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Abstract

In many mammalian species, including humans, folliculogenesis begins in fetal life and
progresses throughout adulthood. The growing follicles progress from a reserve of pri‐
mordial follicles that constitute the pool of female gametes for the entire life. Primordial
follicles may begin to grow either immediately after forming or at clearly defined species-
specific gap. Alternatively, some follicles may become quiescent before they either degen‐
erate or resume growth several months or years afterwards. The rate of follicular
assembly and the primordial to primary follicle transition is a critical step in female fertil‐
ity. Therefore, disturbed coordination of the formation of primordial follicles and activa‐
tion of their growth may entail some reproductive disorders. A poor initial reserve or the
precocious primordial follicle depletion will result in infertility that, in women, is escort‐
ed by a shortened reproductive lifespan and early menopause. Therefore, it seems neces‐
sary to reach a profounder understanding of the molecular and cellular mechanisms
controlling follicular development during preantral transition. In vitro growth of isolated
immature ovarian follicles (IVGF) appears as an emerging technology, allowing to ex‐
pand the fertility options in particular ovarian disorders or after cancer treatment

Keywords: Preantral follicles, folliculogenesis, organ cultures, in vitro, growth of isolated
immature ovarian follicles (IVGF)

1. Introduction

In the ovary of a mammalian female, the process of folliculogenesis begins during fetal life and
proceeds until the end of reproductive capacity, which is manifested in cell proliferation and
differentiation [1,2]. Folliculogenesis, involving growth and development of ovarian follicles
from primordial to preovulatory stages, is a complex phenomenon requiring multidirectional
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regulation. The ovarian follicle plays an essential role in securing optimal conditions for oocyte
maturation and its release during ovulation, for which it will provide an appropriate micro‐
environment based on locally produced molecules, such as sex steroids and peptide hormones,
growth factors, and cytokines, while also providing the appropriate communication among
particular compartments of an ovarian follicle [3–5]. Sex steroids produced by follicular cells
are known to play one of the main roles in the regulation of ovarian function [6]. These steroids
present in the systemic circulation actively participate in the regulation of pituitary gonado‐
tropin secretion. On the other side, sex steroids present in the ovarian microenvironment act
as paracrine factors important for the maintenance of follicular development [3]. The majority
of information about the role of sex steroids in ovarian functioning has been obtained in studies
directed at the action of estrogens [7] and progestagens [8]. Nowadays, increasing attention is
being devoted to the action of androgens because the activation of androgen receptors (ARs)
located in follicular cells [9,10] modulates the expression and activity of many genes vital for
the maintenance of follicular development [11–13].

From the initial pool of ovarian follicles recruited to grow, only a few reach a preovulatory
stage. Less than 1% of follicles elude the process of atresia at various stages of development,
and the preantral to early antral transition is the most susceptible to this process. The pool of
primordial follicles established in fetal life constitutes a reserve that will not increase during
the postnatal period. The initial stages of folliculogenesis, including the accumulation of
primordial follicles, the recruitment of primordial follicles from the resting pool, and their
transition into primary follicles, are crucial for the female reproduction regardless of the
species [14]. Improper coordination of the formation of primordial follicles and activation of
their growth may entail disturbed folliculogenesis in mature individuals manifested by a
reduction of fertility. Recent research has revealed that primordial and primary follicles might
not die by classical apoptosis. It is therefore possible that, in the immature ovary, other
mechanisms are involved in follicular atresia [15].

The main factor determining the selection of follicles into the antral stage is their ability to
respond to gonadotropins, especially follicle-stimulating hormone (FSH). Preantral follicles
display an increase in the number of FSH receptors (FSHR) that, when activated, stimulate
granulosa cell proliferation, antrum formation, and biosynthesis of estradiol after the activa‐
tion of aromatase enzyme. There is quite ample evidence that follicle development is depend‐
ent on their granulosa layer, the functioning of which is influenced by endocrine, paracrine,
and autocrine mechanisms. Granulosa cells are involved in the control of oocyte maturation
and proper execution of ovulation and participate in early embryogenesis, maintenance of
corpus luteum function, and production of chemotactic factors and those involved in angio‐
genesis [16]. Sustained oocyte growth depends on the effective communication and crosstalk
between granulosa cells and the oocyte, because granulosa cells remain the major source of
nutrients for the gamete through homologous and heterologous gap junctional contacts [17].

The tool that allows studying the function of ovarian follicles irrespective of its complicated
structure is the model of whole organ culture, which reflects the conditions and complicated
interactions occurring in vivo. These kinds of cultures constitute very sensitive objects to test
the biological activity of various factors; they allow to observe the responses to increased or
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decreased steroid hormone secretion, the induction or inhibition of cell proliferation, or the
induction or inhibition of apoptosis. The technological revolution in reproductive biology that
started with artificial insemination and embryo transfer technologies during the last 30 years
has continued with oocyte in vitro maturation (IVM), in vitro fertilization (IVF), or in vitro
embryo culture (IVC), to name only a few. IVM has particular significance, providing the
technology platform for the abundant supply of mature, good quality oocytes for diverse
applications, such as reducing the generation interval in important species or studying in
vitro human reproduction. Despite the convenience of IVM, we still do not understand the
precise factors and conditions occurring in vivo, which yield the highest-quality mature oocytes
for successful fertilization and embryo development outcomes; hence, we cannot completely
imitate these conditions. Thus, in vitro growth of isolated immature ovarian follicles (IVGF)
appears as an emerging technology allowing to expand the fertility options, particularly in
young cancer patients [18–20], and may serve as a potential source of fertilizable gametes.
Thus, assisted reproductive technologies allied to a profound understanding of granulosa/
oocyte interactions can benefit from the capability to sustain primordial and primary follicle
growth in vitro while supporting the acquisition of oocyte competence.

On this basis, the objective of this chapter is to review relevant data concerning the molecular
factors crucial to the regulation of early stages of folliculogenesis and to provide basic
information to the design of future culture strategies promoting the in vitro development of
ovarian follicles.

2. Development of the primordial follicle

In the mammalian embryo, ovarian development begins between 3 and 6 weeks after concep‐
tion. During this period, ovarian rudiment is massively colonized by mesonephric cells, which
are regarded as the follicular cell precursors, and the primordial germ cells (PGC) migrate into
the genital ridge; hence, other events take place, such as the differentiation of the gonads
according to gender, proliferation, and apoptosis [14,21,22]. Oocyte development begins in the
mammalian female fetus together with the differentiation of PGC. Proliferating PGC migrate
towards the nascent genital ridges, where they differentiate into oogonia, before entering the
first meiotic division to become primary oocytes [26].

Mammalian oocytes develop and reach ovulatory maturity inside the follicles where they are
covered at first by pre-granulosa and then by granulosa cells [23] (Figure 1). Over the lengthy
process of follicle development, granulosa cells proliferate and the theca layer is formed [24],
allowing the follicle to take advantage of blood supply. Then, follicles pass through the
succeeding stages of development before reaching full maturation and the ability to ovulate
[25]. Primary oocytes, which are arrested at diplotene of the first meiotic prophase since late
prenatal life in most mammal species, are the organizing centers of primordial follicles. The
oocyte is considered to play the most important role in follicular organization during follicu‐
logenesis. It is assumed that the oocyte controls both the proliferation and the differentiation
of granulosa cells into cells capable of secreting steroids and various proteins. On the contrary,
several oocyte features, such as growth, differentiation, meiosis, cytoplasmic maturation, or
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control of transcriptional activity, are dependent on the presence and contact with granulosa
cells [27]. Interestingly, when the oocyte reaches a certain size threshold, it secretes factors that
inhibit the ability of granulosa cells to promote its own growth [4], which suggests that the
oocyte may determine not only its own growth but also the growth of the whole follicle.

Figure 1. Simplified representation of early stages of mammalian folliculogenesis. KL, kit ligand; BMPs, bone morpho‐
genic proteins; MIS/AMH, Müllerian inhibitory substance.

The assembly of primordial follicles, also described as the primordial follicle formation,
demands for individual oocytes to associate with developing pre-granulosa cells, in a complex
process that involves the breakdown of oocyte nests, oocyte separation, and subsequent
recruitment of somatic (i.e. pre-granulosa) cells, which are regulated by circulating hormones
and factors produced by the oocyte and somatic cells [28]. Newly created primordial follicles
give rise to primary follicles that, in a series of transitions coordinated by gonadotropins,
steroids, and other intraovarian factors, transform into preantral and then antral follicles and
finally preovulatory follicles [6]. Among the signaling pathways that are important for
primordial follicle assembly, apoptosis and autophagy are crucial in determining cellular fate.
After nest separation, a large number of germ cells are lost by apoptosis; the mechanisms
regulating cyst breakdown and germ cell death are still unclear. Indeed, much attention has
been focused on germ cell elimination by apoptosis and the role of Bcl-2 gene family in
regulating the balance between survival and death of oocytes before the formation of primor‐
dial follicles [29]. To date, autophagy has also been proposed to contribute in the mechanisms
of prenatal and neonatal oocyte demise [30]. Increasing evidences showed that, in the imme‐
diate hours of the postnatal life, many tissues and organs evidence up-regulation of autophagy
pathways, possibly acting as an adaptive response of the newborn organism to nutritional
stress associated with the deprivation of placental nutrients [31]. The balance between
quiescence and activation of the primordial follicle reserve seems to depend on a number of
molecules. The phosphatidylinositol 3-kinase (PI3K) pathway was proposed as a key pathway
playing a crucial integrative role by bridging the action of multiple factors in the balance
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between follicle growth suppression, activation, and the maintenance of healthy quiescence
[32]. In mammalian ovaries, postnatal depletion of oocytes occurs also by atresia of follicles.
Follicular atresia is directed by granulosa cell apoptosis and affects all stages of follicular
development. Interestingly, recent evidence from studies on rats shows that autophagy of
germinal cells is an alternative route to induce follicular atresia in the ovary [33]. This implies
the importance of autophagy in cellular elimination within the ovary.

3. Primordial to primary follicle transition

The concept of primordial follicle activation refers to the process by which primordial follicles
gradually exit the nongrowing follicle pool and enter the intermediate or primary follicle stage
[23]. The clarification of the mechanisms that regulate primordial follicle activation is an
important issue for the success of assisted reproduction [4]. Whereas the primordial follicle
activation seems to depend mainly on signals originating in the ovary, pituitary and metabo‐
lism-related hormones are required for folliculogenesis to proceed past the primary or
secondary stage [34]. In the ovary, the crosstalk between oocytes and somatic cells (i.e.
granulosa or theca cells) occurs at an early stage of follicular development [4]. The activation
of primordial follicles is associated with oocyte growth, and simultaneous differentiation of
the adjacent pre-granulosa cells occurs. During the transition into primary follicles (showing
a complete layer of cuboidal granulosa cells), pre-granulosa cells change into a cuboidal shape
[23], and in the process, they form an intermediate form of follicles presenting both cuboidal
and flattened pre-granulosa cells [35]. The proliferation of granulosa cells allows to originate
multiple layers of cells, and follicle develops to secondary, antral, and further advanced follicle
stages [23,36,37].

Recent research revealed that factors secreted by the oocytes regulate the initiation of primor‐
dial follicle growth [38] (Figure 2). The tyrosine kinase receptor Kit (c-Kit) and two different
isoforms of its ligand (kit ligand, KL), localized in oocytes and granulosa cells, stimulate oocyte
growth and maintain it in meiotic arrest depending on FSHR levels. The up-regulated
expression of KL, triggered by low concentrations of FSH, promotes a reduction in the ratio of
KL/c-Kit and stimulates oocyte growth, whereas high concentrations of FSH enhance follicle
development but impair oocyte growth [5]. Other important regulators of follicle growth are
activin [39] and oocyte-derived growth differentiation factor-9 (GDF-9) [14,40]. GDF-9
promotes follicular survival and growth during transition due to suppression of granulosa cell
apoptosis and follicular atresia, whereas activin promotes FSH release, antral cavity formation,
and granulosa cell proliferation. Bone morphogenetic protein-15 (BMP15) has been shown to
promote granulosa cell growth by stimulation of the proliferation of undifferentiated granu‐
losa cells in an FSH-independent manner. It was shown that two markers of proliferation, Ki-67
and proliferating cell nuclear antigen (PCNA), are regulated by these oocyte-derived factors
(for review, see Ref. [41]). It was also suggested that PCNA could act as a key regulator of the
development of ovarian follicles. The time expression of PCNA in oocytes is coincident with
the initiation of primordial follicle formation. By promoting the apoptosis of oocytes, PCNA
can also regulate primordial follicle assembly in neonatal mouse ovaries [42]. Moreover,
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proliferation of granulosa cells is increased by insulin-like growth factor-I (IGF-I), which was
also associated with the regulation of follicular growth from the primordial stage [43]. The
anti-Müllerian hormone (AMH) is synthesized early in the follicle formation, by the cuboidal
granulosa cells of primordial follicles. This factor, subsequently produced by preantral and
antral follicles, inhibits the initial recruitment of primordial ones as well as their further FSH-
dependent growth [44].

Figure 2. Mechanisms of androgen actions in follicular development. Physiological functions of androgens during pri‐
mordial follicle recruitment are mediated through androgen response element (ARE)-dependent genomic actions
and/or via PI3K/Akt nongenomic signaling pathway.GDF-9, growth differentiation factor-9; AR, androgen receptor.

The idea that androgens might regulate follicular development initially started with studies
indicating AR expression in the different compartments of follicles throughout most stages of
folliculogenesis [45–48]. However, AR expression pattern may differ between cell types, and
in most species, AR is abundant in the preantral/antral stages of follicular development but
declines as a follicle matures to the preovulatory stage [49–51]. Based on these observations,
it was suggested that androgens might differentially regulate various stages of follicular
development through an autocrine and/or paracrine way. It is generally accepted that
androgens primarily affect preantral follicles and that their activities are important for
preantral follicle growth and prevention of follicular atresia. Moreover, it seems possible that
androgens are involved in the activation of primordial follicles [52–54] (Figure 2). How
androgens influence primordial follicle recruitment and whether this is a primary or secondary
response to androgens are still open-ended questions needing further investigation.

The mechanisms of primordial follicle activation can be studied using in vitro culture methods.
However, until now, the success of primordial follicles culture as a method of oocyte growth
has been limited to mice. Eppig and O’Brien [55] were the first to obtain mouse offspring
derived from oocytes acquired from cultured primordial follicles. As to other species, several
studies carried out in farm animals and primates showed that the transition of primordial into
primary follicles in culture of cortical strips from caprine [56], bovine [57], baboon [58], and
human [59] ovaries is possible. A confirmation of the normality of follicle development in
vitro was obtained through the changes in follicle morphology and cell number as well as from
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the stage-specific follicular responsiveness to above-mentioned factors or the development of
steroidogenic capacity.

4. Primordial and primary follicle isolation

In vitro follicle growth is a promising fertility preservation strategy [19,60] despite that, in some
mammalian species, including humans and pigs, the success has been limited when the process
started with primordial follicles. This could be explained by the fact that adequate isolation
methods and culture strategies have not yet been fully established, thereby impairing the
ability to obtain mature gametes from the culture of isolated primordial follicles in those
species. The manipulation of primordial follicles is a challenge due to their small size and the
existing physical connections between the oocyte and the surrounding squamous granulosa
cells, which are also poorly studied. Conversely, the conditions that support their activation
and growth are not well defined. Several studies have indicated that primordial and primary
follicles rapidly degenerate in cultures carried under multiple conditions [61–63]. For example,
primordial follicles isolated from human ovarian tissue using collagenase digestion and
subsequently cultured in collagen gels resulted in the degeneration of the follicles within 24
hours [64].

The species and the reproductive age of the ovarian tissue affect preantral follicle yield in the
ovary because of the existence of a larger number of follicles and the easiness of the isolation
method in neonatal and prepubertal ovaries compared with mature ovaries [65,66]. The success
of either culture or transplantation of isolated follicles depends on the high quality of re‐
trieved follicles. That is why an effective method for retrieving viable, preantral follicles is an
essential condition. Different methods are currently available to isolate follicles for preantral
follicle culture. The mechanical isolation methods include the use of fine-gauge needles or
forceps to isolate follicles from mice [67], rats [68], pigs [69], cattle [70], and humans [64]; the
combination of ovarian dissociation methods, such as grating or mincing, with sieving [71]; and
the follicular dissection from the ovarian cortex using a skin-grafting knife and/or small scalpel
blades [34,70].  The mechanical  isolation methods have a  main advantage,  as  they allow
retrieving intact follicles, surrounded by the basement membrane and theca layers, although
they are slow and laborious techniques that typically yield only a small number of follicles [72].
These technical problems can be avoided by the use of enzymes to aid follicle recovery. The
incubation of ovarian tissue in collagenase and/or DNAse (e.g.  Refs.  [55,73]) softens and
disaggregates the tissue matrix and allow detaching follicles from the surrounding stroma with
the aid of needles. However, the degradation of the basement membrane and the absence of
theca cell layers are the most common undesirable consequences of the use of enzymes in follicle
isolation [74], as they foster the spontaneous loss of granulosa cells from the follicles in culture.
Nevertheless, the time of enzyme exposure can be controlled to minimize the damage [75].

The ovarian stroma is dense and fibrous; thereby, it is more efficiently isolated using a
combination of mechanical and enzymatic procedures that have been shown to preserve
follicle viability [64,76–78]. Dolmans et al. [77] developed a new isolation protocol using
Liberase Blendzyme 3. This blend of purified enzymes allowed the isolation of a high number
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of preantral follicles, which were viable as well as morphologically and ultrastructurally
normal. However, this type of Liberase is no longer produced. Therefore, the second genera‐
tion of Liberase DH (Dispase High) Research Grade has been successfully tested for the
preparation of human ovarian follicles [79]. However, the efficiency of the mixture may vary
with the species. Our group recommends the use of Liberase TH (Thermolysin High) Research
Grade to obtain a high number of fully isolated primordial follicles from porcine ovarian cortex
[80], as it presents a really fibrous tissue. Using prepubertal gilt ovaries, we applied different
types of Liberase (DH, TM, and TH) Research Grade and treatment protocols to isolate
primordial follicles (Figure 3). The quality of the isolated follicles was evaluated by their
general morphology and viability upon routine hematoxylin and eosin (H&E) and fluorescent
staining, whereas their ultrastructure was assessed by electron microscopy. Additionally, to
determine the purity of isolated follicles, a germ cell-specific protein, MSY2, was used to
recognize oocytes. Liberase TH Research Grade was the mixture presenting a very high
proportion of retrieved viable follicles whose majority exhibited good morphology with a
complete granulosa cell layer. In addition, primordial follicles stained with either Hoechst
33342 or H&E indicated that Liberase TH Research Grade only occasionally induced atresia.
This was supported by ultrastructural studies revealing that the oolemma-follicular cell
interface was well preserved, which would allow the complex to express the correct metabolic
profile (Figure 4). The results obtained in those experiments also showed that almost all of the
Liberase TH Research Grade-isolated primordial follicles were MSY2 positive. As shown in
the literature [81,82], primordial and primary follicles may rapidly degenerate after isolation
because of the loss of critical connections between the oocyte and the granulosa cells. It seems
that Liberase is a promising alternative to collagenase treatment, allowing the use of isolated
primordial follicles for further reproductive studies.

Figure 3. Pig ovarian medulla collection and preantral follicle isolation protocol. 1–3: Ovarian medulla collection (4- to
5-month-old prepubertal gilts); 4–6: isolation of primordial and primary follicles using different types of collagenase
(types I, II, and IV) and Liberase (DH, TM, and TH); 7: evaluation of preantral follicles morphology (H&E staining).
For details, see Ref. [80].
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Figure 4. Morphology and ultrastructure of primordial and primary pig follicles isolated from ovarian medulla using
Liberase TH-Research Grade. (A) Morphology of Liberase TH-treated pre-antral follicles (light microscopy), (B) mor‐
phology of Liberase TH-isolated pre-antral follicles stained with hematoxylin and eosin; (b) interrupted granulosa cells
layer in pre-antral pig follicles isolated with collagenase (type II); (C) Transmission electron microscopy (TEM) showed
a single uninterrupted layer of cuboid follicular cells (black asterisk) surrounding the oocyte (white asterisk), which
was bordered by a continuous basal lamina (arrow). Scanning electron microscopy (SEM) of primordial (D) and pri‐
mary (E) follicles isolated using Liberase TH. A continuous layer of cuboid follicular cells surrounds the oocyte in the
primary follicle (E) while in the primordial follicle a flattened layer of cells covers the oocyte; immunoconfocal images
recorded from three selected areas of centrifuged ovarian digest: follicles were stained for actin (F), MS2Y (G) and with
DAPI (H), merged images (I).

5. Primordial and primary follicle culture

The clinical application of IVFG is still at the investigational stage, in a laboratory setting,
although it stands a robust approach to study the basic biology of the ovary or the follicle under
a controlled yet adjustable environment. Multiple culture systems have been developed to
support the development of isolated preantral follicles [69,72,83], each one with its own
advantages and providing useful insights into the follicle physiology. By this time, hydrogel-
based follicle culture systems have been well characterized. The oocyte and the surrounding
granulosa cells interact with each other and the environment, maintaining the same spatial
location, connections, and dimensionality as in the intact ovary. The in vitro growth and
development of mouse preantral follicles was successfully supported by alginate-based
hydrogels, a substrate that was also applied to several large mammalian species, including
dogs [84], rhesus monkeys [19], and humans [85], resulting in stage IV oocytes (human) [86],
meiosis II (MII)-arrested eggs, and fertilized two-cell embryos (rhesus macaque) [87]. This
developmental stage has not been reached in other systems.

It is commonly agreed that early follicular growth is largely independent of a gonadotropin
stimulus; instead, it seems that it is controlled by paracrine and autocrine signals originating
from several sources in the ovary, including stromal cells, macrophages, and other follicles
[38]. Recent studies showed that these local factors may also play an important role in in
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vitro culture, supporting the growth of isolated preantral follicles: isolated primary ovarian
follicles survived and grew when cocultured with purified ovarian stroma including theca-
interstitial cells and macrophages [88] or with mouse embryonic fibroblasts (MEFs) as a feeder
cell layer [89]. Coculture with MEFs resulted in an increased follicle survival, growth, and
differentiation until antral follicles contained meiotically competent oocytes capable of
reaching metaphase II in response to adequate hormone stimulation [89]. As suggested in those
studies, individual primary follicles require factors beyond the standard culture media
additives, including insulin, transferrin, selenium, fetuin, bovine serum albumin, and FSH [90],
which can be supplied in vitro by coculture with stromal cells or MEFs; nevertheless, in vivo
observations also suggest that follicles themselves may have a stimulatory effect on IVFG,
because, in the mammalian ovarian cortex, the distinctive architecture and follicle distribution
may influence follicle development: primordial and primary follicles are located close to the
rigid, collagen-dense cortical stroma, whereas larger, growing follicles are typically closer to
the interior medulla, which presents a less rigid stroma [91]. It has been shown, in a study
examining the spatial relationship of follicles within ovaries, that follicles surrounded by
growing follicles are more likely to be growing, suggesting the existence of an in vivo stimu‐
latory effect of other follicles [92] that could be exerted by signals originating from both the
oocyte and the growing follicles, which enhance the differentiation of preantral follicles.

6. Summary

In summary, the ability to sustain preantral follicle growth in vitro while supporting the
acquisition of oocyte competence is of great scientific interest. This relies on supplying oocytes
for assisted reproductive technologies and broadening our understanding of somatic cell/
oocyte interactions in species characterizing by prolonged follicular growth, such as humans
and pigs. IVGF is becoming a useful tool to assess follicular development, offering also the
potential to preserve reproductive options in cases of polycystic ovarian syndrome (PCOS),
premature ovarian failure, or definitive sterility (post-oncotherapy). In addition, it is known
that certain ovarian dysfunctions, such as PCOS and gonadotropin poor responsiveness, are
consequences of deregulated follicle growth at this transitional stage. Therefore, the elucida‐
tion of molecular and cellular mechanisms involved in the control of follicular development
during transition from preantral to early antral stage may provide an important insight into
the pathophysiology and rational treatment of these disorders.
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