
Extending RBAC Model
to Control Sequences of CRUD Expressions

Óscar Mortágua Pereira

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
omp@ua.pt

Diogo Domingues Regateiro, Rui L. Aguiar

Instituto de Telecomunicações
DETI, University of Aveiro

Aveiro, Portugal
{diogoregateiro,ruilaa}@ua.pt

Abstract In database applications, access control is aimed at

requests are mainly formalized by Create, Read, Update and
Delete (CRUD) expressions. The supervision process can be
formalized at a high level, such as based on the RBAC model, but
in the end the relevant aspect is the data being accessed through
each CRUD expression. In critical database applications access
control can be enforced not on a CRUD by CRUD basis but
enforced at the level of sequences of CRUD expressions
(workflow). This situation can occur whenever established
security policies are based on strict procedures that define step by
step the actions (sequences of CRUD expressions) to be followed.
Current RBAC models do not support this type of security
policies. To overcome this security gap, we leverage previous
researches to propose an extension to the RBAC model to control
for each role which sequences of CRUD expressions are
authorized. We demonstrate empirical evidence of the
effectiveness of our proposal from a use case based on Java and
JDBC. Our use case is based on typed security layers built from a
software architectural model and also from metadata based on the
proposed RBAC model extension.

Keywords-information security, access control, RBAC, software
architecture, software engineering, components.

I. INTRODUCTION

Access control [1][2] erned with limiting the
activity of legitimate users [3]. Four of the main strategies for
regulating access control policies are: discretionary access
control (DAC) [3], mandatory access control (MAC), attribute-
based access control [4][5] (ABAC) and Role-based access
control (RBAC) [6][7]. There are other strategies for regulating
access control, such as credential-based access control (CBAC)
[Li, '05; Yu, '03], content driven [Moffett, '91; Staddon, '08],
location driven [Decker, '08], public key driven [Wang, '11]
and certificate driven [Samarati, '01b]. Each one addresses
specific security needs for the system under protection. In this
paper we are focused on RBAC, which has emerged as one of
the dominant access control policies [8], namely for relational
database applications. RBAC policies comprise several
concepts, among them: users, roles (they can be hierarchized),
permissions, delegations and actions. Basically, legitimate
(authenticated) users can only execute some action if he has
been authorized to play the role that rules that action. At the
end, actions are the four main operations on database objects
(tables and views) defined by the data manipulation language

of the SQL standard: Insert, Select, Update and Delete, herein
referred to as Create, Read, Update and Delete (CRUD)
expressions, respectively. Depending on the granularity and the
used technique, the authorization to execute these actions can
be defined at the level of database objects, at the level of
columns, at the level of rows and at the level of cells. Another
relevant aspect that has not been addressed by current RBAC
models is the sequence in which CRUD expressions are
executed. Changing the order in which CRUD expressions are
executed can lead to disclosing not authorized data. For
example, it is very usual to use values from a previous Select
expression as runtime values for subsequent Select expressions.
If this sequence is not enforced, security violations can occur
because the provenance of the used runtime values cannot be
guaranteed [9]. To overcome this situation, in this paper we
propose an extension to the RBAC model to support the
definition of sequences in which CRUD expressions must be
executed. We demonstrate empirical evidence of the
effectiveness of our proposal from a use case based on Java and
JDBC.

This paper is organized as follows: section II presents the
related work; section III presents our proposal; section IV
presents the proof of concept and, finally, section V presents
the final conclusion.

II. RELATED WORK

To the best of our knowledge no other researches have been
conducted to provide RBAC models with the capability of
controlling the sequences in which CRUD expressions are
executed. Therefore, in this section we will present two main
groups of aspects that are also closely related to this research:
access control and service composition.

A. Access Control

In this sub-section we present access control in two main
areas: models and techniques.

Models - Sandhu et at. [10] proposed the RBAC96, which
comprises four models: RBAC0, RBAC1, RBAC2 and
RBAC3. Since then, several proposals have been presented to
extend these four RBAC models, among them we emphasize:
credential based access control [11], temporal based access
control [12], role delegation [13][14], context-aware [15],

463

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional da Universidade de Aveiro

https://core.ac.uk/display/32242578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

system-to-system [16]. These and the remaining extensions are
mainly focused on refining the role concept in order to adapt to
particular contexts and scenarios.

Techniques - Several techniques have been proposed to
protect the access to data, among them we emphasize:
protection at tables and views level (vendors of RDBMS), the
use of views [17], the use of parameterized views [18], the use
of query rewriting techniques [19][20][17][21][22], extensions
to SQL [23][24], programming languages extensions
[25][26][27], security programming languages and tools
[28][29][30][23][31] and, finally, semantic access control
[32][33][34][35][36]. These proposals are based on a bundle
of different techniques, each one with its own features. In spite
of their relevance, none of them addresses the key issue of this
research. They are mainly focused on controlling accesses to
database objects (tables and views) on a CRUD by CRUD
basis. A different technique is proposed in [37] where a
security framework evaluates, at runtime, sequences of CRUD
expressions in order to preserve data privacy. Beyond
degrading the system performance this technique still needs to
be subject to further experimentation.

Authors of this paper have also published about dynamic
and distributed access control mechanisms [38][9]. Their
researches were focused on techniques to implement static
access control mechanisms at the level of business tiers. They
were never focused on how to enforce sequences of CRUD
expressions.

B. Service Coordination: Orchestration and Choreography

In our proposed approach, we needed to control the order in
which users are authorized to use CRUD expressions. Two of
the technologies that are used to control services workflow are:
1) service orchestration, which requires every service to be
requested by a central control point; 2) service choreography,
which allows a service to request the next service. Standard
languages for each technique were proposed. Regarding
orchestration, OASIS defined a standard language, which is
still very active, called Web Services Business Process
Execution Language [39] (WS-BPEL). WS-BPEL provides a
set of functionalities that largely exceeds our needs. We will
use some functionalities similar to those provided by WS-
BPEL but tailored to our specific needs, such as graphs and
life-cycle operations of active entities. Regarding
choreography, the Web Service Choreography Description
Language [40] (WS-CDL) is a language from W3C aimed at
describing choreographies using the global view of the
observable behavior of web services. However, the W3C Web
Services Choreography working group was closed in 2009,
leaving WS-CDL just as a candidate recommendation.

Several other languages exit, such as Yet Another
Workflow Language [41] (YAWL) and XML Process
Definition Language [42] (XPDL), but they clearly would not
bring any advantage to our case.

The necessities to control the order in which sequences of
CRUD expressions are executed are closer to a choreography
process than an orchestration process. This way, we decided to
implement our own technical approach in spite of having some

similar features with the orchestration process, as already
mentioned.

III. PROPOSED RBAC EXTENSION

This section is focused on presenting our RBAC extension.
We start by presenting some of our previous work that is
reutilized in this research, then we present the conceptual
extension to be used in RBAC policies and, finally, a model
extension is presented.

A. Business Schema

Before delving into the policy and its model, we start by
analyzing some previous researches that we have been
conducted around CRUD expressions [9][10][11][12][45].
From these researches we have defined and used the concept of
Business Schema, which is basically a model from which
source code can be automatically generated to handle CRUD
expressions. The model, as in [9][37], can be driven by access
control policies. Beyond being a model, Business Schemas
have a cardinality of many to many with CRUD expressions.
This means that one Business Schema can handle one or more
CRUD expressions and one CRUD expression can be handled
by one or more Business Schemas. Let us consider the next two
Select expressions:

1) Select * from table; 2) Select * from table where col>10;

First we analyze the direction one Business Schema ->
many CRUD expressions . Both expressions are Select and
both have zero runtime values and the schema of the returned
relations is the same. Then, the same Business Schema can be
shared by both expressions. Now we analyze the direction
CRUD expression - . This case is
simpler to explain and we can pick up any of the two Select
expressions. In cases where different security policies are
applied to the same Select expression, then we can use the
Select expression in more than one Business Schema. For
example, the same CRUD expression is managed by two
Business Schemas where the runtime values are driven by
different security policies.

B. RBAC Policy Extension

In this sub-section we present the new extension to the
RBAC policy that is used to control the access requests to the
data stored in relational database management systems
(RDBMS). Traditionally, among other concepts, RBAC
policies comprise: users, roles (they can be hierarchized),
permissions, delegations and actions. Basically, legitimate (i.e.
authenticated) users can only execute an action if he is
authorized to play the role that controls that action. If a user is
authorized to play a certain role, then he can perform all the
actions controlled by that role. At the end, actions are the four
main operations, provided by the Data Manipulation Language,
on database objects (tables and views): read, insert, update and
delete. The extension here presented aims at providing RBAC
policies with the capability of controlling at the role level: 1)
which Business Schemas and CRUD expressions are
authorized; 2) in which sequence Business Schemas can be
activated (instantiated) and, finally 3) the life-cycle of Business
Schemas when the sequence moves forward one position. From
this extension, security experts can now define new restrictions
over the actions ruled by a role, particularly the ordered

464

sequences of actions (execution of CRUD expressions) users
can perform.

C. RBAC Model Extension

In this sub-section we propose a model, shown in Figure 1,
to formalize the extension proposed to the RBAC policy. This
model is not unique and other formalizations can be used,
depending on the practical scenario at hand. The extension
herein proposed leverages our previous work where we
proposed Business Schemas to model the access to relational
databases based on CRUD expressions. The extension must
take into account two main aspects. The first aspect is the
functionality to connect Business Schemas and, therefore, to
build sequences of Business Schemas. The second aspect is
related to the life-cycle of Business Schemas when the
sequence moves forward to the next Business Schema.

We start by presenting the first aspect. We will use directed
graphs (usually known as digraphs) theory to formalize our
approach for sequences (S) of Business Schemas. Basically,
one vertex (v) is one Business Schema and one directed edge
(e) connects one vertex (source vertex) to the next vertex
(destination vertex). From a general digraph, there is the
possibility to define several paths (sequence of vertices with
each adjacent pair connected by a single direct edge). In an
access control context, this type of freedom can raise some
alerts when applied in systems where security is a key concern.
Therefore, although our model relies on digraphs, some strict
constraints need to be enforced. The main restriction lies on the
impossibility of using diagraphs in their widest scope.
Nevertheless, we can start by designing digraphs, although,
from them we have to identify the paths that are considered to
be in accordance with the access control policies. A path is a
sequence of vertices, each one with one edge only (except the
last one, which has no edge). Only these valid paths can be
used and assigned to roles. This means that users authorized to
play a role: 1) can only execute the Business Schemas
(vertices) defined by the associated path and 2) in the order
they are defined in the path (direct edges). In order to allow the
assignment of several paths to one role, our model does not
enforce any restriction at that level. This can be important in
situations in which a role is defined to control the use of several
forms, each one controlled with its own path, this way avoiding
the need to define one role for each form.

Some definitions are now introduced. A root vertex (r) is
the vertex where one path start. A leaf vertex (l) is a vertex
with no edges and, therefore, is the last vertex of a path. A front
vertex (f) is the vertex in which the sequence is running. Now
we define the properties of paths in our model. Most of the
concepts are shared by the theory of graphs. Even though, we
present them to provide the necessary background for those
who are not comfortable with graphs. The properties of paths
are:

 one path comprises one and only one root vertex;
 one path comprises one and only one leaf vertex;
 self-edged vertices are not allowed in paths;
 loop-back vertices are not allowed in paths;
 any vertex of a digraph can be the root vertex of a path;
 any vertex of a diagraph can be the leaf vertex of a

path;

 any vertex of a digraph can appear zero, one or more
times in one path;

 adjacent vertices in paths must also be adjacent vertices
in the parent digraph and connected with the same
direct edge.

Next we present a simple example of a digraph, see Figure
1. It comprises 5 vertices and 6 edges, one of them is a self-
edge (on vertex C). From this digraph, an indeterminate
number of different paths can be defined. This indeterminate
number of different paths has its origin on loop-back vertices
(B to A) and self-edges (on C). Three of the possible paths that
can be defined from Figure 1 are shown in Figure 2.

A B C D

E

Figure 1. Example of a digraph.

A B A E

C C

B C D

Figure 2. Examples of valid paths derived from Figure 1.

The second aspect is related to life-cycle of Business
Schemas when a sequence moves to the next Business Schema.
Once again, our approach provides a model in where security
managers can freely choose the best option for their real
scenarios. Basically, when the sequence moves to the next
Business Schema, it is up to the security manager to decide
which from the active Business Schemas are to remain active
(their instances run normally) and which are not to remain
active (their instances are running but they are disabled
methods do not execute the expected actions). The process to
disable Business Schemas instances is herein referred to as the
revocation process. In our model, each Business Schema has an
associated list with all the previous Business Schemas to be
revoked.

Finally, we present a possible and simplified model to
formalize our proposal, see Figure 3. From it we can see that
one role comprises one or more sequences (paths); a sequence
comprises one or more Business Schemas (vertices); each
Business Schema manages one or more CRUD expressions
and, finally, each Business Schema (vertex - in a certain
sequence and in a certain position) has a list of Business
Schemas to be revoked.

Role
-sequence
-order

BusinessSchema

-role

Sequence

*

-sequence
-businessSchema
-order

Revocation

*

CRUD

* *

Figure 3. Example of a simplified diagram for our RBAC model extension.

465

IV. PROOF OF CONCEPT

In this section we present the scenario and the technical
details of our implementation perspective for a RBAC model
driven by our proposed extension.

A. Scenario

We implemented a scenario, which derives from previous
researches, namely [11][12], where access control mechanisms
have the following characteristics: 1) they are distributed in
each client side application as typed security components; 2)
they are automatically built and updated at runtime in

3) business logics use Call
Level Interfaces (CLI) [46], such as ODBC [47] and JDBC
[48], as the underlying middleware. Figure 4 presents the
general block diagram for the implemented scenario. Basically,
distributed security components are built from a metadata kept
by a RBAC model (that implements our RBAC model
extension) and modeled by a software architecture model. In
our proof of concept, the software architectural model derives
from previous software architectural models, which are closely
aligned with CLI in order to keep their fundamental properties:
fine tune control on the interactions with data stores and the use
of native SQL languages (statements encoded inside strings this
way keeping the full SQL expressiveness) [49].

Automated tool

RBAC Model
Software

Architectural
Model

Security
Component

Figure 4. Implemented scenario general block diagram.

B. RBAC Model Extension

Figure 5 presents the implemented RBAC model. Part of it
has been used in several researches we have conducted around
distributed access control mechanisms. From the previous
model we kept: subjects (Sub_Subject), applications
(App_Applications), sessions (SES_Session), permissions
(PER_Permission), delegations (Del_Delegation), hierarchized
roles (Rol_Role), Business Schemas (Bus_BusinessSchema)
and CRUD expressions (Crd_CRUD). Now, in order to support
the extension herein proposed, some new entities were
included: sequences (Seq_Sequence), revocations
(Rev_Revocation) and aliases for Business Schemas
(BSA_Alias). This extension clearly derives from the original
proposal shown in Figure 3, but some additional clarifications
are required. First of all, we extended the model in order to
support many to many relational-ships between sequences,
revocations and Business Schemas. Second, and perhaps the
most noticeable modification, we included aliases for Business
Schemas. In spite of not being mandatory, in our particular
case, the use of aliases for Business Schemas led to significant
improvements regarding the usability of our model by
programmers of client applications. We now give the required
details. From Figure 2 we see that the same Business Schema
can be used in several vertices of the same path, for example in
the first path, Business Schema A appears in positions 1 and 3.
The first one is connected to Business Schema B and the
second one is connected to Business Schema E. We could have
built a unique Business Schema for the first path comprising

edges for both destination Business Schemas. But this
implementation, in spite of being possible, would require
programmers to master the correct order of Business Schemas.
The use of aliases, and also the aim of providing typed security
components, allow us to instantiate different Business Schemas
from the same base Business Schema. Basically, the main
functionalities are shared by all Business Schemas instances
derived from a Business Schema. The only two differences are:
1) the connection to the next destination Business Schema and
2) the list of Business Schemas to be revoked.

*

Sub_Subject

App_Application

Rol_Role

Bus_BusinessSchema

Crd_Crud

Del_Delegation

Ses_Session

*

1

11

1

1

*

*

*

*1

1 1

1

*

*

*

1

1

Per_Permission

Seq_Sequence

Rev_Rovocation

1 *

*

1

*

1

1

*

BSA_Alias

1 *

*

1

*

1

Figure 5. Implemented RBAC model with the proposed extension.

C. Architectural Model

In this sub-section we present the software architectural
model, which is shown in Figure 6, for building automatically
the enforcement mechanisms from the extended RBAC model.
The presented architectural model represents the
implementation of one role only. It is up to each system
architect to decide how to expand it to support several roles.
Moreover, it is focused on how to implement RBAC
mechanisms and not on how to build complete and feasible
implementations. For example, the architectural model does not
address key issues such as the scrolling policy on local datasets
(containers of data returned by Select expressions), sessions
and database transactions. These and other issues are out of the
architectural model context.

Our architectural model comprises three main types of
entities: Factory, BusinessManager and Business Schemas.
Next we describe each entity individually.

Factory - pective, this entity is the
entry point of our architectural model. Factory contains the
identification of the first Business Schema of each valid
sequence in that role. Programmers can select one of the root
Business Schemas (one for each valid sequence) and also the
CRUD expression to be executed (methods). There is
one type safe method for each pair: root Business Schema and

466

each CRUD expression it supports.

Business Manager - Business Manager entity is the key
entity in our architectural model. It is responsible for three
main tasks: 1) to ensure that Business Schemas are instantiated
in the correct order (sequences are kept in sequences); 2) to
revoke active Business Schemas that are listed in the
revocation list (SequencyEntry - revokeList) and, finally, 3) to

is required because when a Business Schema instance is
revoked we need to programmatically ensure that all methods
are put in a disabled state (in Java there is no possibility to
explicitly destroy objects they are destroyed by the garbage
collector only when there is no reference to those objects).

The interaction between applications and our architectural
model is as follows (please follow Figure 6): 1 - application
selects one of the available sequences and requests the
instantiation of its first Business Schema (in our example
BusinessSchema_1) to manage the execution of one of the
authorized CRUD expressions (there is one method for each
Business Schema CRUD expression pair); 1.1
BusinessManager instantiates the Business Schema; 2
Factory returns (to the application) a reference to the
instantiated Business Schema 1; 2.1 application uses the
Business Schema 1 to interact with the host database; 2.1.1
the call to every method is validated by Business Manager (if

the Business Schema has been revoked, an exception is raised);
2.2) application requests the instantiation of BusinessSchema_2
(this is validated by Business Manager and eventually Business
Schema 1 is revoked in case it is defined in the revocation list
of Business Schema 2); 3 Business Schema 2 is instantiated
(only in case it has been validated by Business Manager) and a
reference is returned to the application; 3.1 application uses
Business Schema 2 instance and 3.1.1 every call to its
methods is validated by Business Manager.

D. Use Case

From this architectural model and from metadata based on
the proposed RBAC model extension, security layers are
automatically built, see Figure 4. Our use case is based on Java,
JDBC and uses the Microsoft Northwind database
(http://www.microsoft.com/download/en/details.aspx?id=23654).

Table 1 and Table 2 partially present the information used
in our use case, only for one role (Role_B1). Table 1 shows the
supported Business Schemas and CRUD expressions. Table 2
shows the supported sequences. The bottom of both tables has
some additional information to help with the understanding of
their content. Now we present some snapshots of our concrete
use case. Only some snapshots will be given in order to
not overcrowd the paper. Figure 7 shows the high level data
structures (classes are not shown) that were automatically
created for Role_B1 and from the metadata represented by

«uses»

«uses»

-factory : Factory

Application

+getBS1_Select_By_Param1() : BS1
+...()
+getBS1_Select_By_ParamY() : BSy

-businessManager : BusinessManager

Factory

-BS_URL : string
-revokeList : List<string>
-CRUDList : List<string>

SequenceEntry

+instantiateBS(in bs : T) : T
+validateBS(in bs : T) : bool

-sequences : MAP<Integer,List<SequenceEntry>>

BusinessManager+BusinessSChema_1(in bm : BusinessManager)
+getBS2_Select_By_Param1() : BS2
+...()
+getBS2_Select_By_ParamX() : BSx

BusinessSchema_1

+BusinessSchema_2(in bm : BusinessManager)

BusinessSchema_2

End1

End2

«uses»

«uses»
End5
End6

End5
End6

1

2

3

2.1.1 / validate
2.2 / instatiate

1.1 / instantiate

3.1.1 / validate

2.1

3.1

End1

End2

Figure 6. Software architectural model for the RBAC extension (one role).

Table 1. Roles, Business Schemas and CRUD expressions.

Role
Parent
 Role

BS
CRUD

Id Ref Expression

Role_A

Role_B1 Role_A S_Orders 1 byShipCountry Select * From Orders
Where CustomerId = ? and
ShipCountry = ?

 2 byFreightLimit Select * From Orders
Where CustomerId = ? and Freight
< ?

 I_Orders 3 withCustomerID Insert Into Orders
Values (?,?,?,?,?,?,?,?,?,?,?,?,?)

 S_Customers 4 all Select * From Customers

Role: Role Reference

BS: Business Schema alias

Id: CRUD Identification

Ref: CRUD reference

Expression: CRUD Expression

Table 2. Roles, sequences and revocation lists.

Role Sequence Position
Sequence Entry

BS RL CRUDs

Role_B1 1 1 S_Customers 4

 2 S_Orders 1, 2

 2 1 I_Orders 3

 2 S_Customers I_Orders 4

 3 S_Orders 1

Role:
Sequence:
Position:
BS:
RL:
CRUD:

Role Reference
The sequence identification
The position in the sequence
Business Schema alias
The revocation list
The list of authorized CRUDs

Table 1 and Table 2. They comprise the required information
about the authorized Business Schemas and CRUD expressions

467

for Role_B1, only. These data structures are used during
instantiation process of Business Schemas as we will show.
Figure 8 presents the way applications interact with Factory
classes. Factory classes are also built from metadata based on
the extended RBAC model and have one method for each pair
Business Schema CRUD expression. From Figure 8 we see
that the pair (Business Schema+CRUD expression) represented
by S_Customers_all is requested to be instantiated (line 60) and
then the CRUD expression is executed (line 61). Instances of
root Business Schemas are instantiated by the Business

Figure 9
for the Business Schema S_Customers_all. Here we can see
that the pair represented by S_Customers_all is s_customers
and s_customers_S_Customers_all (lines 28, 29), which are
internal data structures, shown in Figure 7, and, therefore, they

Figure 7. Data structure comprising information about Role_B1

Figure 8. interaction between application and the Factory class.

Figure 9. The Factory requests an instance for a Business Schema.

Figure 10. The root Business Schema provides an edge method to step
forward to next Business Schema.

Figure 11. Validation process for the instantiation process of Business
Schemas.

are not accessible from the application side. In order to access
the second Business Schema, the root Business Schema
provides a method to that goal, see Figure 10 (line 65). Before
being instantiated, Business manager evaluates if the requested
Business Schema can be instantiated, see Figure 11. If
authorization is not granted, an exception is raised (line 22-23).
Otherwise, an instance is returned (line 26-31).

 These are only some snapshots of our use case. From these
snapshots, from Table 1 and Table 2, and from Figure 6 we
hope that readers can infer the remaining technical approaches
on which our use case was built.

V. CONCLUSION

This paper presents an extension of the basic RBAC policy
in order to control the sequence in which CRUD expressions
are executed. The model leverages previous researches where
the RBAC model was extended to support the concept of
Business Schema and, therefore, the execution of CRUD
expressions. To formalize our proposed extension we start by
resorting to the theory of graphs. From it we defined an ordered
sequence of Business Schemas as being a path. Basically, the
model extension allows security experts to designate the set of
Business Schemas sequences to be used by users authorized to
play that role. A proof of concept is also presented, which, once
again, leverages previous researches. The presented proof of
concept, beyond providing the empirical evidence of the
effectiveness of our proposal, it also conveys the following key
advantages: 1) security layers are automatically built and 2)
security layers are based on typed objects, this way relieving
programmers of application tiers from mastering the
established security policies.

REFERENCES

[1]
Found. Secur. Anal. Des., vol. 2171, pp.

137 196, 2001.

[2]
Access Control - Handbook of
Jajodia, Eds. Springer US, 2008, pp. 1 26.

[3]
Commun. Mag. IEEE, vol. 32, no. 9, pp. 40 48, 1994.

[4] M. A. Al- Attribute-Based User-
Proceedings of the 18th Annual Computer Security

Applications Conference. IEEE Computer Society, pp. 353 362, 2002.

[5] -
Computer (Long. Beach. Calif)., vol. 43, no. 6,

pp. 79 81, 2010.

[6] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.
-based Access

ACM Trans. Inf. Syst. Secur., vol. 4, no. 3, pp. 224 274, 2001.

[7] -based
5th ACM Workshop on

Role-based Access Control. ACM, Berlin, Germany, pp. 47 63, 2000.

[8] formation security A
Comput. Secur., vol. 30,

no. 8, pp. 748 769, 2011.

[9]
by Access Control Policies Statically Enforced at the Level of the

- Intl. Conf. on Software
Engineering and Knowledge Engineering, 2013, pp. 1 7.

[10] -
Computer (Long. Beach. Calif)., vol. 29,

no. 2, pp. 38 47, 1996.

468

[11]
Trust-

[12] -
b ACM Trans. Inf. Syst. Secur., vol. 4, no.
3, pp. 191 233, 2001.

[13]
Proceedings of the Eighth ACM Symposium on Access

Control Models and Technologies, 2003, pp. 149 157.

[14] -based Delegation
Proceedings of the 16th Annual Computer Security

Applications Conference, 2000, p. 168 .

[15] -aware role-based access control
13th ACM Symposium on Access

Control Models and Technologies. ACM, Estes Park, CO, USA, pp.
113 122, 2008.

[16] -Aware Role-Based Access Control
Proceedings of the IEEE International

Conference on e-Business Engineering, 2005, pp. 220 223.

[17]
Rewriting Techniques for Fine- ACM SIGMOD
Int. Conf. on Management of Data. ACM, Paris, France, pp. 551 562,
2004.

[18] -grained access control to web
12th ACM symposium on Access Control Models and

Technologies. ACM, Sophia Antipolis, France, pp. 31 40, 2007.

[19]
2011. [Online]. Available:
http://docs.oracle.com/cd/B28359_01/network.111/b28531/vpd.htm#CI
HBAJGI.

[20] K. LeFevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D.
30th Int. Conf.

on Very Large Databases. VLDB Endowment, Toronto, Canada, pp.
108 119, 2004.

[21] Q. Wang, T. Yu, N. Li, J. Lobo, E. Bertino, K. Irwin, and J.-W. Byun,
-grained access control in relational

33rd Int. Conf. on Very Large Data Bases. VLDB
Endowment, Vienna, Austria, pp. 555 566, 2007.

[22] - 22nd Annual
IFIP WG 11.3 Working Conf. on Data and Applications Security.
Springer-Verlag, London, UK, pp. 1 16, 2008.

[23] -varying security policies in
database- 9th USENIX Conf. on Operating
Systems Design and Implementation, 2010, pp. 1 14.

[24] S. Chaudhuri, T. D
IEEE 23rd ICDE - Int. Conf. on Data

Engineering. Istanbul, Turkey, pp. 1174 1183, 2007.

[25] -tier, Label-based
Security Enforceme 35th SIGMOD Int. Conf.
on Management of Data. ACM, Providence, Rhode Island, USA, pp.
269 282, 2009.

[26] -Grained
Access Control with Object- 23rd ECOOP - European
Conference on Object-Oriented Programming. Springer-Verlag, Italy,
pp. 173 194, 2009.

[27] Proceedings of the
15th ACM symposium on Access control models and technologies.
ACM, Pittsburgh, Pennsylvania, USA, pp. 79 88, 2010.

[28] -
based access control in data- 20th European conference
on Programming Languages and Systems: part of the joint European
conferences on theory and practice of software. Springer-Verlag,
Saarbrucken, Germany, pp. 136 155, 2011.

[29]
Enforcing User- IEEE Symposium on
Security and Privacy, 2008, pp. 369 383.

[30]

http://www.cs.cornell.edu/jif/.

[31]
Control Langu
Network and Distributed System Security Symposium. San
Diego,CA,USA, pp. 89 107, 2001.

[32] Y.-J. Hu and J.- -preserving model for data
Proceedings of the International Conference on

Web Intelligence, Mining and Semantics. ACM, Sogndal, Norway, pp.
1 12, 2011.

[33] C.-
Proceedings of the eleventh ACM symposium on Access

control models and technologies. ACM, Lake Tahoe, California, USA,
pp. 237 246, 2006.

[34]
for automatic enforcement of access control policies among dynamic

Proceedings of the 12th ACM symposium on Access control
models and technologies. ACM, Sophia Antipolis, France, pp. 235 244,
2007.

[35] J. Lopez, A. Mana, E. Pimentel, J. M. Troya, and M. I. Y. e del Valle,
Proceedings of the

4th International Conference on Information and Communications
Security. Springer-Verlag, pp. 399 410, 2002.

[36] K. Il Kim, W. Y. Kim, J. S. Ryu, H. J. Ko, U. M. Kim, and W. J. Kang,
-based access control for privacy preserving in semantic w

Proceedings of the 4th International Conference on Uniquitous
Information Management and Communication. ACM, Suwon, Republic
of Korea, pp. 1 5, 2010.

[37]
Assessing Effectiveness of the

Intl. Conf. on Availability, Riliability and
Security, 2009, pp. 240 247.

[38] - Access
Control-driven Architecture with Dynamic Adapt -
24th Intl. Conf. on Software Engineering and Knowledge Engineering,
2012, pp. 387 393.

[39] -
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[40]
Available: http://www.w3.org/TR/ws-cdl-10/.

[41]

[42]
http://www.xpdl.org/.

[43] O. M. Pereira, R. L. Aguiar -DOM: A Model
for Bridging the Gap Between the Object-Oriented and the Relational

ICSEA 2010 - Int. Conf. on Software Engineering and
Applications, 2010, pp. 114 122.

[44] O. M. Pereira, R. L. Aguiar, and M. Y. Santo -DOM: A Model
for Bridging the Gap Between the Object-Oriented and the Relational
Paradigms - an Enhanced Performance Assessment Based on a case

Int. J. Adv. Softw., vol. 4, no. 1&2, pp. 158 180, 2011.

[45] O. M. Pereira, R. L. Aguiar, and
Component Based on Pre- 6th ENASE:
Evaluation of Novel Approaches to Software Engineering, 2011, pp. 92
103.

[46] -
http://www.iso.org/iso/catalogue_detail.htm?csnumber=34134.

[47]
Available: http://msdn.microsoft.com/en-
us/library/ms710252(VS.85).aspx.

[48] M. Parsian, JDBC Recipes: A Problem-Solution Approach. NY, USA:
Apress, 2005.

[49] Advances in
Database Programming Languages, F. Bancilhon and P. Buneman, Eds.
N.Y.: ACM, 1990, pp. 377 386.

469

