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Abstract

This chapter focuses on problems related to building mathematical and numerical models
of railway vehicle dynamics and then using these models in the process of vehicle dy‐
namics simulation. Finally, the results of such simulations devoted to selected dynamical
problems are presented, highlighting the importance of powerful tools such as both the
modeling and the simulation. The dynamical problems selected for the presentation con‐
cern railway vehicle stability and importance of kinematics accuracy for the description
of the dynamics. These selected problems focus on the vehicle dynamics in a curved
track, both in the circular and transition sections. Type of the chapter should be defined
as the review paper, however, based on the authors’ own results in the main.

Keywords: Railway vehicle, vehicle dynamics, curved track, transition curve, numerical
simulation

1. Introduction

The present review chapter is based on the authors’ results gathered and published in
subsequent parts for many years of his work in the field of railway vehicle dynamics with
focus on a curved track motion. The idea of the chapter is to combine all the results on the one
hand and to select them suitably on the other hand. Both these demands are fulfilled in order
to give a picture of comprehensiveness of the combined issues and not overload the reader
with excessive details that could spoil the presentation of the chapter’s main aim. The aim is
to present the outstanding role of modeling, simulation, and results of their use, in a shortened
way, in the contemporary research questions of the railway vehicle dynamics. However, this
is going to be done through exploitation of the author’s own results. The reference could be
done here to [1], the comprehensive monograph in Polish (371 pages). This chapter is profiled
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differently, however, and results are presented in the concise way and internationally acces‐
sible form, i.e. in English.

1.1. The fundamentals in rail vehicle dynamics

It is rather a well-known fact (e.g. Refs. [1–3]), however sometimes being forgotten, that in rail
vehicle dynamics, perturbations of vehicle motion relative to vehicle general motion are of the
primary interest. The general motion of vehicle is of lesser interest as it is predefined by the
track alignment (shape). Hence, in the general view, the vehicle reproduces the motion
imposed by the track centerline shape, as the vehicle is guided by the track (rails). Such a guided
motion is already known. Instead, the perturbed motion relative to the track centerline appears
to be of real importance in the rail vehicle dynamics problems.

Therefore, the description of such a perturbed motion makes the bases in the rail vehicle
dynamics. As recently shown by the author in Ref. [1, 2], there are three options to perform
such description.

Option 1. In this option, one adopts coordinates relative to inertial reference system of type A
in Figure 1 and any formalism of equations building valid for motion relative to A:

B Z { ( ), ( )} { ( ), ( )}fd fd x x t x x t x x u t x x v t¢ ¢= Þ = = Þ = - = -& & & & (1)

where fd is the operator representing any chosen formalism; B is the inertia forces in relation
to A; Z is the external (active) forces; x, ẋ are the coordinates and velocities, respectively; and
u(t), v(t), w(t) are the known functions of time representing displacements, velocities, and
accelerations of transportation, that is, of system A' in relation to A.

Option 2. In this option, one adopts coordinates relative to noninertial reference system of type
A' in Figure 1 and any formalism adapted to motion description relative to A' (the direct
methods of relative motion dynamics):

Β Z P( , ) { ( ), ( )}fd fd fp u u x x t x x t¢ ¢ ¢ ¢ ¢= + Þ = =& && & & (2)

where B' is the inertia forces in relation to A'; P is the imaginary forces (inertia forces arising
from and dependent on the transportation); and fp is the operator of the imaginary forces,
appropriate for the formalism adopted.

Option 3. In this option, one takes coordinates relative to A' and any formalism valid in A. In
practice, this is any of the variational principles of mechanics or the formalism arising directly
from it:

Β Z
( ) { ( ), ( )}
( ) { ( ), ( )}
( )

fz fz
x x u t x x t x x t
x x v t x x t x x t
x x w t

ü=
ï¢= + = =ï Þý¢ ¢ ¢ ¢ ¢= + = =ï
ï¢= + þ

& &
& & & &
&& &&

(3)
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where fz is the operator representing the variational principle.

Figure 1. Multibody system S and useful coordinate systems

Commenting on Eqns. (1–3), one should note that the left-hand side equalities represent
dynamical equations of motion. In case of Eq. (3), the equations of motion are supplemented
with kinematical relations. They express absolute variables with the relative ones and need to
be introduced into Eq. (31) when equations of motion are being solved. The general form of
Eqns. (1–3) serves any form of the vectorial and scalar equations as well as the matrix form in
certain cases. Meaning of the dynamical equations of motion is typical. It becomes obvious as
B represents inertia forces relative to absolute (inertial) system, Z represents external forces,
B’ represents inertia forces relative to moving (noninertial) system, and P represents imaginary
forces (inertia forces depending on the transportation, i.e., motion of noninertial system
relative to the inertial one). Moreover, the operators fd, fp, and fz do not change the meaning
of the forces. The operators are introduced as a reminder that particular formalisms may need
application of some specific coordinates, velocities, recording, and operations to make use of
the formalism.

The curly brackets represent solutions of the equations of motion. As the equations are second-
order ordinary differential equations, the solutions are displacements (coordinates) and
velocities, both the linear and angular ones in general.

It is worth emphasizing that Eq. (2) is the only one that needs explicit form of the imaginary
forces to be recorded. In contrast, in case of Eqns. (1) and (3), the inertia forces are also taken
into account, however, in an inexplicit way. This is because B=B' + P. In addition, if one uses
the same formalism of building the equations to build Eq. (2) or to build either Eqns. (1) or (3),

Modeling, Simulation, and Results of Their Use in Railway Vehicle Dynamics Studies
http://dx.doi.org/10.5772/62105

167



then form of the forces B and B’ is identical. The only difference is with their meanings that
refer to absolute and relative motions. In order to highlight this, the superscript “ ’ ” is used.
It is used, in fact, to distinguish all the relative variables in Eqns. (1–3) and also in the subse‐
quent text.

Based on the denotation explained above, one can note in the curly brackets that Eq. (2) is the
only one that leads directly to the solution representing the relative coordinates and velocities.
Eq. (2) is advantageous as the relative variables are those of interest in most of rail-vehicle
dynamics problems. In case of Eq. (1), the relative solution can be obtained indirectly, whereas
in the case of Eq. (3) a part of the solution represents absolute variables and another the relative
ones.

Discussing briefly the practical use of particular options, it has to be stated at first that numbers
and types of application differ. The approach defined with Eq. (1) is definitely used most rarely.
The approach defined with Eq. (3) is the one among all three that is used most often in the
commercial software packages for automatic generation of equations of motion (AGEM). This
includes the software suitable for the systems in a rail vehicle type. Currently, such software
(e.g., MEDYNA, VAMPIRE, SIMPACK, or VI-RAIL codes) are used quite often mainly in
solving many contemporary engineering problems. However, their use in scientific research
is questionable. It is contested because of the so-called black box problem. Thus, following the
formal scientific methodology, the researcher himself and the others should precisely know
how the problem was resolved. Therefore, the assumptions and the way of modeling have to
be elucidated, which allows others to repeat the study or to compare it with results for other
similar but different approaches (for different assumptions and methods of modeling).
Examples of use of this approach to build the models and the simulation software for the
scientific purposes can also be found. However, for such purposes, the option defined with
Eq. (2) seems to be used more frequently, where different levels of accuracy are used in practice.
Thus, some authors neglect selected terms of the imaginary forces. The importance of these
terms in the rail vehicle dynamics is comprehensively discussed by the author of the present
chapter in Ref. [4].

2. Equations of motion based on dynamics of relative motion approach

In his studies, the author of the present chapter himself practices and is a supporter of option
2 described earlier. This option defined with Eq. (2) exploits direct results of the dynamics of
relative motion. Both, the variables used and the equations of motion, are defined directly in
relation to moving coordinate systems in type A’ in Figure 1. In his studies, the author applied
a few formalisms of equation building. He applied them in both the traditional and numerical
approaches. In the first approach, equations of motion were derived on paper first and then
implemented in the simulation software in order to solve them numerically. In the second
approach, the AGEM was applied by the author to build and solve equations numerically.
Lagrange type II equations (e.g., see Ref. [5]) were in use in the traditional approach. In the
AGEM approach, the author exploited Kane’s equations as presented in Refs. [1, 2, 6]. Here,
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five examples of the equations valid in noninertial systems will be presented. These are matrix
equations for a single rigid body based on Newton and Euler equations; state–space form of
Newton–Euler equations for a single rigid body; state–space form of Newton–Euler equations
for the multibody system (MBS) with constraints; Kane’s equations in its general form; and
Huston’s form of Kane’s equation suitable in AGEM. Besides, the method valid for Kane’s
equations will be presented, which enables building the equations for the holonomic and
nonholonomic systems based on the equations for the free (unconstrained) system. Derivations
for all these equations can be found in Refs. [1, 2].

2.1. The Newton–Euler equations

Based on the fundamental kinematical relations for relative motion, relating absolute and
relative velocities and accelerations,

1 ( ) 2C C o C C C¢ ¢ ¢ ¢= + + ´ + ´ ´ + ´p a a r r ve w w w (4)

¢= +q w w (5)

'd d d d
dt dt dt dt

¢ ¢ ¢
¢ ¢= = + = + + ´ = + + ´εq w w wa w w e e w w (6)

and vectorial forms of Newton and Euler equations, the vectorial equations of relative motion
for translation and rotation of a single free rigid body can be obtained as those presented in
Refs. [7, 1, 2]. Based on these vectorial equations, their matrix forms can be recorded in several
ways as shown, e.g., in Refs. [1, 2, 8–10]. The forms as in Refs. [1, 2] are as follows:

1 1( 2 )C o C C C C Cm m¢ ¢ ¢ ¢= - + + + + = +a a r r v R Q R) ) ) )e ww w (7)

2( ) C C¢ ¢= - - - + = +J J J J T Q T
) )e q q e ww (8)

The meanings of the denotations present in the above Eqns. (4–6) are as follows:pC, θ, α are
the absolute acceleration of body mass centre C, absolute angular velocity of body B, and
absolute angular acceleration of body B; r ′

C  is the radius vector of C in O1xyz system; v ′
C , a ′

C

are the relative velocity and relative acceleration of C in relation to O1xyz; ω ′, ε ′ are the relative
angular velocity and relative angular acceleration of B; ao1, ω, ε are the absolute acceleration
of O1 origin (i.e., in relation to OXYZ), transportation angular velocity, and transportation
angular acceleration (i.e., of O1xyz in OXYZ). In Eqs. (7, 8), m, J are the mass and inertia tensor
(its matrix representation) of body B in relation to C; RC , TC  are the matrix of resultant external
forces acting on B and matrix of resultant external torques acting on B in relation to C; and Q1,
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Q2 are the matrices representing sums of the inertia terms. The remaining denotations are
matrices that have their counterparts in the vectors defined in Eqns. (4–6).

One should realize here that in order to express all matrices in Eqns. (7, 8) through their
elements selection of the vector bases im (m=1, 2, 3) for Eqns. (7) and (8) is necessary.

Equations (7, 8) can easily be recorded in one matrix equation:

II¢ = +Ix Q& L (9)

where

( )T T ' T
II IIi 1,.[ ] [ ] [ ..,6; 1,  2,  3 ;]Cj j Cj j i, , j¢ ¢ ¢ ¢ ¢ = == = =x x a v& & &&e w (10)

1

2

; ; C

C

m é ùé ùé ù
= = = ê úê úê ú
ë û ë û ë û

RQE 0
I Q

TQ0 J
L (11)

and E is the unit matrix. Besides, for any vector c the denotation c
⌢

 represents the vector’s skew-
symmetric matrix, while generally the matrix I is not the symmetrical one.

On analyzing Eq. (10), the variables x′
II and x′

I (velocities and coordinates) are the same as those
in Newton and Euler equations. They define translation of the centre C and rotation of B around
C. In their case, the linear kinematical relation holds ẋI =  K(xI)xII.

It can be shown that the equation similar to Eq. (9) can be obtained when arbitrarily chosen set
of variables w′

II and w′
I are adopted. If matrix K is not singular then for variables

I WI I I I I I( , ); ( , ) ( , )¢ ¢ ¢ ¢ ¢ ¢= = +x X w t x H w t w h w t& &

and linear kinematical relations

I I II( )¢ ¢ ¢=w G w w&

the equation can be written as follows:

1 1 1 1
II I I II II( ) ( )- - - -¢ ¢ ¢ ¢ ¢= = + = + = +x K x K Hw h K HG w K h w& & W V (12)

while the derivative equals
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II II II¢ ¢ ¢= + +x w w&& & &W W V (13)

After the introduction of Eq. (13) in (9), one gets

II
ˆˆ ˆ¢ = +Iw Q& L (14)

where

II
ˆˆ ˆ; [ ( )];¢= = - + =I I Q Q I w& &W W V L L (15)

As shown explicitly in Refs. [1, 2], the result represented by Eq. (14) can be generalized to the
case of constraint system with holonomic and nonholonomic constraints (e.g., see Ref. [7]).
Then it can be extended so that the inertia matrix becomes symmetrical one what enables to
get the corresponding inverse matrix and finally to solve the equations. This can be done
through the left-hand side multiplication of the equation by the transpose matrix ΩT. As a result
of the described operations, one arrives at

II¢ = + + zIw Q
(( ( (

& L L (16)

where

T T T ˆˆ ˆ ; ;= = =I I I Q Q
((

W W W W (17)

T T T T
I

ˆ ˆ; ( , )¢= = =z z w t
( (
L W L L W L W F (18)

In the equations above, t is the indicator of the dependence on time t; Φ, λ are the so-called
constraint matrix and column matrix of Lagrange’s multipliers (e.g., see Refs. [8, 1, 2]). If one
is going to solve Eq. (16) then all equations of constraints have to be added to the system of
equations to make it possible.

When one is not interested in values of the constraint (internal) forces Λ
⌣

z then it is reasonable
to express equations of motion for the reduced set of independent variables y'I and y'II. This
reduces the number of equations by the number of constraints. The relation at the velocity level
between maximum and reduced (minimum) set of the variables is represented through matrix
representation of explicit constraint equations at the velocity level:

II II¢ ¢= +w yj x (19)
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After Eq. (19) is exploited in Eq. (14), the state–space equation in the independent generalized
velocities takes the following form:

II¢ = +Iy Q%% %& L (20)

where

T T T
II

ˆˆ ˆ ˆ; [ ( )] ;¢= = - + =I I Q Q I y%% & %&j j j j x L j L (21)

Note that inertia matrix Ĩ is symmetrical due to the left-hand side multiplication by φT. The
kinematical relations corresponding to Eq. (20) in the linear matrix form can be expressed as
ẏ′

I = ŶI(y
′
I)y′

II. In case nonholonomic constraints exist in the system, they have to be provided
to make the solution of Eq. (20) possible.

The final Eqns. (16, 20) are valid for a single rigid body. It was shown in Ref. [8] for inertial
systems that forms valid for a single body can directly be generalized to any number of rigid
bodies. As in principle the structure of equations for noninertial systems differs in additional
inertia terms of correction character only (see, e.g., Eqns. (2, 3)), this result can be extended to
noninertial systems. In terms of the notation, it is trivial and means that Eqns. (16) and (20)
valid in noninertial systems remain unchanged for any number of rigid bodies.

2.2. Kane’s equations

Any of the formalisms of analytical mechanics valid in inertial systems can be adapted to
describe the relative motion in the noninertial system. The author of the chapter performed
such an adaptation for Kane’s equation. It was done in a formal manner, that is, corresponding
equations of relative motion were derived as shown in Refs. [6, 2, 1].

The partial velocities are fundamental to original Kane’s approach [11]. The corresponding
relative linear and angular partial velocities were introduced by the author as shown in Refs.
[6, 1, 2]. Let us introduce them for the simple nonholonomic system [11] of l degrees of freedom
composed of j (j=1,...,n) rigid bodies by defining linear v ′

j and angular ω ′
j relative velocities

of the mechanical system:

3
( )

1 1 1 1

l l l
j j j

j j jt j m jtm m
mj

u u v u v
u tr r r r r

r r rr

¶ ¶

¶ ¶= = = =

¢ ¢ æ ö
¢ ¢ ¢ ¢ ¢= + = + = +ç ÷ç ÷

è ø
å å å å

v r
v v v i (22)

3
( )

1 1 1 1

l l l
j j j

j j jt j m jtm m
mj

u u u
u tr r r r r

r r rr

¶ ¶
w w

¶ ¶= = = =

¢ ¢ æ ö
¢ ¢ ¢ ¢ ¢= + = + = +ç ÷ç ÷

è ø
å å å å i

w j
w w w (23)
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where v ′
jρ, ω ′

jρ, v ′
jt , ω ′

jt  are the functions of generalized coordinates q1,...,qk  and time t. At

the same time, v ′
jρ, ω ′

jρ are the ρth relative partial velocity of body Bj mass centre Cj (or any
point Pj) and ρth relative angular partial velocity of Bj in relation to A', respectively; v ′

jρm , ω ′
jρm

are the scalar components of v ′
jρ, ω ′

jρ, called coefficients of partial velocities; uρ is the quasi-
velocity (ρ =1,...,l) ; m is the indicator of unit vectors (base vectors) im( j) (m=1, 2, 3) defining axes

directions of reference systems, where v ′
j and ω ′

j are expressed (there is no need for im( j) to
have the same directions for translations and rotations and for all bodies Bj).

Form of the adapted Kane’s equations is as follows:

( )

( )

( )

( )

1 1

1
1

1 1

1

*

1 1

2

2 0,5

n n

j j j j Cj
j j

n

j j o j j j j j j j j j j j
j

n n

j j j j j j j Cj
j j

n

j j j j j j j j j j
j

n

j j j j
j j

m

m m m m

r r

r

r r

r

r r

J

= =

=

= =

=

= =

¢ ¢ ¢× - + ×

é ù¢ ¢ ¢ ¢+ × - - ´ - ´ ´ - ´ ûë

¢ ¢ ¢ ¢ ¢+ × - × - ´ × + × ×

é ù¢ ¢+ × - × - ´ × - ´ - ×ë û

¢ ¢= × + ×

å å

å

å å

å

å

J J

J J J E

v a v R

v a r r v

T

v R v R

e w w w

w e w w w

w e w w w w

**

1

* **

1 1 1
0 ( 1,..., )

n n

j j
j

n n n

j j j j j j
j j j

l

r

r r r r

=

= = =

¢+ ×

¢ ¢ ¢+ × + × + × = =

å å

å å å

v R

T T Tw w w

(24)

Most of the denotations in Eq. (24) are as already defined. Here, the meanings in Eqns. (4–8)
are helpful. Note, however, that in Eq. (24) the j rigid bodies are described, while in Eqns. (4–
8) just one. Besides, subscript C was omitted in r ′

C  resulting in r′
Cj ≡ r′

j. The undefined is ϑ –
trace of J, that is, ϑ = J11 + J22 + J33. In addition, R j

*, T j
* are the inertia forces and torques, respec‐

tively, of motion in relation to noninertial systems of A' type; R j
**, T j

** are the resultant
imaginary forces and torques, respectively; while RCj ≡R j and TCj ≡T j.

Equation (24) can be expressed in the shortened matrix form as follows [6, 2, 1]:

* ** 0 ( 1,..., )F F F lr r r r+ + = = (25)

where scalar components are defined with

* * * * *

1
( )

n

j j j j jm j m jm j m
j

F R v Tr r r r rw
=

¢ ¢ ¢ ¢= × + × = +å R v T w (26)
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1
( )

n

j j j j jm j m jm j m
j

F R v Tr r r r rw
=

¢ ¢ ¢ ¢= × + × = +å R v T w (27)

** ** ** ** **

1
( )

n

j j j j jm j m jm j m
j

F R v Tr r r r rw
=

¢ ¢ ¢ ¢= × + × = +å R v T w (28)

In the above Eqns. (26–28), Fρ
*, Fρ i Fρ

** are the generalized inertia forces (relative to non-inertial
system(s)), generalized external forces (identical with those in inertial system(s)), and gener‐
alized imaginary forces; R jm

* , R jm, R jm
** , T jm

* , T jm and T jm
**  are the scalar components of resultant

forces and torques R j
*,R j, R j

**, T j
*,T j and T j

**. The final forms of Eqns. (26–28) exploit results
for inertial systems by Huston (e.g., see Refs. [12–14]). Also note that signs of sums over j and
m are omitted in these final forms. The original Huston’s convention is used here, in which
summations over repeated indices have to be performed instead.

Equations (24–28) are not useful in AGEM approach as they are too close to the vectorial origin
of Kane’s equations. Nevertheless, final forms of Eqns. (26–28) can be treated as the initial ones
for the process of deriving the useful form. The process is based on the Huston results [12–
14] for the inertial scleronomic systems and present author’s extensions [6, 2, 1] to non-inertial
and rheonomic systems. Consequently, invoking results from Refs. [6, 2, 1] one can write

( 1,..., )Θ u f lrp p r r= =& (29)

where

j j m j m jsm j s j mΘ m v v Jrp r p r pw w¢ ¢ ¢ ¢= + (30)

** ( )
[

( )]

j j m j m jsm j s j m rsm jsw j w jqr j m q

j j m jtm jsm j s jtm

rsm jsw j m j w jtr jqr jtw q jtr jtw

f F F m v v u J u e J u u
m v v J

e J u u

r r r r p p r p p p r p

r r

r p p

w w w w w

w w

w w w w w w w

¢ ¢ ¢ ¢ ¢ ¢ ¢= + - + +

¢ ¢ ¢ ¢- +

¢ ¢ ¢ ¢ ¢ ¢ ¢+ + +

& &

& & (31)

Besides, in Refs. [6, 2, 1], the form of imaginary forces corresponding to Eqns. (30) and (31) was
presented as follows:

**
1 ( )

2 2 ( 0,5 )
2 2 ( 0,5 )

j o jm j m swm j js wrq jr jq j m

rsm jsw jw jr j m swm j js jw j m jms js j m

swm j js j m j w rsm jsw j sw jw j m j r

swm j js j m jtw rsm jsw j sw

F m a v e m e r v
e J e m r v J

e m v v u e J E u
e m v v e J E

r r r

r r r

r p p r p p

r

w w

w w w a a w

w J w w w

w J w

¢ ¢ ¢= - -

¢ ¢ ¢ ¢- - -

¢ ¢ ¢ ¢- - -

¢ ¢- - - ( 1,..., )jw j m jtr lrw w r¢ ¢ =

(32)
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The supplements to Eq. (29) are kinematical relations:

( , ) ( , ) ; ( 1 ), ( 1,..., )q P q t u p q t ,...,k ls sr r s s r= + = =& (33)

where in the above equations ersm, eswm are the permutation symbols; k is the number of
generalized coordinates of the nonholonomic system; Pσρ, pσ are the functional matrix and
vector (column matrix). Besides, the square bracket in Eq. (31) (being the extension to rheo‐
nomic systems) and pσ vanish for scleronomic systems.

Equations (24, 25, 29, 32, 33) serve nonholonomic, holonomic, and free systems. In Eqns. (25,
29, 32, 33), the difference between particular systems is taken into account by suitable values
of partial velocities’ coefficients v ′

jρm, ω ′
jρm. For holonomic systems l=k, while for free ones

l=k=6n. In addition, equations for free and holonomic systems and kinematical relations are
sufficient to be solved. For nonholonomic systems, equations of nonholonomic constraints
have to be provided additionally to get the solution.

It was shown by the author in Refs. [6, 2, 1] for the rail vehicle systems, taking account of their
moderate dimension, nonoccurrence of nonholonomic constraints, limited number of holo‐
nomic constraints, identical coordinates and transportation for each rigid body within vehicle
model, that it can be reasonable to make use of equations (or particular type of forces) for free
systems. Assuming holonomic and nonholonomic constraint equations as

1
( 1,..., )

l
u B u D l ks sr r s

r

s
=

= + = +å (34)

1
( 1,...,6 )

k

s s su A u C s k nr r
r =

= + = +å (35)

the following formula enables to build equations (or selected forces type) for constraint
nonholonomic system based on the equations (or selected forces type) for free system [6, 2, 1]:

6 6

1 1 1 1
( 1,..., )

n k k n

s s s s
s k l l s k

F F F A F B F A B lr r r r sr r sr
s s

r
= + = + = + = +

= + + + =å å å å% % % % (36)

If the system is holonomic then Eq. (34) vanishes, while Eq. (36) is reduced to just two first
addends. In Eqns. (34–36), the following so far undefined notations appear: uρ, uσ, us are the
independent, dependent through nonholonomic constraints, and dependent through holo‐
nomic constraints quasi-velocities, respectively; Asρ, Bσρ, Cs, and Dσ are the functional coeffi‐
cients depending on generalized coordinates q1,...,qk  and time t; and F , F̃  are the representations
of any type of generalized forces F *, F , F ** as defined in Eqns. (25–28) or of their sum for
constraint and free systems, respectively.

Modeling, Simulation, and Results of Their Use in Railway Vehicle Dynamics Studies
http://dx.doi.org/10.5772/62105

175



2.3. Discussion of the equations

Taking account of Refs. [15, 16], both the Newton–Euler and Kane’s equations are those most
often used in AGEM. This is an interesting fact because major differences between both
approaches exist. Therefore, the equations are worthy of discussion in this context.

It can be seen in Section 2.1 that building Eq. (16) and (20) that represent receipt useful in AGEM
are operations on matrices. To perform these operations, the matrices have to be defined with
their components. To do this, one needs to adopt base vectors im( j) for the chosen reference
systems. Unfortunately, operation must be performed at the beginning of the equations
building, that is, jet in Eqns. (7, 8). Despite simple forms of Eqns. (16, 20), the method of
obtaining equations for a given mechanical system is not short. Every time one builds equa‐
tions, he has to choose vector bases, define matrices, and perform matrix calculations as
described in Eqns. (12, 13, 15, 17, 18, 19, 21). These calculations are multiple, often in each of
the mentioned equations. In the case of nonholonomic systems and interest in constraint forces,
Eq. (16) is used, which together with constraint equations form differential-algebraic equation
(DAEs) set. Such a set is difficult to solve in general case. On the other hand, when constraint
forces are of no interest then a reduced number of ordinary differential equation (ODE) set is
used (Eq. (20)).

Equations (29–33) form the receipt useful in AGEM of Kane’s equations. Their forms might
seem discouraging as they are complex, especially while comparing with Eqns. (16, 20). This
impression is misleading as equations possess serious advantages as well. The advantage is
the same form of either scalar (Eq. (24)) or matrix equations (Eqns. (29–33)) for free, holonomic,
and nonholonomic systems. The most distinguishing advantage of Kane’s equations, appear‐
ing just for this formalism, is the moment the components of vectors and tensors are defined
through the vector bases selection. This is done at the very end of the equations building. This
is possible since Eqns. (24, 29–33) originate directly from Eq. (24) based on vectors. Therefore,
Eqns. (24, 29–33) are valid for any vector basis. An additional advantage is the type of Kane’s
equations that are always ODEs.

3. Example objects, nominal models, and numerical models

3.1. The objects and their nominal models

Equations of motion of mechanical system are referred to as its mathematical model. In order
to make use of the general methods of building equations of motion as shown in Section 2, the
nominal model of particular vehicle (object) has to be first determined. In case of railway
vehicle, its nominal model projects its structure and selected physical features of the structure
elements. The nominal models of two example objects will be presented below. Both are of
British origin and possess relatively simple structure that is suitable for the basic character of
the author’s research. The first model [1, 5, 17] corresponds to 2-axle hsfv1 freight car and is
shown in Figure 2. The second one [1, 18] corresponds to 4-axle MKIII passenger car and is
shown in Figure 3.
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Figure 2. Nominal model of 2-axle freight car hsfv1 [1, 5, 17]

Figure 3. Nominal model of 4-axle passenger car MKIII [1, 18]

If the flexibility of track is going to be taken into consideration in the study, then some track
nominal models should be adopted. In case one considers low-frequency dynamics of the
vehicle motion (not more than 50 Hz) but not the higher-frequency phenomena in the track
itself, then it is reasonable to build the track model that is composed of rigid bodies. Then the
whole vehicle-track system model is a multibody model. Separate models for lateral (Figure
4) and vertical (Figure 5) directions as used by the author in his studies are presented below
[1, 5, 17, 18].
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Figure 4. Nominal model of track flexible laterally [1, 17, 18]

Figure 5. Nominal model of track flexible vertically [1, 17, 18]

The denotations used in Figures 2–5 are as follows: m is the mass; Jξ, Jη, Jζ are the inertia
moments in longitudinal, lateral, and vertical directions, respectively; k, c are the stiffness
and damping in the flexible elements in general; kz , cz , kp , cp are the stiffness and damping
in the flexible elements of primary and secondary suspension, respectively; x, y, z are the
linear displacements (coordinates) in longitudinal, lateral, and vertical directions, respective‐
ly (if used as indices, they indicate the corresponding directions); ϕ, χ, ψ are the rotations
(angular coordinates) around axes of longitudinal, lateral, and vertical directions, respective‐
ly (if used as indices, they indicate the corresponding rotations); 2a, 2b are the vehicle or bogie
base; h, rt  are the vertical dimensions and wheel rolling radius;  N, T, W  are the normal,
tangential,  and load forces in wheel/rail  contact, respectively; γ  is the contact angle. The
indices used indicate p as the passenger car body or right-hand side, l the left-hand side; b
the bogie or freight car body; and t the track. Values of the abovementioned parameters of
models can be found in Refs. [1, 5, 17].

The whole hsfv1 car-track system model has 18 degrees of freedom (DOFs). The whole MKIII
car-track model has as many as 38 degrees of freedom.

3.2. Numerical models

When mathematical models derived traditionally are available, based on general methods of
the equations building as described in Section 2 and adopted nominal models as, for example,
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those shown in Section 3.1, then they have to be converted to numerical models. When AGEM
approach is used to build the equations, based again on the results of Section 2 and Section
3.1, then equations automatically form the numerical model. The numerical models are
indispensable, since rail vehicle systems are multidimensional ones. In addition, their nonlin‐
ear versions are mainly used at present. The only way to solve dynamical differential equations
of motion of such systems is numerical integration. In order to do this, the numerical model
representing the mathematical model in a form understandable to computers must be built,
which means that the equations have to be coded in some of the programming languages. In
the case of this author, it is Fortran. Then, the equations are solved with use of one of the
numerical methods of equation integration. The author uses Gear’s method [19]. The software
containing traditionally derived equations of motion or generating the equations automatically
combined with the integration procedure is called the simulation software in railway vehicle
dynamics.

In order to make use of the procedure, shortly described above, three additional major elements
have to be provided. The first one is to adopt the model and then to build its numerical module
to take account of relative kinematics arising from description in moving coordinate systems.
Strictly speaking, the linear and angular velocities and accelerations of transportation,
represented with functions u(t), v(t), w(t) in Section 1.1 and with vectors ao1, ω, ε in Section 2,
have to be determined. The author of this paper worked out a general method of their
determination, which is a numerical calculation-oriented method [2, 1, 20]. Its generality arises
from any three-dimensional track shape acceptable in the method. The most important
requirement in the method is the description of the three-dimensional curve by parametric
equations, with its length as the parameter. In fact, the three-dimensional case corresponds to
transition curves (TCs) with the superelevation ramps, while circular (regular) curves (CC)
and straight track (ST) are two- and one-dimensional special cases, respectively. The compo‐
nents, expressed analytically, of the velocities and accelerations of transportation for several
types of TCs, CC, and ST can be found in Refs. [1, 20]. The sources for the algorithm to
numerically determine the components for polynomial TCs are Refs. [21, 1].

The next element is tangential contact forces calculation. These forces arise from wheel/rail
relative slip (creepage). Consequently, the longitudinal, lateral, and spin creepages are the
inputs in the existing methods of the tangential forces calculation. Generally, one can talk about
the exact and simplified numerical methods of nonlinear tangential contact forces calculation.
The problem with the exact methods, as, for example, Kalker’s CONTACT program [22], lies
in the very slow calculations for the simulation purposes of rail vehicle dynamics. Thus,
simplified methods are in use in the simulation programs (numerical models). One of them is
Kalker’s FASTSIM program [23]. This is just the software used by the present author in his
models and so in the studies. Usually, the adopted value of the friction coefficient, necessary
for the program to run, in the author’s studies is μ=0.3. Other possibilities of tangential contact
forces calculation are discussed in Refs. [24–27].

The last among three elements to be discussed is the problem of nonlinear contact geometry.
This author uses ArgeCare RSGEO program [28] to address this. The program resolves normal
contact problems and purely geometrical ones. As a result, contact areas become known and
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geometrical variables in the contact. The most important geometrical variables are instanta‐
neous contact angles, rolling radii, and contact point positions on the wheel and rail for any
lateral relative shift between wheel and rail. In addition, the program is capable of taking
account of the influence of wheelset yaw angle on the parameters. Both the left- and right-hand
side wheel and rail parameters are calculated in the same step. The results of ArgeCare RSGEO
program (the author uses) are tabulated before simulations for a given wheel and rail pair of
profiles as a function of the discrete lateral wheel/rail displacements and yaw angles. To get
the contact parameters for any relative displacement and yaw rotation between wheel and rail,
the tabulated data are linearly interpolated.

At the end, let us return to the issue already discussed at the beginning of Section 2. It is the
way in which the equations of motion in the simulation software (numerical model) are
introduced.  Here,  this  refers  to  the  traditionally  derived  and  automatically  generated
equations of motion (AGEM approach). Now, we will provide some references correspond‐
ing to both approaches. If  one is interested in samples of the equations traditionally de‐
rived by this author, then he could find them in Ref. [29]. If one is interested in details of the
package ULYSSES and its core program TITAN co-built by this author, then he can find them
in Refs. [1, 2,  6].  The software packages based on AGEM built by other authors are dis‐
cussed in Refs. [15, 16].

4. Example results of the selected simulation studies

The author of the present chapter has exploited simulation in his studies for more than 20
years. There is no possibility to refer to all of them. Readers interested in earlier applications
of simulation by the author can find reviews of the corresponding references in Ref. [20].
Similar review, however, also including current applications, is done in Ref. [1]. Total number
of all author’s applications runs to tens. Due to the limit of space, just two applications of
simulation used in currently studied problems will briefly be discussed in the following
sections. Their content will be focused more on the achievements, contributions, and final
results than on the details of the methods or procedures used in those studies. Interested
readers will be informed about the essential publications where the details can be found. These
publications can also be treated as a main base source for the results discussed further. The
secondary source is Ref. [1]. The applications in view concern the stability and kinematics
issues.

Two other applications extensively studied at present are connected with TC shape optimi‐
zation with the use of simulation and optimization methods as well as with dynamics of
railway vehicles in TCs at velocities around the critical vn. The example publications on these
problems are Refs. [21, 30] and [31, 32], respectively.

4.1. Results of simulation use in rail vehicle nonlinear lateral stability studies

The serious interest of the author on the stability problems started with reference [17]. The
most important results were presented many years later in Refs. [33, 34]. The fundamental
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reference to the methods used by this author, based on bifurcation approach and on usage of
the simulation, is [35]. Recently, the remarkable contributions have been by H. True and his
coauthors (e.g., see Refs. [36, 37]). Works by O. Polach (e.g., see Ref. [38]) are also interesting.
Much more comprehensive and detailed literature review can be found in Refs. [1, 33, 34].

The meaning of stability is fundamental in the discussed problem. This author could describe
its meaning in most of his works as follows. The used method of nonlinear lateral stability
analysis regards formal theory of stability. By contrast, it is not so formal as compared with
the methods based strictly on the theory. Instead, one finds the tool to be more practical. The
simplification is based on adoption of certain assumptions as well as on behavioral expecta‐
tions for the studied system. They arise from commonly existing knowledge about the systems
in the type of rail vehicle. Therefore, one can skip formal adoption of some solution as the
reference in the simplified approach. Moreover, he can skip introducing some perturbations
into the system to examine whether the new solution stays close enough (in narrow vicinity)
to the reference solution. Such a stay is required by the formal definition of the stability theory.
Taking account of that, bifurcation plot building for the system is the main task in the method.
However, formal verification whether the solutions enabling to build this plot are stable in
completely formal sense is not such a task. The assumption exists in the method that any typical
solution of rail vehicle system (either stationary or periodic) is stable. It might be accepted with
care basing on understanding that periodic solutions in rail vehicle dynamics are self-exciting
vibrations being governed through the wheel–rail tangential contact forces. Following that,
the theory of self-exciting vibrations can be useful in order to predict/expect typical periodic
behavior of the system. The adopted assumption enables to limit the number of simulations
for different initial conditions but the same given velocity. Such simplified approach is
described in Ref. [29]. In case of any doubts if obtained solution is stable or about the possibility
of multiple solutions existence, more formal check for the stability is a must. Then, reasonably
a denser sweeping over the initial conditions, to introduce the perturbation, is performed. Such
a more accurate approach is called the extended analysis and is described in Ref. [30].

The author has been especially interested in the stability of rail vehicles in a curved track from
the very beginning of his interest in stability problems. The studies were initiated as a result
of the observed periodic solutions in a circular curve of track. They appear for velocities v
greater than the nonlinear critical velocity vn, exactly as in a straight track. The only difference
relative to ST case is asymmetry of the results in relation to track centerline. Results of such
kind are shown in Figure 6. Based on that fundamental observation, the studies were carried
out focused on the influence of chosen factors on the stability in CC.

They involved curve radii R from the small to large ones and ST as well, where R=∞. The
principles of these nonlinear stability analyses were adopted from the analysis in a ST.
However, the important supplements to ST analysis were necessary. These supplements are
shown in Figure 7. They finally resulted in the formally presented method of the nonlinear
stability analysis in a curved track (CC).

It was successively improved for years and recently published in Refs. [33, 34]. The essence of
this method is included in Figure 8.
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The meaning of the symbols and acronyms present in Figure 8 is as follows: vc, vn, vs is the
linear critical velocity, nonlinear critical velocity, velocity of calculation stop due to unbounded
growth of the solution, respectively; sss, sps are the stable stationary and periodic solutions,
respectively; uss, ups are the unstable stationary and periodic solutions, respectively; SNB,
HSB are the saddle-node and Hopf’s bifurcation point, respectively. All these notions are well
known in the nonlinear stability studies in ST. The method consists in building a pair of
bifurcation plots as in Figures 8a and 8b based on the results of simulation as shown in Figures
8c and 8d and obtained subsequently for whole range of velocity of motion v and given curve
radius R. If one decides to include in both bifurcation plots results for whole range of R, then
one obtains complex bifurcation plots. Such a pair of the complex bifurcation plots was named
stability map in Ref. [39]. The example stability maps, as in Refs. [33, 1], are shown in Figures
9 and 10. Note that the unstable solutions are omitted in these figures as those are less important
because they are not observable in the real systems.

Figure 6. Stable stationary and periodic solutions for R=600 m and velocities v below and above vn [1]
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Figure 7. Supplements to the nonlinear lateral stability analysis in ST, necessary in CC analysis [33, 1]
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Figure 9. Stability map for hsfv1 car for S1002/UIC60 wheel and rail profiles: (a) leading wheelset lateral displacements
ylw and (b) peak to peak values of displacements ylw

Figure 8. The essence of method of stability analysis in a CC, i.e., building the bifurcation plot [34, 1]
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Figure 10. Stability map for hsfv1 car for SZDwheel/R65 wheel and rail profiles: (a) leading wheelset lateral displace‐
ment absolute values ylw and (b) peak to peak values of displacements ylw

The influence of several factors on the stability was studied based on the stability map
technique. Among the factors studied are accuracy of wheelset’s angle of attack determination,
track superelevation, types of nominal wheel and rail profiles, type and value of the wheel and
rail wear, stiffness and damping values in suspension, type of vehicle (car and bogie), rail
inclination, way of mean rolling radius modeling, track gauge, and value of coefficient of
friction. Figures 9 and 10 can represent part of the results for one of the factors, namely the
wheel profile shape. Both maps were obtained for the same object, however, with different
nominal wheel profiles. One can observe significant differences between both maps. One
among the most important differences are nonlinear critical velocities vn of 43 and 24.1 m/s,
respectively. Another is the existence of quasi-static solutions for R<2150 m in Figure 10. This
can be easily recognized as no vibrations appear, resulting in p-t-p ylw=0, for such values of R
in Figure 10b. In Figure 9, vibrations appear for all R values represented there. More differences
are discussed in Refs. [33, 1].

The results in Figures 9 and 10 refer to 2-axle freight car hsfv1 of the model shown in Figure
2. Example results of stability studies for the model of MKIII passenger car shown in Figure
3 can be found in Ref. [18].

4.2. Use of the simulation in studying the influence of kinematics accuracy on vehicle
dynamics in a curved track at variable velocity

Use of Option 2 from Section 1.1 to build mathematical and numerical models of vehicle-track
systems by the present author, made it natural that he was always interested in the importance
of accurate modeling relative kinematics connected with description in moving reference
systems. This interest was amplified since an additional work is necessary as compared with
description in absolute reference systems. Besides, some of the authors neglect additional
terms (imaginary forces) in their equations of motion, without proper justification. Good
examples of such works might be provided in Refs. [3, 40–42]. Author of this book chapter
undertook two stage attempt to finally resolve the problem of particular inertia terms impor‐
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tance. The first one concerned vehicle motion with constant velocity. It finished with publica‐
tion [5]. The second attempt concerned the motion with variable velocity and finished with
publication [4]. Publication [4] is also verification of the results from [5], as motion with
constant velocity was just a special case in Ref. [4]. Therefore, Ref. [4] is the main source for
results forthcoming in the current section. These results were also published in Ref. [1]. Both
Refs. [4] and [1] present the issue in a comprehensive form. Here, only samples of the results
and most general conclusions will be represented.

The idea of the study was to compare the results for the vehicle model with all imaginary forces
included with those for the model in which the imaginary forces were omitted. In order to
precisely determine importance of particular terms types, the forces (and torques) were
selectively, rather than totally, omitted. Let us now recognize the generalized imaginary forces
according to Ref. [7]. Here, equation (24) will be useful. The forces’ terms are present in the
second line of this equation and the torques’ terms are present in the fourth line of it. Note that
all the terms are multiplied by the corresponding linear and angular partial velocities.
Therefore, we can refer directly to content of the square brackets in lines 2 and 4. Making use
of that idea, the 1st term in the square bracket in line 2 represents inertia forces of translation.
The 2nd term in line 2 and 1st one in line 4 form inertia forces of rotation. The 3rd term in line
2 and 2nd one in line 4 correspond to centrifugal forces of inertia. The 4th term in line 2 and
the 3rd in line 4 make gyroscopic forces. The abovementioned four categories of imaginary
forces’ terms appear in the equations as the terms’ components corresponding to the direction
a particular equation of motion describes. Finally, the omissions of all components for given
directions were performed. In fact, these were longitudinal, lateral, and vertical directions. At
the end, for the given direction, the analyses were performed to find the components of the
terms of particular (practical) importance among all.

The variable velocity was realized in the studies with use of the uniform variable motion. The
change in velocity is indirectly represented by the corresponding acceleration value a.
Consequently, negative values of acceleration a mean deceleration, corresponding to vehicle
braking, the positive values of a mean vehicle acceleration, corresponding to its speeding up,
while zero value of a means motion with constant velocity, that is, v=const. Different intensity
of braking or speeding up were realized with different acceleration values.

4.2.1. Scope of the studies and example results of simulation

Generally, the tests described in Ref. [4] represent seven different routes and two different
vehicles. The routes included radii R=300, 600, 1200, and 2000 m and were composed in
continuation either as ST, TC, and CC or as ST, TC, CC, TC, and ST. Thus, the entrance TCen
and exit TCex transition curves were considered. The TCs were of the 3rd degree parabola
type. Characterizing all the routes briefly, it has to be stated that their two general types existed.
The first type corresponded to real railway conditions. The second one represented the case
with unnaturally shortened TC in order to get stronger effects for research purposes. As
concerns the two vehicles used in Ref. [4], the first one was hsfv1 car described in Section 3.1.
Second was vehicle referred to as the 2-axle freight car in Ref. [5]. Both models have the same
structure as shown in Figure 2, and they are supplemented with the same track models from
Figures 3 and 4. This also results in the same number of DOFs for both of them. The major
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difference is that first model represents empty car, while the second one the laden car. The
other minor differences in the parameters (see [5]) are negligible, here.

Two types of simulation results are presented below. The first type is imaginary forces being
omitted in the study. They are a cause for the solution differences being of interest. The
imaginary forces are shown in Figures 11, 14, and 16. The second type of simulation results is
those representing the differences between solutions for the whole model and the model with
particular imaginary force omitted. They are represented with Figures 12, 13, 15, and 17.
Results for complete model are drawn with the solid line, while for the model with imaginary
torques omitted with the dashed line.

Just two routes appear in the mentioned figures. The route I is as follows: ST (l=10 m, H=0 m);
TCen (l=7 m, Rmin=300 m, Hmax=0.15 m); CC (l=30 m, R=300 m, H=0.15 m). Initial velocities for
route I were between v0=10.25 and 15.0 m/s, where the smallest value corresponded to a=0 m/s2

and the biggest one to a=6 m/s2. Route I includes TC with length unnaturally shortened for
research purposes. Route II is as follows: ST (l=10 m, H=0 m); TCen (l=102, 4 m, Rmin=600 m,
Hmax=0.128 m); CC (l=60 m, R=600 m, H=0.128 m); TCex (l=102.4 m, Rmin=600 m, Hmax=0.128 m);
ST (l=40 m, H=0 m). Initial velocities for the simulations were v0=19.91, 22.0, and 22.09 m/s. They
corresponded to a=2, 0, and −2 m/s2, respectively. Route II entirely corresponds to real railway
conditions. In the above given brackets, the denotations are l is denoted as the length of the track
section, R as the circular curve radius, and H as the circular curve superelevation. Values of the
corresponding accelerations are given directly in the figures in round brackets.

It is worth noting in Figure 11 that it includes the biggest values of the imaginary torque
obtained in the author’s studies. As is seen, it is the roll imaginary torque Pϕb of hsfv1 car body
related to longitudinal direction. Character of the torque changes is rectangular, that is,
nonzero values of the torque exist for TC only. Values of this torque depend strongly on value
of the acceleration a. The value is biggest for the biggest acceleration a=6 m/s2 and smallest as
well as equal to zero for a=0 m/s2. The last fact means no influence of this torque on motion
with constant velocity v=const. In the case of Figures 12 and 13, strong influence of omission
of torque Pϕb from Figure 11 can be observed. The two mostly influenced coordinates are
shown. They are roll ϕb and yaw ψb angles of hsfv1 car body, respectively. Note that the
influence on angle ψb (Figure 13) is approximately one order of magnitude smaller than on
angle ϕb (Figure 12).

Figure 11. Roll imaginary torque of hsfv1 car body on route I for different accelerations
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Figure 12. Roll angle of hsfv1car body on route I for different accelerations and roll imaginary torque of hsfv1car body
omitted

Figure 13. Yaw angle of hsfv1car body on route I for different accelerations and roll imaginary torque of hsfv1car body
omitted

Figure 14. Yaw imaginary torque of hsfv1 car body on route I for different accelerations
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Figure 15. Yaw angle of hsfv1car body on route I for different accelerations and yaw imaginary torque of hsfv1car
body omitted

Figure 16. Roll imaginary torque of 2-axle freight car body on route II for different accelerations

Figure 17. Lateral displacement of 2-axle freight car body on route II for different accelerations and roll imaginary tor‐
que of 2-axle freight car body omitted
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In Figure 14, the value of the imaginary torque Pψb of hsfv1 car body, related to vertical
direction, is represented. Character of the torque changes corresponds to rectangle supple‐
mented with triangle. The rectangle part is independent of the acceleration a. Therefore, it
exists also for a=0 m/s2. Increase of the supplementary triangle part grows with increase of a.
Therefore, the torque value is biggest for the biggest acceleration a=6 m/s2 and smallest for a=0
m/s2. Overall, this means that in case of v=const. and a=0 m/s2 influence of Pψb omission exists;
however, for a>0, it is bigger. This is also the case in Figure 15 for ψb, where very strong influence
of the omission can be seen. The biggest influence for a=6 m/s2 is of the same order of magnitude
as in Figure 13 related to Pϕb omission. Therefore, it can be concluded that influences of Pϕb and
Pψb omissions on ψb values accumulate.

In Figure 16, the character of torque Pϕb for 2-axle freight car is in accordance with that in Figure
11. The difference exists, however, that results from route II configuration. One can observe
opposite signs of Pϕb for the entrance TC (TCen) and exit TC (TCex). The sign becomes also
opposite when opposite acceleration a sign is adopted. In Figure 16, this case corresponds to
a=2 m/s2 and a=−2 m/s2. In Figure 17, for 2-axle freight car very strong influence of Pϕb omission
on vehicle body lateral displacements yb can be observed. The changes in signs for yb corre‐
spond to those for the Pϕb described above provided one remembers that if Pϕb>0 then yb<0 and
vice versa.

4.2.2. General conclusions from the study

Except the important influences described in Section 4.2.1, some other important influences
were found and indicated in Ref. [4]. Therefore, except influences of Pϕb on ϕb, yb, and ψb, the
important influence on the wheelsets’ lateral displacements ylw and ytw exists. Except the
influence of Pψb on ψb, very serious influence on the wheelsets yaw angles ψlw and ψtw exists.
Assuming that lateral component (parallel to track plane in curved track) is known for its
importance, the vertical component (perpendicular to the track plane) was studied. It appeared
that the influence of this component omission on the results, especially vehicle body vertical
displacements zb, is also significant.

Conclusions from the studies, including track section, character of velocity, vehicle elements,
direction defining equation, and purpose of calculations, were summarized in table form in
Ref. [4]. Here, we present them in Table 1. This table is analogous to that in Ref. [4] in terms of
merits. Nevertheless, Table 1 is differently arranged.

Generally, the most important are longitudinal and vertical direction terms related to car body.
The influence of eventual term omission is particularly important in TCs. The centrifugal force
is important in both the TCs and the CC sections. The influence in TCs increases as compared
with CC when the vehicle moves with variable velocity. The stronger the change in velocity
(both accelerating and braking), the greater the influence. The last column represents a direct
recommendation of terms that should not be neglected.
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5. Concluding remarks

The author of this chapter has been involved in technological problems of railways for about
30 years. More precisely, his involvement concerns part of the railway system that are railway
vehicles. Within the railway vehicles, many areas of studies can be mentioned as, for example,
material issues, production technical issues, braking systems issues, traction systems issues,
construction issues, exploitation issues, control issues, safety systems issues, etc. The author
is interested in dynamics of vehicle motion with a special regard to the motion in curved
sections of the track. It is obvious that the chapter was devoted to these last aspects. The author
focused his efforts on giving the idea to the readers how important and powerful tools are
methods of modeling and simulation when used for the purposes of the rail vehicle dynamics.
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Table 1. Importance and recommendations for imaginary forces omission in rail vehicle dynamics
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In Sections 1 and 2, the general methods of modeling dynamics in moving coordinate systems,
useful for multibody systems of rail vehicle type, were represented. The Newton–Euler and
Kane’s equations in the form suitable in AGEM approach were discussed. At the end of Section
2.2, the method profiled for rail vehicle systems was also presented. These methods help build
mathematical models of rail vehicle dynamics. In Section 3, example nominal models of rail
vehicles were introduced, as used by the author. In that section, the issue of building numerical
models corresponding to the mathematical ones was also discussed.

In Section 4, two examples of the author’s simulation studies, with use of the numerical models,
were discussed. The first example represented in Section 4.1 concerned the problem of rail
vehicle stability in a curved track. Due to the author’s systematic and consequent simulation
studies, the method was formulated suitable for rail vehicle nonlinear lateral stability studies
in a curved section of the track. The examples of the so-called stability map, being the most
important result in the studies, were shown and briefly commented on. The stability maps
approach was used by this author to study the influence of different factors on the results of
stability analysis in a curved track.

The second example is represented in Section 4.2. It was devoted to the use of the simulation
in studying the influence of kinematics accuracy on vehicle dynamics in a curved track at
variable velocities. In fact, both the constant and variable velocity cases were of interest. Due
to the consequent author’s interest in this issue, it appeared possible, based on the direct results
of simulation and equation terms analysis, to resolve the problem in full. The author presents
tabular conclusion of the results in Section 4.2.2. The table states precisely which imaginary
forces terms, in what conditions, and for which vehicle major elements (bodies) may have an
important influence on the simulation results. The last column states that imaginary force of
translation, imaginary torque of rotation, and centrifugal force should not be neglected in both
theoretical and practical analyses (calculation). The gyroscopic forces should not be neglected
in the theoretical issues as well.

Both described results of the simulation studies are original and important contributions to
the knowledge on rail vehicle dynamics. These contributions would not be possible without
the mathematical, nominal, and numerical models of vehicles build based on the modeling
methods discussed in the chapter. Therefore, it is hoped that the readers have obtained an idea
of the efficiency and importance of both the modeling and the simulation for the development
of contemporary rail vehicle dynamics, and thus the railways in general.

Author details

Krzysztof Zboinski*

Address all correspondence to: kzb@wt.pw.edu.pl

Faculty of Transport, Warsaw University of Technology, Poland

Railway Research - Selected Topics on Development, Safety and Technology192



References

[1] Zboinski K. Nieliniowa dynamika pojazdow szynowych w luku. Warsaw-Radom:
Wydawnictwo Naukowe ITE PIB; 2012. 371 p. (monograph in Polish – translated ti‐
tle: Non-linear dynamics of rail vehicles in a curve)

[2] Zboinski K. Modelling dynamics of certain class of discrete multi-body systems
based on direct method of the dynamics of relative motion. Meccanica. 2012;47(6):
1527–1551. DOI: 10.1007/s11012-011-9530-1

[3] Popp K, Schiehlen W. Fahrzeugdynamik. Stuttgart: B.G. Teubner; 1993. 308 p.

[4] Zboinski K. The importance of kinematics accuracy in modelling the dynamics of rail
vehicle moving in a curved track with variable velocity. International Journal of
Heavy Vehicle Systems. 2011;18(4):411–446.

[5] Zboinski K. Importance of imaginary forces and kinematic type non-linearities for
description of railway vehicle dynamics. Proceedings of IMechE Part F Journal of
Rail and Rapid Transit. 1999;213(3):199–210.

[6] Zboinski K. Relative kinematics exploited in Kane's approach to describe multibody-
body system in relative motion. Acta Mechanica. 2001;147(1–4):19–34.

[7] Lurie AI. Analytical mechanics. 1st ed. Berlin, Heidelberg, New York: Springer-Ver‐
lag; 2002. 864 p.

[8] Roberson RE, Schwertassek R. Dynamics of multibody systems. Berlin, Heidelberg:
Springer-Verlag; 1988. 460 p.

[9] Schiehlen W, editor. Dynamical analysis of vehicle systems. Vien, New York: Spring‐
er; 2007. 304 p.

[10] Schiehlen W, Eberhard P. Technische dynamik: modelle fur regulung und simula‐
tion. Stuttgart, Leipzig, Wiesbaden: B.G. Teubner; 2004. 252 p.

[11] Kane TR, Levinson DA. Dynamics: theory and applications. New York: McGraw-Hill
College; 1985. 523 p.

[12] Huston R. Useful procedures in multibody dynamics. In: Bianchi G, Schiehlen W, ed‐
itors. Proceedings of Dynamics of Multibody Systems IUTAM/IFT MM Symposium.
Berlin, Heidelberg: Springer; 1986. p. 69–77.

[13] Huston RL. Multibody dynamics. New York: Butterworth-Heinemann; 1990. 416 p.

[14] Josephs H, Huston RL. Dynamics of mechanical systems. Boca Raton: CRC Press
LLC; 2002. 776 p.

[15] Kortum W, Sharp R, dePater AD. Application of multibody computer codes to vehi‐
cle system dynamics - progress report to 12th IAVSD Symposium on a workshop

Modeling, Simulation, and Results of Their Use in Railway Vehicle Dynamics Studies
http://dx.doi.org/10.5772/62105

193



and resulting activities. Oberpfaffenhofen: Society for Engineering and Scientific Ed‐
ucation; 1991.

[16] Schiehlen W, editor. Multibody systems handbook. Berlin, Heidelberg, New York,
London, Paris, Tokyo, Hong Kong: Springer-Verlag; 1990.

[17] Zboinski K. Dynamical investigation of railway vehicles on a curved track. European
Journal of Mechanics, part A Solids. 1998;213(3):1001–1020.

[18] Dusza M, Zboinski K. Simulation study of 4-axle railway vehicle stability analysis in
a curved track. In: Materials of 23rd IAVSD Symposium on Vehicles on Roads and
Tracks (electronic form); August 2013; Qingdao, China. 2013. Paper 2013-20.3-ID429.

[19] Gear CW. Numerical initial value problems in ordinary differential equations. Engle‐
wood Cliffs, New Jersey: Prentice -Hall Inc.; 1971. p. 253.

[20] Zboinski K. Numerical and traditional modelling of dynamics of multi-body system
in type of a railway vehicle. Archives of Transport. 2004;16(3):81–106.

[21] Zboinski K, Woznica P. Optimisation of the railway transition curves’ shape with use
of vehicle-track dynamical model. Archives of Transport. 2010;22(3):387–407.

[22] Kalker JJ. User’s manual for program CONTACT vers. 1 and 3. Delft: Delft Universi‐
ty of Technology; 1986.

[23] Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Vehicle System
Dynamics. 1982;11:1–13.

[24] Iwnicki S, editor. Handbook of rail vehicle dynamics. Boca Raton, London, New
York: CRC Press, Taylor and Francis Group; 2006. 526 p.

[25] Shabana AA, Zaazaa KE, Sugiyama H. Railroad vehicle dynamics: a computational
approach. Boca Raton, London, New York: CRC Press, Taylor and Francis Group;
2008. 331 p.

[26] Lee SY, Cheng YC. Hunting stability analysis of higher-speed railway vehicle trucks
on tangent track. Journal of Sound and Vibration. 2005;282(3–5):881–898.

[27] Kik W, Piotrowski J. A fast, approximate method to calculate normal load between
wheel and rail and creep forces during rolling. In: Zobory I, editor. Proceedings of
2nd Mini-Conference Contact Mechanics and Wear of Rail/Wheel Systems ; Buda‐
pest. TU Budapest; 1996.

[28] Kik W. Comparison of behaviour of different wheelset-track models. Vehicle System
Dynamics. 1992;20(suppl.):325–339.

[29] Kisilowski J, Knothe K, editors. Advanced railway vehicle system dynamics. War‐
saw: WNT; 1991. 442 p.

[30] Zboinski K, Woznica P. Optimisation of railway transition curves with regard to
wheel/rail wear. In: Pombo J, editor. Proceedings of the Second International Confer‐

Railway Research - Selected Topics on Development, Safety and Technology194



ence on Railway Technology: Research, Development and Maintenance; 2014; Corsi‐
ca. Stirlingshire, UK: Civil-Comp Press; 2014. Paper 206. DOI: 10.4203/ccp.104.206

[31] Zboinski K, Golofit-Stawinska M. Simulation study into non-linear properties of rail‐
way vehicles in transition curve at velocities around the critical one. In: Materials of
23rd IAVSD Symposium on Vehicles on Roads and Tracks (electronic form); August
2013; Qingdao, China. 2013. Paper 2013-20.3-ID452.

[32] Zboinski K, Golofit-Stawinska M. Dynamics of 2 and 4-axle railway vehicles in tran‐
sition curves above critical velocity. In: Pombo J, editor. Proceedings of the Second
International Conference on Railway Technology: Research, Development and Main‐
tenance; 2014; Corsica. Stirlingshire, UK: Civil-Comp Press; 2014. Paper 265. DOI:
10.4203/ccp.104.265

[33] Zboinski K, Dusza M. Self-exciting vibrations and Hopf’s bifurcation in non-linear
stability analysis of rail vehicles in a curved track. European Journal of Mechanics,
part A Solids. 2010;29(2):190–203.

[34] Zboinski K, Dusza M. Extended study of railway vehicle lateral stability in a curved
track. Vehicle System Dynamics. 2011;49(5):789–810.

[35] Huilgol RR. Hop-Friedrichs bifurcation and the hunting of a railway axle. Quarterly
Journal of Applied Mathematics. 1978;36:85–94.

[36] True H. On multiple attractors and critical parameters and how to find them numeri‐
cally: the right, the wrong and the gambling way. Vehicle system dynamics.
2013;51(3):443–459. DOI: 10.1080/00423114.2012.738919

[37] True H. On the theory of non-linear dynamics and its applications in vehicle system
dynamics. Vehicle System Dynamics. 1999;31(5–6):393–421.

[38] Polach O. Characteristic parameters of nonlinear wheel/rail contact geometry. Vehi‐
cle System Dynamics. 2010;48(suppl.):19–36.

[39] Zboinski K, Dusza M. Analysis and method of the analysis of non-linear lateral sta‐
bility of railway vehicles in curved track. Vehicle System Dynamics. 2004;41(suppl.):
222–231.

[40] Andersson E, Nilstam NG, Ohlsson L. Lateral track forcesat high speed curving.
Comparison of practical and theoretical results of Swedish high speed train X2000.
Vehicle System Dynamics. 1995;25(suppl.):37–52.

[41] Berghuvnd A, Stensson A. Dynamic behaviour of ore wagons in curves at Malmban‐
an. Vehicle System Dynamics. 1998;30(3–4):271–283.

[42] Scott GA. VAMPIRE user’s manual. Report MR VDY 001. British Rail Research, Der‐
by; 1989.

Modeling, Simulation, and Results of Their Use in Railway Vehicle Dynamics Studies
http://dx.doi.org/10.5772/62105

195




