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Abstract

Living-donor liver transplant is a life-saving procedure for people with end-stage liver
disease that has increased the number of organs available for people on the liver
transplant waiting list. Patients often receive grafts from their relatives in living-donor
liver transplantation. Maintenance of long-term graft function is important in liver
transplant recipients. Livers from older donors have worse graft survival rates in
human liver transplantation, and therefore, accurate evaluation of graft aging and
senescence is expected to provide critical data for therapeutic intervention in long-
term grafts. Many insults, including rejection, can contribute to post-transplant
damage. Late post-transplant biopsies frequently show chronic hepatitis of unknown
cause, and this can cause late graft dysfunction leading to cirrhosis. Telomere length
in chronic hepatitis or cirrhosis is significantly lower than that in normal livers of the
same age. Sustained cellular turnover in chronic liver disease accelerates cellular
senescence or a crisis because of telomere shortening. Here, we review the mecha‐
nisms involved in post-transplant complications including acute cellular rejection,
chronic rejection, and chronic hepatitis of unknown cause by ageing and senescence
due to telomere shortening.
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1. Introduction

1.1. Summary

Living-donor liver transplant is a life-saving procedure for people with end-stage liver disease
that has increased the number of organs available for people on the liver transplant waiting
list. Patients often receive grafts from their relatives in living-donor liver transplantation.
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Maintenance of long-term graft function is important in liver transplant recipients. Livers from
older donors have worse graft survival rates in human liver transplantation, and therefore,
accurate evaluation of graft aging and senescence is expected providing critical data for
therapeutic intervention in long-term grafts. Many insults, including rejection, can contribute
to post-transplant damage. Late post-transplant biopsies frequently show chronic hepatitis of
unknown cause, and this can cause late graft dysfunction leading to cirrhosis. Telomere length
in chronic hepatitis or cirrhosis is significantly lower than that in normal livers of the same
age. Sustained cellular turnover in chronic liver disease accelerates cellular senescence or a
crisis because of telomere shortening. Here, we review the mechanisms involved in post-
transplant complications including acute cellular rejection, chronic rejection, and chronic
hepatitis of unknown cause by ageing and senescence due to telomere shortening.

1.2. Background

Telomeres are comprised of tandem nucleotides repeats (TTAGGG) and their functional role
includes protection against the degradation of chromosomes and the maintenance of genome
integrity and stability [1]. Telomere shortening relates with the etiology of liver allograft
dysfunction and/or graft failure such as acute cellular rejection, chronic rejection, and chronic
hepatitis of unknown cause (idiopathic post-transplant hepatitis) after liver transplantation.
Older people are more sensitive to most acquired liver disorders and are more indefensibly to
the consequences of liver disease. In the chronic hepatic injury and inflammation, cellular
senescence functions as an essential stress-response mechanism to restrict the proliferation of
damaged cells, but this benefit is at the expense of senescence-related organ dysfunction. The
dual role of cell senescence in chronic liver disease will make this an intriguing but challenging
area for future clinical interventions. In the setting of chronic liver disease, telomere reduction
was more significant than in hepatocytes of normal livers of subjects of the same age [2-4]. In
this review, we will discuss mechanism of telomere shortening involved in hepatocyte
senescence after liver transplantation by examining the present-day knowledge of telomere
structure. Particularly, we discuss mechanisms by which inflammation, acute stress, and
oxidative stress accelerate cellular senescence.

2. Human telomere structure

Telomere is nucleoprotein complex at the end of chromosomes that is composed of repeated
DNA sequences and interaction binding proteins [5]. Human telomeric DNA is generally in
the 5–15 kb length range and contains double-stranded tandem repeats of TTAGGG, followed
by single-stranded G-rich overhang [6-7]. The G-rich overhang can form a structure called t-
loop [8]. T-loops have been identified by electron microscopy [9]. Moreover, the telomere fold
backs on itself, so that the single-stranded G-rich overhang invades into double-stranded DNA
to form a D-loop (displacement loop) [5]. The G-rich DNA sequences fold into noncanonical
secondary structures called G-quadruplex. G-quadruplex is formed by stacking of several G-
tetrads. The G-tetrads are formed by four guanines arranged in a plane by hydrogen bonds.
These structures have been identified in human cells by using a highly specific DNA G-
quadruplex antibody recently [10]. Protein complex of telomeres, known as shelterin, consists
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of TRF1 (telomeric repeat binding factor 1), TRF2 (telomeric repeat binding factor 2), RAP1
(repressor/activator protein 1), TIN2 (TRF1 interacting nuclear factor 2), TPP1 (TIN2-POT1
organizing protein), and POT1 (protection of telomere 1) [5, 11-12]. TRF1 and TRF2 directly
bind the telomeric double-strand DNA, while POT1 binds the single-stranded overhang. TIN2
and TPP1 interact with POT1. RAP1 has no obvious effect on protection or length regulation
of human telomeres [13]. Additionally, telomere-associated complex has recently been
identified in mammalian cells. This complex, called CST, consists of Conserved Telomere
Component 1 (CTC1), STN1 and TEN1 [14-15].

2.1. Telomere length regulation

Telomere length is determined by the degree of DNA elongation by telomerase, DNA erosion
by incomplete DNA replication, and double-strand breaks caused by DNA damage [16].
Telomerase is a ribonucleoprotein enzyme that synthesizes new telomeric DNA to compensate
for replication-associated telomere reduction [17]. Telomerase is composed of the telomerase
reverse transcriptase (TERT) and a telomerase RNA component (TERC) that serves as the
template for telomere extension [18]. Overexpression of human TERT (hTERT) can lead to
rapid telomere elongation while hTERT knockdown or inhibition results in telomere shorten‐
ing [19]. Telomere binding proteins, such as TRF2, participate in telomere length regulation in
humans [20]. Human Pot1 (hPot1) as well participate in telomere length regulation by
disrupting the DNA binding activity. Knocking down the expression of hPot1 in cells causes
apoptosis or senescence [21]. Moreover, STN1, a part of CST complex, plays critical role in
regulating telomere lengths and replicative potential of normal human fibroblasts. STN1
knockdown cells displayed a greater increase in telomere erosion and entered cellular
senescence as a consequence of telomere dysfunction [22].

2.2. Functions of human telomeres

Human telomeres protect chromosome ends from degradation and DNA double-strand break
repair [23-24]. The protective function of telomeres presumably depends on their state,
whether they have “capping” or “uncapping” structures. Telomeres achieve their “capping”
function by a combination of their higher-order DNA structure and binding proteins. The t-
loop and G-quadruplex provide the possible cap status for telomere protection. Telomere loss
leads to the disruption of telomere structures, inducing gradual telomere uncapping [25-31].
Binding proteins prevent telomeres from being recognized by the cell as a DNA break and
repaired by nonhomologous end joining (NHEJ) or homologous recombination (HR)-mediat‐
ed repair [5]. TRF1and TRF2 have a negative regulating function for telomere length and
participate in telomere end protection [32]. TIN2 has a role of maintenance of telomere cohesion
[33]. TPP1 is essential for both telomere end protection and length regulation, through
repressing DNA damage signaling and modulating telomerase-dependent telomere elonga‐
tion [34-35]. Protection from a DNA damage response (DDR) or unwanted DNA repair,
referred to as “capped” [8, 31]. Uncapped telomeres are recognized by the DDR proteins and
chromosome ends, which are referred to as telomere dysfunction-induced foci (TIFs) [36]. It
has been identified that cell proliferation in vitro is accompanied by telomere shortening [1].
If telomere shortening reaches a limit and DDR foci accumulation reaches 4 or 5 foci, wide‐
spread end-to-end fusion of chromosomes and cell death would occur [37].
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3. Age-related disease and telomere shortening

Telomere length decreases with age [38-39]. Telomere length, when shorter than the average
telomere length, is associated with increased incidence of age-related diseases and/or de‐
creased life span in humans [40-41]. Telomere length is a risk marker for cardiovascular disease
[42-43]. The degree of telomere shortening correlated with the severity of heart disease [44].
Chromosomal instability in ulcerative colitis is associated with telomere shortening [45]. Liver
cirrhosis correlated with hepatocyte-specific telomere shortening [3]. Type 2 diabetes was
associated with reduced telomere length [46-47]. Short telomere lengths are predictors for the
development of diabetic nephropathy [48]. Short telomeres are a risk factor for the develop‐
ment of idiopathic pulmonary fibrosis [49]. Moreover, telomere shortening has been involved
in the dramatic age-related changes in the immune system as well, and this is one of the main
factors believed to influence morbidity and mortality [50]. Telomere shortening promotes
genome instability, leading to cancer initiation [51]. Short telomeres are likely to be recognized
as double-strand breaks, resulting in induction of DNA damage repair by nonhomologous end
joining pathway, leading to end-to-end chromosomal fusions. When cells with fused chromo‐
somes enter mitotic cycles, these chromosomal fusions are likely to break and result in
chromosomal abnormalities. Repeated breakage–fusion–bridge cycles cause accumulation of
chromosomal instability that leads to final malignant transformation [52-53]. Telomerase
activity are well correlated with development of cancer besides telomere shortening. Telo‐
merase activity has been detected in many kinds of human cancers [54]. In addition, obesity
and smoking as well as hypertension and lower socioeconomic status are associated with
leucocyte telomere reduction [38, 55-57]. Telomeres in liver cells, compared to cells of other
major organs, shorten most rapidly with age. The telomere shortening in hepatocytes is
especially rapid in infants, and then the rate of shortening slows from adolescence to middle
age, while no significant decrease is evident in adults in their forties up to centenarians [58-60].

4. Liver allograft rejection

4.1. Acute cellular rejection

The diagnosis of acute cellular rejection is determined by portal mixed cellular infiltration, bile
duct inflammation or damage, and portal or central veins’ endotheliitis [61]. The portal
inflammatory cells include lymphocytes, neutrophils, and eosinophils predominantly. Bile
duct damage is composed of variation in nuclear size, eosinophilic degeneration, vacuolation
of the cytoplasm, and lymphocytic infiltration into the bile duct epithelium. However, acute
cellular rejection represents an immune-mediated injury directed toward the bile ducts or
vascular endothelium, rather than toward hepatocytes [62]. Sustained cellular turnover in
chronic liver disease accelerates cellular senescence [2-4, 63-65]. In liver transplantation, aged
donors have worse prognosis [66]. Graft survival for hepatic allografts from aged donors was
significantly lower than for allografts from younger donors, suggesting there is an inability of
older grafts to expand to meet the functional demands of recipients [67]. Elder donor tissue
has reduced ability to withstand stress and repair. Preexisting aging presumably decreases
repair and survival capacity, and post-transplant stress (e.g., rejection) further disrupts this
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capacity and causes graft failure [68]. Many occurrences including rejection contribute to post-
transplant damage. Greater rate of telomere decline with episodes of acute rejection lead to
greater telomere reduction during the post-transplant period. Accordingly, the frequency of
post-transplant events (e.g., rejection) should be diminished preventing additional cell
turnover.

4.2. Chronic rejection

Clinically, chronic rejection is characterized by progressive jaundice, unresponsive to immu‐
nosuppression, and, histologically, by obliterative vasculopathy, affecting large and medium-
sized muscular arteries. Moreover, chronic rejection is characterized by the loss of small bile
ducts [69-71]. Although the incidence of chronic rejection has decreased from 15–20% to 2–3%
due to effective immunosuppression and early assessment of liver biopsies [69-70, 72-74], it is
still an important cause of liver allograft failure. Our previous study showed that accelerated
telomere intensity decline occurred in hepatocytes in chronic rejection within a year of
transplantation. This accelerated telomere intensity decline might be a general process
occurring in all grafts, since observed soon after liver transplantation. This observed decline
may be due to premature aging following the acute stress observed in organ transplants and
the high rate of cell turnover that occurs in graft regeneration immediately after transplantation
[75]. Our previous data suggest that accelerated graft aging during the early post-transplan‐
tation term is inevitable even in tolerated grafts. The limit of proliferative life span by telomere
shortening might be determined early after post-transplantation. Chronic rejection patients
have one or more episodes of acute cellular rejection within a year of transplantation, and thus
it is possible that acute cellular rejection induces a further early telomere intensity decline in
hepatocytes [62, 76]. Care in organ preservation and preconditioning of the graft are important
to achieve a better prognosis, which in turn is likely a consequence of the prevention of
telomere erosion caused by various stressors immediately after transplantation. We have
previously reported hepatocyte telomere signal intensity significantly lower than the predicted
age-dependent decline observed in chronic rejection, as revealed by quantitative fluorescence
in situ hybridization [77].

5. Idiopathic post-transplant hepatitis

Some groups have also called chronic hepatitis of unknown cause, such as idiopathic post-
transplant hepatitis, de novo autoimmune hepatitis. This condition is commonly associated
with positive autoantibodies, such as antinuclear antibody and elevation of IgG levels, and
biochemically and histopathologically resembles autoimmune hepatitis in patients who did
not receive transplants [78-79]. Increasing evidence suggests that late acute rejection, de novo
autoimmune hepatitis, and idiopathic post-transplant hepatitis are part of an overlapping
spectrum of immune-mediated late allograft damage occurring in long-term post-transplant
patients [62]. Together with idiopathic post-transplant hepatitis, immune-mediated late
allograft damage can cause late graft dysfunction leading to cirrhosis. Telomere length
observed in chronic hepatitis or cirrhosis is significantly lower than that in normal livers of the
same age. Sustained cellular turnover in chronic liver disease accelerates cellular senescence
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or a severe damage because of telomere shortening. We initially hypothesized that idiopathic
post-transplant hepatitis may show more progressive telomere shortening due to higher cell
turnover [3-4]. Cellular senescence in the explanted livers of young children was reported to
be associated with hepatocyte damage rather than to a corresponding age-dependent phe‐
nomenon [80]. However, we observed no significant telomere reduction in hepatocytes taken
from patients with idiopathic post-transplant hepatitis at late biopsy. Telomere shortening
does not necessarily reflect the long-term graft status in idiopathic post-transplant hepatitis,
which differs clinically and histologically. Telomere length in hepatocytes already shortened
during the early post-transplant period. Increasing number of senescent cells associated with
telomere shortening confirmed in a mouse model of ischemia–reperfusion injury [81].
Therefore, hepatocyte damage related to ischemia–reperfusion injury is likely to be a major
factor in the accelerated telomere decline observed in the early post-transplant period. On the
other hand, from the standpoint of telomere shortening in the early post-transplantation phase,
telomere decline is considered a risk factor for late dysfunction of the graft. This finding is
clinically significant in follow-up examinations of high-risk allografts.

6. Tolerance

Tolerance is a condition in which an allograft functions normally and lacks histological
evidence of rejection in the absence of immunosuppression [82]. Tolerated grafts are suitable
study materials for evaluating the biological organ age of grafts unaffected by inflammation
and immunosuppression. We have previously reported a significant reduction in hepatocyte
telomere signal intensity compared to the predicted age-dependent decline in the tolerated
liver allograft, using quantitative fluorescence in situ hybridization [80,21]. Recently it has been
demonstrated that measurement of relative average telomere lengths can be accomplished by
real-time polymerase chain reaction (PCR) using a carefully designed pair of oligonucleotide
primers [83]. In a larger number of cases, we performed quantitative real-time PCR, and
confirmed accelerated telomere shortening relative to the chronological graft age in tolerated
grafts. It is possible that a significant proportion of liver transplantation recipients are tolerant
[84-86]. Accelerated telomere intensity decline occurred in hepatocytes in tolerated graft within
a year of transplantation. The results of the previous study have suggested that even tolerated
grafts might undergo a lowering of renewal capacity and a decrease in function as the
recipients become older [2]. According to our previous study, the allograft could be older than
the predicted age of the allograft even in tolerated grafts, and the telomere length shortened
based on the graft age.

7. Oxidative stress after living-donor liver transplantation

Ischemia and reperfusion during transplantation produce a transient increase of reactive
oxygen species in the organ, which are potent inducers of DNA breaks. In a rat model, both
allogeneic and syngeneic transplants were characterized by shortened telomeres during
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ischemia at transplantation [87]. Oxidative stress accelerates telomere shortening [88-89]. Low
ambient oxygen conditions can extend the life span of cells in culture [90]. In cell culture
protected from oxidative stress through low ambient oxygen tension, the addition of antioxi‐
dants, or overexpression of antioxidant enzymes delays telomere shortening [91-93]. Further
data have demonstrated the important interaction between telomere-induced senescence and
oxidative stress. Senescence leads to the development of oxidative stress that reinforces the
senescent state of the cell and causes further oxidative stress. The telomere decline is probably
due to premature aging of the graft that might occur during ischemia–reperfusion injury or
graft regeneration immediately after transplantation [81]. Thus, telomere shortening in grafts
could reflect not only the proliferative history of a cell, but also the accumulation of oxidative
damage during the early post-transplant period [94]. Telomere reduction is presumably
accelerated by the transplantation process, in both young and old tissues, modification of peri-
or post-transplantation environmental stress may probably reverse aging-dependent factors.

8. Telomere length in other organ transplants

Telomere length is associated with kidney function [95]. Ischemia–reperfusion during kidney
transplantation is associated with rapid telomere shortening [96]. Cellular senescence in zero
hour biopsies predicts outcome in renal transplantation [97]. Telomere length assessed in
biopsy specimens collected in the peri-transplant period predicts long-term kidney allograft
function. Complications of kidney transplantation, like delayed graft function, acute rejection,
and chronic allograft dysfunction are linked with the telomere length and thus, graft ageing
[98]. Moreover, telomere length is a predictive marker of transplant outcome [99]. Rapid
telomere reduction in the first year after hematopoietic stem cell transplantation were identi‐
fied in recipients of bone marrow grafts [100-101]. Short telomeres are associated with the
presence of chronic graft versus host disease and receiving graft from a female donor [102].

9. Conclusions and future directions

Studies of age-related disease have mostly focused on telomere length, because excessive
telomere shortening leads to diseases such as cardiovascular disease, ulcerative colitis, liver
cirrhosis, diabetes, and idiopathic pulmonary fibrosis. Mechanisms of complications (e.g.,
rejection) of organ transplantation and consequent graft failure related with ageing and
senescence are due to telomere shortening. Therefore, studying of telomere length is essential
in the field of organ transplantation. Telomere length was negatively associated with patient
age, male sex, acute rejection, and fatty liver, and was positively associated with time from
transplantation [103]. Our previous study confirmed that accelerated telomere decline in
hepatocytes in the first year post-liver-transplantation is presumably due to premature ageing
following the acute stress of transplantation and the high rate of cell division that occurs during
graft regeneration immediately after transplantation [77]. Accelerated telomere shortening and
hepatocyte senescence identified even tolerated human liver allogarfts [104]. The main
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problem of older donor tissue is its lower ability to endure stress and repair. Preexisting aging
may reduce repair and survival capacity, and post-transplant stress such as rejection exhausts
further this capacity, leading to graft failure [68]. Ischemia and reperfusion during transplan‐
tation lead to a temporary increase of reactive oxygen species in the organ, which are pre‐
dominant inducers of DNA breaks. Oxidative DNA damage advances telomere shortening
[94]. Furthermore, sustained cellular turnover in chronic liver disease accelerates cellular
senescence [2-4, 65-66]. The confluence of acute stress, oxidative stress, ageing, and senescence
suggests possible mechanisms leading to graft failure. Avoidance of factors associated with
oxidative stress and telomere dysfunction is recommended in association with current liver
transplantation techniques. Telomeres in grafted livers may elongate somewhat longer if the
grafts are immunologically well controlled [105]. Taken together, telomere length is one of the
available indicators for evaluation of liver allograft status (Fig.1).

Figure 1. Allograft failure and telomere dysfunction
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