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Abstract

Genome-wide association studies (GWAS) have not been able to completely elucidate
the genetic background of complex diseases. Part of it could lie in repetitive sequences
not studied in the GWAS, as those corresponding to Human Endogenous Retroviruses
(HERVs). In the present work, we aim to review the potential role of HERVs in the
etiology of autoimmune diseases, especially in multiple sclerosis (MS); their potential
pathogenic role and their putative consideration as a good target for new treatments.
For this purpose, we carried out an in-depth literature review on HERVs, and we
integrated our previous findings about HERV-W, HERV-K18, and HERV-Fc1 and MS
susceptibility. The study was carried out by a systematic search from electronic
databases using the keywords “HERV,” “Multiple sclerosis,” “HERV-W,” “MSRV,”
“HERV-K,” “HERV-Fc1,” and “GNbAC1.”

Keywords: Multiple sclerosis, HERV, MSRV, GNbAC1

1. Introduction

1.1. HERVs

The endogenous retroviruses (ERVs) could be defined as “genetic parasites” of vertebrates [1],
given that their origin is very different from the one displayed by the rest of the genome. Their
existence in the genome of mammals is only known since 1970 [2], although, they resulted
from ancestral infections by exogenous retroviruses millions of years ago. During an infection,
the exogenous retroviruses are able to integrate one copy of their genome (provirus) into the
genome of the host. Thus, they can stay permanently associated with the host and be trans‐
mitted horizontally by the creation of new virions (the typical spread of an infectious virus).
Only when they infect a germ line cell, the integrated DNA can become part of the gene pool
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and be transmitted in a Mendelian fashion like ERVs [1, 3-5], as shown in Figure 1. Those who
are present in the human genome are named human endogenous retroviruses (HERVs).

The endogenization process profoundly impacts on the survival and evolution of the virus
and the host. It results from the balance achieved between the immune surveillance and the
virus virulence [6]. In this way, the HERVs must surpass the host’s antiviral defense mecha‐
nisms and infect the germ cells without causing a cytotoxicity that would prevent persistence
in the progeny of the host [6]. Furthermore, from this moment on, all host cells are carriers of
an integrated provirus [6].

Figure 1. The endogenization process: once the retrovirus infects a germ line cell, vertical transmission in a Mendelian
fashion occurs.

The retroviral insertion is aleatory, in the sense that no specific sites for retroviral integration
exist in the host genome. Nonetheless, due to the epigenetic chromatin packaging, integrated
HERVs elements are more commonly found within the transcriptionally active genome [6].
Currently, HERVs comprise nearly 8% of the human genome [7], distributed in approximately
31 independently acquired multigene families [8]. Even though no standard nomenclature has
been defined for HERVs, they have been classified based on their homology with different
groups of exogenous retroviruses. They are grouped as class I, class II, or class III retroviruses
considering their homology with Gamma and Epsilon retroviruses, Betaretrovirus or Spuma‐
virus, respectively [9, 10]. The family name is usually given by “HERV” followed by a one-
letter amino acid code that corresponds to the tRNA specific of the site used to initiate reverse
transcription [10]; consequently, the HERV-W family would use a tryptophan.

As mentioned, HERVs have a similar structure to proviruses of infectious retroviruses, with
three principal genes, gag, pol, and env, flanked by two long terminal repeats (LTRs) [6]. The
gag gene codes for the viral assembly proteins, including the nucleocapsid, matrix, and capsid
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proteins. The pol gene codes for the viral replication proteins, yielding the reverse transcriptase,
protease, ribonuclease, and integrase proteins. Finally, the env gene codes for a viral glyco‐
protein, with both a surface and a transmembrane subunit. However, important changes are
observed in the HERVs expression compared to that of exogenous retroviruses. Most HERVs
encode incomplete proteins and accumulate mutations and recombinations. Furthermore,
most HERVs with functional LTRs remain in a latent state under homeostatic conditions,
owing to the epigenetic silencing of the provirus in heterochromatin [11]. Exceptionally,
specific HERVs have been selected during evolution, provided that their biological functions
could be beneficial for the host. In these cases, HERVs suffer a “domestication,” meaning that
a foreign gene can be used for cellular functions of the host [12]. In this group, we find proteins
like Syncytin-1 from the HERV-W family, and Syncytin-2 from the HERV-FRD family [13].
These highly fusogenic envelope proteins are necessary to allow the formation of the placental
syncytiotrophoblast layer; furthermore, they could be involved in the immune tolerance to the
fetus [13].

In addition to these “domestic HERVs,” several studies show reactivation of HERVs under
pathologic conditions, such as different types of cancer [14-20]; autoimmune diseases includ‐
ing multiple sclerosis (MS) [21-37], rheumatoid arthritis (RA) [38], psoriasis [39], or systemic
lupus erythematosus (SLE) [40]; and other diseases like schizophrenia [41, 42]. Nonetheless,
we do not know whether their reactivation or increased expression is a causal effect, or
conversely, is an underlying consequence of the disease.

1.2. Potential expression mechanisms of HERVs

Many factors can interfere or modulate the expression of HERVs, such as recombination events
between two or more replication-defective HERVs [43, 44], infectious agents like Human
herpesvirus 6 (HHV6) [34, 45] and Epstein–Barr virus (EBV) [46, 47], several transcription
factors [31, 48], and the epigenomic context of the HERVs [6, 49, 50].

• Recombination events

Two or more replication-defective HERVs can restore their own defects through recombination
events, resulting in a replication-competent retrovirus [5]. Even though this is an infrequent
event, a study in mice points to a significantly increased frequency in specific immune
deficiencies [44]. Furthermore, it has been demonstrated that recombination between three
HERV-K defective proviruses is possible, leading to an infectious retrovirus [5, 43].

• Infectious agents

A putative explanation about the preferential expression of HERVs found in human brain
samples could be the tropism of specific viruses and bacteria to the central nervous system
(CNS). Neurotropic agents like herpesvirus [29, 51], Toxoplasma gondii [52], or certain strands
of influenza virus [53] are able to cross the hematoencephalic barrier into the CNS. Usually,
they are intercepted by cerebral macrophages leading to an abortive infection, but their
transient presence in the CNS could activate the HERVs expression as a consequence of their
immediate-early (IE) genes expression [4]. The expression of the IE genes of herpes simplex
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virus type 1 (HSV-1) and its interaction with the transcription factor binding sites situated in
the U3 region of the LTR, such as AP-1 [54] and Oct-1 [55], lead to an activation of transcription
in HERV-K and HERV-W families.

The herpesviruses are one of the best candidates: they may be neurotropic, remain latent, and
can be reactivated. Furthermore, the expression of the Env epitopes in the surface of B cells
and monocytes could be a consequence of the interaction between HERVs and herpesviruses
[25]. Thus, the herpesviruses could play a dual role in neurodegenerative diseases, acting as
pathological entities per se and as inducers of HERVs [6].

• Transcription factors

An important component of the antiviral innate immunity is the regulation of the expression
and replication of HERVs by different transcription factors [48]. In HERV-W and HERV-K
elements, both families previously related to multiple sclerosis (MS), different binding sites
for transcription factors such as NF-Kβ [31, 48] are located in their promoter regions and could
drive an increased expression of HERVs during inflammation.

• Epigenomic context

The chromatin state as well as the methylation state of GpC islands within the HERV promoter
and regulatory regions seem to be crucial factors in the control of HERVs expression [49, 50].
Both play an important role as a part of the defense system against the potential effects of
inserted sequences. Previously published studies describe how proviruses and solitary LTRs
are densely methylated under physiological conditions, but hypomethylated in placenta [49,
50]. Thus, DNA hypomethylation, as observed in certain types of cancer, could allow reacti‐
vation of retroelements. In MS, HERVs have been described as susceptible elements to undergo
epigenetic modifications, mainly due to modifications in the methylation state, resulting in
activation of their expression and, consequently, inappropriate activation of the immune
system.

1.3. Pathogenic mechanisms of HERVs

Even though most inserted copies in the human genome are defective copies, some HERVs
could maintain the potential to cause or contribute to disease by different mechanisms [5]. As
mentioned, HERVs may alter cellular functions by two ways, either acting as a genetic element
or as a viral pathogen [6].

• Gene disruption

HERVs, like transposons, are able to experience transposition, recombination, and integration
cycles. Some HERVs families include a high number of copies in the genome. It is believed that
these families have been spread around the genome through the reintegration of a provirus.
However, each new integration process increases the risk of a harmful insertion. They can
disrupt genes present in their integration sites, for example, HERV-K integrations have been
identified into tumor suppressor genes like BRCA2 and into the repair XRCC1 gene [6, 56].

• Modulation of gene expression
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Some HERVs conserve regulatory sequences that can operate as functional promoters,
enhancers, or polyadenylation signals, so they could change the expression of adjacent or distal
genes [4]. They can also form part of regulatory RNAs: microRNAs (miRNA), small interfering
RNAs (siRNA), and long intergenic noncoding RNAs (lincRNAs), contributing to the complex
regulatory network of gene expression [5]. Furthermore, HERVs integrated into introns can
provide alternative transcription start and termination sites [5].

• Pattern recognition receptors (PRRs)

The HERVs expression products, both nucleic acids and proteins, can modulate immune
responses. They have the potential to interact with components involved in the immune innate
response and to activate proinflammatory signaling pathways [57, 58]. Therefore, certain
HERVs proteins could directly interact with specific toll-like receptors (TLRs), for example
with TLR4, resulting in the production of TNFα and proinflammatory cytokines [58-60]. The
nucleic acids derived from HERVs may also activate cytosolic PRRs; in this way, both an
increased expression of RNA and the presence of cDNA in a nonfamilial compartment like the
cytosol could activate PRRs [60]. Nonetheless, the human being has coevolved with endoge‐
nous retroelements and this could have shaped the sensibility of DNA sensors of the innate
immune system, leading to an increased cDNA detection threshold to avoid an immune
response against them. The cDNA levels are restrained by the action of gene products like
Trex1 or SAMHD1 [60] and a loss-of-function mutation in these enzymes could result in the
cDNA accumulation and the consequent sensors activation. This process would lead to a
chronic immune response with release of pathogenic type I IFN and inflammatory mediators,
similar to those observed in autoimmune diseases [60].

• Viral proteins: molecular mimicry, superantigen activity, or immunosuppressive proteins

HERVs proteins hold epitopes to B and T cells and molecular mimicry between viral proteins
and certain autoantigens may exist, resulting in an autoimmune response. Moreover, some
HERVs sequences are able to encode for superantigens. Superantigens combine with MHC
class-II molecules to form ligands that stimulate T cells [61], and this may end in an abnormal
activation of autoreactive T lymphocytes [62].

Alternatively, evidences exist of the immunosuppressive activity of certain HERVs Env
proteins [63, 64]. This activity is reminiscent of their exogenous antecessors, which in this way
increased the viability of the virions in the host. This capacity has suffered an adaptation
process, and nowadays it might be implicated in the materno-fetal tolerance and could also
prevent the immune response to exogen pathogens and tumors [60].

• Retroviral help for B cells

HERVs can also help B cells to quickly produce antibodies directed against pathogenic antigens
[65]. The bacterial polysaccharide antigens and the carbohydrates linked to viral glycoproteins
have the ability to stimulate B cells in the absence of T-cell help. These antigens are called
thymus-independent antigens (TI), and they can be classified into two types: TI-1 or TI-2
antigens. TI-2 antigens cause extensive cross-linking of the BCR, leading to a quick differen‐
tiation of B cells into plasma cells. Finally, these plasma cells secrete protective antibodies, IgM
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and IgG [66]. However, the mechanism by which the TI-2 antigens activate B cells in the
marginal zone without the help of T cells still remains poorly understood. It has been recently
described that the cross-linking of B cells activates a signaling cascade, including the Bruton
Tyrosine Kinase and the nuclear transcription factor NF-Kβ, allowing transcription of endog‐
enous retroviral DNA [66]. The retroviral RNA may activate B cells by two complementary
but different pathways: first, it could activate the retinoic-acid-inducible gene 1 receptor
(RIG-1), resulting in a mitochondrial antiviral-signaling (MAVS); second, the RNA can be
converted into DNA and can activate the cyclic GMP-AMP synthase (cGAS, cGAMP synthase).
Finally, both signaling pathways would finish in the antigen-specific B-cell activation [65, 66].

2. HERVs and autoimmune diseases

HERVs represent the immunological limit between the self and the foreign. Their peculiar
origin is very different from that of other genome elements, as they can share properties with
infectious agents. Indeed, in case they would produce particles, these would not be so different
from those originated from exogenous retroviruses. Therefore, they could activate the immune
system and would induce autoimmunity [67]. As it has been previously discussed, HERVs
have been associated, among other infectious or neurologic diseases, with different autoim‐
mune diseases like MS [21-37], RA [38], psoriasis [39], T1D [68], or SLE [40], as shown in Table
1. Genome-wide association studies (GWAS) showed the existence of a genetic basis shared
between different autoimmune diseases, discovering new immunogenic mechanisms impli‐
cated, and HERVs could be part of these shared genetic elements.

Class Family PBS Related diseases Expression mechanisms Pathogenic mechanisms

I HERV-W Trp

MS
Schizophrenia

HIV
Osteoarthitis

Herpesviruses
Transcription factors
Toxoplasma gondii
Influenza A virus

Pro-inflammatory Env protein
Superantigen activity
OPCs differentiation

interference
Altered glial function

I HERV-F Phe MS Demethylating agents Superantigen activity

I HERV-H His
3q13.31

microdeletion
syndrome

N/A
Genetic deletion by

recombination

I HERV-E Glu SLE Hypomethylation
Immunosupressor potential of

Env

I HERV-P Pro Cancer Unkown Unknown

II HERV-K Lys
MS
ALS
HIV

Herpersviruses
HTLV-1

Type 1 IFN

Superantigen activity
Neoepitopes

Genes disruption
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Class Family PBS Related diseases Expression mechanisms Pathogenic mechanisms

Schizophrenia
T1D
RA

Juvenil arthitis
Cancer

Transcription factors
Hypomethylation

MS, multiple sclerosis; HIV, human immunodeficiency virus; SLE, Systemic lupus erythematosus; ALS, amyotrophic
lateral sclerosis; T1D, type 1 diabetes; RA, rheumatoid arthritis, HTLV-1, human T-lymphotropic virus-1; IFN, interferon;
Env, envelope; OPCs, olygodendrocyte precursor cells; N/A, not applicable. Based on Douville and Nath, 2014 [6].

Table 1. HERVs families associated with different diseases

3. HERVs and MS

MS is one of the conditions more frequently related with HERVs. It is a chronic progressive
disease characterized by neuroinflammation in the CNS accompanied by demyelination,
axonal damage, and progressive neurologic dysfunction [69]. It is a complex disease, origi‐
nated from the interaction of genetic, environmental, and epigenetic factors [70]. Recently, its
incidence seems to be increased; at present MS affects 2.3 million people in the world [71].
However, many aspects of its pathogenesis are still poorly understood. GWAS have not
completely explained the MS genetic background [72-74], albeit including the ImmunoChip
Project [75] a total of 110 single nucleotide polymorphisms (SNPs) have been associated with
MS susceptibility. Even considering the strongest risk factor, the HLA-DRB1*15:01 allele, each
SNP has a modest effect and all together are able to explain only 20–28% of MS heritability [75].
Part of the missing heritability could reside on HERVs, as repetitive regions were not analyzed
in the GWAS. Those repetitive regions were previously considered as “junk DNA” because it
was thought that they had little or no physiological role. However, nowadays we know that
these sequences could play an important role in the development of autoimmune diseases,
including MS.

In 1989, Perron et al. [76] described the presence of extracellular virions associated with reverse
transcriptase activity in a culture of leptomeningeal cells (LM7) obtained from the cerebrospi‐
nal fluid (CSF) of an MS patient. In the beginning, it was thought that those virions could
correspond to the human T-lymphotropic virus (HTLV-1) due to the similarities between the
tropical spastic paraparesis (a demyelinating progressive disease) caused by HTLV-1, and MS.
However, a new retroviral element called MSRV (Multiple-sclerosis-associated retrovirus) was
identified, the founder of the HERV-W family [77]. This multicopy family, consisting of
approximately 650 loci around the human genome [35], comprises a total of 311 inserts (more
or less complete proviruses or pseudogenes) and 343 additional HERV-W LTRs [78].

Only the env gene mapping on chromosome 7, encoding Syncytin, presents a complete open
reading frame (ORF) and has been selectively conserved [35]. The MSRV env sequence can be
differentiated from the one corresponding to Syncytin-1 by a 12-nucleotide insertion in the
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transmembrane moiety. Both genes are expressed in the brain of MS patients, but the MSRV-
type env DNA copies were found sixfold more frequently in MS patients than in healthy
controls, while comparable copy numbers of Syncytin-1 were observed [79]. Furthermore,
Syncytin-1 is originated from the retroviral copy inserted in chromosome 7, and the pathogenic
protein MSRV-type Env could be originated from several integrations in the human genome,
or it could result from recombination events between insertions in different chromosomes [80,
81]. The genomic origin of HERV-W Env remains unknown although recent works consider
the copy mapping to chromosome X one plausible candidate [4, 80, 81]. This copy, located on
Xq22.3, would encode for an almost complete MSRV-type protein, truncated on its N-terminal
end due to the presence of a stop codon mutation at position 39 [81]. Ex vivo, this copy still
conserves coding capacity, as it is able to produce a truncated N-terminally Env protein [80].
Furthermore, the reversion of this stop codon would lead to a complete protein with signal
peptide, expressed in the cellular surface in the same way that Syncytin [80].

Recently, a genetic screening was performed by specific PCR amplification followed by High
Resolution Melting (HRM) analyses of the two MSRV-like env copies which show the ORF
with the highest length similarity and homology to Syncytin (1614 bp), inserted in chromosome
X (1428 bp) and in chromosome 20 (1419 bp). Both chromosomal origins show similar lengths
of their respective ORFs, 10% shorter than the one measured for Syncytin, and could putatively
originate functional proteins. The results pointed to the insertion in chromosome X, and not
the one in chromosome 20, as an origin of MSRV. One polymorphism identified in chromosome
X, rs6622139*T, was associated in women with MS susceptibility and severity [82], and it was
also associated with higher MSRV-like env levels of expression (Mann–Whitney U test:
p=0.003), while the two polymorphisms found in chromosome 20 did not show evidence of
association [83].

Since it was described, several studies have associated the HERV-W family with MS: the
presence of MSRV-type Env protein has been found in demyelinated acute lesions in MS
patients [31], as well as an increased number of DNA copies [84] or a higher prevalence of
MSRV-type RNA in serum and CSF of MS patients compared with patients suffering from
other neurological diseases or healthy controls from all ethnic groups [24, 27, 28, 31, 84-86].
The MSRV presence in serum and CSF is correlated with the clinical progression, severity, and
prognosis of MS [28, 46], while the absence of MSRV relates with a more stable course of the
disease [28, 36]. The MSRV production is stimulated by cytokines like TNFα, IL6, and
IFNγ[87], and current MS therapies like IFN-β and Natalizumab, which are able to reduce MS
symptomatology, promote a diminution of MSRV virus load levels in blood [87-89].

HERV-W Env proteins, MSRV-type Env, and Syncytin have proinflammatory and superanti‐
genic properties. They can cause neuroinflammation, neurodegeneration, immune system
dysregulation, and endoplasmic reticulum stress [4, 21, 22, 58, 90, 91]. Their pathogenicity has
been studied in vitro using different types of cell cultures and in vivo using a humanized Severe
Combined Immunodeficiency Disease (SCID) animal model, showing neurotoxic effects in
both settings [22, 92] and a reduced capacity of olygodendrocyte progenitor cells (OPC)
differentiation, interfering in the remyelination process [57]. A recent study clarifies the
possible pathogenic mechanisms of MSRV. In a human model of BBB, the endothelial cell line
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HCMEC/D3, they show that MRSV-type Env interacts with TLR4 and induces a dose-
dependent overexpression of ICAM1, as well as an induced IL6 and IL8 production; while the
Env protein derived from Syncytin-1 did not show these effects [59]. Furthermore, they also
described that the MSRV-type Env presence significantly stimulates the adhesion and
migration of activated immune cells through the layer of endothelial cells. These results
support the hypothesis that MSRV can be involved in MS pathogenesis, as well as in other
chronic inflammatory diseases, at least in the maintenance of the underlying inflammatory
condition [59]. Table 2 reflects the possible pathogenic mechanisms described for MSRV.

Cell type Receptor Pathogenic mechanisms

T lymphocytes TCR
Superantigen activity, T lymphocytes proliferation

and CK liberation

APC TLR4
↑  pro-inflammatory CK

↑  costimulatory molecules

HCMEC/D3 endothelial cell line TLR4
↑  ICAM1 expression
IL6, IL8 expression

OPC TLR4
OPCs differentiation interference ( ↑  iNOS, oxidative

stress)

APC, antigen presenting cell; OPC, olygodendrocyte precursor cell; TCR, T-cell receptor; TLR4, toll-like receptor 4

Table 2. Known pathogenic mechanisms of MSRV

Even though the HERV-W family is one of the HERV families more related to MS, other
families like HERV-K18 [37, 93] or HERV-Fc1 [29, 94, 95] have also been associated with MS
susceptibility.

HERV-K is a multicopy family including approximately 332 copies dispersed through the
human genome. It is the only known retroviral element that codes for all the structural and
enzymatic proteins (Gag, Prt, Pol), as well as for the Env protein and for the accessory Rec
protein [96]. This family has been related with different autoimmune diseases as MS [37],
type-1diabetes (T1D) [68], or juvenile rheumatoid arthritis [38]; and different cancer types
[14-17]. One specific member of this family, HERV-K18, has been associated with MS suscept‐
ibility and its expression is induced by herpesvirus [97, 98] and by EBV [99-102], both viruses
previously proposed as potential environmental factors involved in MS development [45, 51,
97, 103-108]. Three different variants of the HERV-K18 copy mapping to chromosome 1 [37]
have been described. They conform haplotypes within the first intron of CD48 that can be
defined by two SNPs (18.1 SNP1*A/SNP2*A, 18.2 SNP1*G/SNP2*G, 18.3 SNP1*A/SNP2*G), all
of them coding for an Env protein with superantigenic properties. However, only one of these
variants (18.3) has been associated with a higher risk to MS [37] and with an overall higher
susceptibility to autoimmune diseases, as described by a meta-analysis including a total of
2656 patients and 2016 controls [93].
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Considering the HERV-Fc family, a total of 6 HERV-Fc elements and 11 LTRs have been
identified across the human genome. Among them, only two elements correspond to a
complete HERV-Fc provirus (Fc1env and Fc2master) [109]. Related to MS, it has been observed
that the HERV-Fc1 RNA levels were significantly increased in the plasma of patients suffering
from active MS, compared to nonactive MS or controls [30]. The HERV-Fc1 is an unusual
provirus, because it includes a single copy in the genome, located on Xq21.33. Furthermore, it
is a recent acquisition for the genome, only present in humans, chimpanzees, and gorillas [109].
Nexo et al. [94] were the first to describe that rs391745, located in the promoter region of HERV-
Fc1, was associated with MS susceptibility in Danish cohorts and, then, a replication study was
performed with a Norwegian cohort. The latter study also detailed that the association was
only observed in the nonprimary-progressive MS forms [29], results validated in further
studies [95]. Regarding the HERV-Fc1 expression mechanisms, it has been observed that the
transcriptional expression levels of HERV-Fc1 RNA sequences are negatively correlated with
the methylation levels of CpG islands on the 5’ LTR region and, therefore, a higher HERV-Fc1
expression involves DNA demethylation [11, 110].

4. HERVs as future treatment options

An increased expression of HERVs in several autoimmune diseases [21-40, 68] and different
types of cancer [14-20], along with the decreased expression levels observed in successfully
treated patients with immunomodulatory therapies [88, 89] or chemotherapy [111] point to
the potential pathogenic role of HERVs and their putative consideration as a good target for
new treatments.

A humanized monoclonal antibody anti-Env-SU MSRV/HERV-W, GNbAC1, has been studied
as a putative MS treatment due to its potential neuroprotector effects [112-115]. The results of
a phase IIa clinical trial [114] show that the GNbAC1 treatment blocks the transcription of
proinflammatory genes mediated by Env, prevents the formation of nitrosantine, and restores
OPC differentiation. Furthermore, GNbAC1 has advantages compared to other MS treatments,
because the patients retain all their immune capacity. This treatment has also been studied in
other diseases like diabetes and schizophrenia.

The proteins encoded by HERV-K env have been proposed as therapeutic targets for different
types of cancer, due to the fact that a general hypomethylation of HERVs sequences has been
observed, as well as an increased expression of Np9 and Rec proteins originating from HERV-
K in different cancer cells [116]. Both proteins bind to the PLZF protein, a transcriptional
repressor of the C-MYC proto-oncogen. The inflammation and the deregulation of proto-
oncogen signaling caused by the HERV-K protein results in a protumorogenic microenviron‐
ment, which favors cell proliferation and metastasis [116]. The use of monoclonal antibodies
against HERV-K Env protein inhibits tumoral growth and induces apoptosis in breast cancer
cells in vitro [116]; therefore, it could be considered a good candidate as a therapy used together
with other cancer treatments.
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In addition to autoimmune diseases and cancer, the human immunodeficiency virus (HIV)
has been also related to HERVs, particularly with the HERV-K family, raising the issue of
potential beneficial effects of a therapy directed against HERVs in AIDS. Some studies report
an increased expression of HERV-K provirus in HIV patients compared to controls [117, 118]
and show that the immune responses against HERV-K decrease the HIV-1 viral load. In vitro,
the use of an antibody directed against the HERV-K transmembrane protein (HML-2), HA-137,
was able to eliminate the cells that displayed the antigen in their surface. This was carried out
by an antibody-dependent cell-mediated cytotoxicity (ADCC) mechanism by natural killer
(NK) cells. It has been described that the HIV-infected cells display this membrane antigen in
their surface [119]; therefore, they would be potential targets of the antibody. The possibility
of finding a target epitope different from those of the HIV virus could open up opportunities
to the development of vaccines against this disease; a field that has been very limited due to
the high rate of mutation of the HIV [119].

5. Conclusion

This work aimed to provide a systematic revision of HERVs, with particular emphasis on their
potential pathogenic role in MS. Although many aspects of the etiology of this disease remain
to be solved, different works support the relevance that HERVs may have in the etiopatho‐
genesis of autoimmune diseases, and specifically in MS. HERVs may contribute to both,
disease onset and maintenance, through an exacerbated activation of the immune system.
Recently, the results of a phase IIa clinical trial that studies the effectiveness of a human
monoclonal antibody (GNbAC1) as a therapeutic target in MS have been published with
promising outcome. Thus, evidences support the role of HERVs as potential therapeutic
armory in different autoimmune diseases, cancer, and HIV.

Author details

Belén de la Hera and Elena Urcelay*

*Address all correspondence to: elena.urcelay@salud.madrid.org

Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain

References

[1] Ribet D, Heidman T. Formation et évolution des rétrovirus endogènes. Virologie.
2010;14:141-50. DOI:10.1684/vir.2010.0294.

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

179



[2] Coffin JM. Structure, replication, and recombination of retrovirus genomes: some
unifying hypotheses. J Gen Virol. 1979;42:1-26.

[3] Chuong EB. Retroviruses facilitate the rapid evolution of the mammalian placenta.
Bioessays. 2013;35:853-61. DOI: 10.1002/bies.201300059.

[4] Perron H, Bernard C, Bertrand JB, Lang AB, Popa I, Sanhadji K, et al. Endogenous
retroviral genes, Herpesviruses and gender in Multiple Sclerosis. J Neurol Sci.
2009;286:65-72.

[5] Young GR, Stoye JP, Kassiotis G. Are human endogenous retroviruses pathogenic?
An approach to testing the hypothesis. Bioessays. 2013;35:794-803. DOI: 10.1002/bies.
201300049.

[6] Douville RN, Nath A. Human endogenous retroviruses and the nervous system.
Handb Clin Neurol. 2014;123:465-85. DOI:10.1016/B978-0-444-53488-0.00022-5.

[7] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial se‐
quencing and analysis of the human genome. Nature. 2001;409:860-921. DOI:
10.1038/35057062.

[8] Belshaw R, Katzourakis A, Paces J, Burt A, Tristem M. High copy number in human
endogenous retrovirus families is associated with copying mechanisms in addition to
reinfection. Mol Biol Evol. 2005;22:814-7. DOI:10.1093/molbev/msi088.

[9] Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel
human retroviruses in chronic disease. Microbiol Mol Biol Rev. 2008;72:157-96. DOI:
10.1128/MMBR.00033-07.

[10] Gifford R, Tristem M. The evolution, distribution and diversity of endogenous retro‐
viruses. Virus Genes. 2003;26:291-315. DOI:10.1023/A:1024455415443.

[11] Laska MJ, Nissen KK, Nexo BA. (Some) cellular mechanisms influencing the tran‐
scription of human endogenous retrovirus, HERV-Fc1. PLoS One. 2013;8:e53895. DOI:
10.1371/journal.pone.0053895.

[12] Patel MR, Emerman M, Malik HS. Paleovirology - ghosts and gifts of viruses past.
Curr Opin Virol. 2011;1:304-9. DOI:10.1016/j.coviro.2011.06.007.

[13] Dupressoir A, Heidmann T. [Syncytins – retroviral envelope genes captured for the
benefit of placental development]. Med Sci (Paris). 2011;27:163-9. DOI:10.1051/meds‐
ci/2011272163.

[14] Buscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J. Expression of hu‐
man endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res.
2005;65:4172-80. DOI: 10.1158/0008-5472.CAN-04-2983

[15] Herbst H, Kuhler-Obbarius C, Lauke H, Sauter M, Mueller-Lantzsch N, Harms D, et
al. Human endogenous retrovirus (HERV)-K transcripts in gonadoblastomas and go‐

Advances in Molecular Retrovirology180



nadoblastoma-derived germ cell tumours. Virchows Arch. 1999;434:11-5. DOI:10.1007/
s004280050298

[16] Lower R, Lower J, Frank H, Harzmann R, Kurth R. Human teratocarcinomas cul‐
tured in vitro produce unique retrovirus-like viruses. J Gen Virol. 1984;65 (Pt 5):
887-98.

[17] Wang-Johanning F, Liu J, Rycaj K, Huang M, Tsai K, Rosen DG, et al. Expression of
multiple human endogenous retrovirus surface envelope proteins in ovarian cancer.
Int J Cancer. 2007;120:81-90. DOI:10.1002/ijc.22256.

[18] Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA. DNA methylation and expression
of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas.
Br J Cancer. 1999;80:1312-21. DOI: 10.1038/sj.bjc.6690524.

[19] Menendez L, Benigno BB, McDonald JF. L1 and HERV-W retrotransposons are hypo‐
methylated in human ovarian carcinomas. Mol Cancer. 2004;3:12. DOI:
10.1186/1476-4598-3-12.

[20] Wentzensen N, Coy JF, Knaebel HP, Linnebacher M, Wilz B, Gebert J, et al. Expres‐
sion of an endogenous retroviral sequence from the HERV-H group in gastrointesti‐
nal cancers. Int J Cancer. 2007;121:1417-23. DOI:10.1002/ijc.22826.

[21] Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, et al. The
human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroin‐
flammation and its receptor expression in multiple sclerosis: a role for endoplasmic
reticulum chaperones in astrocytes. J Immunol. 2007;179:1210-24. DOI: 10.4049/jimmu‐
nol.179.2.1210

[22] Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, et al. Human
endogenous retrovirus glycoprotein-mediated induction of redox reactants causes
oligodendrocyte death and demyelination. Nat Neurosci. 2004;7:1088-95. DOI:10.1038/
nn1319.

[23] Antony JM, Zhu Y, Izad M, Warren KG, Vodjgani M, Mallet F, et al. Comparative ex‐
pression of human endogenous retrovirus-W genes in multiple sclerosis. AIDS Res
Hum Retroviruses. 2007;23:1251-6. DOI:10.1089/aid.2006.0274..

[24] Arru G, Mameli G, Astone V, Serra C, Huang YM, Link H, et al. Multiple Sclerosis
and HERV-W/MSRV: A Multicentric Study. Int J Biomed Sci. 2007;3:292-7.

[25] Brudek T, Christensen T, Aagaard L, Petersen T, Hansen HJ, Moller-Larsen A. B cells
and monocytes from patients with active multiple sclerosis exhibit increased surface
expression of both HERV-H Env and HERV-W Env, accompanied by increased se‐
roreactivity. Retrovirology. 2009;6:104. DOI:10.1186/1742-4690-6-104.

[26] Dolei A. MSRV/HERV-W/syncytin and its linkage to multiple sclerosis: the usability
and the hazard of a human endogenous retrovirus. J Neurovirol. 2005;11:232-5. DOI:
10.1080/13550280590952899.

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

181



[27] Dolei A, Perron H. The multiple sclerosis-associated retrovirus and its HERV-W en‐
dogenous family: a biological interface between virology, genetics, and immunology
in human physiology and disease. J Neurovirol. 2009;15:4-13. DOI:
10.1080/13550280802448451.

[28] Dolei A, Serra C, Mameli G, Pugliatti M, Sechi G, Cirotto MC, et al. Multiple sclero‐
sis-associated retrovirus (MSRV) in Sardinian MS patients. Neurology. 2002;58:471-3.
DOI:10.1212/WNL.58.3.471.

[29] Hansen B, Oturai AB, Harbo HF, Celius EG, Nissen KK, Laska MJ, et al. Genetic asso‐
ciation of multiple sclerosis with the marker rs391745 near the endogenous retroviral
locus HERV-Fc1: analysis of disease subtypes. PLoS One. 2011;6:e26438. DOI:10.1371/
journal.pone.0026438.

[30] Laska MJ, Brudek T, Nissen KK, Christensen T, Moller-Larsen A, Petersen T, et al.
Expression of HERV-Fc1, a human endogenous retrovirus, is increased in patients
with active multiple sclerosis. J Virol. 2012;86:3713-22. DOI:10.1128/JVI.06723-11.

[31] Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, et al. Brains and periph‐
eral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-as‐
sociated retrovirus/HERV-W endogenous retrovirus, but not Human herpesvirus 6. J
Gen Virol. 2007;88:264-74. DOI: 10.1099/vir.0.81890-0

[32] Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A. Regulation of the syn‐
cytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virolo‐
gy. 2007;362:120-30. DOI:10.1016/j.virol.2006.12.019.

[33] Rolland A, Jouvin-Marche E, Saresella M, Ferrante P, Cavaretta R, Creange A, et al.
Correlation between disease severity and in vitro cytokine production mediated by
MSRV (multiple sclerosis associated retroviral element) envelope protein in patients
with multiple sclerosis. J Neuroimmunol. 2005;160:195-203. DOI:10.1016/j.jneuroim.
2004.10.019.

[34] Ruprecht K, Obojes K, Wengel V, Gronen F, Kim KS, Perron H, et al. Regulation of
human endogenous retrovirus W protein expression by herpes simplex virus type 1:
implications for multiple sclerosis. J Neurovirol. 2006;12:65-71. DOI:
10.1080/13550280600614973.

[35] Schmitt K, Richter C, Backes C, Meese E, Ruprecht K, Mayer J. Comprehensive analy‐
sis of human endogenous retrovirus group HERV-W locus transcription in multiple
sclerosis brain lesions by high-throughput amplicon sequencing. J Virol.
2013;87:13837-52. DOI:10.1128/JVI.02388-13..

[36] Sotgiu S, Arru G, Mameli G, Serra C, Pugliatti M, Rosati G, et al. Multiple sclerosis-
associated retrovirus in early multiple sclerosis: a six-year follow-up of a Sardinian
cohort. Mult Scler. 2006;12:698-703. DOI:10.1177/1352458506070773

Advances in Molecular Retrovirology182



[37] Tai AK, O'Reilly EJ, Alroy KA, Simon KC, Munger KL, Huber BT, et al. Human en‐
dogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler.
2008;14:1175-80. DOI:10.1177/1352458508094641.

[38] Sicat J, Sutkowski N, Huber BT. Expression of human endogenous retrovirus HERV-
K18 superantigen is elevated in juvenile rheumatoid arthritis. J Rheumatol.
2005;32:1821-31.

[39] Moles JP, Tesniere A, Guilhou JJ. A new endogenous retroviral sequence is expressed
in skin of patients with psoriasis. Br J Dermatol. 2005;153:83-9. DOI:10.1111/j.
1365-2133.2005.06555.x.

[40] Wu Z, Mei X, Zhao D, Sun Y, Song J, Pan W, et al. DNA methylation modulates
HERV-E expression in CD4+ T cells from systemic lupus erythematosus patients. J
Dermatol Sci. 2015;77:110-6. DOI:10.1016/j.jdermsci.2014.12.004.

[41] Perron H, Mekaoui L, Bernard C, Veas F, Stefas I, Leboyer M. Endogenous retrovirus
type W GAG and envelope protein antigenemia in serum of schizophrenic patients.
Biol Psychiatry. 2008;64:1019-23. DOI:10.1016/j.biopsych.2008.06.028.

[42] Yao Y, Schroder J, Nellaker C, Bottmer C, Bachmann S, Yolken RH, et al. Elevated
levels of human endogenous retrovirus-W transcripts in blood cells from patients
with first episode schizophrenia. Genes Brain Behav. 2008;7:103-12. DOI:10.1111/j.
1601-183X.2007.00334.x.

[43] Lee YN, Bieniasz PD. Reconstitution of an infectious human endogenous retrovirus.
PLoS Pathog. 2007;3:e10. DOI: 10.1371/journal.ppat.0030010.

[44] Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. Resurrec‐
tion of endogenous retroviruses in antibody-deficient mice. Nature. 2012;491:774-8.
DOI:10.1038/nature11599.

[45] Alvarez-Lafuente R, Garcia-Montojo M, De Las Heras V, Dominguez-Mozo MI, Bar‐
tolome M, Benito-Martin MS, et al. Herpesviruses and human endogenous retroviral
sequences in the cerebrospinal fluid of multiple sclerosis patients. Mult Scler.
2008;14:595-601. DOI:10.1177/1352458507086425.

[46] Mameli G, Madeddu G, Mei A, Uleri E, Poddighe L, Delogu LG, et al. Activation of
MSRV-type endogenous retroviruses during infectious mononucleosis and Epstein-
Barr virus latency: the missing link with multiple sclerosis? PLoS One. 2013;8:e78474.
DOI: 10.1371/journal.pone.0078474..

[47] Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C, et al. Expression and activa‐
tion by Epstein Barr virus of human endogenous retroviruses-W in blood cells and
astrocytes: inference for multiple sclerosis. PLoS One. 2012;7:e44991. DOI:10.1371/
journal.pone.0044991.

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

183



[48] Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for
inflammatory transcription factors? Retrovirology. 2013;10:16. DOI:
10.1186/1742-4690-10-16.

[49] Matouskova M, Blazkova J, Pajer P, Pavlicek A, Hejnar J. CpG methylation suppress‐
es transcriptional activity of human syncytin-1 in non-placental tissues. Exp Cell Res.
2006;312:1011-20. DOI:10.1016/j.yexcr.2005.12.010.

[50] Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation
levels in human placenta. Nucleic Acids Res. 2007;35:4743-54. DOI: 10.1093/nar/
gkm455.

[51] Hawkes CH, Giovannoni G, Keir G, Cunnington M, Thompson EJ. Seroprevalence of
herpes simplex virus type 2 in multiple sclerosis. Acta Neurol Scand. 2006;114:363-7.
DOI:10.1111/j.1600-0404.2006.00677.x.

[52] Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W. Altered transcription‐
al activity of human endogenous retroviruses in neuroepithelial cells after infection
with Toxoplasma gondii. J Infect Dis. 2006;194:1447-9. DOI:10.1086/508496.

[53] Li F, Nellaker C, Sabunciyan S, Yolken RH, Jones-Brando L, Johansson AS, et al.
Transcriptional derepression of the ERVWE1 locus following influenza A virus infec‐
tion. J Virol. 2014;88:4328-37. DOI:10.1128/JVI.03628-13..

[54] Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL. Transactivation of the human endoge‐
nous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate
early protein 0. Virus Res. 2002;86:93-100.

[55] Lee WJ, Kwun HJ, Kim HS, Jang KL. Activation of the human endogenous retrovirus
W long terminal repeat by herpes simplex virus type 1 immediate early protein 1.
Mol Cells. 2003;15:75-80.

[56] Misra A, Chosdol K, Sarkar C, Mahapatra AK, Sinha S. Alteration of a sequence with
homology to human endogenous retrovirus (HERV-K) in primary human glioma:
implications for viral repeat mediated rearrangement. Mutat Res. 2001;484:53-9. DOI:
10.1016/S0027-5107(01)00240-8.

[57] Kremer D, Schichel T, Forster M, Tzekova N, Bernard C, van der Valk P, et al. Hu‐
man endogenous retrovirus type W envelope protein inhibits oligodendroglial pre‐
cursor cell differentiation. Ann Neurol. 2013;74:721-32. DOI: 10.1002/ana.23970..

[58] Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN. The envelope
protein of a human endogenous retrovirus-W family activates innate immunity
through CD14/TLR4 and promotes Th1-like responses. J Immunol. 2006;176:7636-44.
DOI: 10.4049/jimmunol.176.12.7636

[59] Duperray A, Barbe D, Raguenez G, Weksler BB, Romero IA, Couraud PO, et al. In‐
flammatory response of endothelial cells to a human endogenous retrovirus associat‐

Advances in Molecular Retrovirology184



ed with multiple sclerosis is mediated by TLR4. Int Immunol. 2015;27. DOI:10.1093/
intimm/dxv025.

[60] Hurst T, Magiorkinis G. Activation of the innate immune response by endogenous
retroviruses. J Gen Virol. 2014. DOI:10.1099/jgv.0.000017.

[61] Herman A, Kappler JW, Marrack P, Pullen AM. Superantigens: mechanism of T-cell
stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745-72. DOI:
10.1146/annurev.iy.09.040191.003525.

[62] Zhang J, Vandevyver C, Stinissen P, Mertens N, van den Berg-Loonen E, Raus J. Acti‐
vation and clonal expansion of human myelin basic protein-reactive T cells by bacte‐
rial superantigens. J Autoimmun. 1995;8:615-32. DOI:10.1016/0896-8411(95)90012-8.

[63] Mangeney M, Renard M, Schlecht-Louf G, Bouallaga I, Heidmann O, Letzelter C, et
al. Placental syncytins: Genetic disjunction between the fusogenic and immunosup‐
pressive activity of retroviral envelope proteins. Proc Natl Acad Sci U S A.
2007;104:20534-9. DOI:10.1073/pnas.0707873105.

[64] Morozov VA, Dao Thi VL, Denner J. The transmembrane protein of the human en‐
dogenous retrovirus--K (HERV-K) modulates cytokine release and gene expression.
PLoS One. 2013;8:e70399. DOI:10.1371/journal.pone.0070399.

[65] Grasset EK, Cerutti A. Immunology. Retroviral help for B cells. Science.
2014;346:1454-5. DOI:10.1371/journal.pone.0070399.

[66] Zeng M, Hu Z, Shi X, Li X, Zhan X, Li XD, et al. MAVS, cGAS, and endogenous retro‐
viruses in T-independent B cell responses. Science. 2013;346:1486-92. DOI: 10.1126/
science.346.6216.1486.

[67] Nexo BA, Villesen P, Nissen KK, Lindegaard HM, Rossing P, Petersen T, et al. Are
human endogenous retroviruses triggers of autoimmune diseases? Unveiling associ‐
ations of three diseases and viral loci. Immunol Res. 2015. DOI:10.1007/
s12026-015-8671-z.

[68] Marguerat S, Wang WY, Todd JA, Conrad B. Association of human endogenous ret‐
rovirus K-18 polymorphisms with type 1 diabetes. Diabetes. 2004;53:852-4. DOI:
10.2337/diabetes.53.3.852

[69] Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. Multiple sclerosis. N
Engl J Med. 2000;343:938-52.

[70] Oksenberg JR, Baranzini SE. Multiple sclerosis genetics--is the glass half full, or half
empty? Nat Rev Neurol. 2010;6:429-37. DOI:10.1038/nrneurol.2010.91.

[71] Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, et al. Atlas of
Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neu‐
rology. 2013;83:1022-4. DOI:10.1212/WNL.0000000000000768.

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

185



[72] IMSGC, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, et al. Risk alleles for
multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357:851-62.

[73] IMSGC, Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, et al. Ge‐
netic risk and a primary role for cell-mediated immune mechanisms in multiple scle‐
rosis. Nature. 2011;476:214-9. DOI:10.1038/nature10251.

[74] Gourraud PA, Harbo HF, Hauser SL, Baranzini SE. The genetics of multiple sclerosis:
an up-to-date review. Immunol Rev. 2012;248:87-103. DOI: 10.1111/j.1600-065X.
2012.01134.x.

[75] IMSGC, Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, et al.
Analysis of immune-related loci identifies 48 new susceptibility variants for multiple
sclerosis. Nat Genet. 2013;45:1353-60. DOI:10.1038/ng.2770..

[76] Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Perret J, et al. Leptomeningeal
cell line from multiple sclerosis with reverse transcriptase activity and viral particles.
Res Virol. 1989;140:551-61.

[77] Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, et
al. Molecular identification of a novel retrovirus repeatedly isolated from patients
with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc
Natl Acad Sci U S A. 1997;94:7583-8.

[78] Pavlicek A, Paces J, Elleder D, Hejnar J. Processed pseudogenes of human endoge‐
nous retroviruses generated by LINEs: their integration, stability, and distribution.
Genome Res. 2002;12:391-9. DOI:10.1101/gr.216902

[79] Mameli G, Poddighe L, Astone V, Delogu G, Arru G, Sotgiu S, et al. Novel reliable
real-time PCR for differential detection of MSRVenv and syncytin-1 in RNA and
DNA from patients with multiple sclerosis. J Virol Methods. 2009;161:98-106. DOI:
10.1016/j.jviromet.2009.05.024..

[80] Roebke C, Wahl S, Laufer G, Stadelmann C, Sauter M, Mueller-Lantzsch N, et al. An
N-terminally truncated envelope protein encoded by a human endogenous retrovi‐
rus W locus on chromosome Xq22.3. Retrovirology. 2010;7:69. DOI:
10.1186/1742-4690-7-69.

[81] Laufer G, Mayer J, Mueller BF, Mueller-Lantzsch N, Ruprecht K. Analysis of transcri‐
bed human endogenous retrovirus W env loci clarifies the origin of multiple sclero‐
sis-associated retrovirus env sequences. Retrovirology. 2009;6:37. DOI:
10.1186/1742-4690-6-37.

[82] Garcia-Montojo M, de la Hera B, Varade J, de la Encarnacion A, Camacho I, Domi‐
nguez-Mozo M, et al. HERV-W polymorphism in chromosome X is associated with
multiple sclerosis risk and with differential expression of MSRV. Retrovirology.
2014;11:2.

Advances in Molecular Retrovirology186



[83] Varadé J, García-Montojo M, de la Hera B, Camacho I, García-Martíneza MA, Arroyo
R, et al. Multiple sclerosis retrovirus-like envelope gene: Role of the chromosome 20
insertion. BBA Clin. 2015;3:162-7. DOI:10.1016/j.bbacli.2015.02.002.

[84] Garcia-Montojo M, Dominguez-Mozo M, Arias-Leal A, Garcia-Martinez A, De las
Heras V, Casanova I, et al. The DNA copy number of human endogenous retrovirus-
W (MSRV-type) is increased in multiple sclerosis patients and is influenced by gen‐
der and disease severity. PLoS One. 2013;8:e53623. DOI:10.1371/journal.pone.0053623.

[85] Garson JA, Tuke PW, Giraud P, Paranhos-Baccala G, Perron H. Detection of virion-
associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet.
1998;351:33. DOI:10.1016/S0140-6736(98)24001-3.

[86] Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, et al. Hu‐
man endogenous retrovirus type W envelope expression in blood and brain cells pro‐
vides new insights into multiple sclerosis disease. Mult Scler. 2012;18:1721-36. DOI:
10.1177/1352458512441381..

[87] Serra C, Mameli G, Arru G, Sotgiu S, Rosati G, Dolei A. In vitro modulation of the
multiple sclerosis (MS)-associated retrovirus by cytokines: implications for MS
pathogenesis. J Neurovirol. 2003;9:637-43. DOI:10.1080/13550280390246462.

[88] Mameli G, Serra C, Astone V, Castellazzi M, Poddighe L, Fainardi E, et al. Inhibition
of multiple-sclerosis-associated retrovirus as biomarker of interferon therapy. J Neu‐
rovirol. 2008;14:73-7. DOI:10.1080/13550280701801107.

[89] Arru G, Leoni S, Pugliatti M, Mei A, Serra C, Delogu LG, et al. Natalizumab inhibits
the expression of human endogenous retroviruses of the W family in multiple sclero‐
sis patients: a longitudinal cohort study. Mult Scler. 2014;20:174-82. DOI:
10.1177/1352458513494957.

[90] Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C. Human endogenous
retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Bi‐
ochim Biophys Acta. 2011;1812:162-76. DOI: 10.1016/j.bbadis.2010.07.016..

[91] Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, et
al. Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnor‐
mal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activa‐
tion. Virology. 2001;287:321-32. DOI:10.1006/viro.2001.1045.

[92] Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, et
al. Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent
death with brain hemorrhage in humanized SCID mice model. J Neurovirol.
2003;9:79-93. DOI:10.1080/13550280390173328.

[93] de la Hera B, Varade J, Garcia-Montojo M, Lamas JR, de la Encarnacion A, Arroyo R,
et al. Role of the human endogenous retrovirus HERV-K18 in autoimmune disease

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

187



susceptibility: study in the Spanish population and meta-analysis. PLoS One.
2013;8:e62090. DOI:10.1371/journal.pone.0062090..

[94] Nexo BA, Christensen T, Frederiksen J, Moller-Larsen A, Oturai AB, Villesen P, et al.
The etiology of multiple sclerosis: genetic evidence for the involvement of the human
endogenous retrovirus HERV-Fc1. PLoS One. 2011;6:e16652. DOI: 10.1371/jour‐
nal.pone.0016652.

[95] de la Hera B, Varade J, Garcia-Montojo M, Alcina A, Fedetz M, Alloza I, et al. Human
endogenous retrovirus HERV-Fc1 association with multiple sclerosis susceptibility: a
meta-analysis. PLoS One. 2014;9:e90182. DOI:10.1371/journal.pone.0090182.

[96] Kraus B, Fischer K, Sliva K, Schnierle BS. Vaccination directed against the human en‐
dogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell
growth in a murine model system. Virol J. 2014;11:58. DOI:10.1186/1743-422X-11-58.

[97] Turcanova VL, Bundgaard B, Hollsberg P. Human herpesvirus-6B induces expres‐
sion of the human endogenous retrovirus K18-encoded superantigen. J Clin Virol.
2009;46:15-9. DOI:10.1016/j.jcv.2009.05.015.

[98] Tai AK, Luka J, Ablashi D, Huber BT. HHV-6A infection induces expression of
HERV-K18-encoded superantigen. J Clin Virol. 2009;46:47-8. DOI:10.1016/j.jcv.
2009.05.019.

[99] Hsiao FC, Lin M, Tai A, Chen G, Huber BT. Cutting edge: Epstein-Barr virus transac‐
tivates the HERV-K18 superantigen by docking to the human complement receptor 2
(CD21) on primary B cells. J Immunol. 2006;177:2056-60. DOI: 10.4049/ jimmunol.
177.4.2056

[100] Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT. Epstein-Barr virus transac‐
tivates the human endogenous retrovirus HERV-K18 that encodes a superantigen.
Immunity. 2001;15:579-89. DOI:10.1016/S1074-7613(01)00210-2.

[101] Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT. EBV LMP-2A
employs a novel mechanism to transactivate the HERV-K18 superantigen through its
ITAM. Virology. 2009;385:261-6. DOI:10.1016/j.virol.2008.11.025.

[102] Sutkowski N, Chen G, Calderon G, Huber BT. Epstein-Barr virus latent membrane
protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus
HERV-K18 superantigen. J Virol. 2004;78:7852-60. DOI:10.1128/JVI.
78.14.7852-7860.2004

[103] Buljevac D, van Doornum GJ, Flach HZ, Groen J, Osterhaus AD, Hop W, et al. Ep‐
stein-Barr virus and disease activity in multiple sclerosis. J Neurol Neurosurg Psychia‐
try. 2005;76:1377-81. DOI:10.1136/jnnp.2004.048504

[104] Christensen T. The role of EBV in MS pathogenesis. Int MS J. 2006;13:52-7.

Advances in Molecular Retrovirology188



[105] Nielsen TR, Pedersen M, Rostgaard K, Frisch M, Hjalgrim H. Correlations between
Epstein-Barr virus antibody levels and risk factors for multiple sclerosis in healthy
individuals. Mult Scler. 2007;13:420-3. DOI:10.1177/1352458506071470

[106] DeLorenze GN, Munger KL, Lennette ET, Orentreich N, Vogelman JH, Ascherio A.
Epstein-Barr virus and multiple sclerosis: evidence of association from a prospective
study with long-term follow-up. Arch Neurol. 2006;63:839-44. DOI:10.1001/archneur.
63.6.noc50328.

[107] Hollsberg P, Kusk M, Bech E, Hansen HJ, Jakobsen J, Haahr S. Presence of Epstein-
Barr virus and human herpesvirus 6B DNA in multiple sclerosis patients: associa‐
tions with disease activity. Acta Neurol Scand. 2005;112:395-402. DOI:10.1111/j.
1600-0404.2005.00516.x.

[108] Martinez A, Alvarez-Lafuente R, Mas A, Bartolome M, Garcia-Montojo M, de Las
Heras V, et al. Environment-gene interaction in multiple sclerosis: human herpesvi‐
rus 6 and MHC2TA. Hum Immunol. 2007;68:685-9. DOI:10.1016/j.humimm.
2007.05.005.

[109] Benit L, Calteau A, Heidmann T. Characterization of the low-copy HERV-Fc family:
evidence for recent integrations in primates of elements with coding envelope genes.
Virology. 2003;312:159-68. DOI:10.1016/S0042-6822(03)00163-6.

[110] Strissel PL, Ruebner M, Thiel F, Wachter D, Ekici AB, Wolf F, et al. Reactivation of
codogenic endogenous retroviral (ERV) envelope genes in human endometrial carci‐
noma and prestages: Emergence of new molecular targets. Oncotarget. 2012;3:1204-19.

[111] Rhyu DW, Kang YJ, Ock MS, Eo JW, Choi YH, Kim WJ, et al. Expression of human
endogenous retrovirus env genes in the blood of breast cancer patients. Int J Mol Sci.
2014;15:9173-83. DOI: 10.3390/ijms15069173.

[112] Kremer D, Forster M, Schichel T, Gottle P, Hartung HP, Perron H, et al. The neutral‐
izing antibody GNbAC1 abrogates HERV-W envelope protein-mediated oligoden‐
droglial maturation blockade. Mult Scler. 2014;21:1200-3. DOI:
10.1177/1352458514560926.

[113] Curtin F, Perron H, Kromminga A, Porchet H, Lang AB. Preclinical and early clinical
development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endog‐
enous retroviral MSRV-Env protein. MAbs. 2015;7:265-75. DOI:
10.4161/19420862.2014.985021.

[114] Derfuss T, Curtin F, Guebelin C, Bridel C, Rasenack M, Matthey A, et al. A phase IIa
randomised clinical study of GNbAC1, a humanised monoclonal antibody against
the envelope protein of multiple sclerosis-associated endogenous retrovirus in multi‐
ple sclerosis patients. Mult Scler. 2014;21:885-93. DOI: 10.1177/1352458514554052.

[115] Curtin F, Lang AB, Perron H, Laumonier M, Vidal V, Porchet HC, et al. GNbAC1, a
humanized monoclonal antibody against the envelope protein of multiple sclerosis-

HERVs in Multiple Sclerosis — From Insertion to Therapy
http://dx.doi.org/10.5772/61726

189



associated endogenous retrovirus: a first-in-humans randomized clinical study. Clin
Ther. 2012;34:2268-78. DOI:10.1016/j.clinthera.2012.11.006.

[116] Downey RF, Sullivan FJ, Wang-Johanning F, Ambs S, Giles FJ, Glynn SA. Human en‐
dogenous retrovirus K and cancer: Innocent bystander or tumorigenic accomplice?
Int J Cancer. 2014;137:1249-57. DOI: 10.1002/ijc.29003.

[117] van der Kuyl AC. HIV infection and HERV expression: a review. Retrovirology.
2012;9:6. DOI:10.1186/1742-4690-9-6.

[118] Bhardwaj N, Maldarelli F, Mellors J, Coffin JM. HIV-1 infection leads to increased
transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo
but not to increased virion production. J Virol. 2014;88:11108-20. DOI:10.1128/JVI.
01623-14.

[119] Michaud HA, SenGupta D, de Mulder M, Deeks SG, Martin JN, Kobie JJ, et al. Cut‐
ting edge: An antibody recognizing ancestral endogenous virus glycoproteins medi‐
ates antibody-dependent cellular cytotoxicity on HIV-1-infected cells. J Immunol.
2014;193:1544-8. DOI:10.4049/jimmunol.1302108.

Advances in Molecular Retrovirology190


