat diet causes an increase in collagen IV in skeletal muscle [57]. As MMPs
are responsible for the degradation of all components of the ECM, their dysregulation is also
implicated in the pathology of diabetes and obesity. MMP-9 activity in skeletal muscle is
decreased in high fat-fed mice, and it is related inversely to muscle collagen deposition and
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directly to muscle insulin resistance [58]. The genetic deletion of MMP-9 worsens diet-induced
muscle insulin resistance, indicating that this metalloproteinase is necessary to protect against
more serious metabolic disturbances associated with high fat feeding. Collagen V, widely
expressed and a less abundant fibrillar protein, which regulates collagen fibril geometry and
strength, is important for skeletal muscle glucose homeostasis. Mutant mice lacking col5a3 gene
manifest hyperglycemia, glucose intolerance, and insulin resistance [59]. Skeletal muscle of
these mutants is defective in glucose uptake and mobilization of intracellular Glut4 glucose
transporter to the plasma membrane in response to insulin.

High-ambient glucose markedly elevates the level of fibronectin in myogenic cells in vitro and
causes a decrease in cellular content of the full length 100 kDa form of ADAM12, without
affecting integrin alpha5 and integrin beta1 subunit expressions [60]. Such alterations could
result in the disturbances in ECM remodeling and accumulation, which in turn contribute to
the impairment of the myogenic differentiation, manifested by decrease in MyoD, myogenin,

Figure 4. Proposed schema illustrating the cross-talk between insulin signaling and ECM signaling in skeletal muscle.
To clarify the picture, both the insulin signaling pathway and ECM signaling are markedly simplified, as they present
only the most important linkings and biological effects. Solid lines mean direct connections, dashed lines mean indirect
effects. → means activation/stimulation, ┤means inhibition. Green lines indicate interactions between insulin- and in‐
tegrin-activated pathways (direct or indirect) reported in skeletal muscle. Blue lines indicate interactions described in
other cell types [61], and only potentially functioning in skeletal muscle tissue.
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myosin heavy chain levels, and fusion index. In view of an important cross-talk between ECM
and insulin signaling [4,51], the high-glucose-induced alterations in ECM can, at least partly,
contribute to the attenuated insulin and growth factors’ action in skeletal muscle under
hyperglycemia and diabetes. The ECM turnover also plays a role in the metabolic regulation
of skeletal muscle in the pathology of diet-induced insulin resistance. Figure 4 illustrates the
most important points of the cross-talk between insulin signaling and the ECM-related
signaling cascades in skeletal muscle.

6. Alterations of muscle ECM components in health and disease

Skeletal muscles have a great ability to adapt and regenerate, and usually injured areas of
muscle tissue are replaced with healthy contractile fibers, which results in a full recovery and
mechanical function, or even gains in muscle mass and strength. The regenerative potential of
skeletal muscle is markedly impaired in aging and several diseases, and is associated with
disturbances of muscle ECM.

The efficiency of skeletal muscle regeneration decreases with age, and this phenomenon is
primarily associated with the changes in satellite cell functions, that is, the reduction of cell
number and/or proliferative capacity. The basal lamina of aged muscle is thicker, and its
structure is irregular and amorphous. During aging, type IV collagen abundance increases in
slow muscles, whereas laminin increases in fast muscles, which can affect the ability of the
basal lamina to store and release growth factors and other bioactive compounds creating the
satellite cell microenvironment. Another alteration in the basal lamina during aging is increase
in osteopontin, the cytokine, which negatively regulates myogenesis in vitro and muscle
regeneration in vivo. Satellite cell niche during aging also contains other extracellular matrix-
associated negative regulators of muscle differentiation, such as transforming growth factor-
beta and Wnt signaling [10]. The composition of local milieu in aged muscles changes also due
to the remodeling of the neuromuscular junction, the functional alterations in endothelial cells
(i.e., apoptosis) and in immune cells (i.e. impaired chemotaxis). Taken together, the satellite
cell niche during aging shifts toward an increasingly inhibitory influence on satellite cell
activity and muscle regeneration potential [11]. Age-related changes in content and structure
of ECM in skeletal muscle can also lead to decrease in the local expression or limited access to
matricriptic sites in fibronectin [47]. As a consequence, the disturbances of vascular dilation in
working muscles can occur and contribute to the impairment of skeletal muscle function in
aging.

Muscle atrophy can be divided into primary muscular disease and secondary muscular
disorders [62], both of them characterized by pathological changes in muscle ECM. Genetic
studies of several primary muscle diseases show that the basement membrane is critical for
the maintenance of muscle integrity. In all of these diseases, skeletal muscle tissue develop‐
ment is normal, but they are characterized by progressive muscle weakness, fibrosis, and fatty
infiltration [2]. Muscle dystrophy can result from the loss or impairment of any of the elements
in the reticular lamina–basal lamina–sarcolemma–cytoskeleton linkage. The examples include
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laminin alpha2 and its transmembrane receptors, that is, integrin alpha7 and dystroglycan
(congenital muscular dystrophy), dystrophin (Duchenne muscular dystrophy), and the
dystroglycan- and dystrophin-associated sarcoglycans (limb girdle muscular dystrophy),
collagen IV (Walker-Warburg syndrome), and the alpha chains of collagen VI, which connect
reticular lamina to basal lamina (Ulrich congenital muscular dystrophy and Bethlem myopa‐
thy). For muscle maintenance, both structural and signaling properties of the basement
membrane are required. Signaling from laminin alpha2 provides survival stimuli for myofib‐
ers; thus, its absence in congenital muscle dystrophy is associated with high level of apoptosis.

The best known primary muscular disease is Duchenne muscular dystrophy (DMD) resulted
from the mutation in the gene encoding dystrophin, which leads to the lack of dystrophin
protein at the sarcolemma of muscle fibers. It is characterized by progressive muscle weakness
associated with continuous degeneration and regeneration of skeletal myofibers [63]. The loss
of satellite cell regenerative capacity due to continuous needs for regeneration may contribute
to disease progression in DMD [64]. The absence of dystrophin per se can exert a direct
influence on the homeostasis of the ECM by allowing leakage of cellular components to the
extracellular space or by abnormal cellular uptake of growth factors, cytokines, and enzymes.
This in turn can affect muscle fibroblasts, either directly by altering their adhesion properties
or indirectly by interacting with molecules released by muscle or inflammatory cells. Apart
from disturbances in dystrophin complex, muscles from DMD patients manifest decreased
accumulation of laminin alpha2 and beta1, increased accumulation of collagen IV, higher
expression of integrin alpha 7, and profibrotic cytokines, which inhibit myogenesis, that is,
TGF-beta and osteopontin [10]. An up-regulation of decorin, myostatin, and MMP-7 tran‐
scripts and proteins, as well as a down-regulation of MMP-1 and TIMP-3 expression are
reported in DMD fibroblasts [65]; the latter may result in increased ECM deposition leading
to tissue fibrosis.

Diabetic muscles are more vulnerable to exercise-induced myofiber damage than healthy
muscles. Diabetes-induced changes in skeletal muscle concern the structure of the basement
membrane and the activities of the enzymes of collagen synthesis. Microarray analysis of
skeletal muscle transcriptom in streptozotocin-diabetic mice show reduced gene expression
of types I, III, IV, V, VI, and XV collagen. Moreover, mRNA expressions for some noncollag‐
enous proteins and proteoglycans, that is, elastin, thrombospondin-1, laminin-2, and decorin,
as well as connective tissue growth factor (CTGF) increase in diabetic muscles [43]. This can
alter the structure of the basement membrane in a less collagenous direction and affect its
properties. Patients with congestive heart failure (CHF) experience increased skeletal muscle
fatigue. The mechanism underlying this phenomenon involves increased MMPs’ activity and
collagen content, accompanied by a drop in VEGF expression, which may disturb the normal
contractile function of skeletal muscle [66].

Apart from the alteration, loss or impairment of some specific ECM components in physio‐
logical and pathological states, the stiffness of the ECM per se, seems to be an important factor
regulating muscle cell growth and function. Resting skeletal muscle and myotubes in culture
display a similar elastic stiffness (elastic modulus approximately 12 kPa), whereas aged and
dystrophic muscles are several-fold stiffer (summarized in [22]). The reason for such alterations

The Importance of Extracellular Matrix in Skeletal Muscle Development and Function
http://dx.doi.org/10.5772/62230

17



is increased extracellular matrix accumulation, especially collagen deposition by fibroblasts,
resulted from repeated muscle degeneration–regeneration events. Another mechanism could
be the accumulation of advanced glycation end products (AGEs), nonspecific cross-linkings
mediated by condensation of reducing sugars with amino groups, observed in aging and
pathological states with elevated glucose levels. Glycated intramuscular ECM has stiffer and
more load-resistant structure; however, it also manifests a reduced ability to adapt to altered
loading, probably due to decreased collagen turnover. Moreover, AGEs up-regulate the
expression of CTGF in fibroblasts, which can promote fibrosis in old and diabetic individuals
[1]. Numerous studies using in vitro model reveal that proper myogenesis requires an optimal
ECM stiffness and that both softer and stiffer coatings markedly diminish the myoblast’s ability
to proliferate and differentiate. These results confirm the importance of mechanical and
biophysical stimuli in skeletal muscle maintenance and remodeling.
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