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resumo 
 

 

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais 
comum caracterizada pela perda massiva de neurónios dopaminérgicos. 
Apesar de décadas de pesquisa a causa da DP esporádica ainda é 
desconhecida. A DP é uma doença multifactorial complexa, que provavelmente 
resulta de uma interacção elaborada na sua maioria de factores 
desconhecidos: vários genes, efeitos modificadores de alelos de 
susceptibilidade, exposições ambientais e interacções gene-ambiente e o seu 
impacto directo sobre o desenvolvimento e envelhecimento do cérebro. A 
descoberta de genes relacionados com a doença tem contribuído 
substancialmente para a compreensão dos mecanismos moleculares 
envolvidos na patogénese da DP. Sabe-se que um conjunto de 
acontecimentos que conduzem à morte da célula, incluindo o stress oxidativo, 
contribui para a patogénese da DP. Entre os vários genes mutados na DP 
familiar, apenas o gene DJ-1, um gene autossómico recessivo causador de DP 
familiar de início precoce, desempenha um papel directo nos mecanismos de 
defesa oxidativa da substantia nigra pars compacta. O estudo da biologia da 
DJ-1 pode fornecer informações importantes para vias celulares alteradas na 
DP. Assim, a compreensão de como as mutações da DJ-1 interferem com a 
estrutura e função da proteína é de crucial importância. Mutações no gene DJ -
1 podem levar à perda da função neuroprotectora da proteína. Deste modo, 
pode ocorrer um desequilíbrio homeostático no sistema e nos metabolitos 
celulares, que podem ser utilizados como marcadores celulares de condições 
de stress. Portanto, o objectivo deste estudo foi comparar várias condições 
biológicas para identificar metabolitos que são significativamente alterados em 
condições de repouso e de stress oxidativo, e avaliar também o efeito da 
adição da DJ-1 WT e mutantes recombinantes à linha celular SH-SY5Y sob 
condições normais e condições de stress oxidativo. A fim de atingir esse 
objectivo, diferentes proteínas mutantes recombinantes foram produzidas e 
caracterizadas estruturalmente para avaliar a sua acção na modulação dos 
metabolitos. Uma vez adicionadas às células, uma análise não direccionada de 
espectrometria de massa dos metabolitos foi realizada a fim de encontrar 
potenciais metabolitos de interesse. Este foi o primeiro estudo para o perfil 
metabolómico do stress oxidativo com a adição exógena de DJ-1 WT e 
mutantes recombinantes, e permitiu a descoberta de oito possíveis 
biomarcadores de stress oxidativo. No futuro, estes resultados devem ser 
validados numa análise direccionada, para identificação, quantificação, 
interpretação funcional e análise das vias dos metabolitos, para tentar 
compreender a sua modulação pela DJ-1 e o seu potencial uso como 
marcadores de stress oxidativo, e em último caso como biomarcadores da 
doença de Parkinson. Assim, estes resultados podem contribuir para 
estratégias futuras para o tratamento e prevenção da doença e oferecer novos 
rumos para o reconhecimento de indicadores bioquímicos específicos da 
doença. 
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abstract 

 
Parkinson’s disease (PD) is the second most common neurodegenerative 
disorder characterized by massive loss of dopaminergic neurons. Despite of 
decades of research the cause of sporadic PD is still unknown. PD is a 
complex multifactorial disorder, which probably results from an elaborate 
interplay of mostly unknown factors: several genes, modifying effects by 
susceptibility alleles, environmental exposures and gene-environment 
interactions, and their direct impact on the developing and aging brain. The 
discovery of disease-related genes has contributed substantially to the 
understanding of the molecular mechanisms involved in PD pathogenesis. It is 
known that a cascade of events leading to cell death, including the oxidative 
stress, contributes for the pathogenesis of PD. Among several genes mutated 
in familial PD, only DJ-1, an autosomal recessive gene causative of familial 
early onset PD, plays a direct role in oxidative defense mechanisms of 
substantia nigra pars compacta. The study of DJ-1 biology can provide 
important clues to altered cellular pathways in PD. Thus, understanding how 
the causative DJ-1 mutations interfere with the structure and function of DJ-1 
protein is of critical importance. Mutations in DJ-1 gene may lead to loss of 
neuroprotective function of the protein. In this way it may occur a homeostatic 
imbalance in cell system and metabolites, which can be used as cellular 
markers of stress conditions. Therefore, the aim of this study was to compare 
multiple biological conditions to identify the metabolites that are significantly 
altered in resting and oxidative stress conditions, and access also the effect of 
the addition of the recombinant DJ-1 WT and mutants to SH-SY5Y cell line 

under normal and oxidative stress conditions. In order to achieve this goal, 
different recombinant protein mutants were produced and structurally 
characterized to access their rule in metabolite modulation. Once added to 
cells, an untargeted mass spectrometry analysis of metabolites was conducted 
in order to find potential and putative metabolites of interest. This was the first 
study for oxidative stress metabolomics profiling with the exogenous addition of 
recombinant DJ-1 WT and mutants and allowed the finding of eight possible 
oxidative stress biomarkers. In the future, these results must be validated in a 
targeted analysis, for metabolite ID verification, quantitation, functional 
interpretation, and pathway analysis, to try to understand their modulation by 
DJ-1 and their potential use as oxidative stress markers and latter as 
Parkinson´s disease biomarkers. Hence, these findings may contribute to future 
strategies for the treatment and prevention of the disease and offer new 
directions for recognizing disease-specific biochemical indicators. 
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1. INTRODUCTION 

1.1 Parkinson’s Disease 

Parkinson’s disease (PD) is a neurodegenerative disorder first described by James 

Parkinson in 1817 [1]. PD is the most common movement disorder and the second most 

common neurodegenerative disorder after Alzheimer’s disease, affecting 7 to 10 million 

people worldwide, according to the Parkinson’s Disease Foundation [2-4]. Disease 

prevalence is age-associated, with approximately 1% of the population being affected 

over the age of 65 years, increasing to 4-5% in 85-year-olds [3, 5, 6]. 

PD results mainly from progressive degeneration of nigrostriatal dopaminergic 

neurons in the substantia nigra pars compacta (SNpc) and other monoaminergic cell 

groups in the brainstem and cortical areas (Figure 1.1). It also shows increased microglial 

activation and accumulation of eosinophilic, intracellular proteinaceous inclusions in 

surviving dopaminergic neurons, known as Lewy bodies (LBs) and Lewy neurites 

(collectively known as Lewy-related pathology) (Figure 1.1). The basic components of 

these inclusions are α-synuclein, neurofilament proteins, and ubiquitin [2, 3, 6-8], 

however some monogenic forms of PD lack this typical Lewy body pathology [6]. 

The main clinical phenotype of PD is parkinsonism, a movement disorder that is 

characterized by motor dysfunctions, such as bradykinesia, resting tremor, rigidity and 

postural instability [1-3, 5-7, 9]. In addition to the motor disturbances PD is characterized 

by numerous non-motor symptoms, such as autonomic insufficiency, cognitive 

impairment, depression, olfactory deficits, psychosis and sleep disturbance [2, 3, 6]. 

Motor dysfunction is thought to arise from progressive loss of dopaminergic 

neurons within the substantia nigra pars compacta and becomes evident when 

approximately 80% of striatal dopamine (DA), neurotransmitter that normally sends 

signals in the brain to control body movement, and 50% of nigral neurons are lost. Thus, 

the population of undiagnosed asymptomatic patients is probably large [2, 3, 7]. 

It is not possible to diagnose parkinsonism with neuropathologic methods. It is 

only possible to describe histologic, neurochemical, and molecular findings that are 

frequently associated with parkinsonism [9]. The diagnosis of PD can only be confirmed at 
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autopsy because more than forty different neurological diseases can show signs of 

parkinsonism. Therefore, the clinical diagnosis of PD is typically based on the presence of 

cardinal motor features, absence of atypical findings suggestive of an alternate diagnosis, 

and response to levodopa (˪-DOPA) [3, 7]. 

 

 

Figure 1.1 - Substantia nigra degeneration and Lewy Bodies in Parkinson’s disease. View of the main 
neuropathological events in PD at three levels from left to right. At the level of the brain, a major pathway is 
degeneration of the dopaminergic projections from the substantia nigra (in black) to the striatum (in purple), both 
of which are in the midbrain under the cerebral cortex. At the level of substantia nigra, the neurons that form the 
presynaptic portion of this pathway are normally melanized and are easily identified by this pigment in control 
brains (upper panel). In contrast, the loss of neurons in this region is so substantial that the whole area becomes 
depigmented in PD cases (lower panel). Of the few remaining cells, many show pathological changes, including the 
accumulation of proteins and lipids in Lewy bodies [10]. 

 

Patients have a response to dopamine replacement therapy using the metabolic 

precursor of dopamine, ˪-DOPA, which is the main treatment for PD. However, its use is 

complicated by the emergence of motor fluctuations and dyskinesias [3, 5]. Other 

treatment options include dopamine agonists, anticholinergics, amantadine, monoamine 

oxidase B (MAO-B) and catechol-O-methyltransferase (COMT) inhibitors, and deep brain 

stimulation [1, 3]. However, neuroprotective treatment that delays or prevents 

neurodegeneration in PD remains an unrealized goal. Levodopa and dopamine agonists 

only relieve symptoms [2, 3]. 

Due to demographic changes and increased life expectancy the prevalence of PD 

will further increase dramatically worldwide in the coming decades in the absence of a 

neuroprotective treatment, preventive interventions or cure [6, 11]. A better 

understanding of disease pathogenesis may lead to the development of a 

neuroprotective treatment. 

 



INTRODUCTION |5 
 

1.1.1 PD Etiology 

Some parkinsonism disorders are chronic and progressive and caused by an 

unknown degenerative disease process, whereas others may have clear genetic cause or 

can be transient and caused by effects of toxins, metabolic disturbances, or drugs (Figure 

1.2) [9]. 

The cause of sporadic PD, which occurs in the absence of genetic linkage and 

accounts for more than 90% of all diagnosed cases, is still unknown [7]. Decades of 

research have not found a single cause for PD and therefore a single factor is unlikely to 

appear [1, 2, 5]. However, aging is the principle risk factor for Parkinson’s disease. In 

addition to age, gender also influences the incidence of PD as several of the studies found 

evidence of a higher incidence in men than in women [2, 8, 12, 13]. 

PD is a complex multifactorial disorder, which probably results from an elaborate 

interplay of mostly unknown factors: several genes, modifying effects by susceptibility 

alleles, environmental exposures and gene-environment interactions, and their direct 

impact on the developing and aging brain [1, 3, 6, 14, 15]. 

 

 

Figure 1.2 - Etiology of Parkinson’s disease [16]. 
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1.1.1.1 Environmental Factors 

Many environmental factors may increase the risk of developing PD, such as 

exposure to pesticides and herbicides, rural living, well-water consumption, heavy metal 

(copper, manganese, lead and iron) and solvent exposure, certain occupations, including 

welding and mining, and electromagnetic fields [5, 13, 17, 18]. By contrast, some 

protective effects have been described for cigarette smoking, caffeine intake, alcohol and 

use of anti-inflammatory agents. Nevertheless, it is not clear how these agents influence 

disease risk [5, 6, 13, 17]. 

A number of exogenous toxins have been associated with the development of 

parkinsonism, including trace metals, cyanide, lacquer thinner, organic solvents, carbon 

monoxide and carbon disulfide, as well as there has also been interest in the possible role 

of endogenous toxins such as tetrahydroisoquinolines and beta-carbolines [9, 19]. These 

toxins can be administered either systemically or locally, depending on the type of agent 

used and the species involved [18]. 

The most convincing evidence for an environmental factor in PD relates to the 

toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a by-product of the illicit 

manufacture of a synthetic meperidine derivative, with selective toxicity for dopaminergic 

neurons (Figure 1.3) [18, 19]. 

 

Figure 1.3 - MPTP neurotoxic process [20]. It was demonstrated that MPTP crosses the blood-brain barrier (BBB) 
and is taken up by glial cells where it is oxidized by monoamine oxidase B into a pyridinium species, before being 
converted into the neurotoxin 1-methyl-4-phenylpyridinium ion (MPP

+
) by further oxidation [8, 21]. MPP

+ 
is then 

taken up by dopamine transporter (DAT) into dopaminergic neurons of the substantia nigra, where it blocks 
mitochondrial complex I of the respiratory chain, leading to impaired energy metabolism, oxidative stress, 
proteasomal dysfunction and, eventually, death of dopaminergic neurons, similar to that found in PD [8, 19, 22]. 
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When administered, MPTP causes a ˪-3,4-dihydroxyphenylalanine (˪-DOPA) 

responsive parkinsonian syndrome, characterized by all of the basic symptoms of PD, thus 

representing the best PD-like phenotype obtainable in experimental animals [18]. A major 

limitation of the MPTP for studying PD, which is shared by the majority of toxins, is that 

the SNpc lesion is not accompanied by the formation of LB-like cytoplasmic inclusions, a 

crucial neuropathological hallmark of PD [18]. 

MPTP, MPP+ and certain pesticides, in particular paraquat (N,Nʹ-dimethyl-4,4ʹ-

bipyridinium dichloride) have structural similarities (Figure 1.4), although the mechanisms 

of action are quite different [18]. 

Paraquat is a non-selective bipyridyl contact herbicide. Because it is a charged 

molecule, paraquat does not cross the BBB [18]. In the cytosol, paraquat generates a lot 

of oxidative stress by acting as a redox cycling compound through of superoxide anion 

formation, as well as by impairing recycling of oxidized glutathione (GSH) to its reduced 

form, which hampers the efficiency of intracellular antioxidant systems [18]. Since this 

toxin has low affinity to mitochondrial complex I, dysfunction of this complex does not 

appear to play a significant role in neurotoxicity induced by paraquat [18]. 

 

Figure 1.4 - Structures of dopamine and major dopaminergic toxins used to replicate features of Parkinson’s 
disease in animal models [18]. 
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Rotenone (Figure 1.4) is a flavonoid found in the roots and stems of several plants 

and used as a broad-spectrum pesticide [18]. Due to its high lipophilicity, rotenone 

crosses the BBB, and once in the cell, it blocks complex I activity, causing formation of 

reactive oxygen species (ROS), and inhibits proteasome activity, generating proteolytic 

stress [18, 21]. In rats, rotenone caused the selective degeneration of nigrostriatal 

dopaminergic neurons and formation of LB-like cytoplasmic inclusions. A finding seen for 

the first time in the field of PD toxic models [21]. 

Current research in PD is mainly performed on animal models of PD induced by 

intoxication with MPTP, paraquat, rotenone and models of post-encephalitic 

parkinsonism. Although neither of which has fully reproduced the clinical and pathological 

features of true PD [1, 5]. 

1.1.1.2 Genetic Factors 

The mapping and identification of the first mutations responsible for Parkinson’s 

disease in 1996 showed that PD may be hereditary [14]. In the last 2 decades, molecular 

genetic analyses in PD families provided important insights in disease mechanisms related 

with PD pathology [15, 23, 24]. However, only about 5-10% of patients report a positive 

familial history of the total PD patients [14]. 

To date 28 different chromosomal regions more or less convincingly related to PD 

are known. In the current PD genetics nomenclature, 18 specific chromosomal locus, are 

termed PARK, and numbered in chronological order of their identification [14]. PARK loci 

are mostly associated with rare forms of younger onset disease that have clinical features 

distinguishing familial from sporadic cases, and many putative genetic risk factors (Table 

1.1) [6, 13]. For all of the loci, the causative gene has not yet been identified, nor do all of 

the identified genes contain causative or disease-determining mutations [14]. 

It is of note that some of the loci have been identified by genetic linkage analysis 

in large families, some based on the known function of the protein product of the gene 

they contain, yet others have been established by genome wide association studies 

performed on a population level [14]. 
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It is believed that identifying the consequences of PD genes mutations will lead to 

new therapeutic strategies, perhaps ones specifically designed for a particular mutation 

[25]. 

Table 1.1 - Parkinson’s disease-associated loci and genes [8, 14]. 

PARK loci Gene 
Map 

Position 
Inheritance Disease Onset Status and Remarks Mutations 

PARK1/ 

PARK4 
SNCA 4q21 

AD; rarely 

sporadic 
EO Confirmed 

A30P, E46K, A53T and 

genomic duplications/ 

triplications 

PARK2 Parkin 6q25-q27 AR; sporadic JO; EO Confirmed 

~170 mutations (point 

mutations, exonic 

rearrangements) 

PARK3 Unknown 2p13 AD LO 

Unconfirmed; may 

represent a risk 

factor 

Not identified 

PARK5 UCHL1 4p14 AD LO Unconfirmed 
One mutation in a single PD 

sibling pair 

PARK6 PINK1 1p35-p36 AR EO Confirmed 
~50 point mutations, rare 

large deletions 

PARK7 DJ-1 1p36.23 AR EO Confirmed 
~15 point mutations and 

large deletions 

PARK8 LRRK2 12q12 AD; sporadic LO Confirmed 

> 80 missense variants, >7 

of them pathogenic, 

including the common 

G2019S 

PARK9 ATP13A2 1p36 AR 
Juvenile KRS, 

EOPD 
Confirmed ~10 point mutations 

PARK10 Unknown 1p32 Unclear LO 
Confirmed 

susceptibility locus 
Not identified 

PARK11 GIGYF2 2q36-q37 AD LO 

Not independently 

confirmed; possibly 

represents a risk 

factor 

7 missense variants 

PARK12 Unknown Xq21-q25 Unclear LO 

Confirmed 

susceptibility locus; 

possibly represents a 

risk factor 

Not identified 

PARK13 Omi/HTRA2 2p13 Unclear LO Unconfirmed 2 missense variants 

PARK14 PLA2G6 22q12-q13 AR 

Juvenile ˪-dopa-

responsive 

dystonia-

parkinsonism 

Confirmed 2 missense mutations 

PARK15 FBXO7 22q12-q13 AR 

EO pakinsonian-

pyramidal 

syndrome 

Confirmed 3 point mutations 

PARK16 Unknown 1q32 Unclear LO 
Confirmed 

susceptibility locus 
Not identified 

PARK17 VPS35 16q11.2 AD LO Confirmed  

PARK18 EIF4G1 3q27.1 AD LO Unconfirmed  

Not 

assigned 
SCA2 12q24.1 AD for SCA2 Unclear  

Low-range interrupted CAG 

expansions in SCA2 

Not 

assigned 
GBA 1q21 AR for GD Unclear 

Confirmed 

susceptibility locus 
 

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; EO, early-onset; LO, late-onset; JO, juvenile-onset; GD, Gaucher’s 

disease; SCA2, spinocerebellar ataxia type 2; KRS, Kufor Rakeb syndrome. 
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The continued study of the cellular functions of each of the PD-related genes has 

indicated that protein misfolding, as well as dysfunction in the protein degradation 

systems, may play a crucial role in the cascade of deleterious events implicated in the 

neurodegenerative process of PD [7]. 

1.1.2 PD related Genes 

Only six of the 28 specific regions contain genes with mutations that conclusively 

cause monogenic PD. Monogenic PD is a form of the disease for which a mutation in a 

single gene is sufficient to cause the phenotype. These forms of PD are relatively rare, 

even collectively, mutations in these six genes explain only a limited number (3-5%) of 

disease occurrences [3, 14]. 

The discovery of disease-related genes, α-synuclein (SNCA), Leucine-rich repeat 

kinase 2 (LRRK2), Parkin (PARK2), PTEN-induced kinase 1 (PINK1), and DJ-1 (PARK7), has 

contributed substantially to the understanding of the molecular mechanisms involved in 

PD pathogenesis [6, 7]. 

1.1.2.1 Autosomal Dominant PD 

In autosomal-dominant disorders, one mutated allele of the gene is enough to 

cause the disease [14]. Similar to sporadic PD, autosomal dominant PD is principally 

related with mutations in SNCA and LRRK2. In these cases, the age of onset and pathology 

may quite-closely resemble idiopathic PD [14, 26, 27]. The pathogenic role of other 

dominant genes in PD, UCHL1, GIGYF2 and HTRA2, is still controversial, because they have 

not been found in other patients or appear to act as genetic risk factors (Table 1.1) [8]. 

The SNCA and LRRK2 genes and their corresponding proteins will be described in 

the following subsections. 

1.1.2.1.1 α-Synuclein (SNCA, PARK1/4) 

SNCA gene (114 kb), located on chromosome 4q21, has 6 exons coding for a small 

neuronal and abundant 140-amino acid (14 kDa) protein, α-synuclein (Figure 1.5) [3, 14, 

15, 28]. α-Synuclein consists of three domains: the amino-terminal region; a central 

hydrophobic domain; and an acidic, negatively charged carboxy-terminal domain, which 

contains an aggregation inhibition region [3, 14]. 
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α-Synuclein is expressed throughout the mammalian brain and enriched in 

presynaptic nerve terminals [3]. It is typically found as a natively unfolded, soluble protein 

in the cytoplasm or associated with lipid membranes [3, 15]. 

Without genetic changes, α-synuclein is an abundant protein and a main 

component of LBs in idiopathic PD [6, 15]. The exact biological function of α-synuclein in 

brain is still not fully understood, although there is evidence that implicates α-synuclein in 

neurotransmitter release and synaptic vesicle turnover at the presynaptic terminals [15]. 

SNCA was the first gene with mutations reported to cause autosomal-dominant PD 

[14]. These mutations have been linked to rare cases of familial PD, only explaining 

disease in about 2.5% of known unrelated affected carriers [3, 14, 15]. Patients with SNCA 

mutations usually have early-onset PD (EOPD), being age of onset below 50 years, with an 

initially good response to levodopa treatment [3, 6, 14]. 

However, the disease has a rapid progression and often presents with dementia 

and cognitive decline and sometimes with atypical clinical features such as prominent 

cognitive deterioration, central hypoventilation, myoclonus and severe postural 

hypotension [3, 6, 14]. Lewy bodies are present and spread through the substantia nigra 

and locus ceruleus, hypothalamus and cerebral cortex [14]. 

Only three different missense mutations as well as duplications and triplications of 

the entire gene have been reported [3, 14, 28]. The first missense mutation identified, 

A53T, seems to be the most frequent one and was found in one Italian, eight Greek, two 

 

Figure 1.5 - Schematic representation of the α-synuclein protein. The three pathogenic missense mutations are 
indicated above the protein organization and duplications or triplications of different genomic sizes below the 
protein. SNCA mutations might reduce the affinity of the protein for lipids, thus increasing the intracellular pool of 
proteins that, along with duplication and triplication of the gene, accentuates the tendency of the protein to form 
oligomers and later fibrillar aggregates. NAC, nonamyloid component [8]. 
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Korean, and one Swedish family as well as in one apparently sporadic PD patient of Polish 

origin [3, 6, 14, 15, 28]. A second missense mutation A30P was described in a German 

family with a typical PD phenotype [3, 6]. Finally, the E46K mutation was identified in a 

Basque family with parkinsonism that progressed to dementia with LBs, visual 

hallucinations and fluctuations in consciousness [6, 14, 28]. 

Seventeen duplications of the entire coding region of SNCA have been reported to 

date, 13 in PD families and 4 in sporadic cases; and triplications of the SNCA gene were 

also found in three independent families [14, 15]. 

While the three missense mutations in SNCA are very rare, multiplication of the 

gene appears to be a more common cause of PD [6, 15]. Gene triplication leads to earlier 

onset, more severe phenotype and faster progression of disease than duplication, 

indicating that disease severity is dependent on α-synuclein expression levels [6, 14, 28]. 

The mechanism by which common SNCA variants modify susceptibility for PD is 

not yet known [3]. However, there is evidence to suggest that SNCA alleles associated 

with increased PD risk are correlated with higher α-synuclein expression in vitro and in 

vivo [3]. 

All three missense mutations impair the amino-terminal domain and in vitro show 

an increased propensity for self-aggregation and toxic oligomerization into protofibrils 

and fibrils, compared with protein wild-type [3, 14, 15]. Therefore, the missense SNCA 

mutations possibly cause PD through a toxic gain of function, and LBs may represent the 

attempt to eliminate the cell of toxic damaged α-synuclein [14, 28]. 

1.1.2.1.2 Leucine-rich repeat kinase 2 (LRRK2, PARK8) 

LRRK2 is a large gene (144 kb) located on chromosome 12q12, consisting of 51 

exons coding for the LRRK2 protein (Figure 1.6) [3, 14, 15]. LRRK2 is a large 2527-amino 

acid (286 kDa) protein leucine-rich repeat kinase 2 that consists of a leucine-rich repeat 

toward the amino terminus of the protein and a kinase domain toward the carboxyl 

terminus with various conserved  functional domains in between [14]. LRRK2 has 

guanosine-5’-triphosphate (GTP)–regulated serine/threonine kinase activity and a scaffold 

protein function implied by the multiple protein–protein interaction regions [15, 28]. 



INTRODUCTION |13 
 

LRRK2 protein is found in the cytosol and mitochondrial outer membrane, plasma 

membrane, lysosomes, endosomes, transport vesicles, Golgi apparatus and synaptic 

vesicles, and its expression has been described in the central nervous system, heart, 

kidney, lung, liver, and peripheral leukocytes [3]. 

The exact biological function of LRRK2 remains unknown, because no physiological 

substrates have been identified so far, although it has been identified as a tyrosine 

kinase-like protein [3, 15]. 

LRRK2 was the second causal gene linked to autosomal dominant inherited PD and 

LRRK2 mutations are the most frequent known cause of late-onset autosomal dominant 

and sporadic PD, with a mutation frequency ranging from 2 to 40% in different 

populations [13, 14, 24]. The high mutation frequency in both familial and sporadic 

patients makes LRRK2 the most frequently mutated gene of the six major PD genes [15]. 

Clinically, LRRK2-linked PD usually shows mid-to-late onset, with an average age of 

onset in the 50-60 years and slow progression. The clinical signs and symptoms are 

heterogeneous but can resemble sporadic PD with a more benign prognosis, favorably 

response to levodopa therapy, and less dementia [13, 14]. The disease can show LB 

pathology, amyloid and tau pathology, neuronal loss without intracellular inclusions and 

motor neuron disease [3, 6, 14]. 

 

Figure 1.6 - Schematic representation of the LRRK2 gene and protein. The seven confirmed pathogenic mutations 
are indicated in red and the two Asian-specific risk factors in blue, above the protein organization. ARM, Armadillo; 
ANK, ankyrin repeat; LRR, leucine-rich repeat; Roc, Ras of complex proteins: GTPase; COR, COOH terminal of Roc. 
[8]. 
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PD-causing LRRK2 missense mutations were initially discovered in a German-

Canadian and American family as well as in four Basque families [6]. To date, more than 

80 variations in LRRK2 have been described, but only 7 mutations have been proven to be 

pathogenic based on co-segregation with the disease: R1441G, R1441C, R1441H, Y1699C, 

G2019S, I2020T and N1437H [6, 8, 15, 29]. 

The most frequent and best studied LRRK2 missense mutation is the G2019S, 

which occurs in 1-7% of PD patients of European origin, about 20% of Ashkenazi Jewish 

patients, and approximately 40% of North African Arabs with PD [6, 14, 28]. The mutation 

is present in sporadic and familial cases and can be clinically indistinguishable from each 

other [6, 28]. The most prominent phenotype of LRRK2 G2019S carriers is an asymmetric 

levodopa-responsive parkinsonism with common presence of tremor and a lower risk for 

cognitive impairment and olfactory dysfunction in comparison with non-carrier PD 

patients. However, atypical clinical symptoms can also be seen, such as marked 

autonomic dysfunction and dementia [6]. 

The remaining six pathogenic LRRK2 mutations are less frequent worldwide [6]. 

The R1441 codon constitutes a mutation hotspot with three different codon 

substitutions: R1441C, R1441G, R1441H [15]. 

Pathogenic changes in LRRK2 are clustered in 10 exons, mostly encoding the 

carboxy terminal region of the protein. For example, G2019S and I2020T mutants affect 

its kinase activity [14]. However, pathogenic mechanism leading to PD caused by LRRK2 

mutations is still unclear [14]. 

1.1.2.2 Autosomal Recessive PD 

In autosomal-recessive disorders two mutations, one on each gene copy (allele), 

are necessary to cause the phenotype [14]. 

Homozygous or compound heterozygous mutations in the recessive genes Parkin, 

PINK1 and DJ-1 are associated with heritable parkinsonism with early age at onset and, 

generally, no atypical signs [8]. These genes share similar clinical and pathological 

features and may serve similar cellular functions [30]. A fourth gene, ATP13A2, might also 

play a role in rare cases with early-onset PD. However, to date, Parkin and PINK1 are the 

genes most frequently associated with autosomal recessive early onset parkinsonism [8]. 
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Though the pathogenesis of the PD is unknown, it is likely that autosomal 

recessive PD is more critical in origin and perhaps principally focused on the mitochondria 

rather than a progressive protein folding disorder, and must thus be addressed carefully 

with regards to therapeutic intervention [30]. 

The Parkin, PINK1, and DJ-1 genes and their corresponding proteins will be 

described in the following subsections. 

1.1.2.2.1 Parkin (PARK2) 

Parkin is the second largest gene (1.38 Mb) in human genome. It is located on 

chromosome 6q25-q27 and has 12 exons coding for the Parkin protein, a 465-amino acid 

(52 kDa) protein E3-ubiquitin ligase (Figure 1.7) [3, 14]. 

Parkin is predominantly a cytosolic protein but also co-localizes to synaptic 

vesicles, the Golgi complex, endoplasmic reticulum, and the mitochondrial outer 

membrane [3]. 

Parkin was described to act as an E3-ubiquitin ligase that targets cytoplasmic 

dysfunctional or excessive proteins for proteasomal degradation and plays a role in 

receptor trafficking [1, 15]. Further, it was shown that under physiological conditions 

Parkin is involved in mitochondrial maintenance and might induce subsequent autophagy 

of dysfunctional mitochondria [15]. 

Parkin was the second identified PD gene and the first gene causing an autosomal 

recessive form of the disorder [14]. Parkin gene was identified in autosomal recessive 

forms of familial juvenile onset parkinsonism (AR-JP) in Japanese families [1, 31]. 

Mutations in the Parkin gene are the most frequent known cause of early-onset 

PD (<40–50 years). They account for 10-20% of sporadic early-onset PD patients, over 

50% of recessive familial forms, about 80% in those with onset before age 20 and they are 

very rare in those with onset after 50 years of age [1, 6, 8]. Together, homozygous and 

compound heterozygous mutations of Parkin are responsible for about 1.3-8.2% of early 

onset PD [6]. 

The disease is usually slowly progressive with an excellent response to 

dopaminergic treatment [14]. Although patients with Parkin-related parkinsonism exhibit 

loss of pigmented nigral dopamine neurons and gliosis, LBs are usually not observed [3, 6, 
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14, 28]. Dystonia is frequently present as well as hyperreflexia, sleep benefit, diurnal 

fluctuations and early development of dyskinesias. Less frequent atypical pathological 

findings in Parkin-associated PD include neurofibrillary tangles in the neocortex, 

brainstem and hippocampus [3, 6]. 

 

Figure 1.7 - Schematic representation of Parkin and the functional domains of the Parkin protein. (A) Pathogenic 
frameshift mutations are indicated above the transcript and protein organizations and missense mutations below; 
(B) Exonic deletions are represented above the transcript (red lines) and exonic duplications (green lines) or 
triplications (blue lines) below the transcript. UBL, ubiquitin-like; RING, really interesting new gene; IBR, in-
between-ring. [8]. 
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More than 170 different mutations have been identified throughout the sequence 

of this large gene, including alterations of all 12 exons, such as simple mutations like 

nonsense, missense and splice site mutations, small insertions/deletions (indels), as well 

as copy number variations (CNVs) of the promoter region and single or multiple exons [8, 

14, 15]. The most common mutations are deletions of exons 3 and 4, a point mutation in 

exon 7 (924C>T) and a single base pair deletion in exon 2 (255/256delA) [3]. 

Most Parkin mutations, including insertions and deletions, impact its E3-ubiquitin 

ligase activity leading to a loss of Parkin function [15, 28]. Further, many PD-linked point 

mutations alter Parkin wild-type cellular localization, solubility, or propensity to aggregate 

[3]. 

1.1.2.2.2 PTEN-induced kinase 1 (PINK1, PARK6) 

PINK1 gene (18 kb) is located on chromosome 1p35-p36, has 8 exons and encodes 

a 581-amino acid (63 kDa) phosphatase and tensin homolog (PTEN)-induced putative 

kinase 1 (Figure 1.8) [3, 14]. It consists of an amino-terminal mitochondrial targeting 

motif, a conserved serine–threonine kinase domain, and a carboxy-terminal auto-

regulatory domain [14]. It is a putative serine/threonine kinase and a mitochondrial 

protein located in the matrix and in the intermembrane space that is ubiquitously 

expressed in the brain and systemic organs [1, 3]. 

The PINK1 protein is involved in mitochondrial response to cellular and oxidative 

stress. This response is likely mediated by regulation of the calcium efflux, influencing 

processes such as mitochondrial trafficking, reactive oxygen species formation, 

mitochondrial respiration efficacy, and opening of the mitochondrial permeability 

transition pore as well as by interaction with cell death inhibitors and chaperones [15]. In 

addition, PINK1 is an important player in the alleged PINK1/Parkin pathway, regulating 

mitochondrial morphology and functionality in response to stressors [15]. PINK1 is 

stabilized on mitochondria with lower membrane potential, and as such, it recruits Parkin 

from the cytosol to mitochondria, where it becomes enzymatically active and initiates the 

autophagic clearance of mitochondria by lysosomes [14]. 

PINK1 is the second most frequent causative gene of autosomal recessive early-

onset parkinsonism after Parkin and may play an important role in sporadic PD [1]. The 
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frequency of PINK1 mutations is in the range of 1–9%, with considerable variation across 

different ethnic groups [14]. 

Although age of onset for PINK1-related PD is usually between 40-50 years, clinical 

features are similar to late onset PD, with slow progression, excellent response to 

levodopa, development of dyskinesias and in some instances dementia [3, 6]. Clinical 

features, such as prominent dystonia, sleep benefit and hyperreflexia, which were 

thought to be indicative of the phenotype associated with mutations in the Parkin gene, 

are also frequently reported in PINK1-associated parkinsonism [6]. Psychiatric 

comorbidity, especially anxiety and depression, is overrepresented in PINK1-associated 

PD [6]. Neuronal loss in the substantia nigra and LB pathology in PINK1-associated PD 

were comparable to idiopathic PD [6].  

The first mutations discovered were the G309D homozygous missense and a 

W437X truncating mutation found in the families of Spanish and Italian descent, 

respectively [3]. Since then, several mutations have been identified including point 

 

 
Figure 1.8 - Schematic representation of PINK1 and the functional domains of the PINK1 protein. Pathogenic 
frameshift mutations are represented above the transcript and protein organizations and missense mutations below 
the protein; rare deletions (above, red lines) including a deletion of the whole gene are also represented. MTS, 
mitochondrial targeting signal; TM, transmembrane. [8]. 
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mutations, indels, whole-gene or single/multiple exon CNVs located across the entire 

gene and truncating mutations [1, 3, 8, 15]. The largest total number of mutations was 

found in exon 7 and the most frequent mutation is Q456X [14]. Most mutations are 

isolated except for nine homozygous PINK1 mutations (Q129fs, A168P, R246X, Y258X, 

T313M, W437X, Q456X, D525fs and deletion of exons 6–8) for which recurrence in 

different families has now been observed [6, 15]. 

PINK1 mutations may cause loss of protein function in patients with recessively 

inherited forms of PD because most mutations are located in a highly conserved amino 

acid position in the protein kinase domain, demonstrating the importance of PINK1’s 

enzymatic activity in the pathogenesis of PD [1]. PINK1 wild-type appears to be important 

in neuroprotection against mitochondrial dysfunction and proteasome induced apoptosis, 

whereas the G309D mutation impairs this protective effect, possibly by interfering with 

adenosine diphosphate (ADP) binding and thus inhibiting kinase activity [3]. The E240K 

and L489P mutants disrupt PINK1’s protectivity by either enhancing the instability of the 

protein or disrupting the kinase activity of the protein [3]. Functional studies indicate that 

cells transfected with PINK1 mutants have disrupted mitochondrial membrane potential 

under stressful conditions [3]. 

1.1.2.2.3 DJ-1 (PARK7) 

DJ-1 gene (24 kb) is located on chromosome 1p36.23 and has 7 exons coding for a 

highly conserved 189-amino acid (20 kDa) protein (Figure 1.9) [3, 32, 33]. DJ-1 is a 

homodimer that belongs to the peptidase C56 family of proteins [34]. It is a cytosolic 

protein but can also localizes in the nucleus and translocate into the mitochondria [35, 

36]. DJ-1 is ubiquitously and abundantly expressed in most mammalian tissues including 

in the brain where it is found in both neuronal and glial cells [37]. However, DJ-1 does not 

appear to be an essential component of LBs [37]. 

DJ-1 was initially identified as an oncogene and described in association with male 

infertility in rats [8]. It is a member of the ThiJ/Pfp1 family of molecular chaperones, 

which are induced under oxidative stress conditions, playing a neuroprotective role [8, 

28]. DJ-1 might act as a redox-sensor protein, which can prevent the aggregation of α-

synuclein or as a reactive oxygen species scavenger through auto-oxidation, behaving as 
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an antioxidant [33, 38-43]. These proposed functions for DJ-1 could be particularly 

important in nigral dopamine neurons that are exposed to particularly high levels of 

oxidative stress [3]. 

Though the link between DJ-1 and oxidative stress may have been as early as 

2001, it was not until 2003 that a genetic linkage to PD was established [32]. DJ-1 is the 

third gene associated with early-onset autosomal recessive PD, and it is mutated in about 

1–2% of all EOPD cases, therefore it is the least common of the known causes of 

autosomal recessive parkinsonism [8, 29]. Given that DJ-1-linked PD seems to be rare and 

very few patients have been reported in the literature, there is limited knowledge on the 

clinical features, neuropathology, and genotype-phenotype correlation for DJ-1-related 

PD [3, 6, 14, 29, 44, 45]. Although DJ-1 mutations are rare even in early onset PD, recent 

studies suggest that DJ-1 protein might play an important role in sporadic late-onset PD 

[3]. Because of the rarity of mutations in DJ-1, most studies have not analyzed their PD 

patient groups, making it highly likely that putative pathogenic mutations have been 

missed and that the current mutation frequency of DJ-1 is an underestimate [15]. 

The onset age for DJ-1-related PD ranges from 20 to 40 years [41, 44, 45]. The DJ-

1-related phenotype seems to be comparable though to other forms of autosomal 

 

 
Figure 1.9 - Schematic representation of DJ-1 and the functional domains of the DJ-1 protein. 
Pathogenic frameshift mutations are indicated above the transcript and protein organization and 
missense mutations below the protein; rare deletions (red lines) and duplications (green lines) (above) are  
also represented [8]. 
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recessive parkinsonism (Parkin- and PINK1-related PD) [6]. Patients with DJ-1-linked 

parkinsonism have shown a slow disease progression, dystonic features, including 

blepharospasm and laterocollis, brisk tendon reflexes, dementia with behavioral 

abnormalities, amyotrophic lateral sclerosis, dystonic features, psychiatric abnormalities, 

short statue, and brachydactyly [3, 6, 32, 46, 47]. 

Mutation analyses in patients identified homozygous, compound heterozygous as 

well as heterozygous missense mutations in coding and promoter regions, splice site 

mutations and exonic deletions, that collectively appear to result in loss of protein 

stability and subsequent function of the DJ-1 protein [8, 32, 41, 45, 48]. To date, about 15 

different point mutations and exonic deletions have been described, mostly in the 

homozygous or compound-heterozygous state [8]. A large homozygous deletion of DJ-1 

exons 1-5 and a homozygous missense mutation, L166P, were first identified in a Dutch 

and an Italian family, respectively [32]. Heterozygous DJ-1 missense mutations have also 

been reported in PD patients, but their role in PD pathogenesis is not clear [41, 48-50]. 

The mutated proteins are frequently not properly folded, unstable, and quickly 

degraded by the proteasome [14]. Thus, their neuroprotective function and antioxidant 

activity are reduced [51, 52]. 

1.1.3 Parkinson’s Disease Pathogenesis 

The pathogenic mechanisms that underlie Parkinson’s disease remain unknown. 

However, it is known that a cascade of events leading to cell death contributes for the 

pathogenesis of PD [13]. This cascade includes oxidative stress, impaired mitochondrial 

function, protein misfolding and aggregation due to ubiquitin–proteasomal system (UPS) 

dysfunction, impaired lysosome and chaperone-mediated autophagy and other 

pathogenic dysfunctions [2, 7, 13]. 

The pathogenic factors cited above are not mutually exclusive, and one of the key 

aims of current PD research is to elucidate the sequence in which they act and whether 

points of interaction between these pathways are key to the death of SNpc dopaminergic 

neurons [53]. 

The understanding of PD pathogenesis has been greatly advanced by studies of 

toxic PD models and by genetic studies of disease-causing mutations in cell and animal 
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models [28]. Studies of genes linked to autosomal recessive PD, namely Parkin, PINK1 and 

DJ-1, demonstrate that mitochondrial dysfunction, oxidative stress and an unbalance in 

protein homeostasis (characterized by an increase in protein misfolding and aggregation 

accompanied by an impaired removal of misfolded proteins due to impairment of the 

UPS) may represent the principal molecular pathways that commonly lead to neuronal 

degeneration and clinical PD [4, 21, 22, 28, 54]. These processes are being intensively 

examined, partly in the hope that they will shed light on PD [22].  

1.1.3.1 Mitochondrial Impairment 

Mitochondrial homeostasis is essential for maintaining neuronal function, such as 

neuronal signaling, plasticity and transmitter release, and there are different pathways to 

maintain its homeostasis [55].  

The dysfunction of mitochondria has been implicated in the pathogenesis of a 

wide range of neurodegenerative diseases, including PD [22, 56, 57]. However, the link 

between mitochondrial dysfunction and PD is not yet clearly elucidated, and therefore 

further studies are necessary to elucidate the origin of the mitochondrial dysfunction 

found in PD [58]. 

The idea that mitochondrial dysfunction may be central to PD emerged with the 

discovery of the mechanism of action of the environmental toxin MPTP [4, 8, 21]. 

Environmental toxins, such as MPTP and rotenone, inhibit complex I of the mitochondrial 

electron transport chain (mETC) and its administration in vivo mimics the pathological and 

behavioral hallmarks of PD and in vitro alters mitochondrial dynamics [21, 22, 59]. A 

mitochondrial complex I defect could contribute to neuronal degeneration and lead to 

cell damage caused by free radicals generated directly at this site or by way of a 

compensatory increase in respiration at complex II as well as to apoptosis through 

decreased ATP synthesis and a bioenergetic defect [19, 53, 54].  

Complex I activity were reported to be reduced, in the range of 20-30%, in post-

mortem substantia nigra, frontal cortex and platelets of PD patients [4, 8, 21]. 

Mitochondrial dysfunction may also affect other peripheral tissues, including skeletal 

muscle, and other non-neuronal tissues. Further, it may not be restricted to complex I [4, 
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8]. Apart from dopaminergic endotoxins there are several other explanations proposed in 

the literature for a decrease in complex I activity in PD [21]. 

A recent meta-analysis that combined gene expression data from numerous PD 

studies found that the expression of ten sets of genes differs between PD and control 

DAergic SNpc cells [21]. Another possibility that could underlie the mitochondrial defects 

seen in PD is the accumulation of point mutations and deletions in complex I genes in the 

mitochondrial DNA (mtDNA) [21, 56].  

A host of studies have addressed the functions of proteins linked to PD in 

maintaining mitochondria homeostasis in cultured cells, flies and mice, which further 

supports a causal relationship between abnormal mitochondrial homeostasis and PD [55, 

57].  

Increased PD risk has been linked to mutations in SNCA, LRRK2, Parkin, PINK1, and 

DJ-1 genes, and the proteins encoded by these genes have been, directly or indirectly, 

implicated in maintaining mitochondrial homeostasis, including membrane potential, 

calcium (Ca2+) homeostasis, cristae structure, respiratory activity, mtDNA integrity and 

autophagy-dependent scavenging of dysfunctional mitochondria [55-58]. 

Current evidence suggests a connection between α-synuclein and mitochondria. 

Complex I inhibition both in vitro and in vivo leads to the accumulation of LB-like α-

synuclein-positive inclusions, which suggests that α-synuclein aggregation may be a 

consequence of mitochondrial dysfunction and might be an effector of neuronal cell 

death [54]. Nevertheless, whether mitochondrial dysfunction is the cause or effect of 

protein aggregation in PD is still controversial [58].  

PINK1 is the first gene to directly link mitochondria to PD, and it can partially 

protect against mitochondrial dysfunction induced by proteasome inhibition [54]. In 

Drosophila models of PINK1, several studies strongly suggested that PINK1 and Parkin act 

in a common pathway that influences mitochondrial integrity in a subset of tissues [22]. A 

coherent hypothesis is that these two proteins might act directly at the mitochondria, 

through their respective phosphorylation or ubiquitination activities [22].  

There is less evidence for a direct role of DJ-1 in mitochondrial function. 

Nevertheless, the fact that neurons with reduced levels of endogenous DJ-1 and 
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Drosophila DJ-1 mutants exhibit increased sensitivity to environmental mitochondrial 

toxins associated with PD may indicate a role for DJ-1 in mitochondrial function [22]. 

Further, in human dopaminergic neuroblastoma cells, DJ-1 knock-down leads to 

mitochondrial depolarization and fragmentation, also suggesting that DJ-1 is important 

for maintaining the integrity and function of the mitochondria [60, 61]. DJ-1 is necessary 

for mitochondrial complex I to exert its enzyme activity but DJ-1 alone is not sufficient to 

maintain activity of complex I [62]. Since DJ-1 possesses no mitochondrial import signal, it 

is thought that DJ-1 is translocated into complex I in association with another protein(s) 

that possesses mitochondrial import signals [62]. The DJ-1 protein has been recently 

proposed to act in parallel with PINK1 and Parkin to control mitochondrial function, 

morphology, and mitophagy [58].  

Additional studies are needed to probe the molecular bases of DJ-1 protection 

against mitochondrial dysfunction and cell death and to examine the relationship 

between DJ-1, PINK1, and Parkin in the context of PD pathogenesis [28].  

Although it remains to be shown whether mitochondrial alterations in PD 

constitute a primary or a secondary event, or are just part of a larger multifactorial 

pathogenic process, both toxin models and genetic links of PD are providing clues to the 

interplay of mitochondrial function, mitochondrial dynamics, and PD pathogenesis. The 

targeting of mitochondrial dysfunction holds promise for the development of novel 

therapeutic strategies aimed at stopping or slowing down the progression of 

dopaminergic neurodegeneration in this currently incurable neurodegenerative disorder 

[59, 63]. 

1.1.3.2 Oxidative Stress 

Oxidative stress is considered to compromise the integrity of vulnerable neurons 

and thus to contribute to several neurodegenerative disorders [54, 64]. It is well accepted 

that the redox imbalance in PD is not a secondary end-stage epiphenomenon but a 

driving force of the onset and progression of the disease [64].  

The source of oxidative stress, which could develop in the SNpc, is unclear, but 

may include mitochondrial dysfunction; increased dopamine metabolism that can yield 

excess hydrogen peroxide (H2O2) and other reactive oxygen species; a deficiency in the 



INTRODUCTION |25 
 

antioxidant glutathione, thereby diminishing the capacity of the brain to remove H2O2; 

and an increase in reactive iron, which can generate highly toxic hydroxyl radicals (OH˙) 

via interaction with H2O2 [19, 21, 54].  

Indeed, post-mortem studies in PD brains demonstrate increased iron, decreased 

antioxidant GSH, and high levels of oxidative damage to lipids, proteins, and DNA, 

suggesting that the SNpc is in a state of oxidant stress [19, 21, 22, 54, 64]. Therefore, if 

ROS are not efficiently eliminated by cellular antioxidants, the cellular components 

become damaged by oxidation, which in turn leads to further oxidative stress, cellular 

dysfunction, and even cell death [58, 65]. 

Dopaminergic neurons in the substantia nigra have high levels of pro-oxidant iron, 

that can promote ROS production, and low levels of glutathione, hence they are 

particularly vulnerable to oxidative stress and oxidative stress-induced somatic mtDNA 

mutations [56]. 

Mitochondria consumes about 85–95% of the oxygen inspired during respiration, 

and powerful oxidants are normally produced as by-products, including H2O2 [53, 58]. 

Thus, the electron transport chain in mitochondria is a major source of ROS in eukaryotic 

cells [4, 21, 64]. Increased formation of mitochondrial ROS and/or defective ROS removal 

by mitochondrial defense systems results in oxidative damage to mtDNA, proteins and 

lipids and perturbs redox signaling pathways [4]. Oxidative damage to mtDNA may 

compromise respiratory chain subunits encoded by mtDNA, thereby establishing a vicious 

circle of oxidative stress and bioenergetics failure [4, 53]. Therefore, mitochondrial 

dysfunction, more specifically inhibition of complex I, is probably the leading source of 

increased oxidative and nitrosative stress observed in the brain of PD patients [53, 54, 

58].  

Mitochondria-related energy failure may disrupt vesicular storage of DA, causing 

the free cytosolic concentration of DA to rise and allowing harmful DA-mediated reactions 

to damage cellular macromolecules [53, 64]. Thus, DA may be essential to make SNpc 

dopaminergic neurons particularly susceptible to oxidative stress [53].  
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Glutathione depletion is one of the earliest oxidative signs detected in the course 

of PD and indicates that oxidative damage can occur even before complex I deficiency 

[58].  

Recent evidence has revealed that ROS are not simply subproducts of 

mitochondrial metabolism. Under normal conditions they have important physiological 

functions, as signaling molecules in diverse cellular pathways [4, 21, 58]. Moreover, a mild 

increase in ROS formation may activate protective stress response pathways [4]. Hence, 

the common paradigm that mitochondrial dysfunction is intimately linked to increased 

oxidative stress which promotes neurodegenerative diseases is not unequivocally 

accepted [4].  

Oxidative stress appears to provide a critical link between exposure to 

environmental factors, such as drugs and pesticides or heavy metals, and genetic factors 

predisposing to PD [64]. Environmental toxins, such as paraquat, rotenone, and MPTP, 

are capable of generating reactive intermediates with the ability to directly react with 

biological macromolecules in processes such as thiol alkylation, carbonylation, nitration, 

and lipid peroxidation [64, 65]. 

Among several genes mutated in familial PD, only DJ-1 plays a direct role in 

oxidative defense mechanisms of SNpc [64]. Oxidative stress causes an acidic shift in the 

isoelectric point of DJ-1 suggesting self-oxidation, therefore it functions as an antioxidant 

[22, 33, 43]. Embryonic stem cells deficient in DJ-1 display increased sensitivity to 

oxidative stress [66]. Perhaps, as a secondary consequence of increased ROS production, 

DJ-1 regulates mitochondrial morphology and function and mitigates cell death through 

direct scavenging of H2O2, because DJ-1 has peroxiredoxin-like peroxidase activity [57, 

67]. 

Other PD-related gene products, like Parkin and PINK1, may indirectly control 

oxidative status of the cell by removing dysfunctional mitochondria, that if not removed 

may in turn lead to an increase in cellular ROS levels and to the bioenergetics defects 

frequently observed in PD [58, 64]. 

Future analysis of post-mortem brain tissue from monogenic forms of PD and 

genetic animal models, including DJ-1 or PINK1 knockout mice, may help to clarify further 
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the molecular pathway linking PD with mitochondrial dysfunction and oxidative stress 

[54]. 

 

1.2 Role of DJ-1 

DJ-1 is an evolutionarily conserved, 189-residue protein with approximately 20 

kDa containing eight α-helices (α1-α8) and eleven β-strands (β1-β11), adopting a helix-

strand-helix sandwich structure [52]. It is a member of the DJ-1/ThiJ/PfpI superfamily of 

proteins, which are conserved in a wide variety of organisms [52]. 

DJ-1 protein forms a dimeric structure under physiologic conditions. Although 

most of the residues involved in the dimerization are highly conserved, DJ-1 and its 

closest homologues share a peculiar dimerization pattern in the superfamily, which is 

partially determined by the presence of an additional C-terminal helix [68, 69]. A putative 

active site has been identified close to the dimer interface, with some similarities to the 

active site of cysteine proteases and the residues C106, H126, and E18 being likely 

involved [68]. 

DJ-1 is ubiquitously and highly expressed, particularly in liver, skeletal muscle, 

kidney, pancreas, testis and heart. It is detected at slightly lower levels in placenta and 

brain. Moreover, it can be detected in astrocytes, Sertoli cells, spermatogonia, spermatids 

and spermatozoa. In the brain, its expression is also ubiquitous, with higher levels of the 

transcript in subcortical regions, such as the caudate nucleus, the thalamus, the 

substantia nigra, and the hippocampus, that are more affected in PD [32, 35, 37]. 

Under normal conditions, DJ-1 is located predominantly in the cytoplasm and, to a 

lesser extent, in the nucleus and mitochondria. In response to oxidative stress, DJ-1 

translocates to the mitochondria and also to the nucleus and exerts an increased 

cytoprotective effect against oxidative damage [33, 70].  

The exact function of DJ-1 remains unknown. However, it has been involved in 

processes as different as cell cycle regulation and oncogenesis, male fertility, control of 

gene transcription, regulation of mRNA stability, and response to cell stress [68]. 

Functional studies and mass spectrometry indicated that DJ-1 is an atypical 

peroxiredoxin-like peroxidase that scavenges reactive oxygen species through oxidation 
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of C106 to cysteine-sulfinic acid (C106-SO2
-), behaving as an antioxidant [67, 71]. This 

modification plays a key role in regulating the protective function of DJ-1 [72, 73]. 

Cysteine can form three different species: cysteine-sulfenic (-SOH), -sulfinic (-SO2H), and –

sulfonic (-SO3H) acid [72]. Of the three oxidation states of cysteine, only cysteine-sulfenic 

acid is readily reduced to the thiol under physiological conditions [72]. Because cysteine 

can be oxidized to three distinct species, each with different structural and chemical 

properties, cysteine oxidation is a way for reactive oxygen species to alter the DJ-1 

activity, and therefore DJ-1 has special importance in understanding the role of regulatory 

cysteine oxidation in neuronal survival [72]. In this way, C106 controls the 

neuroprotective function of DJ-1 [33, 74, 75]. The oxidation of C106 to sulfinic acid is 

essential for the ability of DJ-1 to respond to oxidative stress by binding to mitochondria 

or by suppressing α-synuclein fibrillization via a chaperone mechanism [76, 77].  

It was also shown that DJ-1 undergoes cleavage of a C-terminal peptide that leads 

to activation of protease activity in response to oxidative stress and enhanced 

cytoprotective action against oxidative stress-induced apoptosis [78]. In addition, it was 

shown that DJ-1 may also function as a redox-sensitive chaperone [79]. Therefore, DJ-1 

mutations in autosomal recessive early-onset PD lead to loss of the DJ-1 function 

contributing to neurodegeneration [68]. 

DJ-1 might be involved in the cellular stress response at multiple levels. It might 

directly react to stress signals, as redox changes and misfolded proteins, by a chemical 

shift and/or change in multimerization state. It might also modulate the gene-expression 

of the stress response at post-transcriptional level, by the known interaction with RNA-

binding protein complexes [80]. Moreover, DJ-1 might translocate to the nucleus in 

response to stress signals, where it might interact with PIASx-alfa, a modulator of the 

nuclear androgen receptor, or other co-factors, and modulate the gene expression at the 

transcriptional level [68, 81]. 

DJ-1 protects against neuronal oxidative stress, and although loss of DJ-1 alone 

may not be sufficient to produce parkinsonism, it may confer hypersensitivity to 

dopaminergic insults when challenged [82]. 
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A more detailed understanding of the mechanism by which DJ-1 can protect 

against stresses is still needed to better understand the activities of this protein and its 

role in neurodegenerative Parkinson’s disease [83]. 

 

1.3 DJ-1 Mutations 

Mutations in the DJ-1 protein are associated with a recessive form of early onset 

familial PD [84]. Despite the rare incidence of DJ-1 mutations in PD, the study of DJ-1 

biology can provide important clues to altered cellular pathways in PD. Thus, 

understanding how the causative DJ-1 mutations interfere with the structure, function, 

and localization of DJ-1 protein is of critical importance [84]. 

For PD-linked DJ-1 mutations that lead to changes in the amino acid sequence of 

the intact protein, functional effects are likely to be fundamentally mediated by 

associated changes in the physicochemical properties of the mutant proteins [51]. In 

general, mutations can interfere with protein function through a variety of mechanisms 

[51]. At one extreme, mutations can lead to global destabilization and unfolding of a 

protein, which is usually associated with complete loss of function, at least for proteins 

that require a well folded conformation to carry out their biological activities [51]. At the 

other extreme, mutations can lead to subtle changes on the protein’s surface that can 

modulate its interactions with binding partners in ways that compromise its function 

without perturbing its structure [51]. Intermediate effects are also possible, where the 

conformation of a protein can be locally (or globally) altered in ways that do not lead to 

complete global unfolding but nevertheless perturb structural (or dynamic) properties 

that are crucial for function [51]. The known PD-linked DJ-1 mutations cover the entire 

range of potential effects on the structure of the protein [51]. 

To date, a variety of pathogenic homozygous, compound heterozygous and 

heterozygous DJ-1 mutations have been reported (Table 1.2), including a 14 kb deletion 

englobing the first five exons, as well as the L166P, M26I, E163K, A104T, and E64D 

missense mutations [85, 86]. Among these, homozygous and compound heterozygous 

mutations may trigger a loss-of-function, the presumed cause of their pathogenicity, and 
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they are clearly associated with early onset PD, while it is unclear if heterozygous 

mutations are causative of PD [84, 86]. DJ-1 point mutations are distributed throughout  

the DJ-1 structure [91]. Therefore, even minor perturbations to the structure of DJ-1 can 

result in impairment of function sufficient to cause disease [91]. 

Table 1.2 – Mutations occurring in the DJ-1 gene [45, 47-49, 84, 87-90]. 

Mutation Inheritance 
Average Age of 

disease onset 

Ethnic group 

affected 
Effect 

Year 

reported 

14 kb 

deletion 
Homozygous 32.6 Dutch Loss of protein 2003 

L166P Homozygous 30 Italian Protein instability 2003 

M26I Homozygous 39 
Ashkenazi 

Jewish 
Decreased stability 2003 

A104T Heterozygous 35 Latino Unknown 2003 

D149A 

 

G78G 

Compound 

Heterozygous 
36 Afro-Caribbean Unknown 2003 

R98Q Heterozygous <50 Global Polymorphism 2003 

c.56delC 

c.57GA 

IVS6-1 G-C 

Compound 

Heterozygous 
24 Hispanic 

Frame shift 

Altered transcript 
2003 

E64D Homozygous 34 Turkish Unknown 2004 

E163K Homozygous 31.6 Italian Altered activity 2005 

L10P Homozygous 18.5 Chinese 

Decreased stability and 

impaired homodimer 

formation 

2008 

P158DEL Homozygous 33.8 Dutch 

Decreased stability and 

impaired homodimer 

formation 

2009 

A179T Heterozygous 47 Dutch Unknown 2009 

Exon1-5 

duplication 
Heterozygous 46 Dutch Unknown 2009 

g.168_185 

deletion 
Heterozygous  Global Polymorphism 2003 

g.168_185 

duplication 
Homozygous 31.6 Italian Unknown 2005 

c.253-322 

deletion 
Heterozygous 45 Serbian Unknown 2004 

Exon 5-7 

deletion 
Heterozygous  Italian Altered transcript 2004 

IVS5+2-12 

deletion 
Heterozygous  Russian Altered transcript 2004 

A107P 

IVS2-2 A-G 
 <31 Iranian Unknown 2010 

A171S Heterozygous 68 
African 

American 
Unknown 2004 
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The L166P, E64D, M26I, A104T, and D149A mutations have been shown to create 

structural perturbations of DJ-1 protein that lead to global destabilization, unfolding of 

the protein structure, heterodimer formation, or reduced antioxidant activity [51, 52, 92]. 

Some DJ-1 mutations associated with disease or artificial mutants deficient in oxidative 

signaling have the common effect of being unable to protect cells against oxidative 

damage [93]. 

Despite notable progress made in the characterization of some pathological 

mutations in DJ-1, detailed studies of the folding and conformational dynamics of DJ-1, as 

well as, a detailed structural explanation for the observed deleterious effects of disease-

associated missense mutations on DJ-1 are still lacking [91]. So, it will be necessary to 

further characterize in greater detail the structure and dynamics of the mutants, and to 

characterize more fully their functional effects in situ and in vivo [51]. A detailed 

biophysical characterization of DJ-1 should be done to realize the impact of disease-

associated mutations on the protective function of the protein, as well as, an improved 

understanding of how DJ-1 inactivation takes place in, and contributes to PD should 

emerge [51, 91]. 

 

1.3.1 Natural Mutations 

 This study will focus on three naturally occurring homozygous PD-linked DJ-1 

mutations: L166P, M26I and E163K, further described in the following subsections. 

1.3.1.1 Leu166Pro (L166P) 

In a consanguineous Italian family with autosomal recessive early-onset Parkinson 

disease, it was identified a homozygous 497T-C transition in exon 7 of the DJ-1 gene, 

resulting in the substitution of a highly conserved leucine residue for a proline at position 

166 (L166P) of the DJ-1 protein [32]. The clinical phenotype was characterized by a slow 

disease progression with additional behavioral and psychic disturbances, and dystonic 

features, including blepharospasm [32]. 

L166P is one of the most extensively investigated and deleterious DJ-1 polymorphs 

[52]. L166 is located in the center of α-helix 7 of the protein, near the dimer interface 

[34]. This helix is part of a hydrophobic core formed by three helices (two contributed by 
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the C-terminal and one by the N-terminal part of the monomer), which is involved in the 

dimerization of the protein [68]. The L166P substitution significantly destabilizes the 

dimer interface, interrupting over 100 intermolecular contacts that are important for 

dimer formation [52]. Therefore, this mutation is predicted to lead to the unfolding of the 

C-terminal domain of DJ-1 as well as to disrupt dimer formation due to the strong helix 

breaking properties of the substituted proline [34, 52, 68, 93].  

In vitro, this mutation leads to a drastic reduction in the secondary structure 

content critical for protein stability and dimerization, namely α-helical content, suggesting 

that the structure of the mutant protein is globally and severely perturbed [51]. L166P 

also disrupts α1, α5, α6 and α8 helices with α8 undergoing particularly severe disruption 

[52].  

The L166P substitution also led to major perturbations in the region of a highly 

conserved cysteine residue (C106) that participates in dimerization and that is critical for 

a proposed chaperone function of DJ-1 [52]. Indeed, L166P has been shown to abrogate 

DJ-1 chaperone activity, as a consequence of defective dimerization and reduced stability 

[51, 52]. C106 is located nearly to the residue 166 and the N-terminal region of α1, a key 

mediator of dimer formation, demonstrating that structural disruptions propagate 

throughout the whole protein [52]. These findings indicate that the structural effects of 

the L166P substitution in DJ-1 are not confined to the vicinity of the substitution, but 

propagate rapidly throughout the protein [52]. 

The DJ-1 L166P is incapable of forming a stable homodimer with itself and a 

heterodimer with DJ-1 WT, and since helices α7 and α8 are known to help mediate 

dimerization, the failure to form a dimer in solution is consistent with the finding that 

L166P perturbs the structure of one or both of these helices [52]. 

Because L166P mutant does not appear to exist as homodimers in solution, 

contrary to the native DJ-1, but only as rapidly degraded monomers, it is suggested that 

protein destabilization accounts for the dysfunction of this mutant in vitro and in vivo [69, 

76, 93, 94]. 

In cell culture, the L166P mutant is drastically unstable. It is expressed at much 

lower steady-state levels than the protein wild-type and exhibits a greatly increased 
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turnover rate [69, 84, 86, 93, 95, 96]. The structural perturbation of DJ-1 induced by the 

L166P substitution causes the protein to be ubiquitinated, implying a role for the 

ubiquitin-proteasome system in the turnover of this mutant, although degradation by 

non-proteasomal pathways are likely involved as well, significantly reducing the half-life 

of the protein in vivo. However, these effects are partially, but not fully abrogated by 

proteasome inhibitors [51, 52].  

The L166P mutation severely perturbs DJ-1 protein structure, resulting in the 

formation of a spontaneously unfolded protein [84]. DJ-1 L166P also forms high 

molecular-weight complexes containing DJ-1 oligomers or aggregates with other proteins 

in cell culture, probably because of its inability to adopt a stable, dimeric structure [52, 

76]. Structural disruptions of DJ-1 L166P are associated with a large increase in the total 

hydrophobic surface area relative to protein wild-type, possibly explaining the tendency 

of the mutant protein to aggregate [52]. 

The L166P mutant appears to adopt an altered cytoplasmic distribution. It has 

shown reduced nuclear localization, since it partially mislocalizes or is sequestered to 

mitochondria, suggesting a possible link to oxidative stress [32, 69, 80, 94].  

A number of studies also demonstrated that the pathogenic DJ-1 L166P mutant 

insufficiently protects against oxidative stress, since it has a reduced antioxidative activity 

[83, 92]. Indeed, DJ-1 L166P is ineffective in eliminating H2O2 within cells or protecting 

cells from death induced by H2O2 [66, 82, 91, 92, 95]. Therefore, probably consequent to 

instability, L166P reduces the neuroprotective function of DJ-1 [43]. It was also observed 

that the L166P mutation in DJ-1 originates fragmented mitochondria and elevated 

markers of autophagy [71]. 

Although this severe destabilization of the L166P leads to an increased rate of 

degradation in vivo, the primary cause of the loss of function associated with this mutant 

is the loss of the protein’s native structure, therefore the rapid degradation of the protein 

in vivo is a secondary effect [51]. 

1.3.1.2 Met26Ile (M26I) 

In an Ashkenazi Jewish patient with early-onset Parkinson’s disease, it was 

identified a homozygous 78G-A transition in exon 2 of the DJ-1 gene, resulting in a 
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methionine to isoleucine substitution at position 26 (M26I) of the DJ-1 protein [41]. The 

clinical phenotype was characterized by right-sided rigidity, bradykinesia, classical pill 

rolling rest tremor, dystonia, dyskinesia and psychological disturbance, particularly 

anxiety [41]. 

M26 is a conserved residue located in α-helix 1, which is a central feature of the 

DJ-1 dimer interface [76]. Thus, a perturbation of structure in this helix disrupts the 

contacts at this interface and leads to the decrease in the stability of the dimer [76]. Since 

M26I resides in the core of the protein it must exert its pathogenic effect by directly 

altering the properties of DJ-1 [91].  

The M26I mutation does not result in a significant change in side chain 

conformation at the site of the substitution [91]. The modest disruption of hydrophobic 

packing contacts around I26 is a consequence of introducing a β-branched amino acid in 

the tightly packed hydrophobic core of the protein [91]. In addition, the M26I substitution 

creates a small cavity with consequent loss of optimal packing contacts in the interior of 

the protein due to the loss of the Cε and Sδ atoms of M26 [91].This cavity permits greater 

conformational flexibility in the core of DJ-1 and likely contributes to the modest thermal 

destabilization of DJ-1 M26I [91]. 

In addition, the M26I mutant has a decrease in secondary structure that might be 

expected to result from an alteration of the C terminus of α-helix 1 and the N-terminal 

regions of the three affected β-strands, as well as an alteration in the C-terminal region of 

α-helix 7 and a part of helix 8 [51]. 

The M26I mutant is able to adopt the dimeric wild-type fold, although less stable 

than the wild-type [84, 86]. The instability of these dimers leads to 

aggregation/precipitation as well as significantly increased turnover rate of this mutant in 

cells relative to all known DJ-1 mutants, except the highly unfolded L166P variant, which 

probably may be the fundamental cause of the loss of function of this DJ-1 mutant [51, 

91, 93]. In addition, the expression levels of the M26I mutant are dramatically decreased 

in cell lines, though to a lesser degree than the L166P mutant [84]. 

However, there are conflicting data regarding the stability of the M26I mutant. 

While some studies showed that DJ-1 M26I is well-structured in solution and in the 
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crystal, another studies showed that DJ- 1 M26I has reduced secondary structural content 

and displays a pronounced tendency to aggregate [91]. 

As there is no direct structural perturbation near C106, this mutant may be 

functional. However, chemical shift changes in charged residues near M26 may reflect 

alterations that influence C106 oxidation and thereby underlie the reported effects of this 

mutation on the stability of the oxidized form of the protein [76]. It is known that the 

M26I mutation may preferentially destabilize more extensively oxidized forms of DJ-1, 

namely DJ-1 containing cysteine-sulfonic acid and methionine sulfoxide, thereby 

enhancing the loss of properly folded DJ-1 under conditions of cellular oxidative stress 

[91]. 

The M26I mutant also displays reduced protection against oxidation stress despite 

the ability to form stable dimers [91]. However, it is unclear if the reduced protection 

against oxidative stress by the M26I mutation is simply associated with reduced half-life 

or perhaps with an increased propensity for the M26I mutant protein to aggregate [83]. 

1.3.1.3 Glu163Lys (E163K) 

In 3 affected sibs from a consanguineous southern Italian family with early-onset 

parkinsonism, it was identified a homozygous 3385G-A transition in exon 7 of the DJ1 

gene, resulting in the substitution of a highly conserved glutamic acid by a lysine at 

position 163 of the DJ-1 protein [47]. Patients develop parkinsonism, dementia, severe 

amyotrophic lateral sclerosis, weakness and muscle atrophy, speech deficits, and 

cognitive impairment [47].  

Very little is known about the effects of the E163K point mutation on DJ-1 [91]. 

E163 is in close proximity of L166, and both residues are located in α-helix 7, which is one 

of the helices in the dimer interface of DJ-1 and it is critical in forming stably folded 

protein [83]. However, unlike L166P, this mutation remains the ability of DJ-1 to dimerize 

[83]. The E163K mutation clearly does not cause the dramatic structural changes of the 

L166P mutation, but the fact that E163 is highly conserved in DJ-1 across species 

accentuates the importance of this residue [83]. 

It has been previously shown that some pathogenic mutants of DJ-1 like M26I are 

structurally similar to DJ-1 WT in the ability to form a homodimer, but can demonstrate 
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reduced stability compared to the WT protein [83]. However, the DJ-1 E163K mutant 

shows comparable stability to WT and also does not lead to changes in solubility [83]. 

DJ-1 WT as well as pathogenic mutants may localize to the mitochondria and its 

localization may increase in response to mitochondrial stress [83]. However, the DJ-1 

E163K does not alter its subcellular localization [83]. 

Many studies demonstrate that DJ-1 influences several neuroprotective pathways 

but that the E163K mutation specifically impairs the oxidative stress protective 

mechanism and even increases sensitivity to oxidative insult both in cell culture and in 

animal models [83]. However the E163K mutant retains the ability to protect N2A cells 

against proteasome inhibition as well as mitochondrial stress through mitochondrial 

complex I and III inhibition [83]. 

Under oxidative stress, human DJ-1 WT in N2A cells can relocate in close proximity 

to the mitochondria, but does not enter these organelles, while DJ-1 E163K is impaired in 

this property, which may play a role in its inability to protect against oxidative stress [83]. 

It is possible that simply the change from a negatively to positively charged residue 

and/or the subtle structural effects of this mutation may prevent the interaction of DJ-1 

with other proteins that may be involved in the redistribution of DJ-1 under conditions of 

oxidative stress [83].  

In DJ-1 WT, the carboxylate side chain of E163 in α-helix 7 makes a salt bridge with 

the guanidinium side chain of R145, which in turn links the C-terminus of the other DJ-1 

monomer at the dimer interface by donating two hydrogen bonds to the peptide carbonyl 

oxygen of V186 [91]. 

The very high degree of conservation of both E163 and R145 and the 

electrostatically conservative character of sequence variations at these two positions in 

homologues of DJ-1 suggests that this salt bridge interaction is likely important [91].  

The crystal structure of DJ-1 E163K shows that substitution of glutamic acid for 

lysine disrupts this salt bridge and results in increased mobility of R145 due to repulsive 

electrostatic interactions and loss of hydrogen bonding potential between K163 and R145 

as well as consequently interferes with a network of hydrogen bonds that involves L186 

and spans the dimer interface [91].  
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The salt bridge between R145 and E163 in DJ-1 WT is stabilized by both charge 

complementarity and hydrogen bonding and the E163K mutation eliminates both types of 

interaction, leading to destabilization of the protein [91]. 

The loss of DJ-1 protective function can occur without evident biochemical 

changes on the protein and demonstrate that alterations to specific residues in this 

protein can specifically affect individual functions indicating that DJ-1 is likely involved in 

multiple cellular pathways [83]. Hence, in contrast to other mutations in DJ-1, the effect 

of the E163K mutation on impairing DJ-1 function is specific to oxidative stress [83]. 

The findings that this mutation appears to exacerbate the response to oxidation 

and diminish the redistribution of DJ-1 towards the mitochondria suggest that both 

processes may be related, but further studies will be needed to substantiate a direct 

association [83]. 

Because of the early onset and more extensive and diverse phenotype associated 

with E163K mutation, its analysis and an understanding of how it can lead to disease may 

provide new insights into the function of DJ-1 [83]. 

 

1.4 Metabolomics 

Metabolomics is the comprehensive analysis of all metabolites in a biological 

system [97]. It is a rapidly evolving tool providing a quantitative assessment of low 

molecular weight analytes that define the metabolic status of a biological system, 

therefore complementing transcriptomics and proteomics [97, 98]. 

Metabolomic investigations have been applied extensively in various research 

areas including environmental and biological stress studies, functional genomics, 

biomarker discovery for disease diagnosis and better understanding of the 

pathophysiology of diseases, and integrative systems biology [97-99]. Those studies 

facilitate understandings of biochemical fluxes and discoveries of metabolites which are 

indicative of unusual biological or environmental perturbations [97].  

Through the process of homeostasis, the body automatically attempts to maintain 

a constant internal environment, even when disease, drugs, or toxins affect 

concentrations and fluxes of endogenous metabolites. To maintain this constant internal 
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environment, increased levels of endogenous metabolites and any exogenous 

metabolites are eliminated [100]. 

Metabolic analysis is characterized by two complementary methods: targeted and 

untargeted. The targeted approach focuses on identifying and quantifying selected 

metabolites, or metabolite classes, such as substrates of an enzyme, direct products of a 

protein, a particular class of compound or members of a particular pathway [97]. In the 

targeted approach, the chemical properties of the investigated compounds are known, 

and sample preparation can be designed to reduce matrix effects and interference from 

associated compounds [97]. On the other hand, in the untargeted approach all the 

metabolites of a biological system are measured, if possible [97].  

A typical metabolic study aims at comparing multiple biological groups to identify 

metabolites that are significantly altered. It starts with an untargeted analysis to screen 

potential and putative metabolites of interest and then subjects these metabolites to a 

targeted analysis for metabolite ID verification, quantitation, functional interpretation, 

and pathway analysis (Figure 1.10) [97]. 

To achieve appropriate coverage of the metabolome, several analytic platforms 

with complementary features may be needed. Currently, the majority of metabolomics 

measurements are performed using nuclear magnetic resonance (NMR) and liquid 

chromatography-mass spectrometry (LC-MS). However, the choice of metabolomics 

analytical instrumentation and software depends on the specific questions and focus of 

the experiment, since each type of instrument have certain strengths [101, 102]. 

Excellent sensitivity and resolution for a wide range of molecule types, the ability 

to handle a large range of concentrations (from pM to mM) for different molecular types, 

the ability to identify and quantify different molecules, short analysis time, to enable the 

measurement of many samples without sample degradation during the measurement, 

and reproducible measurement across different centers and in time are the general 

requirements for metabolomics instruments [102]. 

Among analytical tools for metabolomics studies, LC−MS is one of the most 

commonly used, because it offers good separation and accurate detection of metabolites 

in complex specimens with high sensitivity and resolution [98]. LC−MS has been widely 
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used for both comprehensive metabolomics profiling and targeted quantitation of 

metabolites [98]. This technique is often used to obtain the largest possible biochemical 

profile information subset. It is a tool that can be used to characterize, identify, and 

quantify a large number of compounds in a biological sample where metabolite 

concentrations might cover a broad range of information with regard to disease 

pathophysiology [101]. 

 

A mass spectrometer is typically composed of three major parts: ion source, mass 

analyzer, and detector. The ion source converts sample molecules into ions that will be 

resolved by the mass analyzer before they are measured by the detector [97]. There are 

several types of ion sources including electrospray ionization (ESI), atmospheric pressure 

chemical ionization (APCI), atmospheric pressure photoionization (APPI), among others 

[97]. Due to the diverse chemical properties of metabolites, it is often necessary to 

 

Figure 1.10 - Typical workflow of a metabolomics study using a liquid chromatography-mass spectrometry (LC-MS) 
based platform [97]. 
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analyze the biological sample in both +ve (positive) and -ve (negative) ionization modes 

under a scan range of m/z 50–1000 to maximize metabolome coverage [97].  

ESI is the method of choice in LC-MS-based metabolomics studies, because its 

‘‘soft ionization’’ capability produces a large number of ions through charge exchange in 

solution and often forms intact molecular ions which support initial identification [97]. 

However, nowadays instruments with dual ionization capabilities (e.g. ESI and APCI or ESI 

and APPI) result in an increased coverage of the metabolome [97]. 

Most metabolomics studies use a separation method before mass spectrometric 

analysis. For instance, high performance liquid chromatography (HPLC) allows separation 

of compounds of a wide range of polarity [97]. Therefore, LC-ESI-MS is becoming a 

method of choice for profiling metabolites in complex biological samples. 

Chromatographic separation can reduce sample complexity and alleviate matrix effects 

during ionization as well as can improve the sensitivity of MS detection and also results in 

better MS data quality due to reduced background noise [97]. 

To convert the raw LC-MS data into a peak list which can be easily interpreted and 

compared across runs, multiple pre-processing steps must be performed, such as peak 

detection, peak matching and retention time alignment, normalization of peak intensities, 

among others, using software tools [97]. 

A statistical analysis must be made to detect the peaks whose intensity levels are 

significantly altered between distinct biological groups [97]. The statistical analysis 

methods can be classified as univariate and multivariate analysis. The univariate approach 

assesses the statistical significance of each peak separately. Commonly used univariate 

techniques include t-test, fold-change analysis, Wilcoxon rank-sum test, analysis of 

variance (ANOVA), among others [97]. Multivariate analysis considers the combinatorial 

effect of multiple variables. It can be further classified as unsupervised and supervised 

techniques. Unsupervised approach refers to methods that identify hidden structures in 

the data without knowing the class labels. One of the most popular unsupervised 

techniques in the LC-MS-based metabolomics study is principal component analysis 

(PCA). PCA has been extensively used in multiple studies to find indicative metabolites for 

diseases [97]. Unlike unsupervised, supervised approach uses the class label information 
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to construct a model to interpret the LC-MS data. Partial least square-discriminant 

analysis (PLS-DA) is a supervised technique widely used in LC-MS-based metabolomics 

data analysis [97]. 

One of the major challenges in metabolomics studies is the identification of 

metabolites. In human body, it is estimated that there are 2000 major metabolites. 

However, the total number of possible metabolites in nature can reach up to 1 000 000. 

Quantitation of metabolites can help to evaluate metabolic changes and further check the 

results from semi-quantitative analysis [97]. 

Applications of metabolomics for the study of central nervous system (CNS) 

diseases, including Parkinson’s disease, can include additional information about 

mechanisms of disease, identification of prognostic, diagnostic, and substitute markers 

for a disease state, the ability to identify disease based on metabolic profiles, 

identification of biomarkers for disease, for disease progression or for response to 

therapy, and lastly can also include new tools in the process of drug discovery and drug 

development [101]. 

Although some promising biomarker candidates, such as antibodies against 

neuromelanin, pathological forms of α-synuclein, DJ-1, and patterns of gene expression, 

metabolomics and protein profiling have been reported there is still a lack of unique 

biomarkers (Table 1.3) [103]. 

Table 1.3 - Biochemical biomarker candidates and their potential utilities in PD [104]. 
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A major challenge is to identify early biochemical changes and signatures that are 

unique to patients at the earliest stages of Parkinson’s disease, or even before symptoms 

appear [101]. 
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2. OBJECTIVES 

As mentioned above, mutations in DJ-1 gene may lead to loss of neuroprotective 

function of the protein. In this way it may occur a homeostatic imbalance in cell system 

and metabolites, which can be used as cellular markers of stress conditions. 

Therefore, the aim of this study is to compare multiple biological conditions to 

identify the metabolites that are significantly altered in resting and oxidative stress 

conditions, and access also the effect of the addition of recombinant DJ-1 WT and 

mutants to SH-SY5Y cell line under normal and oxidative stress conditions. 

In order to achieve this goal, different recombinant protein mutants production 

and characterization is required to access their rule in metabolite modulation. Once 

added to cells, an untargeted mass spectrometry analysis of metabolites can highlight 

potential and putative metabolites of interest. These require further validation in a 

targeted analysis, for metabolite ID verification, quantitation, functional interpretation, 

and pathway analysis. 

Overall it is expected to find possible oxidative stress biomarkers, their modulation 

by DJ-1 and their potential use as oxidative stress markers and latter as Parkinson´s 

disease biomarkers. PD biomarkers are required to enhance therapeutics research and to 

understand PD pathogenesis, and this project aims to contribute to this field of research.  
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3. METHODS 

3.1  Recombinant DJ-1 Mutants Production 

3.1.1 Human DJ-1 Cloning  

The DJ-1_pSKB-3 construct was produced and kindly provided by Matilde Melo 

(Figure 3.1).  

 

  

 

 

 

 

 

 

 

 

 

Figure 3.1 - Map of DJ-1_pSKB-3 Construct. A - Representation of the DJ-1_pSKB-3 construct which contains: lac I – 

lac repressor gene; His Tag – hexahistidine tag; TEV – tobaco etch virus protease recognition site; kan – kanamycin 

resistance gene; the DJ-1 cDNA (optimized for E. coli expression) cloned between Nhe I and Xho I restriction 

endonuclease sites. The vector pSKB-3 corresponds to pET-28a where thrombin recognition site was modified to 

TEV recognition site. B - Representation of DJ-1 gene. C - DJ-1 sequence (570 base pair) with amino acid sequence 

(189 amino acids) above. 
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3.1.2 In Vitro Site-Directed Mutagenesis of DJ-1_pSKB-3 Construct  

In vitro site-directed mutagenesis of DJ-1_pSKB-3 construct was performed 

according to the QuikChange® Site-Directed Mutagenesis protocol (Stratagene) with 

some modifications which are presented below.  

3.1.2.1 Mutagenic Primer Design 

The mutagenic oligonucleotide primers were designed individually according to 

the desired mutation using Vector NTI Advance® Software (Invitrogen). The following 

considerations were made for designing mutagenic primers: (i) both of the mutagenic 

primers contain the desired mutation and anneal to the same sequence on opposite 

strands of the plasmid; (ii) primers are between 25 and 45 bases in length, with a melting 

temperature (Tm) of ≥78°C. The following equation (3.1) was used for estimating the Tm of 

primers: 

 

             (   )  
   

 
                                    (3.1) 

 

Where, N is the primer length in bases and values for %GC and %mismatch are whole 

numbers.   

(iii) The desired mutation is in the middle of the primer with ~10–15 bases of correct 

sequence on both sides; and (iv) Primers have a minimum GC content of 40% and 

terminate in one or more C or G bases. 

3.1.2.2 Mutant Strand Synthesis Reaction (Thermal Cycling) 

Two complementary oligonucleotides containing the desired mutation were 

synthesized (Integrated DNA Technologies) (Table 3.1). 

The sample reaction was prepared in a volume of 50 μL, in the presence of 50 ng 

of dsDNA template (DJ-1_pSKB-3 construct), 10 pmoles of forward and reverse primers, 

2.5 Units of Pfu DNA Polymerase, 10 nmoles of dNTP’s and 5 μL of 10x Cloned Pfu 

Reaction Buffer (100 mM KCl, 100 mM (NH4)2SO4, 200 mM Tris-HCl (pH 8.8), 20 mM 

MgSO4, 1% Triton® X-100, 1 mg/mL nuclease-free bovine serum albumin (BSA)). The PCR 
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was performed using the following cycling parameters: a first step of 30 seconds at 95 °C, 

followed by 18 cycles of 30 seconds at 95 °C, 1 minute at 55 °C, and 12 minutes at 68 °C.  

 

Table 3.1 – Complementary oligonucleotides containing the desired mutation (yellow highlight). 

 Primers 

Mutation Forward Reverse 

L166P 
5- CAA GCT TTG AAT TTG CAC CGG CAA TTG TTG 

AAG CCC -3 

5- GGG CTT CAA CAA TTG CCG GTG CAA ATT 

CAA AGC TTG -3 

M26I 
5- GTT ATT CCG GTT GAT GTT ATT CGT CGT GCA 

GGT ATT AAA G -3 

5- CTT TAA TAC CTG CAC GAC GAA TAA CAT 

CAA CCG GAA TAA C -3 

E163K 
5- GTC CGG GTA CAA GCT TTA AAT TTG CAC TGG 

CAA TTG -3 

5- CAA TTG CCA GTG CAA ATT TAA AGC TTG 

TAC CCG GAC -3 

 

3.1.2.3 Dpn I Digestion of the Amplification Products  

The amplified parental (nonmutated) supercoiled dsDNA was digested with 20 

Units of Dpn I restriction enzyme at 37 °C for 4 hours. 

3.1.2.4 Transformation of XL1-Blue or DH5-α Supercompetent Cells 

To perform the cell transformation 10 μL of the Dpn I-treated DNA (DJ-

1_mutants_pSKB-3 constructs) from each sample reaction were transferred to 100 μL 

aliquots of XL1-Blue supercompetent E. coli cells or DH5-α competent E. coli cells. The 

transformation reactions were gently swirled to mix and incubated on ice for 30 minutes, 

then a heat pulse was performed at 42 °C for 90 seconds and the reactions were placed 

on ice for 2 minutes. Liquid Luria-Bertani (LB) medium (800 μL) without antibiotic was 

added to the transformation reactions, which were incubated at 37 °C for 2 hours with 

shaking at 180 rpm. The reactions were then centrifuged at 20,000g for 3 minutes. The 

supernatant was discarded (~800 μL) and the pellet was resuspended in the remaining 

volume (~100 μL). This volume was plated on LB/agar plates supplemented with 

kanamycin (50 μg/mL) and the transformation plates were incubated at 37 °C for about 

16 hours. One or two colonies were picked and grown in liquid LB supplemented with 

kanamycin (50 μg/mL) at 37 °C with shaking at 180 rpm for about 16 hours. The DNA was 



52| METHODS 

isolated using the PureLinK® Quick Plasmid Miniprep Kit (Invitrogen) and the DNA 

sequence was confirmed by Sanger DNA Sequencing (STAB Vida or Macrogen). 

 

3.1.3 DJ-1 Mutants Expression  

The DJ-1_mutants_pSKB-3 constructs were transformed into competent E. coli 

BL21star (DE3) strain and plated into LB/agar supplemented with 50 μg/mL kanamycin. 

One colony was used to inoculate 50 mL, 70 mL or 125 mL of LB supplemented with 50 

μg/mL kanamycin that was grown overnight at 37 °C with shaking, from where 25 mL, 50 

mL (2 x 25 mL) or 100 mL (4 x 25 mL) were used to inoculate 1 L, 2 L or 4 L of LB, 

respectively, supplemented with 50 μg/mL kanamycin (depending on protein construct 

and batch). The cells were allowed to grow at 37 °C with shaking, and the temperature 

was decreased to 18 °C when the optical density at 600 nm reached 0.5. One hour later 

the protein expression was induced by the addition of IPTG to a final concentration of 1 

mM. The protein expression was allowed to occur for about 16 hours. 

 

3.1.4 DJ-1 Mutants Purification 

The cell suspension was centrifuged (20 minutes; 4,000g; 4 °C), the cellular pellet 

was suspended in 60 mL of 20 mM sodium phosphate, 500 mM NaCl, 20 mM Imidazole, 

pH 7.4, and disrupted through a high pressure homogenizer EmulsiFlex-C3 (AVESTIN), 

with 3 passages at 1000 bar. The cellular extract was clarified by centrifugation (20 

minutes; 19,000g; 4 °C) and the supernatant (protein) was applied to a 5 mL HisTrap HP 

column (GE Healthcare) using a Bio-Rad BioLogic LP (Bio-Rad) low-pressure 

chromatography system. After column loading, the column was extensively washed with 

binding buffer (20 mM sodium phosphate, 500 mM NaCl, 20 mM Imidazole, pH 7.4) and 

protein elution was obtained by stepwise increasing of imidazole concentration (50, 100, 

300 and 500 mM).  

With exception for the first L166P mutant batch production, the fraction which 

contained the highest amount of DJ-1 (the most intense chromatographic peak) was 

applied to an HiLoad 26/600 Superdex 200 prep grade column (GE Healthcare) and the 
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protein was eluted by passing PBS Buffer (8 mM K2HPO4, 2 mM NaH2PO4·H2O, 150 mM 

NaCl). For the first L166P mutant batch, the HisTrap fraction which contained the highest 

amount of DJ-1 was first applied to a 5 mL HiTrap Desalting column (GE Healthcare) to 

exchange the buffer from imidazole to PBS, and then the resulting protein sample was 

applied to an HiLoad 26/600 Superdex 200 prep grade column and eluted as described 

above for the other proteins.  

Protein was concentrated (with exception of E163K mutant) using a 10 kDa MWCO 

centrifugal concentrator (Millipore) and quantified by measuring absorption at 280 nm 

using a Nanodrop ND-1000 Spectrophotometer (Thermo Fisher Scientific) [extinction 

coefficient of the monomeric DJ-1 mutant forms, ε = 3.4 (μg/μL)−1 cm−1]. Proteins were 

stored at about 2 μg/μL in PBS with 10% glycerol at -80 °C until further use. 

The eluted fractions of affinity and gel filtration chromatographies containing DJ-1 

were analyzed by SDS-PAGE (12.5% polyacrylamide gel homemade) stained with 

Coomassie Brilliant Blue G-250 (Bio-Rad). In each lane 10 μL of protein sample were 

applied to observe the protein content profile. For the first L166P mutant produced and 

E163K mutant the fractions containing DJ-1 were quantified by using the 2-D Quant Kit 

(GE Healthcare) and in each lane 15 μg of protein sample were applied. 

 

3.2 Structural Characterization of DJ-1 and DJ-1 Mutants 

DJ-1 mutant proteins produced in this project as well as DJ-1 wild-type (kindly 

provided by Matilde Melo) were structurally characterized through LC-MS/MS, LC-MS, 

HPLC-Size Exclusion Chromatography, Circular Dichroism Spectroscopy and Thermal Shift 

assay. 

 

3.2.1 Liquid Digestion of Proteins  

The stored DJ-1 proteins (10 μg) were resuspended in a 0.5 M triethylammonium 

bicarbonate (TEAB) solution to a final volume of 45 μL. Then 4 μL of 50 mM tris(2-

carboxyethyl)phosphine (TCEP), a reducing agent, were added to the samples which were 

sonicated [750 W Sonicator with cuphorn (VibraCell – Sonics®)] at 20% of amplitude for 1 
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minute (1 second on 1 second off cycle). Cysteine residues were alkylated with 2 μL of 

200 mM S-methyl methanethiosulfonate (MMTS) and samples remained at room 

temperature for 10 minutes. After this step, 47 μL of 0.5 M TEAB and 2 μL of 0.1 μg/μL 

trypsin (Roche) were added to samples which were allowed to react overnight at 37 °C. 

The digestion reactions were stopped with 2 μL of formic acid (FA) and peptides mixtures 

were concentrated by rotary evaporation, using the Concentrator Plus (Eppendorf) at 60 

°C. The samples were resuspended to 100 μL with 20% acetonitrile (ACN) and 0.4% FA 

and sonicated at 20% of amplitude for 2 minutes (1 second on 1 second off cycle). 

Samples were cleaned using Strong Cation Exchange (SCX) OMIX tip columns 

(Agilent technology). SCX tips were hydrated with four solutions: (i) 50 μL of 1 M NaCl, 

20% ACN and 0.4% FA; (ii) 150 μL of 20% ACN and 0.4% FA; (iii) 150 μL of 100% ACN; and 

(iv) 50 μL of 1 M NaCl, 20% ACN and 0.4% FA. Then SCX tips were equilibrated with 200 μL 

of 20% ACN and 0.4% FA. Each sample was passed through the columns five times and 

washed with 200 μL of 20% ACN and 0.4% FA solution. Peptides were eluted to new tubes 

with 300 μL of 500 mM NH4HCO3 and 20% ACN. Eluates were concentrated using the 

Concentrator Plus at 60 °C, resuspended to 100 μL in a solution of 2% ACN and 1% FA and 

sonicated at 20% of amplitude for 2 minutes (1 second on 1 second off cycle).  

Peptides were desalted using C18 Bond Elut OMIX tips (Agilent technology). 

Briefly, tip columns were hydrated with 200 μL of 50% ACN and equilibrated with 300 μL 

of 2% ACN and 1% FA. Peptides were loaded to the columns and this step was repeated 

five times, followed by a washing step with 100 μL of 2% ACN and 1% FA solution. 

Peptides were eluted to new tubes with 400 μL of 70% ACN and 0.1% FA and eluates were 

concentrated using the Concentrator Plus at 60 °C. Sample volume was adjusted to 30 μL 

in a solution of 2% ACN and 0.1% FA. Samples were sonicated at 20% of amplitude for 2 

minutes (1 second on 1 second off cycle), centrifuged at 14,000g for 5 minutes and the 

supernatants were analyzed by LC-MS/MS. 

 

3.2.2 In-Gel Digestion of Proteins 

The stored DJ-1 samples (10 μg) were analyzed by SDS-PAGE [4-20% 

polyacrylamide gel (Bio-Rad)] stained either with Coomassie Brilliant Blue G-250 or silver. 
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In order to alkylate cysteine residues acrylamide [40% acrylamide/bis solution (37.5:1) 

(Bio-Rad)] was added to samples (5 μL of acrylamide per 30 μL of sample) and allowed to 

react for 10 minutes before running the gels. Coomassie stained gel bands were excised, 

sliced in small pieces, and transferred to microcentrifuge tubes with 1 mL of de-ionized 

water (to prevent gel bands dehydration). Gel slices were then destained by removing 

water and adding 1 mL of destaining solution (50 mM ammonium bicarbonate and 30% 

acetonitrile). The destaining step was performed in a thermomixer (comfort, Eppendorf) 

at 850 rpm for 15 minutes at 25 °C. The destaining solution was removed, and the process 

was repeated if the gel pieces remained blue. Otherwise 1 mL of water was added and 

the tubes were shaken in the thermomixer at 850 rpm for 10 minutes at 25 °C. After this 

washing step, the water was removed and the gel bands were dehydrated on 

Concentrador Plus for 1 hour at 60 °C. Then, enough volume of trypsin (10 ng/μL trypsin 

in 10 mM ammonium bicarbonate solution) was added to cover the dried gel bands and 

incubated for 10 minutes, on ice, in order to rehydrate the gel. After this period, 10 mM 

ammonium bicarbonate was added to cover gel bands again, and incubated overnight at 

room temperature in the dark to perform the in-gel digestion. The tryptic solution 

(containing trypsin and peptides) was collected to low binding microcentrifuge tubes 

(Eppendorf) and the remaining peptides were sequentially extracted from gel pieces by 

adding 200 μL of 30%, 50%, and 98% ACN in 1% FA, with agitation in the thermomixer at 

1050 rpm for 15 minutes at 25 °C for each extraction solution. Each solution was collected 

to the tube containing the initial tryptic solution. Peptide mixtures were concentrated by 

rotary evaporation, using the Concentrator Plus at 60 °C, resuspended to 100 μL in a 

solution of 2% ACN and 1% FA and sonicated at 20% of amplitude for 2 minutes (1 second 

on 1 second off cycle).  

Peptides were desalted using C18 Bond Elut OMIX tips (Agilent technology), as 

described in subsection 3.2.1, and concentrated using the Concentrator Plus at 60 °C. 

Sample volume was adjusted to 30 μL in a solution of 2% ACN and 0.1% FA. Samples were 

sonicated at 20% of amplitude for 2 minutes (1 second on 1 second off cycle), centrifuged 

at 14,000g for 5 minutes and the supernatants were analyzed by LC-MS/MS. 
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3.2.3 LC-MS/MS of Digested Proteins 

Peptides were resolved by liquid chromatography (NanoLC Ultra 2D, Eksigent) on a 

ChromXP™ C18 reverse phase column (300 μm ID × 15 cm length, 3 μm particles, 120 Å 

pore size, Eksigent) at 5 μL/min. Peptides were eluted into the mass spectrometer with an 

acetonitrile gradient in 0.1% FA (5% to 35% ACN for peptides originated by liquid 

digestion procedure and 2% to 35% ACN for peptides generated by in-gel digestion 

procedure, for 24 minutes), using an electrospray ionization (ESI) source (DuoSpray™ 

Source, ABSciex) in positive mode. The mass spectrometer (Triple TOF™ 5600 System; 

ABSciex) was programmed for information dependent acquisition (IDA) scanning full 

spectra (350-1250 m/z), followed by 20 MS/MS on multiple charged ions (+2 to +5) and 

performed one MS/MS before adding those ions to the exclusion list for 15 seconds (mass 

spectrometer operated by Analyst® TF 1.6, ABSciex).  

Peptide identification was performed using Protein Pilot software v4.5 (ABSciex). 

Search parameters used were the following: UniProt_SwissProt database with and 

without recombinant DJ-1 WT and mutants sequence database against all species and 

UniProt_SwissProt database against E. coli; trypsin digestion; MMTS as cysteine alkylating 

reagent (for peptides originated by liquid digestion procedure) and acrylamide as cysteine 

alkylating reagent (for peptides originated by in-gel digestion procedure); ID focus: 

biological modifications; thorough ID search effort; and 0.05 Unused ProtScore (10% 

confidence score) as detected protein threshold.  

Data analysis was based on an independent False Discovery Rate analysis (FDR) 

using the target-decoy approach. Positive identifications were considered when proteins 

present 95% confidence (5% local FDR) with more than one peptide hit with individual 

confidence above 95% or with a single peptide hit with an individual confidence above 

95% and a minimum sequence tag of 3 amino acids (4 consecutive peaks in the MS/MS 

spectrum). When a FDR analysis was not possible (few proteins identified) an Unused 

above 1.3 was considered as positive identification with more than one peptide with 

individual confidence above 95% or with one peptide and a minimum sequence tag of 3 

amino acids (4 consecutive peaks in the MS/MS spectrum). 
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3.2.4 LC-MS of Intact Proteins  

The purified DJ-1 WT and DJ-1 mutants (400 pmoles) were precipitated with cold 

acetone (-20 °C) in a volume ratio of 1:6 (sample:acetone). The sample tubes were 

inverted several times to mix and incubated 20 minutes at -20 °C. Then samples were 

centrifuged for 20 minutes at 20,000g at 4 °C, the acetone was discarded and the pellet 

was resuspended in 30 μL of 2% ACN and 1% FA. Finally, samples were sonicated at 20% 

of amplitude for 1 minute (1 second on 1 second off cycle) and the supernatants were 

analyzed by LC-MS.  

Proteins were resolved by liquid chromatography (NanoLC Ultra 2D, Eksigent) on a 

ChromXP™ C18 reverse phase trap-column (350 μm ID × 0.5mm length, 3 μm particles, 

120 Å pore size, Eksigent) at 7 μL/min. Proteins were eluted into the mass spectrometer 

with an acetonitrile gradient (2% to 50% ACN, for 5 minutes) in 0.1% FA, using an ESI 

source (DuoSpray™ Source, ABSciex) in positive mode. The mass spectrometer (Triple 

TOF™ 5600 System; ABSciex) was programmed for scanning full spectra (600-1250 m/z) 

using the Intact Protein Mode, which enhances the analysis of intact proteins of high 

molecular weight and charge states through the optimization of key parameters of TOF 

MS scan types (mass spectrometer operated by Analyst® TF 1.6, ABSciex).  

Intact mass was determined using BioAnalyst™ Software (ABSciex). Briefly, the 

deconvolution of the spectra was obtained by Baesian Protein Reconstruct algorithm of 

the average of the maximum spectra possible, with the following parameters: mass range 

from 15 to 30 kDa (determined according with the expected protein molecular weight), 

spectrum limit range from 650 to 1000 m/z (determined according with protein charge 

envelope profile), signal to noise threshold of approximately 10 (according with the ratio 

from the less intense peak used in calculation to the noise determined by a script present 

in Analyst). From the deconvoluted spectrum it was chosen a peak from the isotopic 

distribution for modeling the data that was then used to calculate the molecular weight 

of the protein. 
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3.2.5 HPLC-Size Exclusion Chromatography  

High-performance liquid chromatography (HPLC)-Size exclusion chromatography 

(SEC) was performed using a Prominence Shimadzu system (Shimadzu Scientific 

Instruments) and a Superdex 200 5/150 GL column (GE Healthcare); and data were 

collected and analyzed by LC Solution Software (Shimadzu Scientific Instruments). Purified 

DJ-1 WT and DJ-1 mutants (2 μL at about 2 μg/μL) were loaded on column and eluted 

with PBS containing 10% glycerol (buffer in which the purified proteins were stored) at a 

flow rate of 0.4 mL/min, monitoring absorbance at 214 nm. The column and retention 

times were calibrated under identical running conditions with the following molecular 

mass standards: Aprotinin (6.5 kDa) (AppliChem), Ribonuclease A (13.7 kDa), Carbonic 

anhydrase (29 kDa), Ovalbumin (43 kDa), Conalbumin (75 kDa), Aldolase (158 kDa), 

Ferritin (440 kDa), and Blue Dextran (≈2000 kDa) (all from GE Healthcare). Approximated 

molecular weights of eluted proteins were determined using a calibration curve 

established with the standards.  

 

3.2.6 Circular Dichroism Spectroscopy 

The secondary structure of DJ-1 wild-type and mutant proteins was evaluated by 

Circular Dichroism (CD) spectroscopy. The proteins were dissolved in PBS with 10% 

glycerol at concentrations around 2 μg/μL (except for L166P-1 sample which 

concentration was 1.3 μg/μL) as determined by UV absorbance measurements at 280 nm. 

Far UV CD spectra were acquired on an Olis DSM 20 circular dichroism spectropolarimeter 

continuously purged with nitrogen, equipped with a Quantum Northwest CD 150 

temperature-controlled cuvette and controlled by the GlobalWorks software.  

Spectra were recorded at 25 °C (for all proteins) and 37 °C (except for L166P 

mutants) between 190 and 260 nm at 1 nm intervals using a 0.05 mm pathlength cuvette. 

Two scans obtained with an integration time of 6 seconds were averaged and corrected 

by subtracting a baseline spectrum acquired under the same experimental conditions. 

The results are expressed as the mean residue molar ellipticity, [Θ]MRW (deg.cm2/dmol) 

defined in the following equation (3.2) as:  
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(3.2) 

 

Where Θobs is the observed ellipticity (mdeg), MW is the protein molecular weight 

(g/mol), l is the cuvette pathlength (cm), C is the protein concentration (mg/ml) and n is 

the number of amino acid residues of the protein.  

The secondary structure contents were calculated with the software CONTIN and 

GlobalWorks using the CONTILL, CDSSTR and Selcon3 algorithms against the CLSTR 

reference basis set which contains soluble and denatured proteins with known secondary 

structure. 

 

3.2.7 Protein Thermal Shift Assay 

To monitor protein unfolding, the fluorescent dye Sypro Orange (Sigma-Aldrich) 

was used. Sypro Orange fluoresces strongly when located in hydrophobic regions exposed 

in unfolded proteins. Increase in fluorescence is used to monitor the protein-unfolding 

transition.  

The thermal shift assay was conducted in a 7500/7500 Fast Real-Time PCR System 

(Applied Biosystems). Solutions of 5 μL of 50x Sypro Orange and 0.5 mg/mL protein (in a 

final volume of 50 μL) were added to the wells of a MicroAmp® Optical 96-Well Reaction 

Plate (Applied Biosystems). PBS with 10% glycerol buffer was added in the control 

samples. The plates were sealed with MicroAmp™ Optical Adhesive Film (Applied 

Biosystems) and stepwise heated from 25 °C to 95 °C. The reaction volume was 30 μL and 

the overall heating rate was 1 °C/min, with a hold step for fluorescence reading every 

0.37 °C. As the reaction mixture is heated, the protein unfolds and there is a consequent 

increase in fluorescence. Fluorescence changes in the wells of the plate were measured 

190 times (readings) per well and fluorescence intensity was measured with excitation 

and emission of 490 and 580 nm, respectively. For each protein and control samples, data 

from four independent wells were averaged and plotted. 
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All samples wells were illuminated with a tungsten halogen lamp. Light from this 

lamp passed through five excitation filters before reaching sample wells. Fluorescence 

emission was then detected through five emission filters to a charge-coupled device 

(CCD) camera. Emission filters were optimized for use with FAM™/SYBR® Green I, 

VIC®/JOE™, NED™/TAMRA™/Cy3™, ROX™/Texas Red®, and Cy5™ fluorescent dyes. 

After the experiment, the 7500 software used regions of interest (ROI), optical, 

dye, and background calibration data to determine the location and intensity of the 

fluorescence signals in each read, the dye associated with each fluorescence signal, and 

the significance of the signal.  

A real-time melt experiment generates the negative first derivative plot of the 

melting curve raw fluorescence data, from which the melting temperature, Tm, (the 

midpoint of the protein unfolding transition or the inflection point of the melting curve) 

can be determined as the minimum peak. 

All data were processed using 7500 System Software (Applied Biosystems). 

 

3.3 Role of DJ-1 in Neuroprotection 

3.3.1 SH-SY5Y Cell Culture 

Human neuroblastoma SH-SY5Y cells were cultured in Dulbecco's modified Eagle 

medium (DMEM) with Glutamax™ and low glucose (1 g/L) (Gibco), supplemented with 

10% fetal bovine serum (FBS) (Gibco), 1.25 μg/ml amphotericin B solution (Invitrogen) 

and 1% penicillin-streptomycin solution (Pen-Strep) (Cambrex).  

For cell passage, cells were washed with Dulbeccoʹs phosphate buffered saline 

(DPBS) (Cambrex, Charles City, IA) and detached with trypsin-EDTA (0.05% solution in 

phosphate buffered saline (PBS)) (Invitrogen).  

Cells were maintained at 37 °C, 5% CO2/95% air in a humidified incubator (Shel Lab 

3517-2) (Sheldon Manufacturing, Inc.). 
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3.3.2 Cell Viability Assessment under Oxidative Stress and DJ-1 Stimuli 

SH-SY5Y cells were seeded at 93.75×103 cells/cm2 in DMEM with 10% FBS in 96-

well plates (Corning) at 37 °C, 5% CO2/95% air in a humidified incubator (Sheldon 

Manufacturing, Inc.). 

Four hours after plating, the culture medium was totally removed and cells were 

stimulated with 100 μM and 200 μM H2O2 (Sigma-Aldrich) in DMEM with 0.1% FBS 

(freshly made) in the presence or absence of recombinant DJ-1 wild-type (1 μM) or the 

corresponding vehicle (PBS with 10% glycerol) for 24 hours at 37 °C under a gas phase of 

95% air/5% CO2 in a humidified incubator. Control condition consisted in exchanging the 

culture medium to DMEM with 0.1% FBS. 

Cell viability was assessed by using the Cell Titer-Glo® Luminescent assay 

(Promega) in white opaque 96-well plates (Corning). The luminescent signal was detected 

by a LUMIstar Galaxy automated microplate luminescence reader (BMG Labtech), 

according to the manufacturer’s instructions. 

 

3.3.3 Statistical Analysis 

Statistical analysis of results from cell viability was performed using SPSS 

(Statistical Package for the Social Sciences) version 21.0 (IBM®) and GraphPad PRISM®5. 

Data normality was tested using Shapiro-Wilk Test and statistical evaluation was 

performed with a one-way ANOVA analysis. To compare the different H2O2 

concentrations with Control a Student's t-test was performed. The results were reported 

as statistically significant when p < 0.05. Data were expressed as mean ± standard error of 

the mean (S.E.M.). Every experimental condition was tested in three sets of independent 

experiments. 
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3.4 LC-MS/MS-based DJ-1 WT and Mutants Metabolomics Study 

3.4.1 Cell Culture, and Oxidative Stress and DJ-1 Stimuli 

SH-SY5Y cells were seeded at 93.75×103 cells/cm2 in DMEM with 10% FBS in 100 

mm Petri dishes (Corning) at 37 °C under a gas phase of 95% air/5% CO2 in a humidified 

incubator (Sheldon Manufacturing, Inc.).  

Four hours after plating, the culture medium was totally removed and cells were 

stimulated with 200 μM H2O2 (Sigma-Aldrich) in DMEM with 0.1% FBS (freshly made) in 

the presence of recombinant DJ-1 WT (1 μM), DJ-1 M26I (1 μM), DJ-1 E163K (1 μM) or the 

corresponding vehicle (PBS with 10% glycerol) for 24 hours at 37 °C under a gas phase of 

95% air/5% CO2 in a humidified incubator. Control condition consisted in exchanging the 

culture medium to DMEM with 0.1% FBS and adding the protein vehicle. Every 

experimental condition was tested in three sets of independent experiments. 

 

3.4.2 Intracellular Metabolite Quenching and Extraction 

To stop stimulation the culture medium was completely removed from the culture 

dishes, which were put on ice, and cells were quickly washed with PBS at 37 °C. Cells were 

then readily quenched and intracellular metabolites extracted using methanol:water 

(80:20) solution (-20 °C) while cells were detaching from the culture dishes by scraping 

using rubber cell scrapers (TPP, Switzerland). Cellular extracts were transferred into 15 mL 

centrifuge tubes (VWR), sonicated [750 W Sonicator with Tapered Microtip 3 mm 

(VibraCell – Sonics®)] at 30% of amplitude for 2 minutes on ice (1 second on 3 seconds off 

cycle), transferred again into microcentrifuge tubes and centrifuged at 20,000g for 30 

minutes at 4 °C. The supernatants were collected to new microcentrifuge tubes and 

metabolites were concentrated by rotary evaporation, using the Concentrator Plus 

(Eppendorf) at 60 °C. The evaporated samples were resuspended to 100 μL in a solution 

of 2% ACN and 1% FA and sonicated [750 W Sonicator with cuphorn (VibraCell – Sonics®)] 

at 20% of amplitude for 2 minutes (1 second on 1 second off cycle). Metabolites were 

desalted using C18 Bond Elut OMIX tips (Agilent technology), as described in subsection 

3.2.1, and concentrated using the Concentrator Plus at 60 °C. Samples volume was 
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adjusted to 15 μL in a solution of 2% ACN and 0.1% FA. Samples were sonicated at 20% of 

amplitude for 2 minutes (1 second on 1 second off cycle), centrifuged at 14,000g for 5 

minutes and the supernatants were analyzed by LC-MS/MS.  

 

3.4.3 LC-MS/MS Analysis of Intracellular Metabolites 

Samples were analyzed on a NanoLC Ultra 2D separation system (Eksigent) 

coupled to an electrospray ionization source (DuoSpray™ Source, ABSciex) operated in 

positive mode, and a Triple TOF™ 5600 System mass spectrometer (ABSciex). Metabolites 

were separated onto a Halo C18 column (0.3 x 150 mm, 2.7 μm, 90 Å, Eksigent) at 5 

μL/min, with an acetonitrile gradient (2% to 61% ACN, for 42 minutes) in 0.1% FA. Using 

the same chromatographic conditions, mass spectrometer was programmed for two 

different forms of data acquisition: information dependent acquisition (IDA) and 

information independent acquisition SWATH analysis.  

For IDA, a full mass spectra (30-1250 m/z) was acquired, followed by 11 MS/MS of 

ions with +1 to +4 charges and one MS/MS was performed before adding those ions to 

the exclusion list for 15 seconds.  

For SWATH experiments, the mass spectrometer was operated in a looped 

product ion mode. The instrument was specifically tuned to allow a quadrupole resolution 

of 50 m/z mass selection. Using an isolation width of 51 m/z (containing 1 m/z for the 

window overlap), a set of 17 overlapping windows was constructed covering the 

precursor mass range of 50–900 m/z. A 250 milliseconds survey scan (50-1500 m/z) was 

acquired at the beginning of each cycle for instrument calibration and SWATH MS/MS 

spectra were collected from 50–1500 m/z for 120 milliseconds resulting in a cycle time of 

2.34 seconds from the precursors ranging from 50 to 900 m/z. The collision energy for 

each window was determined according to the calculation for a charge 1+ ion centered 

upon the window with a collision energy spread of 15. The mass spectrometer was 

operated by Analyst® TF 1.6, ABSciex. 
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3.4.4 LC-MS/MS Data Processing 

The data files acquired by the mass spectrometer were directly imported by the 

MarkerViewTM software (ABSciex, version 1.2.1.1). Peak detection used an algorithm 

which processes each of the mass spectra of a sample by order of increasing scan 

number. Masses belonging to the same peak ‘cluster’ are merged together with a 

resulting area equal to the sum of all intensities for each mass value in the cluster.  

For peak detection a set of parameters was applied in order to detect peaks which 

have (i) retention time above 10 minutes and below 46 minutes; (ii) minimum spectral 

peak width of 50 ppm, where peaks narrower than this value are presumed to be noise; 

(iii) noise threshold superior to 100 counts; and (iv) minimum retention time peak width 

of 6 scans. 

The alignment step was useful to decide if two peaks [m/z, RT] found in two 

samples represent the same chemical component or not. If their retention times and m/z 

values were both within the specified tolerances they were assumed to be the same 

“feature”. The two parameters applied in peak alignment were the retention time 

tolerance (RT tolerance) and mass tolerance. RT tolerance was set to 0.5 minutes 

meaning that two or more peaks from the same sample or different samples having the 

same m/z value were considered the same if the retention time did not exceeded 0.5 

minutes. The mass tolerance considered was of 50 ppm, where two or more peaks from 

the same sample or different samples which differ only in 50 ppm are considered to be 

the same peaks. Subsequently, the MultiQuantTM software (version 2.1.1) was used to 

confirm the peak area of the most promising features, and these area values were used 

for further analysis. 

The Pareto scaling method, the t-test and the analysis of the principal components 

(PCA) were performed in the MarkerViewTM software (version 1.2.1.1).  

The results were reported as statistically significant when p < 0.05. Data were 

expressed as mean ± standard error of the mean (S.E.M.). Every experimental condition 

was tested in three sets of independent experiments. 
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4. RESULTS 

Since the discovery of the linkage of gene mutations of DJ-1 to autosomal 

recessive familial PD, much attention has been paid to the role of this molecule in the 

pathogenesis of PD [105-108]. DJ-1 has also been linked to sporadic Parkinson’s disease 

and appears to be involved in cellular oxidative stress rescue mechanisms during 

neurodegeneration [105-109]. Recent, large-scale omics studies have generated terabytes 

of data but not yet met the goal of developing biomarkers suitable for clinical use in PD 

[110]. Once oxidative stress is increased in PD, some specific markers of it may be useful 

for tracking disease progression in PD [111, 112].  

The first task of this project consisted in the production of three recombinant DJ-1 

mutant proteins. These mutants, as well as DJ-1 WT, were then structurally characterized 

and added to neuronal cells, under normal or oxidative stress conditions, to have a more 

comprehensive understanding of the role that DJ-1 plays in oxidative stress, and 

therefore in Parkinson’s disease. 

 

4.1 Recombinant DJ-1 Mutants Production 

4.1.1 In Vitro Site-Directed Mutagenesis of DJ-1_pSKB-3 Construct 

The DJ-1 construct (Figure 3.1) used in this study (kindly provided by Matilde 

Melo) contains the cloned human DJ-1 cDNA between the NdeI and XhoI sites of pSKB-3 

and produces a tobaco etch virus (TEV)-cleavable N-terminal hexahistidine tagged 

protein.  

All DJ-1 point mutations (L166P, M26I and E163K) were generated by site-directed 

mutagenesis and the mutations were verified using Sanger DNA sequencing (Figure 4.1, 

Figure 4.2 and Figure 4.3, respectively). 
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Figure 4.1 - Map of DJ-1_L166P_pSKB-3 Construct. A - Representation of the DJ-1_L166P_pSKB-3 construct which 
contains: lac I – lac repressor gene; His Tag – hexahistidine tag; TEV – tobaco etch virus protease recognition site; 
kan – kanamycin resistance gene; the DJ-1 cDNA (optimized for E. coli expression) cloned between Nhe I and Xho I 
restriction endonuclease sites; the DJ-1 L166P point mutation local highlighted. The vector pSKB-3 corresponds to 
pET-28a where thrombin recognition site was modified to TEV recognition site. B - Representation of DJ-1 gene with 
the L166P point mutation local highlighted. C - Part of DJ-1 WT and DJ-1 L166P sequences where it is represented 
the change of a thymine by a cytosine nucleotide base responsible for the mutation (translation of a proline instead 
a leucine amino acid residue). D - Sanger sequencing shows (yellow highlight) the mutation confirmation 
(substitution of a thymine for a cytosine nucleotide base).  

 

 

 
 

 

 

 

 

 

  
 

 
 
 
 
 
 

 
 
 
 
 

Figure 4.2 - Map of DJ-1_M26I_pSKB-3 Construct. A - Representation of the DJ-1_M26I_pSKB-3 construct which 
contains: lac I – lac repressor gene; His Tag – hexahistidine tag; TEV – tobaco etch virus protease recognition site; 
kan – kanamycin resistance gene; the DJ-1 cDNA (optimized for E. coli expression) cloned between Nhe I and Xho I 
restriction endonuclease sites; the DJ-1 M26I point mutation local highlighted. The vector pSKB-3 corresponds to 
pET-28a where thrombin recognition site was modified to TEV recognition site. B - Representation of DJ-1 gene with 
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4.1.2 DJ-1 Mutants Expression and Purification 

Recombinant DJ-1 mutants were expressed in E. coli BL21star (DE3) strain and 

purified by affinity chromatography, using an HisTrap column since the produced proteins 

contain an hexahistidine tag (6His-tag) (Figure 4.4 A, Figure 4.6 A, Figure 4.8 A, Figure 4.10 

A, and Figure 4.12 A). The most concentrated protein fraction of each DJ-1 mutant 

(corresponding to the highest chromatographic peak which eluted at 300 mM imidazole) 

was purified by gel filtration chromatography, using an HiLoad 26/600 Superdex 200 prep 

grade column (Figure 4.4 B, Figure 4.6 B, Figure 4.8 B, Figure 4.10 B, and Figure 4.12 B), 

with an intermediate step for the L166P-1 mutant before its gel filtration chromatography 

(see methods subsection 3.1.4 for details). Proteins were stored at -80 °C in PBS with 10% 

the M26I point mutation local highlighted. C - Part of DJ-1 WT and DJ-1 M26I sequences where it is represented the 
change of a guanine by a thymine nucleotide base responsible for the mutation (translation of an isoleucine instead 
a methionine amino acid residue). D - Sanger sequencing shows (yellow highlight) the mutation confirmation 
(substitution of a guanine for a thymine nucleotide base). 

 
 

 
 
 
 
 
 

 

Figure 4.3 - Map of DJ-1_E163K_pSKB-3 Construct. A - Representation of the DJ-1_E163K_pSKB-3 construct which 
contains: lac I – lac repressor gene; His Tag – hexahistidine tag; TEV – tobaco etch virus protease recognition site; 
kan – kanamycin resistance gene; the DJ-1 cDNA (optimized for E. coli expression) cloned between Nhe I and Xho I 
restriction endonuclease sites; the DJ-1 E163K point mutation local highlighted. The vector pSKB-3 corresponds to 
pET-28a where thrombin recognition site was modified to TEV recognition site. B - Representation of DJ-1 gene 
with the E163K point mutation local highlighted. C - Part of DJ-1 WT and DJ-1 E163K sequences where it is 
represented the change of a guanine by an adenine nucleotide base responsible for the mutation (translation of a 
lysine instead a glutamate amino acid residue). D - Sanger sequencing shows (yellow highlight) the mutation 
confirmation (substitution of a guanine for an adenine nucleotide base). 
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glycerol at a final concentration of about 2 μg/μL. The protein fractions from DJ-1 

mutants expression and purification steps were electrophoretically separated and stained 

with Colloidal Coomassie Brilliant Blue G-250 (Bio-Rad) to observe the protein content 

profile (Figure 4.5, Figure 4.7, Figure 4.9, Figure 4.11, and Figure 4.13). 

The L166P mutant was produced in three different batches due to the low protein 

content obtained. So, the number after the name of this mutant corresponds to the batch 

in which it was produced: DJ-1 L166P-1 (Figure 4.4 and Figure 4.5) was the first, DJ-1 

L166P-2 (Figure 4.6 and Figure 4.7) the second, and DJ-1 L166P-3 (Figure 4.8 and Figure 

4.9) the third L166P mutant produced. The M26I (Figure 4.10 and Figure 4.11) and E163K 

(Figure 4.12 and Figure 4.13) mutants were produced only once. 

 

The L166P-1 mutant purification (Figure 4.4) results indicate that before the 

protein expression induced with IPTG, there is not a highly intense band at ≈23 kDa 

(expected mass of a DJ-1 monomer) (Figure 4.5, lane BI). On the other hand, after the 

induction of DJ-1 L166P-1 expression, a higher intensity band appears at this molecular 

weight in the insoluble fraction (lane AI I), but not in the soluble fraction (lane AI S), 

indicating that the L166P-1 mutant protein is only slightly soluble. All the analyzed eluted 

fractions (lanes A1, B1, B1 (3d) and B1 AC) as well as the stored protein (lane DJ-1 L166P-

1) present this band. However, new bands appear after protein concentration (lane B1 

AC) and protein storage (lane DJ-1 L166P-1), indicating either the degradation of the 

protein or/and the increased concentration of other contaminants. In the gel filtration 

chromatography of this protein (Figure 4.4 B) only the fraction eluted between 180 mL 

    
Figure 4.4 - Chromatograms of DJ-1 L166P-1 Purification. A - Affinity chromatography performed in an HisTrap 
column. Fraction A1 - eluted fraction with 300 mM imidazole. B - Gel filtration chromatography. Fraction A1 from the 
affinity chromatography was applied on an HiLoad 26/600 Superdex 200 prep grade column after buffer exchange to 
PBS on an HiTrap Desalting column. Fraction B1 - eluted fraction with PBS.  

A 

A B 
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and 225 mL (fraction B1) was collected because at this elution volume the dimeric form of 

DJ-1 is eluted (dimeric form seems to be the functionally relevant form of the protein 

[113-115]). Thus, the previous peak (eluted between 90 mL and 135 mL) corresponds to a 

higher molecular weight form of protein and for that reason it was not collected. 

 

A second batch of L166P (L166P-2) was purified (Figure 4.6) and a highly intense 

band in the insoluble fraction after the induction of this mutant expression at ≈23 kDa 

(Figure 4.7 A, lane AI I) can also be seen, however in the soluble fraction (lane AI S) this 

band is much less intense, indicating that the L166P-2 mutant is poorly soluble, as it has 

already been observed for the first production of this mutant (Figure 4.5, lanes AI I and AI 

S). The fraction loaded on the HisTrap column (lane Ld) and the resulting flow through 

(lane FT A), present similar protein profiles which means that most of the protein was not 

captured by the column, probably because this mutant is found mostly in the insoluble 

fraction) (Figure 4.7 A, lane AI I). Nevertheless, all the analyzed eluted fractions (lanes A1, 

A2, A3, A4, B1, B2 and B2 AC) as well as the stored protein (lane DJ-1 L166P-2) present a 

band at ≈23 kDa, indicating the presence of this protein mutant (Figure 4.7 A and B). 

However, new bands appear after protein concentration (Figure 4.7 B, lane B2 AC) and 

protein storage (Figure 4.7 B, lane DJ-1 L166P-2), indicating either the degradation of the 

protein and/or the increased concentration of contaminants. In the gel filtration 

 
Figure 4.5 – SDS-PAGE followed by Coomassie staining of different fractions of DJ-1 L166P-1 Purification. MW – 
molecular weight marker: NZY Colour Protein Marker II (NZYTech); BI – before induction of protein expression; AI I – 
insoluble fraction after induction of protein expression; AI S – soluble fraction after induction of protein expression; A1 
– eluted fraction A1 (Figure 4.4 A) followed by buffer exchange to PBS on an HiTrap Desalting column; B1 – eluted 
fraction B1 (Figure 4.4 B); B1 (3d) – same sample than B1 after 3 days of storage at 4 °C; B1 AC – fraction B1 (3d) after 
concentration on a 10 kDa MWCO centrifugal concentrator; DJ-1 L166P-1 – purified DJ-1 L166P-1 stored in PBS  with 
10% glycerol at -80°C. In each lane 15 µg of protein were applied. 
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chromatography of this protein (Figure 4.6 B) the fractions eluted approximately at 200 

mL (dimeric form of DJ-1) (fraction B2) and between 100 mL and 150 mL (higher 

molecular weight form of protein) (fraction B1) were collected but only the fraction 

corresponding to the dimeric form of DJ-1 (fraction B2) was stored.  

 

 

 

 
Figure 4.6 - Chromatograms of DJ-1 L166P-2 Purification. A - Affinity chromatography performed in an HisTrap 
column. Fraction A1 - eluted fraction with 50 mM imidazole; fraction A2 – eluted fraction with 100 mM imidazole; 
fraction A3 – eluted fraction with 300 mM imidazole; fraction A4 – eluted fraction with 500 mM imidazole. B - Gel 
filtration chromatography. Fraction A3 from the affinity chromatography was applied on an HiLoad 26/600 
Superdex 200 prep grade column. Fraction B1 and B2- eluted fractions B1 and B2 with PBS.  

 
Figure 4.7 – SDS-PAGE followed by Coomassie staining of different fractions of DJ-1 L166P-2 Purification. MW – 
molecular weight marker: NZY Colour Protein Marker II (NZYTech). A – SDS-PAGE of fractions from protein 
expression and affinity purification (Figure 4.6 A). BI – before induction of protein expression; AI I – insoluble 
fraction after induction of protein expression; AI S – soluble fraction after induction of protein expression; Ld - 
loaded on the HisTrap column; FT A- flow-through of the HisTrap column; A1 – eluted fraction A1; A2 – eluted 
fraction A2; A3 – eluted fraction A3; A4 – eluted fraction A4. B - SDS-PAGE of fractions from gel filtration 
purification (Figure 4.6 B). B1 – eluted fraction B1; B2 - eluted fraction B2; B2 AC – eluted fraction B2 after 
concentration on a 10 kDa MWCO centrifugal concentrator; FT B - flow-through of the 10 kDa MWCO centrifugal 
concentrator; DJ-1 L166P-2 – purified DJ-1 L166P-2 stored in PBS with 10% glycerol at -80°C. In each lane 10 µL of 
protein sample were applied. 

A B 

A B 
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For the last production of the L166P mutant (L166P-3) (Figure 4.8), the results 

indicate that before the protein expression there is not a highly intense band at ≈23 kDa 

(Figure 4.9 A, lane BI) which only appears after the induction of L166P-3 mutant 

expression in the insoluble fraction (lane AI I), but not as much as in the soluble fraction 

(lane AI S). This fact confirms once again that this mutant is only slightly soluble. Most of 

the protein was not captured by the affinity purification column as it can be seen by the 

protein profile of the fraction loaded on the HisTrap column (lane Ld) and the resulting 

flow through (lane FT A). All the analyzed eluted fractions (lanes A1, A2, A3, A4, B1 and B1 

AC) as well as the stored protein (lane DJ-1 L166P-3) present a band at ≈23 kDa, indicating 

the presence of this protein mutant, although severe protein loss is observed during the 

purification and concentration steps (Figure 4.9 A and B). In the gel filtration 

chromatography of this protein (Figure 4.8 B) the fraction eluted between 250 mL and 

300 mL (dimeric form of DJ-1) presented low intensity and it was not collected. Thus, only 

the fraction eluted between 100 mL and 150 mL (higher molecular weight form of 

protein) (fraction B1) was collected. 

 

 

  

 
Figure 4.8 - Chromatograms of DJ-1 L166P-3 Purification. A - Affinity chromatography performed in an HisTrap 
column. Fraction A1 - eluted fraction with 50 mM imidazole; fraction A2 – eluted fraction with 100 mM imidazole; 
fraction A3 – eluted fraction with 300 mM imidazole; fraction A4 – eluted fraction with 500 mM imidazole. B - Gel 
filtration chromatography. Fraction A3 from the affinity chromatography was applied on an HiLoad 26/600 
Superdex 200 prep grade column. Fraction B1 - eluted fraction B1 with PBS. 

B A 



74| RESULTS 

 

The M26I mutant purification (Figure 4.10) results indicate that before the protein 

expression there is not a highly intense band at ≈23 kDa (Figure 4.11 A, lane BI). On the 

other hand, after the induction of this mutant expression, a higher intensity band appears 

at this molecular weight in the soluble fraction (lane AI S), also appearing in the insoluble 

fraction (lane AI I) but with lower intensity. The fraction loaded on the HisTrap column 

(lane Ld) also present an intense band, disappearing then in the resulting flow through 

(lane FT A), which indicates that almost all the recombinant protein was captured by the 

column. All the analyzed eluted fractions (lanes A1, A2, A3, A4, B1 and B1 AC) as well as 

the stored protein (lane DJ-1 M26I) present this band (Figure 4.11 A and B). In the gel 

filtration chromatography of this protein (Figure 4.10 B), only the fraction corresponding 

to the dimeric form of DJ-1 (fraction B1) was collected. 

 

 

Figure 4.9 - SDS-PAGE followed by Coomassie staining of different fractions of DJ-1 L166P-3 purification. MW – 
molecular weight marker: NZY Colour Protein Marker II (NZYTech). A – SDS-PAGE of fractions from protein 
expression and affinity purification (Figure 4.8 A). BI – before induction of protein expression; AI I – insoluble 
fraction after induction of protein expression; AI S – soluble fraction after induction of protein expression; Ld - 
loaded on the HisTrap column; FT A- flow-through of the HisTrap column; A1 – eluted fraction A1; A2 – eluted 
fraction A2; A3 – eluted fraction A3; A4 – eluted fraction A4. B - SDS-PAGE of fractions from gel filtration 
purification (Figure 4.8 B). B1 – eluted fraction B1; B1 AC – eluted fraction B1 after concentration on a 10 kDa 
MWCO centrifugal concentrator; FT B - flow-through of the 10 kDa MWCO centrifugal concentrator; DJ-1 L166P-3 – 
purified DJ-1 L166P-3 stored in PBS  with 10% glycerol at -80°C. In each lane 10 µL of protein sample were applied.  
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Finally, the E163K mutant was also purified (Figure 4.12) and the results indicate 

that before the protein expression there is not a highly intense band at ≈23 kDa (Figure 

4.13, lane BI). On the other hand, after the induction of this mutant expression, a higher 

intensity band appears at this molecular weight in the insoluble fraction (lane AI I), also 

appearing in the soluble fraction (lane AI S) but with lower intensity, indicating that this 

mutant is only slightly soluble. All the analyzed eluted fractions (lanes A1 and B1) as well 

as the stored protein (lane DJ-1 E163K) present this band (Figure 4.13). In the gel filtration 

  
Figure 4.10 - Chromatograms of DJ-1 M26I Purification. A - Affinity chromatography performed in an HisTrap 
column. Fraction A1 - eluted fraction with 50 mM imidazole; fraction A2 – eluted fraction with 100 mM imidazole; 
fraction A3 – eluted fraction with 300 mM imidazole; fraction A4 – eluted fraction with 500 mM imidazole. B - Gel 
filtration chromatography. Fraction A3 from the affinity chromatography was applied on an HiLoad 26/600 
Superdex 200 prep grade column. Fraction B1 - eluted fraction B1 with PBS. 

  

Figure 4.11 - SDS-PAGE followed by Coomassie staining of different fractions of DJ-1 M26I Purification. MW – 
molecular weight marker: NZY Colour Protein Marker II (NZYTech). A – SDS-PAGE of fractions from protein 
expression and affinity purification (Figure 4.10 A). BI – before induction of protein expression; AI I – insoluble 
fraction after induction of protein expression; AI S – soluble fraction after induction of protein expression; Ld - 
loaded on the HisTrap column; FT A- flow-through of the HisTrap column; A1 – eluted fraction A1; A2 – eluted 
fraction A2; A3 – eluted fraction A3; A4 – eluted fraction A4. B - SDS-PAGE of fractions from gel filtration 
purification (Figure 4.10 B). B1 – eluted fraction B1; B1 AC – eluted fraction B1 after concentration on a 10 kDa 
MWCO centrifugal concentrator; FT B - flow-through of the 10 kDa MWCO centrifugal concentrator; DJ-1 M26I – 
purified DJ-1 M26I stored in PBS  with 10% glycerol at -80°C. In each lane 10 µL of protein sample were applied. 

B A 

A B 
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chromatography of this protein (Figure 4.10 B), only the fraction corresponding to the 

dimeric form of DJ-1 (fraction B1) was collected. This mutant was the only one that did 

not need a protein concentration step before being stored. 

 

 

 

 

 

 

 

   
Figure 4.12 - Chromatograms of DJ-1 E163K Purification. A - Affinity chromatography performed in an HisTrap 
column. Fraction A1 - eluted fraction with 300 mM imidazole. B - Gel filtration chromatogram. Fraction A1 from 
the affinity chromatography was applied on an HiLoad 26/600 Superdex 200 prep grade column. Fraction B1 - 
eluted fraction with PBS. 

 
Figure 4.13 – SDS-PAGE followed by Coomassie staining of different fractions of DJ-1 E163K Purification. MW – 
molecular weight marker: NZY Colour Protein Marker II (NZYTech); BI – before induction of protein expression; AI I 
– insoluble fraction after induction of protein expression; AI S – soluble fraction after induction of protein 
expression; A1 – eluted fraction A1 (Figure 4.12 A); B1 – eluted fraction B1 (Figure 4.12 B); DJ-1 E163K – purified 
DJ-1 E163K stored in PBS with 10% glycerol at -80°C. In each lane were applied 15 µg of protein. 

A B 
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4.2 Structural Characterization of DJ-1 and DJ-1 Mutants 

In order to assess whether the produced recombinant proteins are with its 

characteristic structure various techniques of structural characterization, presented 

below, were performed. 

 

4.2.1 Protein Identification by LC-MS/MS 

The purified and stored proteins (including DJ-1 WT) were resolved by SDS-PAGE 

and a more sensitive staining (silver staining) was used to visualize potential 

contaminants (Figure 4.14). In order to understand what was the content of the purified 

DJ-1 proteins besides themselves, gel lanes with DJ-1 proteins [from Coomassie staining 

gel (data not shown)] and stored liquid DJ-1 proteins were digested and analyzed by LC-

MS/MS.  

The human DJ-1 is a 189-residue protein[32], however, the recombinant DJ-1 WT 

and DJ-1 mutants have 213 amino acids (excluding the initial methionine) because the N-

terminal of these recombinant proteins was engineered to contain an hexahistidine tag 

(6-His-tag) and a TEV cleavage sequence (Figure 3.1, Figure 4.1, Figure 4.2 and Figure 4.3).  

 

 

 
Figure 4.14 - SDS-PAGE followed by Silver staining of purified DJ-1 samples. MW – molecular weight marker: 
Precision Plus Protein All Blue Standards (Bio-Rad); DJ-1 WT – purified DJ-1 WT; DJ-1 L166P-3 - purified DJ-1 L166P-
3; DJ-1 M26I - purified DJ-1 M26I; DJ-1 E163K – purified DJ-1 E163K. In each lane 10 µg of protein were applied. 
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The recombinant DJ-1 WT, DJ-1 M26I and DJ-1 E163K sequences were identified 

with 99.5% coverage (Figure 4.15 A, C and D). The sequence coverage of recombinant DJ-

1 WT, DJ-1 M26I and DJ-1 E163K is not 100% due to the lack of the initial methionine in 

the final sequences, probably removed by E. coli methionyl-aminopeptidase, since E. coli 

was the overexpressing system used.  

The recombinant DJ-1 L166P-3 sequence was identified with 83.2% coverage 

(Figure 4.15 B). Despite the sequence of this mutant having a lower % coverage than the 

others DJ-1 proteins, the mutant was identified by the amino acid at the corresponding 

position 166 of human DJ-1, a proline (P) (Figure 4.15 B, highlight), instead the 

characteristic leucine (L) of DJ-1 WT (Figure 4.15 A, the last highlighted amino acid). 

 

 

The produced recombinant proteins have some protein contaminants (Figure 

4.14). The analysis of these digested gel lanes and the liquid digestion of stored proteins 

 
MGSSHHHHHHDYDIPTTENLYFQGH|MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCS

RDVVICPDASLEDAKKEGPYDVVVLPGGNLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGFG

SKVTTHPLAKDKMMNGGHYTYSENRVEKDGLILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVLKD 

 

 

MGSSHHHHHHDYDIPTTENLYFQGH|MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCS

RDVVICPDASLEDAKKEGPYDVVVLPGGNLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGFG

SKVTTHPLAKDKMMNGGHYTYSENRVEKDGLILTSRGPGTSFEFAPAIVEALNGKEVAAQVKAPLVLKD 

 

 

MGSSHHHHHHDYDIPTTENLYFQGH|MASKRALVILAKGAEEMETVIPVDVIRRAGIKVTVAGLAGKDPVQCS

RDVVICPDASLEDAKKEGPYDVVVLPGGNLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGFG

SKVTTHPLAKDKMMNGGHYTYSENRVEKDGLILTSRGPGTSFEFALAIVEALNGKEVAAQVKAPLVLKD 

 

 

MGSSHHHHHHDYDIPTTENLYFQGH|MASKRALVILAKGAEEMETVIPVDVMRRAGIKVTVAGLAGKDPVQCS

RDVVICPDASLEDAKKEGPYDVVVLPGGNLGAQNLSESAAVKEILKEQENRKGLIAAICAGPTALLAHEIGFG

SKVTTHPLAKDKMMNGGHYTYSENRVEKDGLILTSRGPGTSFKFALAIVEALNGKEVAAQVKAPLVLKD 

 
Figure 4.15 – Sequence Coverage of recombinant DJ-1 WT and DJ-1 Mutants. Green - residues identified in peptides 
with at least 95% confidence; gray - unidentified residues; yellow – residues identified in peptides with at least 50% and 
less than 95% confidence; red – residues identified in peptides with less than 50% confidence; vertical black line – 
separation of the hexahistidine tag and TEV cleavage sequence N-terminal (left side of the line) from the 189-residue 
sequence (right side of the line). The amino acid counting is performed from the vertical black line. A – Sequence 
coverage of DJ-1 WT. Yellow highlight – amino acids (methionine (M), glutamate (E) and leucine (L)) that were changed 
in DJ-1 mutants: M26I, E163K and L166P, respectively. B – Sequence coverage of DJ-1 L166P-3. Yellow highlight – amino 
acid (proline (P)) that was changed in DJ-1 L166P. C – Sequence coverage of DJ-1 M26I. Yellow highlight – amino acid 
(isoleucine (I)) that was changed in DJ-1 M26I. D – Sequence coverage of DJ-1 E163K. Yellow highlight – amino acid 
(lysine (K)) that was changed in DJ-1 E163K.  

A 

B 

C 

D 
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by LC-MS/MS (Table 4.1) shows that most of the protein contaminants are bovine 

proteins, probably contained in the LB medium used in bacterial culture, and Escherichia 

coli proteins, which was the host for the cloning and expression of the desired proteins.   
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Table 4.1 – DJ-1 and Contaminants identification by LC-MS/MS.      

Protein ID  DJ-1 WT DJ-1 M26I DJ-1 E163K 

Name Accession Species Mass (kDa) UP US UP US UP US 

Protein DJ-1 Q99497|PARK7_HUMAN  Homo sapiens 19.891 134 203.16 171 160.64 112 165.29 

Putative molybdate metabolism regulator P33345|MOLR_ECOLI Escherichia coli 140.939     1 2.00 

Probable hypoxanthine oxidase XdhD Q46814|XDHD_ECOLI Escherichia coli 103.519     1 2.00 

Putative two-component response 

regulator-like APRR6 

Q9C9F6|APRR6_ARATH Arabidopsis thaliana 86.182 1 0.24     

Cyclomaltodextrin glucanotransferase P31797|CDGT_GEOSE Geobacillus 

stearothermophilus 

78.923 1 0.44     

Serum albumin P02769|ALBU_BOVIN Bos taurus 69.293     3 3.26 

Aldehyde dehydrogenase 5, mitochondrial P40047|ALDH5_YEAST Saccharomyces 

cerevisiae 

56.693     1 2.00 

Glutathione reductase P06715|GSHR_ECOLI Escherichia coli 48.773   1 2.00 2 2.65 

4-hydroxy-3-methylbut-2-en-1-yl 

diphosphate synthase 

Q5GRK4|ISPG_WOLTR Wolbachia sp. subsp. 

Brugia malayi 

47.381     1 2.00 

Protochlorophyllide reductase B, 

chloroplastic 

Q42850|PORB_HORVU Hordeum vulgare 42.148 1 2.00     

Farnesyl diphosphate synthase P22939|ISPA_ECOLI Escherichia coli 32.160     1 2.00 

Uncharacterized protein yffS P76550|YFFS_ECOLI Escherichia coli 29.751     1 2.00 

Transcriptional regulatory protein CusR P0ACZ8|CUSR_ECOLI Escherichia coli 25.395 1 2.00     

Beta-casein P02666|CASB_BOVIN Bos taurus 25.107     1 2.00 

Alpha-S1-casein P02662|CASA1_BOVIN Bos taurus 24.529   1 2.00 2 3.77 

Transcriptional regulator YqjI P64588|YQJI_ECOLI Escherichia coli 23.401   2 2.02   

High-molecular weight cobalt-containing 

nitrile hydratase subunit alpha 

P21219|NHA1_RHORH Rhodococcus 

rhodochrous 

22.835   1 2.00 1 0.88 

Glycerol-3-phosphate acyltransferase A6Q218|PLSY_NITSB Nitratiruptor sp. 22.430 1 2.00     

Uncharacterized lipoprotein yceB P0AB26|YCEB_ECOLI Escherichia coli 20.500   1 2.03   
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Uncharacterized protein yaiL P51024|YAIL_ECOLI Escherichia coli 19.923 1 2.00     

Beta-lactoglobulin P02754|LACB_BOVIN Bos taurus 19.883     1 1.38 

Putative lipocalin 1-like protein 1 Q5VSP4|LC1L1_HUMAN Homo sapiens 17.918     1 0.80 

Ferric uptake regulation protein P0A9A9|FUR_ECOLI Escherichia coli 16.795   2 4.00 5 10.00 

Lysozyme C, milk isozyme Q6B411|LYSM_BOVIN Bos taurus 16.783     1 2.00 

50S ribosomal protein L11P A3CSJ5|RL11_METMJ Methanoculleus 

marisnigri  

16.317 1 2.00     

Superoxide dismutase [Cu-Zn] Q96VL0|SODC_CLAPU Claviceps purpurea 15.839   2 3.89 2 1.20 

50S ribosomal protein L9 P0A7R1|RL9_ECOLI Escherichia coli 15.769   1 2.00   

Fatty acid-binding protein, epidermal Q01469|FABP5_HUMAN Homo sapiens 15.164     2 4.00 

Thioredoxin-1 P0AA25|THIO_ECOLI Escherichia coli 11.807 5 8.88 4 8.02 4 8.08 

Dermcidin P81605|DCD_HUMAN Homo sapiens 11.284     2 3.70 

Glutaredoxin-1 P68688|GLRX1_ECOLI Escherichia coli 9.685 2 3.00 2 3.70 2 3.12 

50S ribosomal protein L28 P0A7M2|RL28_ECOLI Escherichia coli 9.006   1 2.00   

Abbreviations: UP – Unique Peptides; US – Unused Score 
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Although the DJ-1 proteins have some contaminants, the number of unique 

peptides found to identify the DJ-1 proteins is much larger than those found to identify 

the contaminants (Table 4.1). 

The contaminants of the L166P-3 mutant are not presented here because this 

mutant originated a large number of protein contaminants which it is not comparable 

with that of the other DJ-1 proteins. This large number of contaminants (data not shown) 

may explain the lower sequence coverage of this mutant when compared with the 

sequence coverage of the other mutants (Figure 4.15). 

 

4.2.2 LC-MS of Intact Proteins 

To determine the molecular weights of the monomeric form of DJ-1 WT, DJ-1 

M26I and DJ-1 E163K the purified proteins were analyzed by LC-MS (Figure 4.16). For the 

recombinant DJ-1 L166P-3 was not possible to determine the molecular weight of its 

monomeric form through direct analysis of the protein most likely due to its aggregated 

state.  

The molecular weights calculated using the mass spectra of protein charge 

envelops of intact DJ-1 WT, DJ-1 M26I and DJ-1 E163K and the BioAnalyst™ Software 

(Table 4.2) are very close to their theoretical (average) molecular weights, without the 

initial methionine, calculated using the Mass Calculator tool (Bioinformatics Solutions, 

Inc.), with molecular weight shifts between 0.4 and 1.1 Da. 
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Figure 4.16 – LC-MS analysis of intact DJ-1 WT, DJ-1 M26I and DJ-1 E163K. Deconvoluted mass spectra of intact 
DJ-1 WT (A), DJ-M26I (B) and DJ-1 E163K (C) using BioAnalyst™. Inserts show obtained charged envelope. 

A 

B 

C 

 

DJ-1 E163K 

DJ-1 M26I 

DJ-1 WT 
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4.2.3 HPLC-Size Exclusion Chromatography 

DJ-1 is found as homodimer and this seems to be the functionally relevant form of 

the protein [113-115]. In order to assess the form of the purified proteins, an HPLC-Size 

Exclusion chromatography was performed. The retention times of standards were used to 

perform a calibration curve and the molecular weights of purified DJ-1 proteins were 

determined using their retention times (Figure 4.17 A and B and Supplementary Figure 

8.1). 

The molecular weights of the purified DJ-1 WT, DJ-1 M26I and DJ-1 E163K are ≈41 

kDa, ≈42 kDa and ≈37 kDa, respectively, which correspond to the dimer form [116].  

The three batches of the L166P mutant produced were also evaluated by this 

analysis along with the above mentioned proteins (Figure 4.17 A and B). The molecular 

weights of the purified DJ-1 L166P-1 and DJ-1 L166P-2 are ≈91 kDa, and ≈86 kDa, 

respectively, which do not correspond to the proteins dimer form. The molecular weight 

of the purified DJ-1 L166P-3 could not be calculated because this protein was eluted in 

the column void volume determined by the elution volume for Blue Dextran (≈2000 kDa) 

and for this reason it is out of the HPLC-Size Exclusion Chromatography calibration curve 

(Supplementary Figure 8.1). The results indicate that this mutant is in an aggregated state 

or it exists in the form of protein oligomer or even protein polymer. While in the L166P-1 

and L166P-2 gel filtration purification the fraction corresponding to the protein dimeric 

form was collected and stored (Figure 4.4 B and Figure 4.6 B, respectively), in the L166P-3 

gel filtration purification the fraction corresponding to a higher protein molecular weight 

Table 4.2 – Average and Calculated Molecular Weights for the purified DJ-1 proteins. 

Protein Average Molecular Weight 
(Da) 

Calculated Molecular Weight 
(Da) 

Molecular Weight Shift 
(Da) 

WT 22739.998 22739.5564 0.4416 

M26I 22721.965 22721.5868 0.3782 

E163K 22739.057 22737.9370 1.1200 
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form was collected (Figure 4.8 B). Hence the differences found in the molecular weight of 

this mutant for the three batches produced.  

 

4.2.4 Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectroscopy is a widely used technique in protein 

structure analysis. This technique is commonly used to investigate the secondary 

structure because each secondary structural element presents a particular profile. A 

protein CD spectrum is the result of the secondary structure composition and as a 

consequence, CD is useful to study the variation of the protein folding [117].  

 
Figure 4.17 - HPLC-Size Exclusion Chromatography of purified DJ-1 proteins. Molecular Weight Standards from 
left to right: Ferritin (440 kDa); Aldolase (158 kDa); Conalbumin (75 kDa); Ovalbumin (43 kDa); Carbonic Anhydrase 
(29 kDa); Ribonuclease A (13.7 kDa); and Aprotinin (6.5 kDa). A – HPLC-Size Exclusion chromatogram of DJ-1 WT 
and DJ-1 mutants. B - HPLC-Size Exclusion chromatogram of DJ-1 L166P-3 showing its elution in the column void 
volume.  

A 

B 
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DJ-1 WT, M26I and E163K CD spectra were acquired at 37 °C. The CD spectrum of 

the DJ-1 WT protein is typical of a well-structured protein containing both α-helical and β-

sheet secondary structure (Figure 4.18, blue line). The far-UV CD spectra of the M26I and 

E163K mutants are similar in shape to that of the protein wild-type but exhibit decreased 

signal amplitude, with the effect being most pronounced for the E163K mutant. 

 
Figure 4.18 - Circular Dichroism (CD) spectra of DJ-1 WT, DJ-1 M26I and DJ-1 E163K. The secondary structure of 
DJ-1 WT and mutant proteins was evaluated by CD spectroscopy at 37 °C. 

 

For DJ-1 WT, CD data gave 37% (CONTIN) or 38% (GlobalWorks) of α-helix, 25% 

(CONTIN) or 16% (GlobalWorks) of β-sheet structure, and 38% (CONTIN) or 46% 

(GlobalWorks) of no regular secondary structure (Table 4.3). For the M26I and E163K 

mutants, CD data retrieved a lower content of α-helix and higher β-sheet content. For DJ-

1 M26I, CD data gave 30% (CONTIN and GlobalWorks) of α-helix, 38% (CONTIN) or 21% 

(GlobalWorks) of β-sheet structure, and 32% (CONTIN) or 49% (GlobalWorks) of no 

regular secondary structure. For DJ-1 E163K, CD data gave 23% (CONTIN) or 27% 

(GlobalWorks) of α-helix, 28% (CONTIN) or 22% (GlobalWorks) of β-sheet structure, and 

49% (CONTIN) or 51% (GlobalWorks) of no regular secondary structure.  

The X-ray structures analysis (Table 4.3) reveals that DJ-1 WT, M26I and E163K 

have about 40% of α-helix structure and 20% of β-sheet structure. This is in agreement 

with the results obtained by CD for DJ-1 WT. However, the CD results for M26I and E163K 

do not reproduce these amounts of secondary structure. 
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Table 4.3 – CD data (at 37 °C) obtained for purified DJ-1 proteins and X-Ray Crystallography data for DJ-1 
proteins available in PDB (see Supplementary Table 8.2-8.4 for more detailed information).  

 CD data  

 CONTIN program GlobalWorks software 

(Average of 3 algorithms) 

X-Ray Crystallography data 

(Average of all structures from PDB) 

Protein 
α-helix 

% 

β-sheet 

% 

Remainder 

% 

α-helix 

% 

β-sheet 

% 

Remainder 

% 

α-helix 

% 

β-sheet 

% 

Remainder 

% 

WT 37 25 38 38 16 46 40 20 40 

M26I 30 38 32 30 21 49 36 19 45 

E163K 23 28 49 27 22 51 36 20 44 

 

DJ-1 L166P-1 and L166P-3 CD spectra were only acquired at 25 °C in a first 

preliminary analysis, as well as, for the DJ-1 WT, M26I and E163K (Supplementary Figure 

8.2). Once the biological assays were performed at 37 °C, the CD analysis was later 

performed at this temperature (Figure 4.18). As the analysis at 25 °C of L166P-1 and 

L166P-3 CD spectra (Supplementary Figure 8.2) showed that these proteins did not have a 

defined secondary structure, when the analysis of the DJ-1 proteins was performed at 37 

°C the L166P mutant was not included. 

 

4.2.5 Protein Thermal Shift Assay 

Other form to evaluate potential significant changes in protein structure and 

stability is by Thermal Shift Assay, where through negative first derivative plots of the 

thermal melting curves, it is possible to determine the melting temperatures of proteins 

(corresponding to the minimum peak) by evaluating the amount of dye that binds to the 

proteins. 

The results indicate that the DJ-1 WT is the most stable protein, with a melting 

temperature of approximately 63.5 °C, and the E163K mutant the least stable protein, 

with a melting temperature of approximately 54.1 °C (Figure 4.19 A and B). The M26I 

mutant is less stable than DJ-1 WT but more stable than E163K mutant, by presenting a 

melting temperature of approximately 60.0 °C (Figure 4.19 A and B).  
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Figure 4.19 - Thermal Shift Assay for DJ-1 WT, DJ-1 M26I and DJ-1 E163K. A - Thermal melting curves 
(fluorescence). B - Negative first derivative plots of the thermal melting curves: the melting temperature, Tm, can 
be determined as the minimum peak (see text for details). 

 

For L166P-1 and L166P-3 mutants it was not possible to determine their melting 

temperatures (there is not a minimum peak) (Figure 4.20, lower panel) since they did not 

present an usual profile of denaturation (Figure 4.20, upper panel). Therefore the L166P 

mutant is thermally unstable and it has melting profiles of a typical aggregated protein.  

 

A 

B 
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Figure 4.20 – Thermal Shift Assay for DJ-1 L166P-1 (left panel) and DJ-1 L166P-3 (right panel). Thermal melting 
curves (fluorescence) are represented on the upper panel and Negative first derivative plots of the thermal melting 
curves are represented on the lower panel.  
 

 

4.3 Role of DJ-1 in Neuroprotection 

The produced recombinant DJ-1 WT and the M26I and E163K mutants have the 

predicted molecular mass of the protein (subsection 4.2.2), they are present, in solution, 

as dimers (subsection 4.2.3), they have a secondary structure well defined (subsection 

4.2.4), and they are stable, in solution, at 37 °C (subsection 4.2.5). Thus, these three 

proteins can be used in the biological assays. On the contrary, none of the recombinant 

L166P mutants produced can be used in the biological assays, once none of them 

achieved the criteria mentioned above for the other recombinant DJ-1 proteins 

(subsection 4.2.2-4.2.5). 

In order to address if the recombinant DJ-1 WT is functional, its neuroprotective 

capacity against oxidative stress was tested. 

The human neuroblastoma SH-SY5Y cell line has been widely used as an in vitro 

model of dopaminergic neurons for Parkinson’s disease [118] and, is known to be 

responsive to oxidative stress caused by hydrogen peroxide [119]. The inhibition of H2O2-
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induced cell death by the exogenous addition of recombinant DJ-1 WT protein was 

already shown [119]. So, to address if this recombinant DJ-1 WT is effective to play this 

function, cells were treated with different concentrations of H2O2 in the presence of 1 μM 

DJ-1 WT (or the corresponding amount of vehicle).  

The results indicate that SH-SY5Y cells were sensitive to the oxidative stress-

inducer hydrogen peroxide (Figure 4.21, blank bars), as expected, once the treatment of 

cells with 100 and 200 μM H2O2 induced cell death. However, an inhibition of cell death, 

as result of the presence of 1 μM His-tagged recombinant human DJ-1 WT protein, was 

not observed (gray bars). The DJ-1 vehicle (PBS with 10% glycerol) seems to have similar 

effect on cells than DJ-1 (black bars). Thus, the inhibition of H2O2-induced cell death by 

the exogenous addition of this recombinant DJ-1 WT protein was not confirmed in this 

study.  

As the treatment of cells with 200 μM H2O2 showed to be statistically effective to 

induce cell death, this H2O2 concentration was used in the next task of this project to 

generate oxidative stress.  

 

 

Figure 4.21 – Cell viability assessment under H2O2-induced oxidative stress. SH-SY5Y cells were treated with H2O2 
(100 and 200 μM) in the presence or absence of recombinant His-tagged human DJ-1 WT protein (1 μM) or vehicle, 4h 
after plating. After 24 h, cell viability was assessed by the Cell Titer-Glo assay. Data present mean±SEM of three 
determinations, based on untreated cultures as 100% of viability (Control). Significance (Student's two-tailed t-test): *p 
< 0.05, ***p < 0.001 treatment with H2O2 vs. Control (0 μM H2O2). 
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4.4 LC-MS/MS-based DJ-1 WT and Mutants Metabolomics Study 

In order to identify the metabolites that are significantly altered in resting and 

oxidative stress conditions, and also access the effect of the addition of DJ-1 WT and 

mutants to the SH-SY5Y cell line under such conditions, a metabolomics study was carried 

out. To achieve this objective, 8 different biological conditions were tested: (1) control 

(Vehicle) [cells with the addition of protein vehicle (PBS with 10% glycerol)]; (2) cells 

stimulated with 200 μM H2O2 and the addition of vehicle (Vehicle_ H2O2); (3) cells with 

the addition of DJ-1 WT (WT); (4) cells stimulated with 200 μM H2O2 and the addition of 

DJ-1 WT (WT_ H2O2); (5) cells with the addition of DJ-1 M26I (M26I); (6) cells stimulated 

with 200 μM H2O2 and the addition of DJ-1 M26I (M26I_ H2O2); (7) cells with the addition 

of DJ-1 E163K (E163K); and (8) cells stimulated with 200 μM H2O2 and the addition of DJ-1 

E163K (E163K_ H2O2). 

 

4.4.1 LC-MS/MS Analysis of Intracellular Metabolites and Data Processing 

Firstly, SH-SY5Y cells were plated, and after 4 hours of incubation they were 

stimulated with 200 μM H2O2 in the presence of recombinant DJ-1 WT (1 μM), DJ-1 M26I 

(1 μM), DJ-1 E163K (1 μM) or the corresponding vehicle (PBS with 10% glycerol). After 24 

hours of stimulation, cells were quenched to stop their metabolism and intracellular 

metabolites were extracted using methanol:water (80:20) solution.  

Three replicates of each biological condition were analyzed by LC-MS/MS SWATH 

untargeted analysis to screen potential and putative metabolites of interest. The full-scan 

spectra of 24 samples were acquired. However, the LC-MS/MS analysis for some of the 

samples did not result: for the first and the third replicates of WT; for the first and second 

replicates of WT_H2O2; and for the first replicate of E163K. Therefore, a total of 19 

acquired files were analyzed.  

The MarkerView™ Software is designed to compare data from several samples, 

including direct analysis of LC-MS data, so that differences can be identified. Univariate 

analysis (t-test) and Multivariate analysis (PCA) can be performed in order to find possible 
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biomarkers. Data files (wiff extension) are imported by MarkerViewTM, and peak 

detection, alignment and scaling steps are performed in the software prior to data 

analysis. The manual inspection of the raw mass spectra is an essential step to select the 

best values of each parameter used in peak detection and alignment. Peak detection 

works in the individually raw data files to generate a data table containing the peaks 

detected with the respective m/z value, RT and peak area.  

Based on only the analysis between the Vehicle and Vehicle_H2O2 conditions, once 

they represent the basis of normal condition and oxidative stress condition, respectively, 

the search of potential and putative metabolites of interest was initiated, through the 

finding of ions that vary between these two conditions. 

The 6 files acquired for these samples were imported to MarkerViewTM for LC-

MS/MS data processing. Different combinations of the parameter values for peak 

detection and alignment and their influence on the peaks detected and on the results 

obtained by PCA analysis were tested. The parameters values chosen for peak detection 

were (i) retention time above 10 minutes and below 46 minutes; (ii) minimum spectral 

peak width of 50 ppm; (iii) noise threshold superior to 100 counts; and (iv) minimum 

retention time peak width of 6 scans. And the parameter values chosen for peak 

alignment were (i) retention time tolerance of 0.5 minutes; and (ii) mass tolerance of 50 

ppm.  

For these 6 files acquired, with peak detection and alignment performed using the 

parameter values mentioned above, 6446 peaks were detected. The number of peaks 

detected was reduced to 109 peaks, by showing only peaks statistically different (p < 0.05, 

t-student) between Vehicle and Vehicle_H2O2. Manual validation was conducted in a few 

representative peaks, and overall they revealed to be correctly detected and aligned. The 

presence or absence of an ion in a sample can be examined by looking to the extracted 

ion chromatogram (XIC), which indicates the ion current detected for a specific m/z along 

the time (data not shown). 

The large number of variables involved (i.e. the number of peaks detected by the 

LC-MS/MS) requires the use of multivariate techniques, as PCA. However, prior to the 



RESULTS |93 
 

 

analysis of the principal components it is important to define how peak responses are 

scaled in order to adjust the relative importance of the variables. The scaling method 

used in this study was the Pareto scaling, where the mean-centered values are divided by 

the square root of the standard deviation. 

The PCA analysis, for the 109 peaks detected (Figure 4.22), and the manual 

validation of these ions through the observation of their XICs (data not shown), allowed 

the finding of 8 different interesting variables which can be potential ions responsible for 

the distinction of Vehicle from Vehicle_H2O2 conditions (Table 4.4). The score values 

(representation of samples, Figure 4.22, upper pannel) for Vehicle and Vehicle_H2O2 

conditions represented in the two first principal components (PC1 and PC2) using the 

Pareto scaling, explain 94.6% of the group variance. Variables (features with a specific 

m/z value and retention time) responsible for the formation of the observed groups are 

represented in the loadings plot (Figure 4.22, lower panel). The scores plot (upper panel) 

shows the evident separation of the two groups along the first principal component 

(PC1), and the loadings plot shows ions which have the largest contribution along the PC1 

and which explain the separation of the two groups. The features 398.2/35.5 and 

376.3/35.6 (lower panel, in orange) seem to be the main contributors for the separation 

of the Vehicle_H2O2 condition located in the negative side of the PC1 (upper panel). While 

features 790.2/21.4, 590.1/21.1, 410.1/20.6, 381.1/21.1, 363.1/21.1 and 335.1/21.2 

(lower panel, in black) seem to be the main contributors for the separation of the Vehicle 

condition located in the positive side of the PC1 (upper panel). 
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Figure 4.22 – Principal component analysis (PCA) of Vehicle and Vehicle_H2O2 conditions data acquired by LC-MS/MS 
and processed using MarkerView

TM 
software and Pareto scaling. PCA was performed using the 109 variables 

statistically different (p < 0.05) obtained from t-test. The scores plot (upper panel) shows the formation of two main 
groups along the PC1, whose separation is best explained by the ions most represented along the PC1 on the loadings 
plot (lower panel).  Orange: Vehicle condition. Black: Vehicle_H2O2 condition. 

 

 

 

 

 



RESULTS |95 
 

 

Table 4.4 - Interesting features which can differentiate the Vehicle condition 
from the Vehicle_H2O2 condition. 

 

Vehicle Vehicle_H2O2 

 Feature 

(m/z/RT) 
Area Mean Area SD Area Mean Area SD p-value 

335.1/21.2 516.8 182.7 3218.3 834.9 0.005 

398.2/35.5 656.1 209.3 9.7 16.8 0.006 

376.3/35.6 1097.5 369.8 0.0 0.0 0.007 

363.1/21.1 1107.3 646.9 2876.5 55.0 0.009 

790.2/21.4 5.9 10.2 519.1 212.8 0.014 

381.1/21.1 13474.6 7884.7 32064.5 2192.3 0.017 

590.1/21.1 190.9 198.4 524.4 97.6 0.044 

410.1/20.6 803.8 235.5 3079.3 1379.6 0.048 

 

For each of the 8 interesting features found, the fragmentation spectra were 

acquired (Figure 4.23 and Supplementary Figure 8.3-8.9) and some fragments (indicated 

by red arrows) of the 8 precursors were chosen to confirm the quantification and the 

profile of the respective precursor ion in the biological samples. 

The peak integration of the precursor ions and their fragments was performed 

using the MultiQuantTM software, but now all the 19 files acquired for the intracellular 

 
Figure 4.23 – Fragmentation spectrum of the precursor ion with m/z value of 376.3 and RT of 35.5 minutes. Red 
arrows represent the fragments selected for quantification. 

376.3/35.6 
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metabolite samples were used. A total of 24 ions (8 precursors and 16 fragments) were 

imported to the software and their peak integration was performed in each one of the 19 

samples. For each interesting ion and its fragments, the mean peak area with the 

respective standard error of the mean (SEM), were calculated in 6 biological conditions 

(1) Vehicle; (2) Vehicle_ H2O2; (5) M26I; (6) M26I_ H2O2; (7) E163K and (8) E163K_ H2O2. 

For the remaining 2 conditions (3) WT and (4) WT_ H2O2 this was not possible because 

there is only one replicate of each. However, the peak area of the ions in these conditions 

was calculated and graphically represented along with the other conditions (Figure 4.24-

4.31). 

 

  
Figure 4.24 - Peak areas of the precursor ion with m/z value of 376.3 and RT of 35.6 minutes (upper panel) and its 
fragments ions with m/z value of 292.2 (lower panel, left side) and 209.1 (lower panel, right side) in the 8 different 
biological conditions tested. Data represent the mean±SEM of three independent experiments. Significance (Student's 
two-tailed t-test): *p < 0.05, **p < 0.01, ***p < 0.001 when compared to Vehicle. #p < 0.05, ##p < 0.05, ###p < 0.05 
treatment with 200 μM H2O2 and M26I or E163K vs. corresponding treatment with M26I or E163K.  
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The results show the division of the ions in two main groups: a group of ions more 

intense in the conditions where the cells were stimulated with 200 μM H2O2 ((2) Vehicle_ 

H2O2; (4) WT_ H2O2; (6) M26I_ H2O2; and (8) E163K_ H2O2) (Figure 4.24 and 4.25), and a 

group of ions more intense in the conditions where the cells were not under oxidative 

stress ((1) Vehicle; (3) WT; (5) M26I; and (7) E163K) (Figure 4.26-4.31). This trend is 

confirmed by the quantification of the fragments of the precursor ions. The precursor ion 

with m/z value of 398.2 was not fragmented as can be seen by its fragmentation 

spectrum (Supplementary Figure 8.3), probably because the collision energy applied was 

not enough. 

 

 
Figure 4.25 - Peak areas of the ion with m/z value of 398.2 and RT of 35.5 minutes in the 8 different biological 
conditions tested. For this ion there was no fragment to be monitored. Data represent the mean±SEM of three 
independent experiments. Significance (Student's two-tailed t-test): *p < 0.05, **p < 0.01 when compared to Vehicle. 
#p < 0.05 treatment with 200 μM H2O2 and M26I or E163K vs. corresponding treatment with M26I or E163K. 
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Figure 4.26 -  Peak areas of the precursor ion with m/z value of 335.1 and RT of 21.2 minutes (upper panel) and its 
fragments ions with m/z value of 217.1 (lower panel, left side) and 160.0 (lower panel, right side) in the 8 different 
biological conditions tested. Data represent the mean±SEM of three independent experiments. Significance (Student's 
two-tailed t-test): *p < 0.05, **p < 0.01, ***p < 0.001 when compared to Vehicle. 
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Figure 4.27 - Peak areas of the precursor ion with m/z value of 363.1 and RT of 21.1 minutes (upper panel) and its 
fragments ions with m/z value of 236.0 (lower panel, left side) and 154.0 (lower panel, right side) in the 8 different 
biological conditions tested. Data represent the mean±SEM of three independent experiments. Significance (Student's 
two-tailed t-test): *p < 0.05, **p < 0.01 when compared to Vehicle. 
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Figure 4.28 - Peak areas of the precursor ion with m/z value of 381.1 and RT of 21.1 minutes (upper panel) and its 
fragments ions with m/z value of 309.1 (lower panel, left side), 263.1 (lower panel, middle) and 174.1 (lower panel, 
right side) in the 8 different biological conditions tested.  Data represent the mean±SEM of three independent 
experiments. Significance (Student's two-tailed t-test): *p < 0.05, **p < 0.01 when compared to Vehicle. 
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Figure 4.29 - Peak areas of the precursor ion with m/z value of 410.1 and RT of 20.6 minutes (upper panel) and its 
fragments ions with m/z value of 176.1 (lower panel, left side) and 148.1 (lower panel, right side) in the 8 different 
biological conditions tested.  Data represent the mean±SEM of three independent experiments. Significance (Student's 
two-tailed t-test): *p < 0.05, **p < 0.01 when compared to Vehicle. 
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Figure 4.30 - Peak areas of the precursor ion with m/z value of 590.1 and RT of 21.1 minutes (upper panel) and its 
fragments ions with m/z value of 400.1 (lower panel, left side) and 245.1 (lower panel, right side) in the 8 different 
biological conditions tested.  Data represent the mean±SEM of three independent experiments. Significance (Student's 
two-tailed t-test): *p < 0.05 when compared to Vehicle. 
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When a PCA analysis was performed with only these 24 features for all the 19 

samples (data not shown), the representation of scores showed that no evident 

separation was achieved between the 8 different biological conditions tested in this 

study: (1) Vehicle; (2) Vehicle_ H2O2; (3) WT; (4) WT_ H2O2; (5) M26I; (6) M26I_ H2O2; (7) 

E163K; and (8) E163K_ H2O2. There is a huge variability between the replicates of each 

biological condition and also between different biological conditions as can be observed 

by the SEM of the the majority of the samples. Therefore, the replicate number for each 

sample must be increased also to try to find more specific ion groups within the different 

biological samples. 

   

 

   
Figure 4.31 - Peak areas of the precursor ion with m/z value of 790.2 and RT of 21.4 minutes (upper panel) and its 
fragments ions with m/z value of 410.1 (lower panel, left side), 251.1 (lower panel, middle) and 176.1 (lower panel, 
right side) in the 8 different biological conditions tested.  Data represent the mean±SEM of three independent 
experiments. Significance (Student's two-tailed t-test): *p < 0.05 when compared to Vehicle. 



 

  



 

 

 

 

 

 

 

❺ DISCUSSION 
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5. DISCUSSION 

 

Parkinson’s disease, a neurodegenerative movement disorder, is associated with 

selective degeneration of nigrostriatal dopamine neurons [120]. Although the underlying 

mechanisms contributing to neurodegeneration in PD seem to be multifactorial, oxidative 

stress is widely considered to be central to many forms of the disease [120]. The DJ-1 

gene, a causative gene for familial PD, expresses the multifunctional DJ-1 protein. DJ-1 is a 

stress sensor and some DJ-1 mutations lead to loss of this function [121]. If this happens it 

may occur a homeostatic imbalance in cell system and metabolites, which can be used as 

cellular markers of stress conditions. 

Taking these facts together, this study intended to give some insights about the 

metabolites that are significantly altered in resting and oxidative stress conditions, and 

access also the effect of the addition of recombinant DJ-1 WT and mutants to SH-SY5Y cell 

line, widely used as an in vitro model of dopaminergic neurons for Parkinson’s disease 

studies, under normal and oxidative stress conditions [118]. 

Three recombinant DJ-1 mutants were produced in order to be used in further 

studies of DJ-1-mediated neuroprotection against H2O2-induced cell death and DJ-1 

metabolomics study.  

All DJ-1 point mutations (L166P, M26I and E163K) were generated by site-directed 

mutagenesis of the sequence of DJ-1 coding DNA in the pSKB-3 vector (Figure 3.1) and the 

mutations were confirmed by Sanger DNA sequencing (Figure 4.1, Figure 4.2 and Figure 

4.3, respectively). Until positive mutation confirmation, all the steps involved in this 

mutagenesis technique had to be optimized.  

The three recombinant mutant proteins were expressed and purified by affinity 

and gel filtration chromatographies (Figure 4.4, Figure 4.6, Figure 4.8, Figure 4.10, and 

Figure 4.12). The L166P mutant was produced in three different batches due to the low 

protein content obtained. The difficulty to express and purify this mutant has been 

reported in many studies [69, 84, 86, 93, 95, 96]. 

The recombinant DJ-1 WT, DJ-1 M26I and DJ-1 E163K amino acid sequences only 

lack the initial methionine (Figure 4.15 A, C and D), due to a natural post-translational 



108| DISCUSSION 

process. On the other hand the recombinant DJ-1 L166P-3 sequence was also identified 

but with lower sequence coverage (Figure 4.15 B). 

The produced recombinant proteins have some protein contaminants (Figure 

4.14), but these are mainly proteins from the LB medium, used for bacterial cultures and 

proteins from the host (E. coli) used to clone and express the proteins of interest (Table 

4.1). Moreover, when the number of unique peptides as well as the unused score of the 

purified recombinant DJ-1 WT and mutants are compared with those of their 

contaminants any effect of them on the function of the DJ-1 proteins can be devalued. 

The contaminants found to be from Homo sapiens can be probably from Bos taurus due 

to the bovine genome not being fully sequenced yet and the UniProt_SwissProt protein 

database performs a protein search based on the existing sequenced genomes translated 

to observed and/or predicted protein sequences.  

DJ-1 WT, DJ-1 M26I and DJ-1 E163K presented the predicted molecular weight of 

its monomers (≈23 kDa) (Figure 4.16 and Table 4.2). For the recombinant DJ-1 L166P-3 it 

was not possible to determine the molecular weight of its monomeric form because it 

was in an aggregate form. 

The molecular weights of the purified DJ-1 WT, DJ-1 M26I and DJ-1 E163K were 

≈41 kDa, ≈42 kDa and ≈37 kDa, respectively (Figure 4.17), corresponding to their dimeric 

form [116], which is an important functional feature of the protein [113-115]. There is a 

small discrepancy in the molecular weight of the three proteins that can be explained by 

the chromatographic technique used. The HPLC-Size Exclusion Chromatography is a 

technique of low resolution when compared with LC-MS (used in determining the 

molecular weight of the protein monomers) and therefore it does not provide as accurate 

results as LC-MS. Thus, the molecular weights of the three recombinant proteins were 

considered near of those corresponding to the dimeric form. The molecular weights of 

the purified DJ-1 L166P-1 and DJ-1 L166P-2 were ≈91 kDa, and ≈86 kDa, respectively 

(Figure 4.17), which do not correspond to the proteins dimer form. The molecular weight 

of the purified DJ-1 L166P-3 could not be calculated because this protein was eluted in 

the column void volume determined by the elution volume for Blue Dextran (≈2000 

kDa).and for this reason it is out of the HPLC-Size Exclusion Chromatography calibration 
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curve (Supplementary Figure 8.1). The results indicated that this mutant was in an 

aggregated state or it existed in the form of protein oligomer or even protein polymer, as 

it has been reported [52]. 

DJ-1 WT protein showed to be a well-structured protein containing both α-helical 

and β-sheet secondary structure at 37 °C, as well as M26I and E163K mutants (Figure 4.18 

and Table 4.3). However, overall the mutants showed a lower content of secondary 

structure with the negative effect being most pronounced for the E163K mutant. The X-

ray structures analysis previously reported (Table 4.3) was in agreement with the results 

obtained by CD for DJ-1 WT but not with the CD results for M26I and E163K mutants. For 

L166P-1 and L166P3 mutants, the CD analysis at 25 °C revealed that the proteins had a 

very low content of defined secondary structure and a high content of no regular 

structure, as it has been reported [51, 96, 122], with the negative effect being most 

pronounced for the L166P-3 (Supplementary Figure 8.2 and Supplementary Table 8.6). No 

X-ray crystallographic structures were found for L166P mutant. As the analysis at 25 °C of 

L166P-1 and L166P-3 CD spectra (Supplementary Figure 8.2) showed that these proteins 

did not have a defined secondary structure, when the analysis of the DJ-1 proteins was 

performed at 37 °C the L166P mutant was not included. 

DJ-1 WT was the most stable protein, with a melting temperature of 

approximately 63.5 °C (Figure 4.19 A and B). Various studies have reported different DJ-1 

WT melting temperatures ranging from 60 °C to 77 °C, so the melting temperature 

calculated for the DJ-1 WT in this project was as expected [51, 76, 86, 91, 123]. The E163K 

mutant is the least stable protein, with a melting temperature of approximately 54.1 °C, 

that it was in accordance with the only melting temperature study performed for this 

mutant (55.1 °C) [91]. The M26I mutant was less stable than DJ-1 WT but more stable 

than E163K mutant, by presenting a melting temperature of approximately 60.0 °C. Some 

studies have reported melting temperatures for this mutant ranging from 52 °C to 69 °C, 

therefore, the melting temperature calculated in this project was in the expected range. 

Because the biological assays were performed at 37 °C and the melting temperatures of 

the three proteins were found to be higher than 37 °C, the three proteins were 

considered to be stable. For L166P-1 and L166P-3 mutants it was not possible to 
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determine their melting temperatures (Figure 4.20, lower panel) since they did not 

present an usual profile of denaturation (Figure 4.20, upper panel). Therefore the L166P 

mutant was thermally unstable and it had melting profiles of a typical aggregated protein 

[52, 84, 96]. 

Based on the structural characterization described for the recombinant DJ1-M26I 

and E163K mutants, as well as the DJ-1 WT, all proteins were included in further biological 

assays. However the L166P mutant did not assemble the necessary structural conditions 

to proceed to the biological assays. 

SH-SY5Y cells were sensitive to the oxidative stress-inducer hydrogen peroxide 

(Figure 4.21, blank bars), as expected, once the treatment of cells with 100 and 200 μM 

H2O2 induced cell death (as previously observed in our research group, but with higher 

cellular viability – data not shown). However, an inhibition of cell death, as result of the 

presence of recombinant DJ-1 WT protein, was not observed (gray bars). Thus, the 

inhibition of H2O2-induced cell death by the exogenous addition of this recombinant DJ-1 

WT protein was not confirmed in this study (in contrary to the results previously observed 

– data not shown). As the treatment of cells with 200 μM H2O2 showed to be statistically 

effective to induce cell death, this H2O2 concentration was used in the next task of this 

project to generate oxidative stress.  

In order to identify the metabolites that were significantly altered in resting and 

oxidative stress conditions, and also access the effect of the addition of DJ-1 WT and 

mutants to the SH-SY5Y cell line under such conditions, a metabolomics study was carried 

out. The analysis between the Vehicle and Vehicle_H2O2 conditions, once they represent 

the basis of normal condition and oxidative stress condition, respectively, allowed the 

detection of 109 statistically different peaks from where only eight were considered to be 

responsible by the separation of these two groups. This was the first study for oxidative 

stress metabolomics profiling with the exogenous addition of DJ-1 WT and mutants, and 

showed the division of the features in two main groups: a group of features more intense 

in the conditions where the cells were stimulated with 200 μM H2O2 (Vehicle_ H2O2; WT_ 

H2O2; M26I_ H2O2; and E163K_ H2O2) (Figure 4.24 and 4.25), and a group of features more 

intense in the conditions where the cells were not under oxidative stress (Vehicle; WT; 
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M26I; and E163K) (Figure 4.26-4.31). However, the effect of the addition of recombinant 

DJ-1 WT and mutants to cells under normal and oxidative stress conditions was 

inconclusive so far. So, further studies are required to better elucidate the role of DJ-1 

mediated metabolic changes in neuronal protection mechanisms. 
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6. CONCLUSION 

 

The main goal of this study was to give some clues about the role that DJ-1 plays in 

oxidative stress, one of the most relevant insults in Parkinson’s disease pathology, by 

studying mutant forms of this protein. DJ-1 mutations may lead to a homeostatic 

imbalance in cell system and metabolites, which can be used as cellular markers of stress 

conditions. To access the rule that DJ-1 mutants perform in metabolite modulation, three 

recombinant DJ-1 mutants were produced and exogenously added to cultured SH-SY5Y 

cells, a model cell line to study Parkinson’s disease. 

This research project allowed the production and structural characterization of 

three recombinant DJ-1 mutant forms (DJ-1 L166P, DJ-1 M26I and DJ-1 E163K). However, 

the use of L166P mutant in the biological assays was not possible since it was not in its 

dimeric (functional) form. The other two mutants and WT protein were found in the 

dimeric and functional form, and their use in biological assays was allowed.  

This study did not reveal any evidence for the neuroprotection of SH-SY5Y cells 

conferred by the exogenous addition of recombinant DJ-1 WT under H2O2-induced 

oxidative stress conditions. However, H2O2 showed to be an efficient oxidative stress 

agent causing significant cell death in this cell line. 

The metabolomics study developed allowed the finding of eight interesting 

features responsible for the existence of two main groups: a group with two more intense 

features in the conditions where a H2O2 oxidative stress stimulus was applied and another 

group with six more intense features in the conditions where no oxidative stress stimulus 

was applied. However, the effect of the addition of recombinant DJ-1 WT and mutants to 

cells under normal and oxidative stress conditions was inconclusive. So, further studies 

are required to evaluate the role of DJ-1 in metabolomic modulation under oxidative 

stress conditions.  

This study, the first for oxidative stress metabolomics profiling with the exogenous 

addition of DJ-1 WT and mutants, allowed the finding of eight possible oxidative stress 

biomarkers. In the future, these results must be validated in a targeted analysis, for 

metabolite ID verification, quantitation, functional interpretation, and pathway analysis, 
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to try to understand their modulation by DJ-1 and their potential use as oxidative stress 

markers and latter as Parkinson´s disease biomarkers. Hence, these findings may 

contribute to future strategies for the treatment and prevention of the disease and offer 

new directions for recognizing disease-specific biochemical indicators. 
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8. SUPPLEMENTARY DATA 

8.1 HPLC-Size Exclusion Chromatography  

In order to assess if the purified DJ-1 has a homodimer form, which is a functional 

important feature of the protein [113-115], an HPLC-Size Exclusion chromatography was 

performed. The retention times of standards were used to perform a calibration curve 

(Supplementary Figure 8.1) and the molecular weights of purified DJ-1 WT and mutants 

were determined using their retention times. 

 
Supplementary Figure 8.1 – HPLC-Size Exclusion Chromatography Calibration Curve. Molecular Weight Standards 
from right to left: Ferritin (440 kDa); Aldolase (158 kDa); Conalbumin (75 kDa); Ovalbumin (43 kDa); Carbonic 
Anhydrase (29 kDa); Ribonuclease A (13.7 kDa); and Aprotinin (6.5 kDa). The mobile phase was PBS with 10% of 
glycerol (purified recombinant DJ-1 proteins buffer).  

 

Kav is the partition coefficient, which is calculated from the measured elution 

volume (Ve) of each standard protein or proteins of interest, using the equation (8.1): 

 

    
     

     
                                                                              (8.1) 

 

Where the V0 is the column void volume – elution volume for Blue Dextran 2000 –, and Vc 

is the geometric column volume.  
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After having the calibration curve of Kav versus log molecular weight 

(Supplementary Figure 8.1), the molecular weights of the proteins of interest can be 

inferred, using their calculated Kav. 

 

8.2 Circular Dichroism Spectroscopy  

 

Supplementary Table 8.1 - Data of DJ-1 WT and Mutants for calculating the Mean Residue Molar 
Ellipticity, [Θ]MRW, for the CD analysis at 37 °C. 

Protein Molar Mass 
(g/mol) 

Number of 
residues 

Extinction Coefficient 
((mg/ml)

-1
cm

-1
) 

A280 Concentration 
(mg/ml) 

WT 22980.78 213 3.4 0.550 1.87 

M26I 22962.75 213 3.4 0.609 2.07 

E163K 22979.84 213 3.4 0.471 1.60 

 

 

Supplementary Table 8.2 - CD data (at 37 °C) obtained for purified DJ-1 proteins using the 
CONTIN program. 

 CONTIN program 

Protein % α-helix % β-sheet % Remainder 

WT 36.8 ± 4.8 24.9 ± 4.9 38.5 ± 7.2 

M26I 30.3 ± 1.3 37.4 ± 6.8 32.1 ± 6.9 

E163K 21.5 ± 1.2 25.8 ± 2.8 45.9 ± 3.8 
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Supplementary Table 8.3 - CD data (at 37 °C) obtained for purified DJ-1 proteins using the three algorithms of 
the GlobalWorks software and the CLSTR library.  

 GlobalWorks software  

Algorithm CONTILL CDSSTR Selcon3 Average 

Protein 

%
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WT 37 15 47 40 17 43 38 15 48 
38 16 46 

WT Rep 36 18 45 38 18 44 38 15 50 

M26I 30 21 49 31 22 44 29 20 50 30 21 49 

E163K 24 26 50 31 17 52 26 23 52 27 22 51 

Abbreviation: Rep, replicate 
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Supplementary Table 8.4 - X-Ray Crystallography Data from PDB of 
DJ-1 WT and mutants secondary structure. 

  X-Ray Crystallography data 

Protein PDB entry % α-helix % β-sheet  

WT 1J42 44 20  

 1P5F 37 20  

 1PDW (8 chains) 40 20  

  46 20  

  35 20  

  35 19  

  42 20  

  35 20  

  39 19  

  47 20  

 Average 40.0 ± 4.6 19.8 ± 0.4  

M26I 2RK4 36 19  

E163K 2RK6 36 20  

For L166P mutant no entries were found 

 

Supplementary Table 8.5 – Data of DJ-1 WT and Mutants for calculating the Mean Residue Molar 
Ellipticity, [Θ]MRW, for the CD analysis at 25 °C. 

Protein Molar Mass 
(g/mol) 

Number of 
residues 

Extinction Coefficient 
((mg/ml)

-1
cm

-1
) 

A280 Concentration 
(mg/ml) 

WT 22980.78 213 3.4 0.643 2.19 

L166P-1 22964.73 213 3.4 0.380 1.29 

L166P-3 22964.73 213 3.4 0.555 1.89 

M26I 22962.75 213 3.4 0.586 1.99 

E163K 22979.84 213 3.4 0.555 1.89 
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Supplementary Figure 8.2 - Circular Dichroism (CD) spectra (at 25 °C) of DJ-1 WT and Mutants. The secondary 
structure of DJ-1 WT and mutant proteins was evaluated by CD spectroscopy at 25 °C. 

 

DJ-1 L166P-1 and DJ-1 L166P-3 spectra are clearly different from spectra obtained 

for the other proteins (Supplementary Figure 8.2). For L166P-1 mutant, the analysis of 

secondary structure revealed that the protein has 9% to 13% of α-helix structure, 25% to 

37% of β-sheet structure and 50% to 66% of no regular structure (Supplementary Table 

8.6). For L166P-3, the results are 4% to 8% of α-helix structure, 37% to 51% of β-sheet 

structure and 41% to 58% of no regular secondary structure (Supplementary Table 8.6) 

(no PDB entries were found for L166P mutant). 

 

Supplementary Table 8.6 - CD data (at 25 °C) obtained for purified DJ-1 proteins and X-Ray 
Crystallography data for DJ-1 proteins available in PDB. 

 CD data  

 CONTIN Library GlobalWorks Library 

(Average of 3 algorithms) 

X-Ray Crystallography data 

(Average of all structures from PDB) 

Protein α-helix 

% 

β-sheet 

% 

Remainder 

% 

α-helix 

% 

β-sheet 

% 

Remainder 

% 

 α-helix 

% 

β-sheet 

% 

Remainder 

% 

WT 32 32 36 32 21 47 40 20 40 

L166P-1 13 37 50 9 25 66 - - - 

L166P-3 8 51 41 4 37 58 - - - 

M26I 27 32 41 25 26 49 36 19 45 

E163K 23 33 44 22 27 53 36 20 44 
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8.3  LC-MS/MS Analysis of Intracellular Metabolites and Data 

Processing 

 

 
 
Supplementary Figure 8.3 - Fragmentation spectrum of the precursor ion with m/z value of 398.2 and RT of 35.5 
minutes. For this ion there was no fragment to be monitored. 

 
 
 
 
 

 
 
Supplementary Figure 8.4 - Fragmentation spectrum of the precursor ion with m/z value of 335.1 and RT of 21.2 
minutes. Red arrows represent the fragments selected for quantification. 

 
 
 
 

335.1/21.2 

398.2/35.5 
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Supplementary Figure 8.5 - Fragmentation spectrum of the precursor ion with m/z value of 363.1 and RT of 21.1 
minutes. Red arrows represent the fragments selected for quantification. 

 
 

 
 
Supplementary Figure 8.6 - Fragmentation spectrum of the precursor ion with m/z value of 381.1 and RT of 21.1 
minutes. Red arrows represent the fragments selected for quantification. 

 
 
 

 
 
Supplementary Figure 8.7 - Fragmentation spectrum of the precursor ion with m/z value of 410.1 and RT of 20.6 
minutes. Red arrows represent the fragments selected for quantification. 

363.1/21.1 

381.1/21.1 

410.1/20.6 
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Supplementary Figure 8.8 - Fragmentation spectrum of the precursor ion with m/z value of 590.1 and RT of 21.1 
minutes. Red arrows represent the fragments selected for quantification. 
 
 
 

 
 
Supplementary Figure 8.9 - Fragmentation spectrum of the precursor ion with m/z value of 790.2 and RT of 21.4 
minutes. Red arrows represent the fragments selected for quantification. 
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