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Abstract

Ticks (Acari: Ixodida) are blood-sucking arthropods globally recognized as vectors of nu‐
merous diseases. They are primarily responsible for the transmission of various patho‐
gens, including viruses, rickettsiae, and blood parasites of animals. Ticks are second to
mosquitoes in terms of disease transmission to humans. The continuous emergence of
tick-borne diseases and acaricide resistance of ticks necessitates the development of new
and more effective control agents and strategies; therefore, understanding of different as‐
pects of tick biology and their interaction with pathogens is very crucial in developing
effective control strategies. RNA interference (RNAi) has been widely used in the area of
tick research as a versatile reverse genetic tool to elucidate the functions of various tick
proteins. During the past decade, numerous studies on ticks utilized RNAi to evaluate
potentially key tick proteins involved in blood feeding, reproduction, evasion of host im‐
mune response, interaction with pathogens, and pathogen transmission that may be tar‐
geted for tick and pathogen control. This chapter reviewed the application of RNAi in
tick research over the past decade, focusing on the impact of this technique in the ad‐
vancement of knowledge on tick and pathogen biology.

Keywords: Acari, ticks, Ixodidae, RNA interference, tick-borne diseases

1. Introduction

Ticks belong to the class of Arachnida together with spiders, scorpions, and mites. To date,
there are about 900 species of ticks, majority of which are hard ticks belonging to the Ixodidae
family, as well as about 200 species are soft ticks belonging to the Argasidae family, and a
single species belonging to the Nuttalliellidae family [1]. Most of the ticks of medical and
veterinary importance are hard ticks. Through their blood-feeding behavior, ticks can directly
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affect their host by causing anemia, irritation, and allergic reactions particularly in heavy
infestation. The saliva of some tick species may also contain neurotoxic substances that may
cause the condition termed “tick paralysis” [2]. Additionally, the transmission of pathogens
including viruses, bacteria, and parasitic protozoa also occurs during blood feeding [1]. Ticks
are considered second to mosquitoes in terms of their impact on public health, but they are the
most important vectors of different pathogens in both domestic and wild animals [3]. Tick
infestation and tick-borne diseases (TBDs) continue to have great economic impact on livestock
production, particularly on cattle and small ruminants, in several continents [2]. The annual
loss in cattle production worldwide due to ticks and TBDs has been estimated to be worth
billions of USD [4].

The complete dependence of ticks to host blood for the completion of their life cycle and
generation of offspring is the reason for their notoriety as vectors of several diseases. Depend‐
ing on the species, a tick may utilize one to three hosts during their life cycle. Most of the
pathogens they transmit can be carried on throughout their life cycle through transstadial
(from one stage to the next) transmission and to the next generation through transovarial (from
adults to eggs) transmission [5]. A single tick may carry multiple pathogens [6], thereby having
the potential of infecting a host with a cocktail of pathogens. Most tick-borne infections are
zoonotic in nature, and more of these are being recognized in recent years [1, 7]. Among the
TBDs that are well-known in the veterinary and medical field are anaplasmosis, borreliosis,
rickettsiosis, ehrlichiosis, babesiosis, theileriosis, and tick-borne encephalitis.

The significant impact of ticks and TBDs underscores the importance of tick control. For several
decades, the application of chemical acaricides has been the primary tick control method, and
acaricides were used extensively in livestock production. However, the continuous emergence
of resistant tick strains makes most chemical acaricides ineffective [8]. Moreover, the increasing
concerns for animal product and environmental contamination set limitations for this control
method. To search for new and more effective means of controlling ticks and TBDs, researchers
have actively expanded the understanding on tick biology.

RNA interference (RNAi) is a reverse genetic approach for manipulation of genes that
commonly utilizes double-stranded RNA (dsRNA) to induce post-transcriptional gene-
specific silencing [9]. RNAi has been extensively employed in many studies on tick biology
and pathogen interaction since the first report of RNAi application in the hard tick Amblyomma
americanum [10]. In fact, it is evident that a number of laboratories in different countries
working on tick research are routinely performing RNAi, as shown by an increasing number
of recent publications utilizing this technique. Typically, functional studies using RNAi
involve gene knockdown with subsequent infestation and evaluation of phenotypes, such as
blood feeding and reproduction success (Figure 1). Indeed, RNAi has been particularly useful
in searching for tick proteins that can be targeted for control of tick development and TBDs [11].

This chapter aims to show the extent of RNAi application in tick research, emphasizing the
progress of advanced knowledge on tick biology and tick-pathogen interaction. We first
discussed so far known RNAi mechanisms and the current RNAi inducing methods in ticks;
then, briefly described the studies on tick physiology, immunity, and pathogen interaction that
employed RNAi, highlighting the prospects of applications of RNAi in tick research.
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Figure 1. A typical RNAi experiment in the hard tick Haemaphysalis longicornis. The double-stranded RNA (dsRNA) is
introduced to adult ticks by microinjection. Unfed adult ticks, placed on a double adhesive tape attached on a glass
slide (A), are injected with dsRNA using a pointed microcapillary glass attached to a microinjector (B) through the
membrane of the fourth coxa under a stereomicroscope (C). Successful silencing, as shown by the absence of a band for
the target gene, such as Hlfer1, is confirmed around 4 d post-injection through RT-PCR after adjusting the cDNA level
using an internal control, such as actin (D). Ticks were infested on a host and allowed to feed to repletion (E) and after
dropping, parameters such as engorged body weight (F), survival, egg laying (G, H), and hatch were compared.

2. RNAi pathway in ticks

The mechanism of RNAi has been well studied in the nematode Caenorhabditis elegans and the
fruit fly Drosophila melanogaster [9, 12]. RNAi begins with the uptake of dsRNA by the cell,
followed by its cleavage to produce small interfering RNAs (siRNAs). Cleavage of dsRNA is
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accomplished by an RNAse III enzyme called Dicer. The siRNAs are then incorporated into
RNA-induced silencing complex (RISC), which then drives the degradation or translational
inhibition of the target mRNA that results to gene silencing. This silencing signal may spread
among the cells and different tissues, leading to systemic gene silencing in the whole organism
[13]. The mechanism of RNAi in ticks has not been fully elucidated, but the study of Kurscheid
et al. [14] revealed that several components of RNAi machinery in other invertebrates are also
present in the ticks, and they proposed a putative tick RNAi pathway. Here, we briefly describe
the available knowledge on key components of RNAi machinery in ticks, in comparison of
other invertebrates.

2.1. dsRNA uptake

There are two recognized dsRNA uptake mechanisms in invertebrates: a transmembrane
channel-mediated uptake through systemic RNA interference defective (SID) transmembrane
proteins described in C. elegans, and an endocytosis-mediated uptake described in most
arthropods [15, 16]. Several SIDs identified in C. elegans have been shown to be involved in the
spread of RNAi [17]. SID-1, SID-3, and SID-5, which have wide tissue distribution, are involved
in the systemic spread of RNAi [18–20], whereas SID-2, localized mainly in the gut, is involved
primarily in the intestinal uptake of ingested dsRNA [21]. The multi-domain SID-1 along the
plasma membrane facilitates the traffic of dsRNA into and out of the cells. Homologs of SID-1
are present in some arthropods and vertebrates [18]. Both SID-3, a conserved tyrosine kinase,
and SID-5 have intracytoplasmic localization, the latter being associated with late endosomes
[19, 20]. SID-2 has luminal localization in the intestinal cells, and it was also found in the lower
levels of excretory duct cells [21]. In addition to SIDs, endocytosis has also been also implicated
as a dsRNA uptake mechanism in C. elegans through a protein containing an epsin N-terminal
homology (ENTH) domain [22]. In D. melanogaster, dsRNA uptake in cells is facilitated mainly
by scavenger receptor-mediated endocytosis [23]. Two scavenger receptors, Eater and Sr-CI,
have been identified to be responsible for the majority of dsRNA uptake. These scavenger
receptors are mainly expressed in the plasmatocytes and have a primary role in the phagocy‐
tosis of bacterial pathogens [24, 25].

SID homologues have not been identified in ticks. However, a homologue of ENTH, Epn-I,
has been identified in the hard ticks Rhiphicephalus (Boophilus) microplus and Ixodes scapularis
[14]. A class B scavenger receptor identified in Haemaphysalis longicornis (HlSRB) has been
demonstrated to mediate systemic RNAi in this tick [26, 27]. Combined injection of dsRNA
against HlSRB and other target genes, Vitellogenin-1 (HlVg-1) and Vitellogenin Receptor (HlVgR)
effectively silenced these genes. However, silencing HlSRB prior to injection of dsRNA against
HlVg-1 and HlVgR inhibited the silencing of the latter two genes, suggesting that the uptake
of the injected dsRNA is dependent on HlSRB in ticks. Similar to D. melanogaster scavenger
receptors, HlSRB is also involved in the phagocytosis of bacteria [28], but it is expressed not
only in the hemocytes but also in the other organs such as midguts, salivary glands, and ovary
[26]. The presence of ENTH homologue and scavenger receptor indicates that the uptake of
dsRNA in ticks is through endocytosis. Additionally, the presence of scavenger receptor in
different tick tissues strongly implies its involvement in systemic RNAi, particularly after
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dsRNA injection. Introduction of dsRNA into the hemocoel of ticks directly exposes the
different tick organs to dsRNA, and the scavenger receptor in these organs most likely
mediates the entry of dsRNA into the cells.

2.2. dsRNA processing and RISC assembly

The recommended length of dsRNA to effectively induce silencing of the target gene in non-
mammalian systems is more than 200 bp [15]. A study in R. (B.) microplus showed, however,
that  short  dsRNAs between 100 and 200 bp were also effective in inducing silencing of
Ubiquitin-63E homologue, with minimal off-target effects, but short hairpin dsRNAs were not
able to induce silencing effects [29]. After cellular uptake, dsRNAs are cleaved into 21–25 nt
siRNAs by an RNAse III enzyme called Dicer. In contrast to C. elegans and mammals that have
only one Dicer, D. melanogaster and mosquitoes have two Dicers [15]. Dicer-2 is the one involved
in the generation of siRNA, whereas Dicer-1 acts on stem loop RNA precursors to generate
micro RNA (miRNA). Both, however, are required for siRNA-induced gene silencing due to
their distinct roles in siRISC assembly [30]. Only a single putative Dicer has been identified so
far in the hard tick I. scapularis, which is more similar to mammalian Dicer-1 [14].

The RNAi inhibition of a target mRNA is accomplished by RISC formed by siRNAs and
Argonaute (AGO) proteins. AGO proteins are highly conserved between species, encoded by
multiple genes in most organisms. All AGO proteins are characterized by two domains: the
PAZ domain and the PIWI domain [31]. Upon ATP activation, AGO mediates RISC recognition
of mRNA target that are homologous to siRNAs, subsequently leading to the cleavage of the
mRNA target [9]. In most insects, including D. melanogaster and mosquitoes, five AGO genes
have been identified [15, 31]. In ticks, a homologue of AGO-1 has been identified in I. scapu‐
laris and R. (B.) microplus, and a homologue of AGO-2 has been identified in I. scapularis [14].
However, the functions of these tick AGOs remains to be confirmed.

2.3. Amplification of RNAi signal

The ability to spread throughout the whole organism, inducing total systemic silencing of the
target gene in spite of introducing only a relatively small amount of dsRNA, is an important
aspect of RNAi observed in plants and invertebrates. This systemic RNAi-induced gene
silencing in both plants and C. elegans involves RNA-directed RNA polymerase (RdRP) that
amplifies the RNAi signal [9]. RdRP function in RNAi has not been found in arthropods, but
a putative homologue of RdRP EGO-1 protein of C. elegans has been identified in the hard tick
I. scapularis, and a partial sequence was also identified from R. (B.) microplus [14].

3. Methods of introducing dsRNA in ticks

3.1. Injection

Direct injection is the most widely used technique for introducing dsRNA for in vivo gene
silencing, not only in ticks but also in insects [11, 32]. Through this method, dsRNA is usually
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introduced directly into the hemocoel of ticks allowing the dsRNA to circulate within the
hemolymph. In most reports, a high concentration of at least 1 µg dsRNA per tick has been
shown to be effective in inducing gene silencing [33], but in some reports, lower concentration
has been found to be similarly effective [34–36]. Injection has been accomplished using a 33–
36-gauge needle attached to a Hamilton syringe particularly in large tick species, such as
Amblyomma americanum[37], Dermacentor variabilis, and D. marginatus [38], while microinjection
using a microcapillary drawn to a fine point needle and inserted to a micromanipulator has
been commonly employed in smaller tick species, including Ixodes [39], and Haemaphysalis [26]
ticks. Different injection sites include the lower right quadrant of the ventral surface of the
exoskeleton [40], the groove between the basis capituli and the scutum [37], the ventral torso
of the idiosoma, away from the anal opening [39], and the coxal membrane in the fourth coxae
[26, 41]. In some reports, dsRNA was injected through the spiracle [29, 42, 43] and anal pore;
the latter inducing midgut-specific silencing of the target gene [44]. Injection of dsRNA has
been commonly performed in unfed adult ticks, subsequently allowed to recover for at least
24 h before infestation or use in succeeding experiments. Exceptionally, dsRNA has been also
injected in engorged R. (B.) microplus [42, 45-47], A. americanum, I. scapularis, and D. variabilis
adults [43], which produced significant effects on the eggs and larvae, and microinjection has
also been accomplished in I. scapularis [48-52] and engorged O. moubata nymphs [53].

3.2. Soaking

Soaking in dsRNA has been previously employed to study RNAi in the cell lines of D.
melanogaster [23, 54]. In tick research, this method has been applied to induce in vitro RNAi
not only in cell cultures [55-57], but also in some organs including whole salivary glands [36,
58-60] and midguts [61]. Soaking live Varroa destructor [62] and Dermanyssus gallinae [63] mites,
as well as Aedes aegypti larvae [64] in a solution of dsRNA has been already demonstrated in
producing effective silencing of the target genes in these organisms. However, soaking whole
ticks in a solution of dsRNA has not been commonly performed. Soaking Haemaphysalis
longicornis nymphs in a solution of dsRNA for 24 h resulted to significant transcript reduction
of the target gene, although the effect on the phenotype was not observed in all the nymphs
[65]. In our laboratory, we have attempted to soak H. longicornis larvae, nymphs, and adults
in a dsRNA solution overnight, which resulted to a significant decrease in the mRNA level of
a targeted gene (Galay et al., unpublished results). Soaking offers a simpler and less invasive
method of introducing dsRNA without injuring the ticks and is applicable to immature tick
stages. Furthermore, it does not require injection equipment; therefore, it is less laborious.

3.3. Electroporation

Electroporation is a technique that employs electric impulses to promote DNA uptake of cells
and has been primarily used with in vitro cell transfection [66]. In tick research, this technique
has been first applied to facilitate the introduction of dsRNA in I. scapularis eggs and nymphs
[67]. After electroporation, fluorescein-labeled dsRNA was visualized all over the nymph’s
body and eggs, indicating the successful entry of dsRNA. In a more recent report, the wax
coating of the eggs was first removed using heptane and hypochlorite prior to electroporation
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[68]. Using heptane alone did not significantly decrease the hatching rate. Thus, heptane may
be more helpful in evaluating the effect of a particular dsRNA to egg hatching. This technique
also offers a less invasive method of dsRNA introduction that can be applied to immature tick
stages and eggs.

3.4. Feeding

Feeding dsRNA in insects has been achieved in different species using diets mixed with
dsRNA, liposome-embedded or lipophilic siRNAs, and bacteria and transgenic plants that can
synthesize dsRNA [32, 69]. Although in vitro feeding assays have been shown to be useful in
studying different tick molecules and tick-pathogen interaction [70], its application in RNAi
study in ticks has been limited. A study on the Lyme disease vector I. scapularis employed
capillary feeding of dsRNA to nymphs to suppress anticomplement gene isac [71]. In another
study, adult R. (B.) microplus ticks were capillary fed with ubiquitin dsRNA mixed in whole
blood or Bm86 dsRNA mixed in bovine serum [72]. In both cases, ticks were pre-fed in an
animal host before capillary feeding was performed. While this method may be advantageous
over injection due to very minimal injury, drawbacks may arise from the uncertainty whether
an individual tick will ingest the amount of dsRNA that will effectively induce silencing, and
the possibility of variation in the amount of dsRNA ingested by the ticks within a treatment
group. Furthermore, capillary feeding is difficult to perform and may not be applicable in ticks
with short hypostome.

4. RNAi and study of tick physiology

4.1. Genes related to salivary functions

The saliva is an important arsenal of ticks containing hundreds of pharmacologically potent
substances that facilitate attachment to their hosts and blood-sucking [73]. Different salivary
proteins have redundant functions in counteracting the hemostatic [74], inflammatory, and
immune mechanisms [75] of the host. Aside from its function in tick feeding, the salivary
glands are also involved in osmoregulation and transmission of pathogens [76].

Many studies on characterization of salivary proteins in the recent years employed RNAi
(Table 1). In fact, the first report on the application of RNAi in tick research described a tick
inhibitor of inflammatory mediator, a salivary histamine-binding protein, wherein researchers
induced in vitro RNAi by soaking salivary glands in dsRNA [10, 58]. Soluble N-ethylmalei‐
mide-sensitive factor attachment receptors (SNARE) complex proteins, which mediate
exocytosis in secretory pathways of the salivary glands, have been characterized in Amblyom‐
ma ticks. These include N-ethylmaleimide-sensitive fusion (NSF) protein, Synaptosomal
Associated Protein of 25 kDa (SNAP-25) [77], Ykt6 [65], and vesicle transport through inter‐
action with t-SNAREs (Vti) [78]. Silencing various genes such as Salp14, Salp9pac [39],
Neuronal isoform munc18-1 (nSec1) [59], and synaptobrevin [36] affected the secretion of
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anticoagulant or the anticoagulant activity of salivary gland extracts, indicating that these
genes are important in tick anti-hemostatic mechanism.

Longistatin [79] and acidic chitinases [80] have been found to be important in the formation
of blood pool and tick cement cone, respectively. The attachment site of longistatin-silenced H.
longicornis ticks did not show pathological changes, such as hemorrhagic lesions correspond‐
ing to the blood pool, while the attachment site of ticks simultaneously silenced acidic
chitinases exhibited blood leakage and these ticks can be easily removed. Various protease
inhibitors that have roles in anti-hemostatic, anti-inflammatory, and immunomodulatory
mechanism have been also characterized using RNAi, including a cystatin, sialostatine L [81],
a Kunitz type protease inhibitor, rhipilin [82], and serine protease inhibitors (serpin) [83, 84].

Other salivary proteins with immunomodulatory function, such as the anti-complement
protein, isac [71], and two proteins that can inhibit neutrophil function, ISL 929 and 1373 [85],
have also been knockdowned in I. scapularis. Silencing of isac in nymphs, induced by capillary
feeding of dsRNA, not only reduced blood feeding, but also decreased the load of the spiro‐
chete Borrelia burgdorferi in the tick. Meanwhile, the saliva of ticks devoid of ISL 929 and 1373
had reduced ability in inhibiting host integrin. An osmoregulatory protein aquaporin,
characterized in I. ricinus through RNAi, showed that suppression of this protein impaired the
concentration of blood meal due to failure in removing water [86].

4.2. Genes related to digestion and midgut function

The midgut of ticks houses various kinds of enzymes that act on a large amount of ingested
host blood, which contains great quantities of hemoglobin [151]. Functional studies on these
enzymes and other midgut proteins using RNAi have expanded the understanding of tick
digestive physiology (Table 1). Silencing hemoglobinolytic enzymes, such as leucine amino‐
peptidase [91, 92], longipain [95], and cathepsin L [96, 97] had negative impact on tick feeding.
Moreover, the longipain of H. longicornis was found to have a protective role in Babesia infection
through its babesiacidal activity [95]. Other proteins important in tick digestion that have been
characterized using RNAi are thrombin inhibitors that prevent blood coagulation and serine
proteinase, which induce erythrocyte degradation. Silencing of thrombin inhibitor hemalin
from H. longicornis [93] and boophilin from R. (B.) microplus [47] prolonged the blood feeding
period and decreased the oviposition of these ticks, respectively. Silencing serine protease
reduced the weight of ticks after blood feeding due to impaired erythrocyte degradation [94].

4.3. Genes related to reproductive function

Ticks are known for their high fecundity, laying hundreds of eggs per batch in the case of
soft ticks and up to thousands in the case of hard ticks. A series of physiological events takes
place in female ticks during and after blood feeding that initiate ovarian maturation and
subsequent oviposition. Vitellogenesis, the synthesis and oocyte deposition of the yolk pro‐
tein precursor (vitellogenin), is a key process for ovarian development and oocyte matura‐
tion induced by blood meal in ticks [152]. Three genes encoding vitellogenin have been
identified and characterized in H. longicornis [102].
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Target gene Tick species RNAi Effect Refs

Salivary proteins

Histamine-binding protein
(HBP)

Amblyomma americanum Altered feeding pattern and longer feeding
period; decreased histamine-binding activity in
the salivary glands

[10, 58]

Salp14/ Salp9pac Ixodes scapularis Impaired feeding, decreased post-blood meal
weight, decreased anticoagulant activity of
salivary gland extract

[39]

Neuronal isoform munc18-1
(nSec1)

A. americanum Decreased post-blood meal weight and
prolonged feeding time, decreased
anticoagulant secretion of salivary gland

[59]

Synaptobrevin A. americanum Inhibited secretion of anticoagulant stimulated
by PGE

[36]

Cystatin A. americanum Decreased post-blood meal weight, mortality
during feeding, low feeding success rate

[61]

Anticomplement protein
(Isac)

I. scapularis Decreased post-blood meal weight, decreased
Borrelia burgdorferi infection

[71]

Sialostatin L (cystatin) I. scapularis Failure to feed on the host, decreased post-
blood meal weight and failed oviposition

[77]

Aquaporin I. ricinus Decreased post-blood meal weight, decreased
volume of ingested blood

[78]

HlYkt6 (SNARE) Haemaphysalis longicornis Decreased post-blood meal weight, high
mortality, supressed salivary secretion and
anticoagulant activity

[65]

ISL 929 and 1373 I. scapularis Supressed PMN inhibitory activity of saliva
from knockdowned ticks

[79]

Rhipilin (Kunitz type
protease inhibitor)

Rhipicephalus
haemaphysaloides

Prolonged attachment time, decreased post-
blood meal weight

[80]

Longistatin H. longicornis Mortality after attachment, failure to engorge,
poor blood pool formation

[81]

Serine protease inhibitor
(serpin)

A. americanum No effect on tick attachment, feeding and
oviposition

[82]

R. haemaphysaloides Decreased attachment rate and engorgement
weight

[83]

Reprolysin Rhipicephalus (Boophilus)
microplus

Decreased egg weight and egg conversion ratio [84]

N-ethylmaleimide sensitive
fusion protein (NSF)

A. maculatum Inhibition of engorgement, failure of
oviposition

[85]

RNA Interference – A Powerful Functional Analysis Tool for Studying Tick Biology and its Control
http://dx.doi.org/10.5772/61577

419



Target gene Tick species RNAi Effect Refs

Synaptosomal Associated
Protein of 25 kDa
(SNAP-25)

A. maculatum Decreased post-blood meal weight, decreased
egg weight, failure in hatching

[85]

Vti (SNARE) A. americanum, A. maculatum Decreased post-blood meal weight and
survival, failed oviposition

[86]

Glutaminyl cyclase (QC) A. maculatum, I. scapularis Decreased post-blood meal weight, egg weight
and hatch

[87]

AV422 A. americanum Decreased post-blood meal weight [88]

Acidic chitinase (Ach) A. americanum Leakage of blood from the mouthparts in late
feeding phase, loose attachment in the host’s
skin

[89]

Digestive activity

Longepsin H. longicornis No effects reported [90]

Leucine aminopeptidase H. longicornis Extended pre-oviposition period, decreased egg
weight and egg conversion ratio, morphological
abnormalities in the oocytes

[91, 92]

Hemalin (thrombin
inhibitor)

H. longicornis Longer blood feeding period, failure to
engorge, decreased inhibitory activity of
fibrinogen clot formation in the midgut

[93]

Boophilin (thrombin
inhibitor)

R. (B.) microplus Decreased oviposition [47]

Serine proteinase H. longicornis Suppressed erythrocyte degradation; decreased
post-blood meal weight

[94]

Longipain H. longicornis Impaired blood feeding, decreased post-blood
meal weight, increased B. gibsoni infection level
and transovarial transmission

[95]

Cathepsin L I. ricinus Decreased weight gain [96]

H. longicornis Decreased post-blood meal weight [97]

Astacin R. (B.) microplus Decreased egg weight and egg conversion ratio [84]

Tick reproduction

Follistatin-related protein
(FRP)

H. longicornis Decreased egg conversion ratio [98]

Vitellogenin receptor (VgR) Dermacentor variabilis Failure of Vg uptake by oocytes; failed
oviposition

[34]

H. longicornis Suppressed oocyte maturation and failed
oviposition, failure of B. gibsoni transovarial
transmission

[99]
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Target gene Tick species RNAi Effect Refs

A. hebraeum Suppressed oocyte maturation, long pre-
oviposition period,

[100]

Voraxin A. americanum Failure to engorge and lay eggs in females fed
with males injected with a combination of
subolesin and voraxin dsRNA

[101]

Vitellogenin (Vg) H. longicornis Decreased post-blood meal weight, abnormal
oocytes, decreased egg conversion ratio

[102]

GATA factor H. longicornis Disrupted egg development [103]

S6 kinase H. longicornis Disrupted egg development [103]

Target of rapamycin (TOR) H. longicornis Decreased post-blood meal weight, mortality
after engorgement, Failure of oocytes to mature
and failure to lay eggs

[104]

Structural and metabolic function

Glutamine:fructose-6-
phosphate aminotransferase
(HlGFAT)

H. longicornis Decreased post-blood meal weight and survival[105]

β-Actin I. scapularis Decreased post-blood meal weight and
oviposition

[106]

Na+-K+-ATPase I. scapularis Decreased post-blood meal weight and
oviposition

[106]

Valosin-containing protein
(HlVCP)

H. longicornis Decreased post-blood meal weight [107]

Cyclophilins
(Immunophilin)

H. longicornis Lower post-blood meal weight, low survival
after blood feeding and failure to lay eggs after
silencing cyclophilin A

[108]

Ribosomal protein P0 H. longicornis Decreased post-blood meal weight, low
engorgement rate, and high mortality

[109]

Protein disulphide
isomerases (PDI)

H. longicornis Mortality after engorgement, leakage of blood
from the midgut, little egg output

[110]

Organic anion transporter
polypeptide (OATP)

A. americanum Decreased post-blood meal weight, oviposition
and egg conversion ratio

[37]

Ferritins (FER) I. ricinus Decreased post-blood meal weight, oviposition
and hatch

[111]

H. longicornis Decreased post-blood meal weight, survival,
oviposition and hatch

[112, 113]

Iron regulatory protein
(IRP1)

I. ricinus Decreased post-blood meal weight and
hatching of eggs

[111]
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Target gene Tick species RNAi Effect Refs

Elongation factor 1-α R. annulatus, R. (B.)
microplus

High post-blood meal mortality, decreased
post-blood meal weight and failure of
oviposition

[45]

Lysine-ketoglutarate
reductase/saccharopine
dehydrogenase (LKR/SDH)

H. longicornis Longer blood feeding period, decreased post-
blood meal weight, longer pre-oviposition
period, decreased oviposition and hatch after
SDH silencing; higher volume of hemolymph
after LKR silencing

[114]

Ubiquitin R. (B.) microplus Shorter post-blood meal survival, decreased or
absence of egg output, impaired embryogenesis

[14, 29, 45,
72];

R. annulatus High mortality [45]

Glycogen synthase kinase-3
(GSK-3)

R. (B.) microplus Decreased oviposition and hatching [115]

CD147 receptor A. americanum Inhibited feeding, low post-blood meal weight
tender cuticle

[116]

Insulin-like growth factor
binding protein-related
proteins

A. americanum Decreased post-blood meal weight [117]

Putative 5.8S, ITS2 and 28S
rRNA

A. americanum High mortality and very low post-blood meal
weight

[118]

Putative 2B7 60S ribosomal
protein L13e

A. americanum High mortality and very low post-blood meal
weight

[118]

Putative interphase
cytoplasm foci protein 45

A. americanum High mortality and very low post-blood meal
weight

[118]

Putative threonyl-tRNA
synthetase

A. americanum High mortality and very low post-blood meal
weight

[118]

Putative 60S ribosomal
protein L13a

A. americanum 100% mortality [118]

Putative mitochondrial 12S
rRNA

A. americanum High mortality and very low post-blood meal
weight

[118]

Chymotrypsin inhibitor
(HlChI)

H. longicornis Mortality after attachment, retarded blood
feeding and longer feeding period, decreased
post-blood meal weight, decreased egg weight
and egg conversion ratio

[119]

Scavenger receptor H. longicornis Decreased post-blood meal weight, mortality
after engorgement, decreased oviposition and
hatch; inhibited bacterial phagocytosis of
granulocytes

[26, 28]
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Target gene Tick species RNAi Effect Refs

4E-BP (eIF4E-binding
protein)

H. longicornis Decreased lipid accumulation in the midgut
and fat bodies after long starvation period

[120]

Protein kinase B (AKT) H. longicornis Inhibition of engorgement and growth of
organs during blood feeding; decreased
expression of longepsin, HlMIF and HlVgs

[121]

R. (B.) microplus Decreased cell glycogen content and viability,
and altered cell membrane permeability

[57]

Spook (Spo) Ornithodoros moubata Arrested development and molting [53]

Shade (Shd) O. moubata Abnormal ecdysis and delayed molting [53]

Cystatin (RHCyst) R. haemaphysaloides Decreased attachment and hatching rate [122]

Tropomyosin H. longicornis Longer feeding time, decreased engorgement
rate and post-blood meal weight, high
mortality after blood feeding, failed oviposition

[123]

Protective antigens

Subolesin (4D8) I. scapularis Decreased post-blood meal weight, oviposition
and survival; failure of embryogenesis;
silencing in eggs and larvae when dsRNA
injected to engorged females

[43, 124]

A. americanum Decreased post-blood meal weight, oviposition
and survival

[43, 101, 124]

D. marginatus Decreased post-blood meal weight, oviposition
and survival

[124]

D. variabilis Decreased post-blood meal weight, oviposition
and survival; decreased fertility; silencing in
eggs and larvae when dsRNA injected to
engorged females

[43, 124]

R. sanguineus Decreased post-blood meal weight, oviposition
and survival; more dramatic effect when
simultaneously silenced with Rs86

[124, 125]

R. (B.) microplus High mortality, decreased post-blood meal
weight, oviposition and hatch in dsRNA-
injected adults and progeny of dsRNA-injected
adults

[42, 45, 46]

R. annulatus, Decreased post-blood meal weight [45, 126]

O. erraticus Decreased egg output [127]

O. moubata Decreased egg output [127]
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Target gene Tick species RNAi Effect Refs

Midgut protein Rs86 R. sanguineus Decreased post-blood meal weight and
oviposition

[125]

Midgut protein Hl86 H. longicornis Decreased post-blood meal weight [128]

Midgut protein Bm86 R. (B.) microplus Decreased number of engorging ticks, lower
post-blood meal body weight and survival after
feeding in B. bovis-infected host, decreased egg
weight

[129]

Midgut protein Ree86 R. evertsi evertsi No significant effect [130]

Midgut protein ReeATAQ R. evertsi evertsi No significant effect [130]

Longicin H. longicornis Decreased post-blood meal weight, increased B.
gibsoni infection in the midgut and ovary, and
transmission in the eggs

[131]

α2-macroglobulin proteins I. ricinus Decreased phagocytic action of hemocytes [132, 133]

Macrophage migration
inhibitory factor

A. americanum No effect on phenotypes [134]

Janus kinase ( JAK)–
signaling transducer
activator of transcription
(STAT) pathway

I. scapularis Increased A. phagocytophilum infection level [135]

Dual oxidase (Duox) I. scapularis Decreased level of B. burgdorferi [136]

Peroxidase ISCW017368 I. scapularis Decreased level of B. burgdorferi [136]

Glutathione S-transferase R. (B.) microplus Decreased tick attachment and post-blood meal
weight

[45]

R.sanguineus Increased susceptibility to permethrin [137]

Selenoprotein W R. (B.) microplus Decreased tick attachment and post-blood meal
weight

[45]

Selenoprotein K A. maculatum Decreased oviposition [138]

Selenoprotein M A. maculatum Decreased oviposition [138, 139]

Thioredoxin reductase A. maculatum Decreased native microbial load in midguts and
salivary glands

[139]

Rmcystatin3 (cysteine
protease inhibitor)

R. (B.) microplus Increased resistance to bacteria [140]

Pathogen acquisition/ transmission

Subolesin D. variabilis Inhibited Anaplasma marginale infection in
salivary glands

[141, 142]
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R. (B.) microplus Decreased A. marginale infection level in
salivary glands and tick cells

[143]

Salp15 I. scapularis Decreased Borrelia burgdorferi transmission to
the host

[52]

Salp14 I. scapularis No effect on acquisition of A. phagocytophilum
and B. burgdorferi in nymphs

[49]

Salp16 I. scapularis Reduced A. phagocytophilum acquisition [48]

Salp25D I. scapularis Decreased acquisition of B. burgdorferi after
knockdown in salivary glands

[44]

Varisin D. variabilis Decreased A. marginale infection level [144]

Immunophilin R. (B.) microplus Decreased hatch, decreased larval survival,
increased B. bovis infection in larval progeny

[41]

Kunitz-type serine protease
inhibitor (Spi)

R. (B.) microplus Inhibition of engorgement, decreased egg
weight

[41]

Glutathione S-transferase D. variabilis Inhibited A. marginale infection [142]

H+ transporting lysosomal
vacuolar proton pump
(vATPase)

D. variabilis Inhibited A. marginale infection in the midgut
after acquisition feeding

[142]

Selenoprotein M D. variabilis Inhibited A. marginale infection and
multiplication in salivary glands

[142]

Putative von Willebrand
factor (94Will)

R. (B.) microplus Decreased A. marginale infection level in
salivary glands

[143]

Flagelliform silk protein
(100Silk)

R. (B.) microplus Decreased A. marginale infection level in
salivary glands and tick cells

[143]

Putative metallothionein (93
Meth)

R. (B.) microplus Increased A. marginale infection level in tick
cells

[143]

Tick salivary lectin pathway
inhibitor (TSLPI)

I. scapularis Decreased load of B. burgdorferi and
transmission to host

[145]

Kunitz-type serine protease
inhibitor (DvKPI)

D. variabilis Increased rickettsial infection in the midgut [146]

Kunitz-type protease
inhibitor 5 (KTPI)

R. annulatus, R. (B.)
microplus

Decreased post-blood meal weight [126]

Histamine release factor I. scapularis Decreased post-blood meal weight, decreased
B. burgdorferi transmission

[147]

TROSPA R. annulatus, R. (B.)
microplus

Decreased B. bigemina infection level; Decreased
post-blood meal weight in R. microplus

[126]
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Serum amyloid A R. annulatus, R. (B.)
microplus

Decreased B. bigemina infection level [126]

Ricinusin R. annulatus, R. (B.)
microplus

Decreased post-blood meal weight in R.
annulatus

[126]

Calreticulin R. annulatus, R. (B.)
microplus

Decreased B. bigemina infection level in R.
microplus; decreased post-blood meal weight in
R. annulatus

[126]

Chitin deacetylase-like
protein (IsCDA)

I. scapularis No significant effect on B. burgdorferi
acquisition or transmission

[50]

Antifreeze glycoprotein I. scapularis Decreased survival and mobility of ticks in
extremely cold temperature; decreased A.
phagocytophilum infection level

[148]

x-linked
inhibitor of apoptosis
protein (E3 ubiquitin ligase,
XIAP)

I. scapularis Increased A. phagocytophilum infection [149]

Cytochrome c oxidase
subunit III

R. (B.) microplus Failure in transmission of A. marginale [150]

Table 1. Genes functionally characterized through RNAi in different tick species.

Silencing these genes through RNAi greatly reduced the reproductive capacity of female ticks,
which showed immature and light-colored oocytes. The uptake of vitellogenin in the oocytes
is facilitated by vitellogenin receptor, which has been characterized in D. variabilis [34],
H.longicornis [99], and A. hebraeum [100]. Aside from the negative impact in oviposition
consistently induced by RNAi in all these studies, silencing of H. longicornis vitellogenin
receptor also reportedly inhibited the transovarial transmission of Babesia gibsoni. Three factors
involved in the initiation of vitellogenesis, the GATA factor, S6 kinase [103], and target of
rapamycin (TOR) pathway [104], have been also characterized in H. longicornis ticks using
RNAi. The significance of other proteins to reproduction, such as a tick homologue of the
human follistatin-related protein [98] and the engorgement protein voraxin [101] from the male
gonad, has been also demonstrated using RNAi.

4.4. Genes related to structural and metabolic functions

Various gene encoding proteins important in cellular structure and metabolism have been
characterized using RNAi. Due to their wide distribution and systemic function, knockdown
of these proteins caused detrimental effects on different tick physiological functions and some
even proved to be lethal (Table 1). Among these proteins is the multifunctional ubiquitin,
which has been first targeted based on a homologous gene of D. melanogaster in a study
investigating the components of tick RNAi pathway [14]. Ubiquitin knockdown in R. (B.)
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microplus shortened the post-blood meal survival of ticks and impaired egg viability and hatch.
In separate studies, ubiquitin has also been the subject in examining off-target effects of RNAi
[29] and the feasibility of dsRNA feeding in R. (B.) microplus [72]. RNAi-mediated silencing of
ribosomal proteins in A. americanum [118], and ubiquitin, elongation factor-1 alpha and several
other proteins in R. (B.) microplus and R. annulatus [45] has been employed to screen potential
antigens for tick control.

In the hard tick H. longicornis, individual knockdown of glutamine:fructose-6-phosphate
aminotransferase [105], cyclophilin A [108], the ribosomal protein P0 [109], protein disulphide
isomerases [110], and tropomyosin [123] resulted to decreased survival of ticks after engorge‐
ment. Two proteins with apparent roles in withstanding long starvation period, lysine-
ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH) [114] and 4E-BP [120], have
also been characterized in H. longicornis. LKR/SDH mRNA expression is higher in starved ticks
than in unfed ticks and knockdown of LKR resulted to high volume of hemolymph after blood
feeding, suggesting its role in osmoregulation. Meanwhile, 4E-BP knockdown led to decreased
lipid storage in the midguts and fat bodies of ticks during longer starvation period. An
interesting report on the application of RNAi in studying tick neurobiology targetedβ-actin
and Na+-K+-ATPase of I. scapularis using fluorescently labeled dsRNAs to monitor the uptake
in tick synganglia [106].

The significance of proteins involved in iron metabolism to tick feeding and reproduction has
been also demonstrated using RNAi in two hard tick species, I. ricinus [111] and H. longicor‐
nis [112]. Silencing two types of the iron storage protein ferritin greatly reduced the ticks’
capacity to engorge and produce eggs, also affecting post-blood meal survival due to occur‐
rence of iron-mediated oxidative stress [113]. An iron regulatory protein responsible for
translation of iron binding proteins was characterized in I. scapularis, with its knockdown
greatly reducing egg hatchability [111]. Two enzymes, spook and shade, were characterized
in the soft tick O. moubata and were shown to be important in ecdysteroidogenesis through
RNAi [53]. Silencing spook protein in nymphs caused arrested development and molting,
whereas silencing shade delayed molting and led to abnormal ecdysis.

5. RNAi studies on tick protective antigens and immunity

The immune system of ticks has a vital role of protecting them from harmful substances in the
blood, including components of their host’s immune system, and from various pathogens that
they acquire in their blood feeding activity. Tick protective antigens, therefore, gain wide
interest due to their potential as target for tick control. The highly conserved tick protective
antigen subolesin, previously known as 4D8, was first identified from I. scapularis through
cDNA expression library immunization (ELI) [153], after which, it has been also identified in
other hard tick species, and using RNAi, was found to be important in the success of blood
feeding and reproduction [124]. An ortholog of subolesin has also been characterized in two
soft tick species and RNAi demonstrated that subolesin is also important in the reproduction
of soft ticks [127]. The function of subolesin is unclear, but a report showed that subolesin
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knockdown affected the expression of several genes involved in multiple cellular pathways,
suggesting a role in gene expression by interacting with regulatory proteins [154]. Aside from
being reported as a promising anti-tick vaccine antigen candidate in many studies, it has been
also proposed that subolesin may be targeted in ticks that subsequently will be released for
sterile acarine technique (SAT) [38].

The membrane-bound glycoprotein Bm86 expressed mainly in the midgut of R. (B.) micro‐
plus [155] is the first, and until recently, the only tick antigen that is commercially available as
an anti-tick vaccine in some countries. The exact function of Bm86, however, remains unclear
yet. RNAi has been employed to knockdown Bm86 and its homologues in other tick species,
including R. sanguineus, H. longicornis, and R. evertsi evertsi, which in most cases affected the
blood feeding and reproduction of adult ticks, except in R. evertsi evertsi wherein knockdown
of two homologues did not yield significant effects [130]. A study in R. (B.) microplus also
showed that knockdown of Bm86 decreased the blood feeding capacity and survival of ticks
after feeding on a B. bovis-infected host, suggesting that Bm86 may have a critical role in the
fitness of ticks after feeding from an acutely B. bovis-infected host [129].

The function of some components of immunity, such as α2-macroglobulin proteins [132, 133],
antimicrobial peptides [131], Janus kinase (JAK)-signaling transducer activator of transcription
(STAT) pathway [135], dityrosine network [136], and cysteine protease inhibitor in the
hemocytes [140] have been analyzed using RNAi. The α2-macroglobulin proteins of I.
ricinus, related to vertebrate complement system, were shown to be involved in the phagocytic
activity of hemocytes against Gram-negative bacteria [132, 133]. In contrast, a cysteine protease
Rmcystatin3 identified in R. (B.) microplus was implicated as a negative modulator of tick
immune response after its silencing greatly reduced the number of bacterial load in the ticks
[140]. The role of a defensin from H. longicornis, longicin, in ticks' immune defense against
Babesia parasites was demonstrated through RNAi, as exhibited by a higher load of B. gibsoni
in the midgut and ovary of longicin-silenced ticks after infestation in an infected host [131].
Meanwhile, JAK-STAT pathway was shown to be important in Anaplasma phagocytophilum
infection in ticks after its knockdown increased the infection in the salivary glands of nymphs
that fed on infected mice [135]. A dual oxidase and a peroxidase, ISCW017368, which together
forms a dityrosine network, were separately silenced in I. scapularis, both resulting to reduced
Borrelia burgdorferi persistence in ticks [136].

The obligatory blood feeding lifestyle of ticks exposes them to high levels of pro-oxidants that
may trigger oxidative stress. Antioxidant enzymes function to protect them from the harmful
effects of oxidative stress. Furthermore, these antioxidant enzymes provide detoxification
mechanisms to counteract toxins that they encounter in the environment, such as chemical
acaricides. RNAi has been very useful in evaluating the function of these antioxidants.
Silencing a selenoprotein in R. (B.) microplus reduced the engorged body weight and egg output
[45]. In contrast, a study on A. maculatum showed that silencing two selenoproteins did not
alter blood feeding, although the egg output was reduced. Interestingly, the total antioxidant
capacities of the saliva from knockdowned ticks were higher, indicating that other antioxidant
enzymes may have compensated for the absence of selenoproteins [138]. In another study,
silencing thioredoxin reductase, another selenoprotein, in A. maculatum did not have a negative
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impact on blood feeding and reproduction. Likewise, variations in transcriptional expression
of some antioxidant enzymes were also observed, suggesting compensatory mechanism in the
absence of thioredoxin reductase [139]. However, the more interesting finding in that study
was the decreased microbiota population following thioredoxin reductase knockdown,
possibly because of disturbed redox homeostasis balance. Meanwhile, silencing a glutathione
S-transferase (GST) gene affected the attachment of ticks and reduced the post-blood meal
bodyweight of R. (B.) microplus [45]. It also made R. sanguineus ticks more susceptible to
permethrin, although no significant effects on tick attachment, feeding and reproductive
capacity were observed [137].

6. Understanding tick-pathogen interaction through RNAi

RNAi has undoubtedly paved a way to better understand the different aspects of ticks'
association with various pathogens. Numerous tick proteins with different functions have
been found to be involved in the acquisition, establishment, and transmission of pathogens.
Several proteins have been studied through RNAi to determine their importance in the
development cycle of different pathogens. The knockdown of subolesin [142, 156], GST,
vATPase, and selenoprotein M [142] in D. variabilis, and putative von Willebrand factor,
flagelliform silk protein and subolesin in R. (B.) microplus [143] decreased the infection level
of A. marginale in these hard ticks, implying that these proteins are significant in the establish‐
ment of infection of this rickettsia.

RNAi also demonstrated that the Lyme disease agent B. burgdorferi can utilize several proteins
of I. scapularis to facilitate its transmission to the host. These include salivary proteins such as
tick histamine release factor [147], Salp15 [52], and the lectin complement pathway inhibitor
(TSLPI) [145]; the latter two provide protection for B. burgdorferi against components of the
host immune system. Salivary proteins Salp14 [49], Salp16 [48], and Salp25D [44] have been
examined for their function in acquiring A. phagocytophilum or B. burgdorferi through RNAi.
Knockdown of Salp14 did not affect the acquisition of either rickettsiae, whereas the knock‐
down of Salp16 and Salp25D decreased the infection level of A. phagocytophilum and B.
burgdorferi in the tick, respectively.

An interesting study on I. scapularis showed that A. phagocytophilum promotes cold tolerance
through an antifreeze glycoprotein [148]. In the absence of this antifreeze glycoprotein, the
survival rate of ticks after exposure to extremely cold temperature and the infection level of
A. phagocytophilum following exposure was reduced. Tick defensins, varisin from D. variabi‐
lis [144], and ricinusin from Rhipicephalus ticks [126] have been silenced to examine their
functions in pathogen establishment; the former reduced A. marginale infection level, while the
latter did not have an effect on B. bigemina infection.

Several reports also demonstrated the interaction of Babesia parasites and tick proteins through
RNAi. Knockdown of the immunophilin gene in R. (B.) microplus had negative impact on the
reproductive performance of the tick and also increased the infection rate of B. bovis in larval
progeny [41], while knockdown of TROSPA, serum amyloid A, and calreticulin reduced the
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infection level of B. bigemina in Rhipicephalus ticks [126]. Silencing a Kunitz-type serine protease
inhibitor from D. variabilis increased the rickettsial infection in the midgut [146], whereas in R.
(B.) microplus, silencing a Kunitz-type serine protease inhibitor, Spi, tended to increase the
infection rate of B. bovis in larval progeny [41], but silencing of another Kunitz-type protease
inhibitor 5 (KTPI) did not have any effect on Babesia infection [126].

7. Future directions in tick research and application in tick control

Indeed, great progress in understanding tick biology has been already accomplished in the
past. However, many aspects of tick physiology and host-tick-pathogen interaction need to be
unraveled yet. Moreover, several optimizations can still be done to improve RNAi in tick
research. While being the most widely used method of introducing dsRNA, the injection
method (particularly microinjection) that requires elaborate equipment may not be accessible
to all laboratories. Moreover, injection is mostly applicable to adult and sometimes nymphal
stages, and may be injurious to the ticks, especially when performed by an inexperienced
researcher. The soaking method is simpler, less invasive, and less laborious. Electroporation
has been recently shown to be effective in introducing dsRNA in eggs [66] and may be useful
in studying the function of genes that are involved in embryogenesis and physiology of
immature tick stages.

RNAi may also prove to be a promising tick control method and not just a research tool. In
pest insect management, the possibility of using RNAi as a novel tool of pest control is already
being explored by feeding liposome-coated dsRNA or dsRNA expressed in transgenic plants
or bacteria [32]. RNAi targeting several genes have been accomplished by feeding plants
expressing dsRNA in several species of economically important crop pests [16]. Feeding
dsRNA to ticks is still an underdeveloped approach, which has been yet accomplished only
by artificial feeding. Coating dsRNAs with liposomes or nanocarriers may increase dsRNA
stability that may make it feasible for administration to the host. Genes that are highly
conserved across different tick species, and are of importance in tick survival are good
candidate targets. These include proteins with structural and metabolic functions, such as
ubiquitin, tropomyosin, and ferritin. However, the specificity of dsRNA to the tick gene should
be highly considered. Additional consideration would be the establishment of a minimum
effective dose, since the synthesis of dsRNA is costly.

Additionally, RNAi has been proposed as an alternative method for the sterile insect technique
in blood-sucking mosquitoes that will produce sterile males by feeding dsRNA in mosquito
larvae [64]. Quite similarly, the application of RNAi for tick control was also proposed in a
single report on D. variabilis, wherein the highly conserved subolesin was targeted leading to
reproductive incapacity [38]. In conclusion, the authors suggested that RNAi may be used to
massively produce sterile ticks (SAT) that may be released in the field. Releasing subolesin-
silenced ticks may also aid in the control of A. marginale, since it has been reported that
subolesin knockdown reduced the infection level of this pathogen [141–143]. Introducing
dsRNA to eggs through electroporation described above may be a more convenient way of
producing knockdowned ticks.
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8. Summary

In this chapter, we have reviewed the application of RNAi in tick research and described the
significant contribution of RNAi in advancing our knowledge on tick biology and tick-
pathogen interaction. RNAi has revolutionized the advancement of our understanding of
various aspects of tick blood feeding and digestion, reproduction, metabolism, and immunity.
As a functional analysis tool, RNAi has become very handy in elucidating the functions of
different proteins from more than 10 hard tick species and a few soft tick species. It has been
particularly helpful in screening potential target antigens for anti-tick and tick-borne pathogen
vaccine development [157]. Several methods of introducing dsRNA in ticks have been
employed but injection has remained to be the most widely used technique. The number of
published research on ticks that involves the application of RNAi has been continuously
increasing through the years, and it is expected to continue doing so. A great majority of the
published reports focused on hard ticks, but due to some physiological differences, more
research using RNAi on soft ticks should be conducted. Finally, with numerous potential target
genes already identified, the application of RNAi as a tick control method should be investi‐
gated in the future, starting with optimization of dsRNA delivery method for practical use.
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