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Abstract

We investigate a planar heterostructures based on gapless graphene and its gap
modifications such as a single single heterojunction, a quantum well, and a
superlattice. We focus on electron properties of these heterostructures within the
envelope wave functions. A new phenomena such as valley-polarized currents along
the heterojunction and a pseudospin splitting of an energy spectrum in quantum
wells are predicted.

Keywords: Graphene, planar heterostructures, pseudospin splitting, interface states,

minibands.

1. Introduction

The creation of graphene, a monolayer of carbon atoms forming a regular hexagonal lattice
[1–3], has stimulated extensive experimental and theoretical studies along various lines of
research. Graphene’s unique properties make it a promising material for a new generation
of carbon-based nanoelectronic devices. In particular, carrier mobility in graphene amounts
to 2 · 105 cm2/(V s), and ballistic transport is possible on a submicrometer scale [4, 5].

Over a few past years, numerous theoretical and experimental results have been reported on
electronic properties of nanometer-wide ribbons of graphene (nanoribbons). Among the first
were studies of electronic states of graphene nanoribbons using the Dirac equation under
appropriate boundary conditions [6, 7]. The electronic properties of a graphene nanoribbon
strongly depend on its size and edge geometry [8]. In terms of transport properties, graphene
nanoribbons are highly reminiscent of carbon nanotubes [9, 10] since free carrier motion
inside them is also one-dimensional.

A field-effect transistor (FET) based on a 2 nm wide, 236 nm long graphene nanoribbon
was fabricated in a recent study [11] (nanoribbons of widths between 10 and 60 nm were
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also studied). The graphene nanoribbon was made narrow enough to open a gap of width
required for room-temperature transistor operation. However, it is less compact than the
graphene quantum-dot transistor 30 nm in diameter discussed in [12].

The results of paper [13] confirm that graphene devices exhibit very high electronic mobility
µ on a hexagonal boron nitride (h-BN) substrates, graphene devices on WS2 substrates
(G/WS2) are equally promising for high quality electronic transport µ ∼ 3.8 × 104 cm2/(V
s) at room temperature, followed by G/MoS2 µ ∼ 104 cm2/(V s) and G/GaSe µ ∼ 2.2 × 103

cm2/(V s). However, authors of [13] observed a significant asymmetry in electron and hole
conduction in G/WS2 and G/MoS2 heterostructures, most likely due to the presence of
sulphur vacancies in the substrate crystals.

Heterogeneous engineering of two-dimensional layered materials, including metallic
graphene and semiconducting transition metal dichalcogenides, presents an exciting
opportunity to produce highly tunable electronic and optoelectronic systems. In order to
engineer pristine layers and their interfaces, epitaxial growth of such heterostructures is
required. We report the direct growth of crystalline, monolayer tungsten diselenide (WSe2)
on epitaxial graphene (EG) grown from silicon carbide. Vertical transport measurements
across the WSe2/EG heterostructure provides evidence that an additional barrier to carrier
transport beyond the expected WSe2/EG band offset exists due to the interlayer gap [14].

The integration of graphene and other atomically flat, two-dimensional materials has
attracted much interest and been materialized very recently. An in-depth understanding
of transport mechanisms in such heterostructures is essential. The vertically stacked
graphene-based heterostructure transistors were manufactured to elucidate the mechanism
of electron injection at the interface [15]. In a careful analysis of current-voltage
characteristics, an unusual decrease in the effective Schottky barrier height and increase in the
ideality factor were observed with decreasing temperature. A model of thermionic emission
with a Gaussian distribution of barriers was able to precisely interpret the conduction
mechanism.

The intrinsic performance of vertical and lateral graphene-based heterostructure FETs
have been theoretically investigated in [16]. Authors focused on three recently proposed
graphene-based transistors, that in experiments have exhibited large current modulation.
The analysis is based on device simulations including the self-consistent solution of the
electrostatic and transport equations within the non-equilibrium Green’s function formalism.
It was shown that the lateral heterostructure transistor has the potential to outperform
the graphene-based technology and to meet the requirements for the next generation
of semiconductor integrated circuits. On the other hand, it was found that vertical
heterostructure transistors miss these performance targets by several orders of magnitude,
both in terms of switching frequency and delay time, due to large intrinsic capacitances, and
unavoidable current/capacitance tradeoffs.

In this chapter, we focus on the theoretical aspects of the planar technology of the
graphene-based heterostructures. We will consider three types of these heterostructures: the
single heterojunction, the quantum well, and the superlattice. Our analysis of the electronic
properties of such heterostructures is based on the envelope wave function approach. In the
first instance, this rather simple method gives an information about an energy spectrum of
charge carriers. Then we can obtain a knowledge about optical and transport properties.
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Here, we suggest to widely use the gap modifications of graphene in the planar
heterostructures. We believe that the planar heterostructures made of gapless and gapped
graphene are as prospective building blocks in future carbon-based nanoelectronics. The use
of only gapless graphene reduces the diverse opportunities offered by bandgap engineering
in gapped graphene.

2. Theoretical basis

2.1. The parity operator

Let us consider the parity operator in (3+1)QED [17]

P̂ = iγ4Λ̂n. (1)

Here, iγ4 is the inversion operator and

Λ̂n = e−i π
2 Σn = −iΣn

is the operator of rotation by π about an n axis perpendicular to the graphene plane. In
standard representation,

Σ =
(
σ 0
0 σ

)
,

where σ denotes Pauli matrices, and

γ4 ≡ β =
(

I 0
0 −I

)

where I is the 2×2 unit matrix. It is clear that operator (1) is analogous to the parity operator
iγ5n̂ in QED, where n̂ = γn,

γ =
(

0 σ

−σ 0

)
, γ5 = γ1γ2γ3γ4 = i

(
0 I
I 0

)
.

The eigen functions of this operator describe electron polarization states [18].

Charge carrier states in graphene can be described in terms of helicity defined as the

eigenvalue of the operator ĥ = σ · p/(2|p|). The projection of pseudospin on the direction of
quasimomentum p indicates the valley in the Brillouin zone where electrons or holes belong
(K or K′ point in Fig. 2). Positive helicity corresponds to electrons and holes with wavevectors
near the K and K′ points, respectively; negative helicity corresponds to electrons and holes
with wavevectors near the K′ and K points, respectively [19].
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Massless states with opposite helicities are decoupled [20]. In addition, charge carriers have
chiral symmetry (helicity is conserved), and parity can be defined for both massless and
massive carriers1. In other words, a higher symmetry of massless charge carriers implies
the existence of an additional quantum number: helicity. Whereas parity distinguishes only
between the valleys where carrier states belong (λ = +1 and −1 for states close to the K

and K′ points, respectively), helicity differs between a particle (electron) and an antiparticle
(hole). However, chiral symmetry is broken for massive charge carriers. So, helicity is not
a good quantum number any longer. Carrier states in a planar heterostructure combining
gapless and gapped graphene should be characterized by parity.

Recall that the Dirac equation describing massless carriers in graphene in terms of 4×4
matrices is derived by assuming that they are spinless and have two valley degrees of
freedom [10]. When analysis is restricted to charge carriers in one valley, the Dirac equation
can be reduced to a 2×2 matrix representation by Weyl’s equation for a massless fermion
analogous to neutrino in two Euclidean dimensions [22]. The carrier energy spectrum
with a pseudospin splitting in a planar heterostructure combining gapless and gapped
graphene cannot be correctly analyzed in the 2×2 representation. For similar reasons, the
representation of the Dirac algebra in terms of 2×2 matrices is not sufficient for describing
the chiral symmetry breaking in (2+1)QED [23].

Using the two-dimensional 4×4 Dirac equation to describe charge carriers in a
graphene-based nanostructure, we can study pseudospin effects following an approach to
narrow-gap semiconductor heterostructures based on the Dirac model [24]. This makes
methods developed for solving problems in the spintronics of narrow-gap semiconductor
heterostructures applicable to graphene-based ones [25–33].

2.2. The equation for the envelope wavefunction

To describe some phenomena in graphene-based heterostructures, an equation containing
a mass term should be written for the envelope wavefunction. A bandgap opening in the
energy spectrum of graphene results from the lack of symmetry between the two triangular
sublattices of its hexagonal lattice. The corresponding tight-binding Hamiltonian taking into
account nearest-neighbor hopping has the form [34]

Ĥ =− t ∑
B,i,σ

[
a

†
σ(B + di)bσ(B) + b

†
σ(B)aσ(B + di)

]

+ ∆ ∑
B,σ

[
a

†
σ(B + d1)aσ(B + d1)− b

†
σ(B)bσ(B)

]
,

(2)

where t ≈ 2.8 eV is the nearest-neighbor hopping energy; the sum runs over the position
vectors B of all B sublattice atoms; σ =↑, ↓ is the (pseudo)spin index; aσ (a†

σ) and bσ (b†
σ)

are the annihilation (creation) operators of A and B sublattice electrons, respectively (see Fig.
1); and the parameter ∆ quantifies the on-site energy difference between the two sublattices
(setting ∆ = 0 restores the symmetry between sublattices so that graphene becomes gapless,
whereas nonzero ∆ equals the half-gap width in gapped graphene as shown below).

1 Massless states can be characterized by two quantum numbers: helicity and sign of energy or helicity and eigenvalue
of the operator iγ5 [21]. Parity is analogous to the eigenvalue of iγ5.
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Figure 1. Part of hexagonal lattice, with highlighted vectors di from a B sublattice atom to the three nearest-neighbor
A sublattice atoms.

Performing a Fourier transform, we change to the momentum representation

aσ(A) =
∫

ΩB

d2k

(2π)2
aσ(k)e

ik·A, bσ(B) =
∫

ΩB

d2k

(2π)2
bσ(k)e

ik·B,

where ΩB means integration over the first Brillouin zone (it is shown on Fig. 2).

Hamiltonian (2) is rewritten as

Ĥ = ∑
σ

∫

ΩB

d2k

(2π)2

(
a†

σ
(k) b†

σ
(k)

)



∆ −t ∑
i

e−ik·di

−t ∑
i

eik·di −∆




(
aσ(k)
bσ(k)

)
. (3)

Conduction and valence band extrema lie at the corners of the first Brillouin zone. In the
case of gapless graphene, they touch each other and there are the cone-like energy surfaces
at the K and K′ points (see Fig. 3). We use Hamiltonian (3) expanded around the K point

with quasimomentum q1 =
(

2π

3a
, 2π

3
√

3a

)
or around the K′ point with q2 =

(
2π

3a
, − 2π

3
√

3a

)

Ĥ = ∑
σ

∫
d2k

(2π)2
Ψ̂†

σ
(k)ĤΨ̂σ(k).

where integration is performed over small neighbor-hoods of the K and K′ points. Near the
corners, the Hamiltonian reduces to

Ĥ =

(
vFσ · k + ∆σz 0

0 vFσ
∗ · k + ∆σz

)
, (4)
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Figure 2. The first Brillouin zone of graphene, with linear energy spectrum at the corners (Dirac points). The reciprocal
lattice vectors b1 = (2π/3a, 2π/

√
3a) and b2 = (2π/3a,−2π/

√
3a), where a=1.42 Å is the lattice spacing, combined

with the dashed lines equivalently represent the first Brillouin zone as a rhombus.

where vF = 3
2 at is the carrier Fermi velocity, σ = (σx, σy) and σ

∗ = (σx, −σy) are Pauli
matrices in the sublattice space, and Ψ̂σ(k) is the bispinor defined as

Ψ̂σ(k) =

(
Ψ̂
(1)
σ (k)

Ψ̂
(2)
σ (k)

)
,

in terms of

Ψ̂
(1,2)
σ (k) = exp

(
5πi

12
σz

)
σz

(
aσ(q1,2 + k)
bσ(q1,2 + k)

)
.

We write an equation for the envelope wavefunction in a planar heterostructure:

[
vFj

(
τ0 ⊗ σx p̂x + τz ⊗ σy p̂y

)
+ τ0 ⊗ σz∆j + τ0 ⊗ σ0

(
Vj − E

)]
Ψ(x, y) = 0. (5)

Here, ∆j = Egj/2 (j = 1, 2, . . .) denotes half-width of bandgap; the respective work functions
Vj depend on the mid-gap energies relative to the Dirac points for the corresponding
materials; the 2×2 unit matrix σ0 acts in the sublattice space; the 2×2 unit matrix τ0 and
the matrix τz defined similar to the Pauli matrix σz act in the valley space; ⊗ is the Kronecker
product symbol; and p̂x = −i∂x and p̂y = −ih̄∂y are the momentum operator components.
Assuming that the carrier Fermi velocities may differ between the regions, we denote those
for gapped jth regions by vFj for both gapless graphene and its gapped modifications.

Charge carriers move freely along the y axis:

Ψ(x, y) = Ψ(x)eikyy.
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The wavefunction Ψ(x) is a bispinor:

Ψ(x) =

(
ψK(x)
ψK′ (x)

)
,

where the spinors ψK(x) and ψK′ (x) represent charge carriers in the K and K′ valleys,
respectively:

ψK(x) =

(
ψKA(x)
ψKB(x)

)
, ψK′ (x) =

(
ψK′A(x)
ψK′B(x)

)
.

In the present context, the parity operator is expressed as follows:

P̂ = τz ⊗ σ0. (6)

Equation (5) is solved here in the parity basis. The eigenfunctions Ψλ(x) of parity operator
(6) are defined as follows:

P̂Ψλ(x) = λΨλ(x),

Ψ+1(x) =

(
ψ+1,K(x)

0

)
,

Ψ−1(x) =

(
0

ψ−1,K′ (x)

)
.

(7)

Rewriting Eq. (5) as the 2×2 matrix equations

(
−ivFjσx∂x + vFjkyσy + λ∆jσz + Vj

)
ψλK(x) = EλψλK(x), (8)

(
−ivFjσx∂x − vFjkyσy − λ∆jσz + Vj

)
ψλK′ (x) = EλψλK′ (x). (9)

We see that setting ∆j = 0 and Vj = 0 brings us back to the spinor wavefunctions describing

chiral states near the K or K′ point, where the operator ĥ can be defined. However, chiral
symmetry is broken when ∆ 6= 0 (see previous section). Defining parity λ as the eigenvalue
of operator (6), we find that it indicates the valley where charge carriers belong: by virtue of
(7), λ = +1 for the states near the K point described by Eq. (8) and λ = −1 for the states near
the K′ point described by Eq. (9).

In both gapped and gapless graphene, the valleys transform into each other under time
reversal. This is indicated by the opposite signs of the terms proportional to ky in Eqs. (8)
and (9), since ky → −ky under time reversal. It can be shown directly by using the time
reversal operator T in explicit form that λ → −λ under T . Indeed, if ky is parallel to the line
K − M − K′ (see Fig. 2) and its origin is set at M, then K → K′ and K′ → K under T .
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Figure 3. The energy surface for gapless graphene.

Equations (8) and (9) are equivalently rewritten as the 2×2 matrix equation

(

−ivFjσx∂x + λvFjkyσy + ∆jσz + Vj

)

ψλ(x) = Eλψλ(x). (10)

Hereinafter, valley indices K and K′ are omitted as unnecessary since λ specifies the valley
where charge carriers belong.

2.3. The boundary conditions

Now, let us discuss the boundary conditions at the interfaces between different graphene
materials. At the outset, we note that they are easier to formulate than those used at the
graphene–free-space interface in models of edge states [6, 35]. To derive boundary conditions
in the present model, we must find a relation between ψλ(l) and ψλ(−l) as l → 0 in the
neighbor-hood of x = 0, where l goes down to an atomic scale (condition at x = d is derived
similarly). Multiplying Eq. (10) by ψ†(x) on the left, we integrate it over [−l, l]. Since a is
small, we neglect all terms except those containing a derivative with respect to x to obtain2

ψ
(−)†
λ (−l)v

(−)
F ψ

(−)
λ (−l) = ψ

(+)†
λ (l)v

(+)
F ψ

(+)
λ (l),

where ψ
(−)
λ and ψ

(+)
λ are defined on the left- and right-hand sides of the boundary (at x < 0

and x > 0, respectively). Representing these functions as

ψ
(±)
λ =

∣

∣

∣
ψ
(±)
λ

∣

∣

∣
exp

(

iϕ(±)
)

,

we rewrite the equality above as

√

v
(−)
F

∣

∣

∣
ψ
(−)†
λ (−l)

∣

∣

∣
=

√

v
(+)
F

∣

∣

∣
ψ
(+)†
λ (l)

∣

∣

∣
.

2 From the given equality, we have the continuity of the current component normal to the interface in the
heterostructure plane. It is necessary condition.

Graphene - New Trends and Developments186



P❧❛♥❛r ❍❡t❡r♦str✉❝t✉r❡s ❇❛s❡❞ ♦♥ ●r❛♣❤❡♥❡ ✾

✶✵✳✺✼✼✷✴✻✶✸✼✹

To formulate the boundary condition in final form, we assume that the difference between

phases of ψ
(−)
λ and ψ

(+)
λ near the interface is a multiple of 2π:

ϕ(+) = ϕ(−) + 2πn, n ∈ Z.

As l goes to zero, we obtain the following wavefunction-matching condition [26, 27]

√

v
(−)
F

ψ
(−)
λ =

√

v
(+)
F

ψ
(+)
λ , (11)

where minus and plus signs refer to the materials on the left- and right-hand sides of the
boundary, respectively.

3. Graphene heterojunctions

We consider a planar heterojunction composed of graphene and a gap modification of
graphene [36]. When we say a gap modification of graphene we imply a graphene with
an energy gap in the Dirac spectrum of charge carriers. There are several gap modifications
of graphene.

First, the energy gap can open because graphene sheets are located not on SiO2 substrate
but on some other material, for example, h-BN, when two triangular sublattices of graphene
become nonequivalent and a gap modification of graphene is formed with an energy gap
of 53 meV [37]. Second, the energy gap opens in the epitaxially grown graphene on the
SiC substrate [38], which is equal to 0.26 eV according to experimental results obtained by
angular-resolved photoemission spectroscopy [39]. Third, recently another modification of
graphene, i.e., graphane, was synthesized by hydrogenation [40], which has a direct energy
gap of 5.4 eV at the Γ point according to the calculations [41]. In the first two cases, a
graphene film deposited on inhomogeneous SiO2–h-BN or SiO2–SiC substrates can be used
(Fig. 4a shows the case with h-BN). In the third case, an inhomogeneously hydrogenated
graphene is used (a part of the graphene sample is left without hydrogenation, Fig. 4b).

We assume that the energy gap in the gap modifications of graphene opens at K and K′

points of the first Brillouin zone, which correspond to the Dirac points of gapless graphene.

Figure 4. Two variants of the system in question: (a) graphene layer on the substrate composed of h-BN and SiO2 and
(b) nonuniformly hydrogenated graphene on the SiO2 substrate. Open circles are hydrogen atoms, which are located
so that they are bound to carbon atoms of one sublattice on one side of graphene sheet and to carbon atoms of the other
sublattice on the other side.
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Figure 5. Graphene heterojunction under consideration.

Let us assume that the x axis is directed along the plane of the heterojunction perpendicular
to the boundary between graphene and its gap modification and the y axis is directed along
the boundary. The z axis is directed perpendicular to the plane of the heterojunction. The
half-plane x < 0 is occupied by the gap-less graphene and the half-plane x > 0 belongs to
the gap modification of graphene. So, the line x = 0 is the boundary under consideration.

In this case, the parameters in Eq. (5) with j = 1 are related to the gapless graphene and the
parameters with j = 2 are related to the gap modification of the graphene: vF1 and vF2 are the
Fermi velocities (in the general case, vF2 6= vF1, and vF1 ≈ 108 cm/s); ∆1 = 0 and ∆2 6= 0 are
the half-widths of the energy gaps; V1 and V2 are the work functions (V2 determines position
of the middle of the energy gap for the gap modification of the graphene with respect to the
Dirac points of the gapless graphene, and V1 = 0 is chosen for the origin, see Fig. 5).

In order to avoid spontaneous generation of electron-hole pairs, we assume that the
heterojunction in question is a junction of the first kind, i.e., the Dirac points of gapless
graphene are located inside the energy gap of its gap modification. This limits value of the
work function |V2| < ∆2.

Equation (5) is solved within the class of wave eigenfunctions Ψλ(x) of the parity operator
(6) for two areas on both sides from the boundary.

Equation (5) can be easily represented as two 2 × 2 matrix equations

(

−ivFjσx
d

dx
+ vFjkyσy + λ∆jσz + Vj

)

ΨλK(x) = EλΨλK(x), (12)

(

−ivFjσx
d

dx
− vFjkyσy − λ∆jσz + Vj

)

ΨλK′ (x) = EλΨλK′ (x). (13)

In this case, we have λ = +1 in Eq. (12) and λ = −1 in Eq. (13).
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The solution to Eq. (12) for boundary states has the form

ΨλK(x) =

{

C(1
a) exp(κ1x), x < 0,

C( b
qb) exp(−κ2x), x > 0,

(14)

where

a = i
vF1(ky − κ1)

Eλ

, q = i
vF2(ky + κ2)

Eλ − V2 + λ∆2
,

C is the normalization factor, b =
√

vF1
vF2

is the constant obtained when matching solutions for

x < 0 and x > 0 at the line x = 0 under condition (11),

Eλ = ±vF1

√

k2
y − κ2

1 , (15)

from which it follows that the necessary condition for the existence of the boundary states is
given by inequality

κ1 < |ky|. (16)

Equation (15) can be rewritten as

κ1 =
√

k2
y − E2

λ
/v2

F1,

Therefore, the following inequality should also be valid

|Eλ| < vF1|ky|. (17)

Expression for κ2 is represented in the form

κ2 =
1

vF2

√

∆2
2 − (Eλ − V2)2 + v2

F2k2
y.

Moreover, the matching leads to the inequality

vF1(ky − κ1)

Eλ

=
vF2(ky + κ2)

Eλ − V2 + λ∆2
. (18)

The solution to Eq. (13) is produced from Eq. (14) by the following substitutions in factors a
and q: ky → −ky and λ → −λ.
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Let us discuss separately the case of zero mode Eλ = 0. Components of the envelope wave
function in x < 0 region (gapless graphene) ΨλK = (a1

a2
) exp(κ1x) satisfy equations:

(κ1 − ky)a1 = 0,

(κ1 + ky)a2 = 0,

i.e., either κ1 = ky (ky > 0) and a2 = 0, or κ1 = −ky (ky < 0) and a1 = 0. Then it follows from
the matching condition (11) that both components of the envelope wave function are zero in
x > 0 region (b = 0); therefore, we have a1 = 0 and a2 = 0, i.e., ΨλK(x) ≡ 0. Thus, there is no
zero mode for the boundary states in question.

The following equations are easily obtained from Eq. (18):

κ1κ2 =
Eλ(Eλ − V2)

vF1vF2
− k2

y, (19)

λ∆2Eλ = vF1vF2ky(κ1 + κ2). (20)

The two latter equations are valid for either value of λ (for both valleys), because they are
invariant in respect to simultaneous substitutions ky → −ky and λ → −λ.

Since κ1 > 0 and κ2 > 0, right-hand side of Eq. (19) should be positive. Let us denote by
ε0(ky) such value of Eλ that the right-hand side of Eq. (19) turns zero,

ε0(ky) =
V2

2
±

√

V2
2

4
+ vF1vF2k2

y, (21)

where “+” corresponds to electrons and “−” to holes. Then, the condition κ1κ2 > 0 is
equivalent to the inequality

|Eλ| > |ε0(ky)|. (22)

It follows from Eq. (20) that inequality λky > 0 holds for electron boundary states (Eλ > 0),
and λky < 0 holds for hole boundary states (Eλ < 0). The boundary states are not degenerate
in parity. That means that there is no Kramers degeneracy of energy spectrum for them. This
is also true for boundary states in a planar quantum well based on graphene nanoribbon
[42] and for boundary states localized on zigzag edges of gapless graphene [43]. Since parity
determines charge carrier attribution to one of two valleys, the property mentioned above
means also that there is a “valley polarization” of boundary states: electrons that move along
the heterojunction boundary with ky > 0 are located near K point and electrons with ky < 0
are near K′ point and vise versa in case of holes. Because of that, current that flows along the
heterojunction boundary would be “valley-polarized” [36].

By squaring Eq. (20) we get a quadratic equation, solution of which produces dependence of
energy on ky:
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Eλ(ky) =
vF1vF−k2

yV2 + λvF1ky∆2

√

∆2
2 + v2

F−k2
y − V2

2

∆2
2 + v2

F−k2
y

, (23)

where vF− = vF1 − vF2. Equation (23) takes into account that sign of λky determines type of
charge carriers in the boundary states.

It is easy to verify that inequality (17) is always true if the energy is given by Eq. (23).
Therefore, inequality (16) also holds.

Now, it is simple to analyze inequality (22). Let us introduce the following notation:

ky1 =
|V2|

|vF−|
,

ky2, 3 =

√

√

√

√

√

vF2V2
2 + 2vF−∆2

2 ∓ |V2|
√

v2
F2V2

2 + 4vF1vF−∆2
2

2vF2v2
F−

.

Under the condition

vF1 < vF2 < 2vF1,
2

vF2

√

vF1|vF−|∆2 < |V2| < ∆2, (24)

the boundary states exist in the ranges3

0 < |ky| < ky2, ky3 < |ky| < ky1

either for electrons, if V2 < 0, or for holes, if V2 > 0.

Under condition

vF1 < vF2 < 2vF1, |V2| <
2

vF2

√

vF1|vF−|∆2 (25)

the boundary states exist in the range

0 < |ky| < ky1

either for electrons, if V2 < 0, or for holes, if V2 > 0.

Under the condition

vF1 > vF2, 0 < V2 < ∆2 (26)

3 Here and below, we exclude the point ky = 0, because it corresponds to Eλ = 0.
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the electron boundary states exist in the range

ky3 < |ky| < ky1,

and the hole boundary states exist in the range

0 < |ky| < ky2.

Under condition

vF1 > vF2, −∆2 < V2 < 0

the electron boundary states exist in the range

0 < |ky| < ky2,

and the hole boundary states exist in the range

ky3 < |ky| < ky1.

Let us consider three special cases.

(1) Under condition V2 = 0 and vF− 6= 0, the boundary states exist for both electrons and
holes in the following range if vF1 > vF2

0 < |ky| <
∆2√

vF1vF−
. (27)

(2) Under condition vF1 = vF2, 0 < |V2| < ∆2 the boundary states exist in the range

0 < |ky| <
∆2

√

∆2
2 − V2

2

vF2|V2|
(28)

either for electrons, if V2 < 0, or for holes, if V2 > 0.

(3) Under condition vF1 = vF2, V2 = 0, the boundary states are absent both for electrons and
holes, because |Eλ(ky)| = |ε0(ky)|, which is in contradiction with inequality (16).
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Figure 6. Dispersion curves Ee,h
λ
(ky) and ε

e,h
0 (ky): (a) there are no boundary states for electrons and holes at V2 = 0, (b)

there are only hole boundary states in the range 0 < |ky | < ky1 at V2 = 100 meV, and (c) there are only hole boundary
states in the ranges 0 < |ky | < ky2 and ky3 < |ky | < ky1 at V2 = 250 meV.

Fig. 6 shows dispersion curves Ee,h
λ
(ky) and ε

e,h
0 (ky) for the electron and hole boundary states

for three values of V2 in the model of graphene-based heterojunction with ∆2 = 260 meV and
vF2 = 1.2 × 108 cm/s for gap modification of graphene.

Our results remain in essence the same if instead of a sharp heterojunction we consider
a smooth heterojunction. Indeed, let vF(x) and ∆(x) vary smoothly from their values for
gapless graphene to their values in gap modification of graphene over a strip with the

width d . κ
−1
1, 2. Then change in energy of the boundary states is |δEλ(ky)| . 1 meV. Such

insignificant variation in energy of the boundary states produces no noticeable qualitative
changes. A similar result has been obtained for boundary states in heterojunctions of
narrow-gap semiconductors with intercrossing dispersion curves in [44].

To conclude, we would like to point out that the new type of boundary states in graphene
heterojunctions can be studied in experiment by tunnel spectroscopy of angular-resolved
photoemission spectroscopy similar to how it have been done for boundary states in gapless
graphene [45–47].
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4. Graphene quantum well

4.1. General consideration

In this study, we examine a planar quantum well (QW) made of a graphene nanoribbon

whose edges are in contact with gapped graphene sheets.

A bandgap opening in graphene can be induced by several methods. First, graphene

can be deposited on h-BN substrate instead of a silicon-oxide one. This makes its two

triangular sublattices nonequivalent, inducing in a bandgap of 53 meV [37]. Second, epitaxial

graphene grown on a silicon-carbide substrate also has a nonzero bandgap [38]. According

to angle-resolved photoemission data, a bandgap of 0.26 eV is produced by this method

[39]. Third, a hydrogenated derivative of graphene synthesized recently, graphane [40], has

been predicted to have a direct bandgap of 5.4 eV at the Γ point [41]. Fourth, ab initio

calculations have shown that CrO3 adsorption on graphene induces a gap of 0.12 eV [48].

In the first two methods, a heterogeneous substrate can be used, such as an h-BN — SiO2

nanoribbon — h-BN or SiC — SiO2 nanoribbon — SiC one (Fig. 7a depicts a substrate with

h-BN). The last two methods produce a graphene sheet containing a nanoribbon without

hydrogenation (as the nonhydrogenated one in Fig. 7b) or a graphene strip without adsorbed

CrO3 molecules, respectively. Furthermore, the bandgap can be varied by using partially

hydrogenated graphene (where some carbon atoms are not bonded to hydrogen atoms).

Combinations of these methods can also be employed. Extensive experimental studies of

graphene on substrates made of various materials, including rare-earth metals, have been

reported recently [49–51]. It may be possible to open a bandgap via adsorption of other

molecules on graphene or by using other materials as substrates. The use of gapped graphene

to create potential barriers opens up additional possibilities for bandgap engineering in

carbon-based materials [52].

In the case of QW, in Eq. (10) ∆j = Egj/2 (j = 1, 2, 3) denotes half-width of bandgap (∆1 6= 0
and ∆3 6= 0 in regions 1 and 3, whereas ∆2 = 0 region 2); the respective work functions V1

and V3 of regions 1 and 3 depend on the mid-gap energies relative to the Dirac points for the
corresponding materials (we set V2 = 0 to be specific, see Fig. 8).

The solution to Eq. (10) is expressed as follows.

Figure 7. Two configurations of the system under study: (a) graphene sheet on a substrate consisting of a SiO2

nanoribbon of width d inserted between h–BN nanoribbons; (b) a graphene sheet on a SiO2 substrate containing a
nonhydrogenated nanoribbon of width d, where open and closed circles are hydrogen atoms bonded to carbon atoms
in different sublattices on opposite sides of the sheet, respectively.
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Figure 8. An energy scheme of QW under analysis.

1. At x < 0,

ψλ(x) = C

(

1
q1

)

ek1x, (29)

where

q1 = −i
vF1(k1 − λky)

Eλ − V1 + ∆1
,

vF1k1 =
√

∆2
1 − (Eλ − V1)2 + v2

F1k2
y.

2. At 0 < x < d,

ψλ(x) = C

(

κ∗

q2κ∗

)

eik2x + C

(

κ
−q2κ

)

e−ik2x, (30)

where

κ =
1

2

√

vF1

vF2

[

1 + i

(

λky

k2
+

vF1(k1 − λky)Eλ

vF2k2(Eλ − V1 + ∆1)

)]

,

q2 =
vF2(k2 + iλky)

Eλ
, Eλ = ±vF2

√

k2
2 + k2

y,

with plus and minus corresponding to electrons and holes, respectively.

3. At x > d,

ψλ(x) = C

(

ζ
q3ζ

)

e−k3(x−d), (31)
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where

ζ =

√

vF1

vF3

[

cos(k2d) +

(

λky

k2
+

vF1(k1 − λky)Eλ

vF2k2(Eλ − V1 + ∆1)

)

sin(k2d)

]

,

q3 = i
vF3(k3 + λky)

Eλ − V3 + ∆3
,

vF3k3 =
√

∆2
3 − (Eλ − V3)2 + v2

F2k2
y.

The constant C is found by using the normalization condition for wavefunctions (29)—(31),

∞
∫

−∞

Ψ
†
λ(x)Ψλ(x)dx = 1.

The carrier energy spectrum is determined by the dispersion relation

tan(k2d) = vF2k2 f (λky; k1, k3, Eλ), (32)

where

f (λky;k1, k3, Eλ) =
[

vF1(k1 − λky)(Eλ − V3 + ∆3) + vF3(k3 + λky)(Eλ − V1 + ∆1)
]

×
[

Eλ(Eλ − V1 + ∆1)(Eλ − V3 + ∆3)− vF2vF3λky(k3 + λky)(Eλ − V1 + ∆1)

+vF1vF2λky(k1 − λky)(Eλ − V3 + ∆3)− vF1vF3(k1 − λky)(k3 + λky)Eλ

]−1

is a function of k2 as well. Equation (32) must be solved for k2, and then the energy Eλ is
found.

In the case of an asymmetric QW, the dependence of (32) on λ gives rise to pseudospin
splitting as the extrema of the dispersion curves shift away from Brillouin-zone corners. The
dispersion relation predicts that Eλ(ky) 6= E−λ(ky), and an energy splitting appears near the
conduction-band bottom at ky = k∗ye:

δEe
s = |Ee

−1(k
∗
ye)− Ee

+1(k
∗
ye)|.

A similar energy splitting appears near the valence-band top at ky = k∗ye:

δEh
s = |Eh

−1(k
∗
yh)− Eh

+1(k
∗
yh)|

Thus, a graphene nanoribbon becomes an indirect band-gap semiconductor analogous to
silicon and germanium, where an electron-hole plasma can exist [53]. In the case of a
symmetric QW (∆1 = ∆3, V1 = V3, vF1 = vF3) band structure is invariant under parity
and there is no pseudospin splitting [42].
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Figure 9. Energy spectra: (a) symmetric QW (no pseudospin splitting), with matching branches for λ = +1 and λ =
−1 (Eλ(ky) = E−λ(ky) = Eλ(−ky)); (b) asymmetric QW, with pseudospin splitting manifested by the “spread-out” in
quasimomentum between the extrema at k∗ye for electrons, shown for b− = 1, and at k∗yh for holes, shown for b+ = 1

(Eλ(ky) 6= E−λ(ky)).

4.2. Size quantization

Solving Eq. (32), we determine the size-quantized energies

Eλb∓ (ky) = ±vF2

√

k2
2b∓

(λky) + k2
y,

where b∓ = 1, 2, . . . labels electron (−) and hole (+) branches, respectively. The
size-quantized energy spectra for symmetric and asymmetric QW are shown schematically
in Fig. 9.

We now determine the carrier effective masses arising because of size quantization in the
graphene nanoribbon in a planar heterostructure. Note that the effective masses are invariant
under parity regardless of pseudospin splitting. Hereinafter, we omit indices b∓, restricting
ourselves to a particular branch of the electron spectrum and a particular branch of the hole
spectrum.

We write the dispersion law for electrons near an extremum at λk∗ye as

Ee
λ
≈ Ee

0 +
1

2m∗
e

(

ky − λk∗ye

)2
,

m∗
e =

1

vF2

√

k2
20e + k∗2

ye

1 + k′220e + k20ek′′20e

,

(33)

where the respective values k20e, k′20e, k′′20e of k2e(ky) and its first and second derivatives at

ky = λk∗ye are independent of λ; Ee
0 = vF2

√

k2
20e + k∗2

ye is the energy at the extremum.
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Figure 10. Electron (curves 1) and hole (curves 2) effective masses in the graphene nanoribbon (in units of free-electron
mass m0) as functions of V1 for V3 = 0 (a) and as functions of V3 for V1 = 0 (b).

Analogous expressions are obtained for hole energies:

Eh
λ
≈ Eh

0 +
1

2m∗
h

(

ky − λk∗yh

)2
,

m∗
h =

1

vF2

√

k2
20h + k∗2

ye

1 + k′220h + k20ek′′20h

,

(34)

where the respective values k20h, k′20h, k′′20h of k2h(ky) and its first and second derivatives at

ky = −λk∗yh; Eh
0 = −vF2

√

k2
20h + k∗2

yh.

To estimate characteristic values, we consider the planar heterostructure combining a gapless
nanoribbon with gapped graphene sheets with ∆1 = 0.75 eV, vF1 = 1.1vF2, ∆3 = 1 eV, and
vF3 = 1.2vF2. The nanoribbon width is d = 2.46 nm (ten hexagonal cells). Since the unknown
values of V1 and V3 can be found by comparing our results with experimental data, we seek
the dependence of energy spectrum parameters on V1 and V3. Note that |V1| ≤ ∆1 and
|V3| ≤ ∆3 to ensure that the heterostructure is type I.

Figures 10–13 show the results of numerical calculations of electron and hole effective
masses in the graphe-ne nanoribbon, extremum energies, k∗xe and k∗xh values, and pseudospin

splitting δEe,h
s plotted versus work function for one of the gapped graphene sheets given that

the work function for the other is zero.

It is clear from Fig. 13 that the pseudospin splitting energy may amount to approximately 10
meV. To obtain a larger pseudospin splitting, QW must be more asymmetric. Both V1 and V3

can be varied by shifting the valley energies in gapped graphene under applied stress, with
potential barriers playing the role of bandgaps in the gapped graphene sheets. An analogous
effect is achieved by applying an electric field on the order of 106 V/cm perpendicular to the
interfaces in the graphene plane [33].

As expected, the energy spectrum is symmetric under the change E → −E when V1 and
V3 = 0; i.e., the electron and hole spectra have equal effective masses, extremum energies,
extremum positions, and pseudospin splitting energies. The electron and hole effective
masses in graphene are smaller than those in the gapped graphene sheets adjoining the
gapless graphene nanoribbon (m∗

1 = ∆1/v2
F1 ≈ 0.11m0 and m∗

3 = ∆3/v2
F3 ≈ 0.15m0).
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Figure 11. Electron (curves 1) and hole (curves 2) extremum energies and in the size-quantization spectra as functions

of V1 for V3 = 0 (a) and as functions of V3 for V1 = 0 (b). The effective bandgap E
e f f
g = Ee

0 +
∣

∣Eh
0

∣

∣ ≈ 629 meV varies
insignificantly.

Figure 12. Extremum points of size-quantization branches for electrons (k∗y = k∗ye , curves 1) and holes (k∗y = k∗yh , curves

2) as functions V1 for V3 = 0 (a) and as functions of V3 for V1 = 0 (b). Inserts show the relative positions of dispersion
curves for V1 = V3 = 0 (a) and at k∗ye = k∗yh (b); K and K′ points are set at the same position for simplicity.

Figure 13. Pseudospin splitting in electron (curves 1) and hole (curves 2) spectra, δEe
s and δEh

s , as functions V1 for V3 =

0 (a) and as functions of V3 for V1 = 0 (b). Vanishing δEe,h
s corresponds to vanishing k∗ye,h in Fig. 8, as shown in inserts

to (a). Inserts to (b) show positions of dispersion curves when k∗ye and k∗yh coincide.

4.3. Interface states

We consider interface states of a new type that arise in a narrow quasimomentum
interval from the crossing of dispersion curves and are analogous to those in narrow-gap
semiconductor heterostructures [44]. In the planar graphene-based heterostructure examined
here, these states are localized near the heterojunction interfaces between the nanoribbon and
the gapped graphene sheets. Interface states can exist not only in QWs but also in quantum

Planar Heterostructures Based on Graphene 199



✷✷ ●r❛♣❤❡♥❡ ✲ ◆❡✇ ❚r❡♥❞s ❛♥❞ ❉❡✈❡❧♦♣♠❡♥ts

barriers [10]. Note that interface states arise as well from the crossing of dispersion curves in
a single heterojunction between different graphene materials [42].

The wave function describing an interface electronic state is expressed as follows.

1. At x < 0,

ψ̃λ(x) = C̃

(
1
q̃1

)
eκ1x, (35)

where

q̃1 = −i
u1(κ1 − λky)

Eλ − V1 + ∆1
,

vF1κ1 =
√

∆2
1 − (Eλ − V1)2 + v2

F1k2
y.

2. At 0 < x < d,

ψ̃λ(x) = C̃

(
κ̃−

q̃2κ̃−

)
e−κ2x + C̃

(
κ̃+

q̃′2κ̃+

)
eκ2x, (36)

where

κ̃± =
1

2

√
vF1

vF2

[
1 ±

λky

κ2
±

vF1(κ1 − λky)Eλ

vF2κ2(Eλ − V1 + ∆1)

]
,

q̃2 = i
vF2(κ2 + λky)

Eλ
, q̃′2 = −i

vF2(κ2 − λky)

Eλ
.

3. At x > d

ψ̃λ(x) = C̃

(
ζ̃

q̃3 ζ̃

)
e−κ3(x−d), (37)

where

ζ̃ =

√
vF1

vF3

[
ch(κ2d) +

(
λky

κ2
+

vF1(κ1 − λky)Eλ

vF2κ2(Eλ − V1 + ∆1)

)
sh(κ2d)

]

q̃3 = i
vF3(κ3 + λky)

Eλ − V3 + ∆3
,

vF3k3 =
√

∆2
3 − (Eλ − V3)2 + v2

F3k2
y.

The relation for energy of interface states is

Eλ = ±vF2

√
k2

y − κ2
2 , (38)
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with plus and minus corresponding to electrons and holes, respectively.

The expression for energy in (38) implies that an interface state exists only if4

|κ2| < |ky|.

We obtain the dispersion relation

tanh(κ2d) = vF2κ2 f (λky; κ1, κ3, Eλ). (39)

which is similar to (32) up to the substitutions k1 → κ1, k2 → iκ2, and k3 → κ3.

When V1 = 0, the allowed quasimomenta for hole interface states (λ = −1) are similar to those
for electron states, but the hole and electron energies have opposite signs; i.e., the spectrum
is symmetric under the change Eλ → −Eλ. When V1 = 100 meV, the symmetry is broken and
hole interface states exist only at negative quasimomenta.

4.4. Excitons

In gapless graphene, the carrier effective mass is zero and excitons do not exist. The existence
of excitons in gapless graphene would lead to excitonic instability and excitonic insulator
transition to a gapped state [54, 55].

The energy gap arising in a graphene nanoribbon due to the size quantization makes it
possible to generate excitons by optical excitation or electron-hole injection. Excitons in QW
strongly affect optical properties of the system considered here.

Excitons in similar quasi-one-dimensional carbon-based systems (semiconducting single- and
multi-walled nanotubes) have been studied theoretically in [56]. The exciton spectrum is
calculated here for a planar graphene quantum well by using the model applied to quantum
wires in [57]. This model yields simple analytical expressions for exciton binding energy.

Since formulas (33) and (34) are obtained in the nonrelativistic limit, the two-particle exciton
wave function depending on the electron and hole coordinates y− and y+ in a sufficiently
narrow nanoribbon must obey the 1D Schrödinger equation with Coulomb potential:

(
−

1

2m∗
e

∂2

∂y2
−

−
1

2m∗
h

∂2

∂y2
+

−
ẽ2

|y− − y+|

)
φ(y−, y+) = E′φ(y−, y+), (40)

where E′ = E − E
e f f
g and ẽ2 ≡ e2/κe f f . The effective dielectric constant of graphene, κe f f =

(ε+ ε′)/2, may vary widely with the dielectric constants ε and ε′ of the media in contact with
graphene, such as free-space permittivity and substrate dielectric constant [58, 59].

4 The zero mode corresponding to |κ2| = |ky | (with Eλ = 0) is irrelevant here because ψ̃λ(x) ≡ 0.
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The electron-hole Coulomb interaction in a 1D graphene nanoribbon is three-dimensional,
but the problem can be reduced to one dimension (electron and hole y positions) for
sufficiently narrow nanoribbons.

Rewriting Eq. (40) in terms of electron-hole separation y = y− − y+ and center-of-mass
coordinate

Y =
m∗

e y− + m∗
hy+

m∗
e + m∗

h

and introducing the function

φ(y−, y+) = ψn(y)e
iKY ,

where K is the total exciton momentum, we obtain

(
−

1

2µ∗

∂2

∂y2
−

ẽ2

|y|

)
ψn(y) = Enψn(y), (41)

where µ∗ = m∗
e m∗

h/(m∗
e + m∗

h) is the reduced mass and En is the energy of the nth exciton
level (n = 0, 1, 2, . . . is the principal quantum number). The total exciton energy E′ is obtained
by adding the total kinetic energy of the electron-hole pair to En:

E′ = En +
K2

2(m∗
e + m∗

h)
.

To find the solution at y > 0, we substitute ψn(y) represented as

ψn(y) = Bn exp (−y/an) Fn

(
2y

an

)
.

into Eq. (41) and obtain the confluent hypergeometric differential equation

ξF′′
n − ξF′

n + ηFn = 0, (42)

where ξ =
2y
an

and η = µ∗ ẽ2an. We also have

En = −
1

2µ∗a2
n

. (43)

Equation (42) with η = n is solved by the associated Laguerre polynomial

Fn(ξ) =
1

n!
ξeξ dn

dξn

(
ξn−1e−ξ

)
≡ L−1

n (ξ).

Graphene - New Trends and Developments202



P❧❛♥❛r ❍❡t❡r♦str✉❝t✉r❡s ❇❛s❡❞ ♦♥ ●r❛♣❤❡♥❡ ✷✺

✶✵✳✺✼✼✷✴✻✶✸✼✹

and the wavefunction is expressed as

ψn(y) = Bn exp (−y/an) L−1
n

(
2y

an

)
.

Analogously, we find the solution to Eq. (41) at y < 0:

ψn(y) = ±Bn exp (y/an) L−1
n

(
−2y

an

)
,

where “+” and “−” are taken for n = 0 and n 6= 0, respectively, and the continuity of ψn(y)
and its first derivative ψ′

n(y) are used as boundary conditions. Since ψn(0) = 0 and ψ′(0) 6= 0
for n 6= 0, the excited-state wavefunction ψn(y) is odd (otherwise, it would be discontinuous
at the origin), whereas the ground-state wavefunction is even.

The normalization condition

∞∫

−∞

|ψn(y)|2dy = 1

is used to determine the coefficient Bn in the expression for ψn(y):

Bn =


an

∞∫

0

(L−1
n (ξ))2e−ξ dξ



−1/2

and Bn = 1/
√

2an for n = 1, 2, . . . and B0 = 1/
√

a0 for n = 0. Here,

an =
n

µ∗ ẽ2
(44)

(n = 1, 2 . . .) is the Bohr radius of an exciton in the nth excited state. Combining (43) with
(44), we find the exciton energy spectrum:

En = −µ∗ ẽ4

2n2
. (45)

The 1D ground-state (n = 0) Coulomb energy exhibits a logarithmic divergence at short
distances [60]. Therefore, the lateral spread of the exciton wave function (along the x axis)
due to the three-dimensional nature of Coulomb interaction should be taken into account by
introducing a cutoff parameter d0 . d. Averaging the kinetic energy operator
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T̂ = − 1

2µ∗
∂2

∂y2

and the potential

V(y) = − ẽ2

|y| θ (|y| − d0)

over ground-state wave functions

ψ0(y) =
1√
a0

e−|y|/a0 , (46)

where the ground-state Bohr radius a0 plays the role of a variational parameter, we express
the ground-state exciton energy as [42]

E0 =
1

2µ∗a2
0

− 2ẽ2

a0
ln

a0

d
. (47)

Minimizing (47) with respect to a0, we obtain an equation for a0:

a0 =
a1

2
(
ln a0

d − 1
) . (48)

To logarithmic accuracy, when

ln
a1

d
≫ 1, (49)

we find the relations

E0 = 4E1 ln2 a1

d
, (50)

a0 =
a1

2 ln a1
d

. (51)

Using (48), we easily obtain the next-order correction to E0:

δE
(1)
0 = −8E1 ln

a1

d
ln

(
2 ln

a1

d

)
.

We now examine the applicability of the formulas derived here. The semiconducting state
induced in a graphene nanoribbon is stable with respect to spontaneous electron-hole pair
creation (excitonic insulator transition) only if the exciton binding energy |E0| is smaller than
the effective bandgap in the graphene nanoribbon,
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|E0| < E
e f f
g .

Furthermore, the quantum well width d must be much smaller than the exciton Bohr radius
a1,

d ≪ a1.

Logarithmically accurate formula (50) is correct only if condition (49) holds. However, the
asymmetric QW analyzed here to examine pseudospin effects may not admit even a single
size-quantization level if the graphene nanoribbon width d is too narrow. As d decreases,
the effective bandgap increases, approaching ∆+ + ∆−, where ∆± = min{∆1 ± V1, ∆3 ± V3}
(with plus and minus corresponding to electrons and holes, respectively). When a certain dc

is reached, the size-quantization levels are pushed into the continuum. This imposes a lower
limit on d:

d > dc,

where dc can be estimated as [42]

dc ≃
πvF2

∆+ + ∆−
.

As d increases, condition (49) is violated. In this case, a more accurate variational calculation
should be performed using the modified three-dimensional Coulomb potential

Ṽ(y) = −
ẽ2

√
y2 + d2

0

,

where d0 is a cutoff parameter. We average the Hamiltonian with potential Ṽ(y) over trial
functions (46) to obtain

E0 =
1

2µ∗a2
0

−
2ẽ2

a0
I(ρ), (52)

where I(ρ) = π
2 [H0(ρ)− Y0(ρ)], Hν(ρ) is a Struve function, Yν(ρ) is a Bessel function of the

second kind, and ρ = 2d0/a0 (ν is 0 here and 1 below).

Minimizing (52) with respect to a0, we obtain an equation for a0:

2a0

a1
I(ρ) +

4d0

a1
J(ρ) = 1, (53)

where J(ρ) = 1 − π
2 [H1(ρ)− Y1(ρ)].

Figure 14 shows the numerical results obtained by using both methods to calculate E0(d) for
the heterostructure, with d0 ∝ d adjusted to match the curves at small d. Discrepancy at large
d increases as ln(a1/d) approaches unity.
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Figure 14. Exciton ground-state energy calculated by formula (50) (curve 1) and by formula (52) after Eq. (53) is solved
numerically for a0 (curve 2), d0 = 0.22d.

4.5. Electric field effect on excitons levels

Interaction between an exciton and an external electrostatic field E is described by the
operator

Ĥi = −dE = |ẽ|(Exx + Eyy)

where x = |x− − x+| and y = |y− − y+| are the electron-hole relative position vector
components and d is dipole moment. The electric field is supposed to be weak enough
to ensure that the energy level shift is not only smaller than the spacing between
size-quantization levels but also smaller than the spacing between exciton levels. These
conditions can be written as

d ≪ a1 ≪ aE ,

where aE = (µ∗|ẽ|E)−1/3 is the electric length.

We consider two cases: (1) the electric field is applied parallel to the x axis and perpendicular
to the nanoribbon edges in the graphene plane; (2) the electric field is applied along the y
axis, parallel to the nanoribbon edges.

In the former case, the energy shift varies linearly with the difference between the average x
components of the electron and hole position vectors:

E
(1)
⊥λλ′ = |ẽ|E (〈x−〉λ − 〈x+〉λ′ ) , (54)

where average x components are calculated by using electron and hole single-particle wave
functions, generally depending on the electron and hole eigenvalues λ and λ′ of the operator

P̂, respectively. Exciton energy shift (54) is independent of the principal quantum number n.
It may vary with λ and λ′, resulting in different exciton binding energies (more precisely, the
binding energy of an electron–hole pair with λ = ±1 and λ′ = ±1 may have four different
values).

In the latter case, the first-order electric field-induced correction is zero5,

5 Note that E
(1)
⊥n ≡ 0 in the former case if the electron and hole spectra transform into each other under field inversion.
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E
(1)
‖n

= |ẽ|E〈y〉n ≡ 0, (55)

because the integral of y|ψn(y)|2 with respect to y vanishes. To evaluate the second-order
electric field-induced correction, we make use of the Dalgarno–Lewis perturbation theory
[61]. Defining a Hermitian operator such that

[F̂, Ĥ0]|n〉 = Ĥi|n〉, (56)

where

Ĥ0 = −
1

2µ∗

∂2

∂y2
−

ẽ2

|y|

is the zeroth-order Hamiltonian, |n〉 = ψn(y) is the zeroth-order wave function of the nth
exciton level, and Ĥi = |ẽ|Ey, we obtain

E
(2)
‖n

= 〈n|Ĥi F̂|n〉 − 〈n|Ĥi|n〉〈n|F̂|n〉. (57)

In the case in question, the second term in this formula vanishes by virtue of (55).

Rewriting Eq. (56) as

ψn
∂2 F̂

∂y2
+ 2

∂ψn

∂y

∂F̂

∂y
= 2µ∗Ĥiψn, (58)

we find

F̂(y) = 2µ∗

y∫

−∞

dy′

|ψn(y′)|2

y′∫

−∞

dy′′ψ∗
n(y

′′)Ĥiψn(y
′′). (59)

Combining (57) with (59), we have the exciton ground-state energy shift [42]

E
(2)
‖0

= −
5

128

a3
1

ln4 a1
d

E2, (60)

which is very small compared to E0 given by (50) because of the fourth power of a logarithm
in the denominator and a small numerical factor.

For comparison, we write out the energy correction to the first excited exciton state [42]

E
(2)
‖1

= −
3

8
(31 − 6γ)a3

1E
2,
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where γ = 0.577. . . is Euler’s constant.

By analogy with layered heterostructures [62], the ionizing (exciton-breaking) field strength
Ec is estimated as

Ec =
|E0|

8|ẽ|〈|y|〉0
, (61)

where 〈|y|〉0 = a0/2 is the average electron-hole separation for the ground-state exciton. To
logarithmic accuracy, it follows that [42]

Ec = µ∗2|ẽ|5 ln3 a1

d
. (62)

To get the order of magnitude of Ec, consider QW discussed abode. Setting m∗
e = m∗

h ≈
0.0056m0, the SiO2 substrate dielectric constant κe f f ≈ 5, d = 2.46 nm, and a1 ≈ 81 nm, we
use formula (62) to obtain Ec = 9 kV/cm.

4.6. The effective theory

4.6.1. The effective Hamiltonian

According to the expressions (33) and (34) we have the approximations for dispersion curves
of electrons and holes respectively

Ee
λ ≈ Ee

0 +
1

2m∗
e

(
ky − λk∗ye

)2
=

k2
y

2m∗
e
− λαeky + ∆e ≡ Ẽe

λ,

Eh
λ ≈ Eh

0 −
1

2m∗
h

(
ky + λk∗yh

)2
= −

k2
y

2m∗
h

− λαhky + ∆h ≡ Ẽh
λ,

(63)

where the following notations are introduced

αe,h =
k∗ye,h

m∗
e,h

, ∆e,h = ±
k∗2

ye,h

2m∗
e,h

+ Ee,h
0

(in the latter formula plus corresponds to the case of electrons, minus for the case of holes).

We can write the effective Hamiltonians in the form including explicitly the parity λ

Ĥ
(λ)e
e f f =

p̂2
y

2m∗
e
− λαe p̂y + ∆e,

Ĥ
(λ)h
e f f =

p̂2
y

2m∗
h

− λαh p̂y + ∆h.

(64)
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We can also combine the Hamiltonians Ĥ
(+1)e
e f f and Ĥ

(−1)e
e f f into one 2×2 matrix Hamiltonian

(analogously for Ĥ
(+1)h
e f f and Ĥ

(−1)h
e f f )

Ĥe
e f f =

p̂2
y

2m∗
e
− αeτz p̂y + ∆e,

Ĥh
e f f =

p̂2
y

2m∗
h

− αhτz p̂y + ∆h.

(65)

Here we emphasize by using the matrix τz that these Hamiltonians act in the valley space.

The eigen wave functions of these Hamiltonians Ψ̃
e
λ and Ψ̃

h
λ,

Ĥe
e f f Ψ̃

e
λ = Ẽe

λΨ̃
e
λ and Ĥh

e f f Ψ̃
h
λ = Ẽh

λΨ̃
h
λ,

are spinors in a class of eigen functions of the operator P̂ = τz which can be considered as a
“reduced” parity operator:

P̂Ψ̃
e,h
λ = λΨ̃

e,h
λ ,

Ψ̃
e,h
+1 =

(
ψ̃e,h
+1
0

)
, Ψ̃

e,h
−1 =

(
0

ψ̃e,h
−1

)
.

(66)

(Remember that the parity operator P̂ = τz ⊗ σ0 where the matrix σ0 acts in the sublattice
space.)

We can also see that the second term in (65) is an analogue of spin-orbit (SO) coupling in the
Rashba form:

Ĥe,h
SO = αe,h [τ p̂] · ν, (67)

where τ =
(
τx, τy, τz

)
is the matrix vector in the valley space (τ is the pseudospin operator),

p̂ =
(

p̂x, p̂y, 0
)

is the vector operator of momentum in the xy-plane, and ν is the unit vector
of the normal to the heterojunction interface (in the coordinate system used here, ν = ex is
the unit coordinate vector of the x axis). The constants αe,h can be named as the effective
Rashba constants.

So, we have the effective theory with the non-relativistic Hamiltonian with the SO-like term
describing the pseudospin splitting of the energy spectrum of charge carriers. An appearance
of this term is due to an asymmetry of a QW potential profile. In an absence of the asymmetry
in the case of the symmetrical QW, the effective Rashba constants αe,h tend to zero for both
electrons and holes and there is no the pseudospin splitting in its energy spectra.
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4.6.2. The effective Hamiltonian in a presence of a magnetic field

Let us set a problem about a quantization of a charge carriers energy in the planar
heterostructure based on graphene in a magnetic field applied perpendicular to its plane.
To begin with, we make some remarks.

Firstly, to separate the size quantization and the magnetic field quantization, we assume that
a magnetic field H is enough weak one. Its condition can be expressed as the following
inequality

aH ≫ d, (68)

where

aH =

√
c

|e|H

is the magnetic length, i.e. a restriction of the wave function along the y axis due to a
magnetic field is significantly smaller than its restriction along the x axis (perpendicular to
the potential barriers). A complexity of the problem consists in an absence of the usual
Landau quantization whereas we have it in layered heterostructures at an application of a
magnetic field perpendicular to layers (in this case problems about the size quantization and
the magnetic field quantization are automatically separated).

Secondly, a vector potential A must be chosen so that decreasing wave function Ψ̃
e,h
λ
(x, y)

in the direction of the y axis is taken into account in an explicit form. The equation for

Ψ̃
e,h
λ
(x, y) in a presence the of a magnetic field must include a y coordinate. From general

considerations, it is clear that Ψ̃
e,h
λ
(x, y) must decrease along the y axis on the scale of aH

(see the schematic picture on Fig. 15).

An appropriate choice of the vector potential is

A = (−Hy, 0, 0) .

To have an opportunity to make the minimal substitution, the effective equation for Ψ̃
e,h
λ
(x, y)

must explicitly contain the momentum operator p̂x. However, this operator was excluded
from the effective Hamiltonian without a magnetic field (65). This circumstance makes us
detach in the effective equation an artificial term corresponding to the “size-quantization

energy” Ee,h
0 so that

p̂2
x

2m∗
e,h

Ψ̃
e,h
λ
(x, y) = Ee,h

0 Ψ̃
e,h
λ
(x, y).

Moreover, we propose to use an approximate expression

Ee,h
0 = ±

k∗2
xe,h

2m∗
e,h

,
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Figure 15. A behavior of the envelope wave function Ψ̃
e,h
λ
(x, y) of charge carriers in the planar heterostructure in a

presence of a magnetic field applied perpendicular to its plane.

where k∗xe and k∗xh are the size-quantized values of kx as eigen values of the operator p̂x for
electrons and holes near the extrema ky = λk∗ye and ky = −λk∗yh, respectively.

So, we have in a presence of a magnetic field

Ĥ′e
e f f =

1

2m∗
e

(
k∗xe +

e

c
Hy

)2
+

1

2m∗
e

p̂2
y + Ĥe

SO + ∆̃e,

Ĥ′h
e f f =

1

2m∗
h

(
k∗xh +

e

c
Hy

)2
+

1

2m∗
h

p̂2
y + Ĥh

SO + ∆̃h,

(69)

with

∆̃e,h = ±
k∗2

ye,h

2m∗
e,h

.

We can introduce operators of a generalized momentum in a magnetic field

P̂e,h
x = k∗xe,h −

e

c
Ax,

P̂e,h
y = p̂y −

e

c
Ay.

(70)

The operators P̂e,h
x are c-numbers, whereas the operators P̂e,h

y coincide with the differential
operator p̂y = −i∂y in the determined above vector potential A. The commutation relation
for these operators is

[
P̂e,h

x , P̂e,h
y

]
=

ie

c
H. (71)
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We can also consider the combinations of these operators

P̂e,h
± = P̂e,h

x ± iP̂e,h
y (72)

with the commutation relation

[
P̂e,h
− , P̂e,h

+

]
= −2e

c
H. (73)

Following the Rashba’s paper [63] we can introduce the annihilation and creation operators:

for electrons as

âe =

√
c

2|e|H P̂e
−, â†

e =

√
c

2|e|H P̂e
+,

for holes as

âh =

√
c

2|e|H P̂e
+, â†

h =

√
c

2|e|H P̂h
−

with the Bose commutation relation

[
âe,h, â†

e,h

]
= 1.

The effective Hamiltonians rewritten in the second-quantized representation are

Ĥ′′e
e f f = ω∗e

c

(
â†

e âe +
1

2

)
− i√

2

αe

aH
τz

(
âe − â†

e

)
+ ∆̃e,

Ĥ′′h
e f f = ω∗h

c

(
â†

e âe +
1

2

)
+

i√
2

αh

aH
τz

(
âh − â†

h

)
+ ∆̃h,

(74)

where ω∗e,h
c =

|e|H
m∗

e,hc are the cyclotron frequencies.

Let us solve the equation for Ψ̃
e,h
λ with the Hamiltonians (74) in the class of eigen functions

of the operator P̂ . The matrix τz should be replaced by corresponding eigen value λ in the

equations for the components of Ψ̃
e,h
λ . After a nondimensionalization, these equations are

written as

[
â†

e âe +
1

2
− iλδe

SO

(
âe − â†

e

)]
ψ̃e

λ = ǫe
λψ̃e

λ,

[
â†

h âh +
1

2
+ iλδh

SO

(
âh − â†

h

)]
ψ̃h

λ = ǫh
λψ̃h

λ,

(75)
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where δe,h
SO =

αe,h√
2aH ω∗e,h

c
=

1√
2

aHk∗ye,h and ±ǫe,h
λ =

Ẽe,h
λ −∆̃e,h

ω∗e,h
c

, ǫe,h
λ > 0 and plus corresponds to

electrons (its energy Ẽe
= ∆̃e + ω∗e

c ǫe
λ has positive values), minus corresponds to holes (its

energy Ẽh
= ∆̃h − ω∗h

c ǫh
λ has negative values).

Now we make an expansion of ψ̃e,h
λ by the oscillator function basis ψn

ψ̃e,h
λ =

∞

∑
n=0

ae,h
λnψn. (76)

We have also the normalization condition in the form of the integral

∞∫

−∞

∣∣∣ψ̃e,h
λ

∣∣∣
2

dy = 1

or in the form of the series

∞

∑
n=0

∣∣∣ae,h
λn

∣∣∣
2
= 1. (77)

Taking into account the relations

âe,hψn =
√

nψn−1,

â†
e,hψn =

√
n + 1ψn+1,

we obtain two infinite systems of equations for coefficients ae
λn and ah

λn





1

2
ae

λ0 − iλδe
SOae

λ1 = ǫe
λae

λ0,

3

2
ae

λ1 − iλ
√

2δe
SOae

λ2 + iλδe
SOae

λ0 = ǫe
λae

λ1,

5

2
ae

λ2 − iλ
√

3δe
SOae

λ3 + iλ
√

2δe
SOae

λ1 = ǫe
λae

λ2,

.............................................................................................
(

n +
1

2

)
ae

λn − iλ
√

n + 1δe
SOae

λn+1 + iλ
√

nδe
SOae

λn−1 = ǫe
λae

λn,

.............................................................................................

(78)
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



1

2
ah

λ0 + iλδh
SOah

λ1 = ǫh
λah

λ0,

3

2
ah

λ1 + iλ
√

2δh
SOah

λ2 − iλδh
SOah

λ0 = ǫh
λah

λ1,

5

2
ae

λ2 + iλ
√

3δh
SOah

λ3 − iλ
√

2δh
SOah

λ1 = ǫh
λah

λ2,

.............................................................................................
(

n +
1

2

)
ah

λn + iλ
√

n + 1δh
SOah

λn+1 − iλ
√

nδh
SOah

λn−1 = ǫh
λah

λn,

.............................................................................................

(79)

On the other hand, it is clear from the physical considerations that the energy spectrum of
charge carriers should be independent on the quasimomentum shift. Here, this shift equals
to the position of the dispersion curve extrema ky = ±k∗ye for electrons and ky = ±k∗yh for

holes. The Landau levels spectrum in (quasi)one-dimensional system should also be the
same as it in the case when we choose the dispersion curve extrema as the point of reference
for quasimomentum:

ǫe,h
λ = n +

1

2
. (80)

The systems of equations for coefficients ae
λn (78) and ah

λn (79) are the recurrence relations for

a calculation of these coefficients. So, the dependence on the parameters δe
SO and δh

SO in the

problem appears only in the wave function ψ̃e,h
λ .

Lastly, our remark concerns a matter about a convergence of the series (77). Each term |ae,h
λn|2

contains a summand ∼ 1/(δe,h
SO)

2n, therefore it is necessary δe,h
SO > 1. This inequality should

be valid due to the condition (68) because k∗ye,h ≃ 1/d for QW with enough strong asymmetry.

4.7. Possible experiments on the heterostructure

Pseudospin splitting can be observed by means of Raman spectroscopy. The D′ peak of
interest for the present study (alternatively called 2D peak to emphasize that it is due
to a two-phonon-assisted process) is located at 2700 cm−1 [66]. It arises from intervalley

scattering involving phonons with wavenumbers q > K, where K = 4π/3
√

3a ≈ 1.7 × 108

cm−1 is the spacing between adjacent K and K′ points. One process of this kind is indicated
as A → B → C → D → A in Fig. 16.

Pseudospin splitting enables intervalley scattering involving phonons with q′ ≈ q ∓ ∆k (with
plus for electrons and minus for holes), where ∆k = 2k∗ye and ∆k = 2k∗yh in electron and hole

scattering, respectively. These processes contribute to a peak blueshifted from D′ by ∆ω
(+)
R

and a peak redshifted from D′ by ∆ω
(−)
R , giving rise to a doublet structure of the D′ peak.

Graphene - New Trends and Developments214



P❧❛♥❛r ❍❡t❡r♦str✉❝t✉r❡s ❇❛s❡❞ ♦♥ ●r❛♣❤❡♥❡ ✸✼

✶✵✳✺✼✼✷✴✻✶✸✼✹

Figure 16. Possible double resonant Raman processes involving electron scattering between valleys. To simplify
presentation, analogous processes involving hole scattering between valleys are not shown.

An estimate for ∆ωR can be obtained by using optical phonon dispersion ωph(q). The Raman
shift is twice the optical phonon frequency:

δωR(q) = 2ωph(q).

The change in the Raman shift caused by pseudospin splitting is

∆ω
(±)
R ≈ |δωR(∆K ∓ ∆k)− δωR(∆K)|,

which amounts to ∆ωR ≈ 24 cm−1 for characteristic values of the heterostructure parameters.
This value essentially exceeds the Raman spectral resolution of 1 cm−1 [67] and compares to
the D′ peak width for gapless graphene, Γ0 = 30 cm−1 [68, 69].

Note that a blue shift of the D′ peak has also been observed in the Raman spectrum of
epitaxial graphene on a SiC substrate [67]. This effect is attributed to the strain induced by
the substrate in quasi-free graphene since the SiC lattice constant exceeds substantially that
of graphene.

Raman scattering contributions from gapped graphene sheets can be avoided either by using
a laser beam whose width is smaller than that of the gapless graphene nanoribbon (d . 10
nm) or by pumping at a frequency ω such that the beam cannot be absorbed by gapped
graphene materials,

E
e f f
g + 2ωph < ω < min{2∆1, 2∆3}

The positions of the luminescence lines corresponding to exciton levels can be determined
from optical experiments and compared to theoretical predictions. The splitting of exciton
lines in an electric field applied in the plane of the heterostructure along the normal to its
boundaries is evaluated by using formula (54).
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Finally, interface states can manifest themselves in the I-V curve of the planar heterostructure
carrying a current parallel to the gapless graphene nanoribbon. An increase in
applied electric field may cause charge carriers to “drop” into interface states (preferable
energy-wise), giving rise to a region of negative differential conductivity in the I-V curve.

4.8. Some intermediate conclusions

Before proceeding to the next section, let us recall some results obtained in this section. We
think that it is important for understanding the next results.

We have analyzed the characteristics of planar graphene nanostructures. On the one hand,
they retain the unique properties of infinite graphene sheets. On the other hand, bandgap
opening makes them important building blocks in carbon-based nanoelectronics, which can
be used to control electron motion. Parameters of graphene QWs can easily be manipulated
by varying the gapless nanoribbon width or the potential barriers in the adjoining gapped
graphene sheets.

We predict pseudospin splitting to occur in asymmetric graphene QWs and interface states
to arise from the crossing of dispersion curves of gapless and gapped graphene materials.
We have performed calculations of optical properties of planar graphene nanostructures and
suggested possible experiments to study the effects in question.

Analysis of pseudospin (valley) characteristics in the heterostructure is simplified by using an
effective Hamiltonian having a pseudospin-split energy spectrum. Note that an analogous
spectrum was discussed in [63–65]. Therefore, the effective Hamiltonian must contain a
Rashba-like spin-orbit coupling. We have developed the effective theory for describing
graphene-based systems with the pseudospin splitting.

5. Planar graphene superlattices

5.1. Superlattice based on graphene on a strip substrate

5.1.1. Some remarks

Interest in graphene-based superlattices (SL) has increased in recent years. Calculations of
graphene-based SL with periodic rows of vacancies were performed using the molecular
dynamics method [70]. Calculations of single-atom-thick SL formed by lines of pairs of
adsorbed hydrogen atoms on graphene were carried out with the density functional theory
[71].

Rippled graphene that can be treated as a SL with the one-dimensional periodic potential
of ripples was investigated in [72–74]. SL obtained when a periodic electrostatic potential
[75–78] or periodically located magnetic barriers [79–82] were applied to graphene were
analytically examined.

However, the investigation of the graphene-based SL with a periodic electrostatic
potential disregarded the fact that the application of the electrostatic potential to a
gapless semiconductor (graphene) results in the production of electron-hole pairs and the
redistribution of charges: electrons move from the region where the top of the valence
band lies above the Fermi level to the region where the bottom of the conduction band lies
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Figure 17. Graphene on the strip substrate consisting of alternating SiO2 and h-BN strips.

below the Fermi level. The SL becomes a structure consisting of positively charged regions,
where the electrostatic potential displacing the Dirac points upward in energy is applied,
alternating with negatively charged regions. The strong electrostatic potential of induced
charges appears and strongly distorts the initial step electrostatic potential and, therefore,
the electronic structure of SL calculated disregarding the electrostatic potential of induced
charges.

To avoid the production of electron-hole pairs, SL appearing due to the periodic modulation
of the band gap is considered.

SL in the form of the periodic planar heterostructure of graphene nanoribbons between which
nanoribbons of h-BN are inserted was previously proposed in [83]. The band structure
of such SL was numerically calculated. However, it is very difficult to implement this SL
even using the advances of modern lithography, because problems inevitably arise with the
control of periodicity in the process of the etching of nanoribbons in a graphene sheet and the
insertion of h-BN nanoribbons. Moreover, h-BN is an insulator with a band gap of 5.97 eV,
which significantly hinders the tunneling of carriers between graphene nanoribbons. Such
a heterostructure is most probably a set of QWs where the wavefunctions of carriers from
neighboring QWs almost do not overlap.

Here, SL formed by a graphene sheet deposited on a strip substrate is proposed. The strip
substrate is made of periodically alternating strips of SiO2 (or any other material that does
not affect the band structure of graphene) and h-BN, as shown in Fig. 17. The h-BN layers are
located so that its hexagonal crystal lattice is under the hexagonal crystal lattice of graphene.
Owing to this location, a band gap of 53 meV appears in the band structure of graphene in
the graphene-sheet regions under the h-BN layers [37, 84].

It is assumed that all of the contacts between the regions of different band gaps are first-kind
contacts (Dirac points of graphene are located in the band gaps of the gap modification of
graphene). Such SL is a first-type SL (classification of SL can be found, e.g., in [85]).

The main advantage of the proposed SL is the simplicity of the manufacture and control
of its periodicity. It is worth noting that some problems can arise in SL. The difference
between the lattice constants of h-BN and graphene is about 2% [37]. If about 100 hexagonal
graphene cells are packed into one period of the superlattice, the formation of the band
gap in the gap modification of graphene in the graphene sheet regions above h-BN is
violated owing to the inaccurate arrangement of carbon atoms above boron or nitrogen
atoms. Since contacts between graphene and its gap modification are not heterocontacts
(contacts between substances with different chemical compositions), the edges of quantum
wells can be insufficiently sharp and QWs cannot be considered as square QWs. A transient
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Figure 18. One-dimensional periodic Kronig-Penney potential of SL shown in Fig. 17: the periodically alternating gap
modification of graphene on h-BN with a band gap of 2∆0 = 53 meV and gapless graphene on SiO2.

layer with a spatially varying band gap can exist instead of the sharp edge. Finally, the
substrate can be stressed. The appearing periodic stress field of the substrate can also affect
the band structure of the proposed SL, but this effect is very small [86].

5.1.2. The model for describing SL

The x and y axes are perpendicular and parallel to the interfaces of h-BN and SiO2 strips,
respectively (see Fig. 16). SL is described by the Dirac equation

(vFσp̂ + ∆σz + V)Ψ(x y) = EΨ(x, y), (81)

where vF ≈ 108 cm/s is the Fermi velocity, σ = (σx, σy) and σz are the Pauli matrices, and
p̂ = −i∇ is the momentum operator (the system of units with h̄ = 1 is used). The half-width
of the band gap is periodically modulated:

∆ =

{
0, d(n − 1) < x < −dI I + dn,

∆0, −dI I + dn < x < dn,

where n is an integer enumerating the supercells of the superlattice; dI and dI I are the widths
of the SiO2 and h-BN strips, respectively; and d = dI + dI I are the period of the superlattice
(the size of the supercell along the x axis). The periodic scalar potential V can appear due
to the difference between the energy positions of the middle of the band gap of the gap
modification of graphene and conic points of the Brillouin zone of gapless graphene (see Fig.
18):

V =

{
0, d(n − 1) < x < −dI I + dn,

V0, −dI I + dn < x < dn.

In order for SL to be a first-type superlattice, the inequality |V0| ≤ 0 should be satisfied. The
solution of Eq. (81) for the first supercell has the form
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Ψ(x, y) = ψ1(x)eikyy, 0 < x < d.

For the nth supercell, in view of the periodicity of the superlattice,

ψn(x) = ψ1(x + (n − 1)d).

In the region of QW (0 < x < dI), the solution of Eq. (81) is a plane wave

ψ
(1)
n (x) = Nk1

(
a
(1)
n

b
(1)
n

)
eik1x + Nk1

(
c
(1)
n

d
(1)
n

)
e−ik1x, (82)

where Nk1
is the normalization factor. The substitution of Eq. (82) into Eq. (81) provides the

relation between the lower and upper spinor components

b
(1)
n = λ+a

(1)
n , d

(1)
n = −λ−c

(1)
n , λ± =

vF(k1 ± iky)

E
.

The relation of E with k1 and ky has the form

E = ±vF

√
k2

1 + k2
y.

It is convenient to represent Eq. (82) in a more compact form [76]

ψ
(1)
n (x) = Ωk1

(x)

(
a
(1)
n

c
(1)
n

)
,

Ωk1
(x) = Nk1

(
1 1

λ+ −λ−

)
eik1xσz .

(83)

When the inequality

∆
2
0 + v2

Fk2
y − (E − V0)

2 ≥ 0 (84)

is satisfied, the solution of Eq. (81) in the barrier region (dI < x < d) has the form

ψ
(2)
n (x) = Ωk2

(x)

(
a
(2)
n

c
(2)
n

)
,

Ωk2
(x) = Nk2

(
1 1

−λ̃− λ̃+

)
ek2xσz ,

(85)
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where

λ̃± =
ivF(k2 ± ky)

E + ∆0 − V0
, k2 =

1

vF

√
∆2

0 + v2
Fk2

y − (E − V0)2.

The solution of Eq. (81) in the barrier region under the condition

∆
2
0 + v2

Fk2
y − (E − V0)

2
< 0 (86)

is given by Eq. (85) with the change k2 → iκ2, i.e., it is oscillating.

The possibility of existing Tamm minibands formed by localized states near the interface
between graphene and its gap modification will be considered below. In this case, k1 → iκ1

k2 is real. A necessary condition for existing Tamm states has the form

|ky| ≥ |κ1|;

under this condition, the energy E = ±vF

√
k2

y −κ
2
1 is real.

5.1.3. The derivation of the dispersion relation

The dispersion relation is derived using the transfer matrix (T matrix) method. The T matrix
relates the spinor components for the nth supercell to the spinor components of the solution
of the same type for the (n + 1)th supercell. For example, for the solution in the quantum
well region,

(a
(1)
n+1

c
(1)
n+1

)
= T

(
a
(1)
n

c
(1)
n

)
. (87)

To determine the T matrix, the following conditions of the continuity of the solution of the
Dirac equation describing the considered superlattice are used:

ψ
(1)
n (dI − 0) = ψ

(2)
n (dI + 0),

ψ
(2)
n (d − 0) = ψ

(1)
n+1(+0).

These conditions provide the equalities

(
a
(2)
n

c
(2)
n

)
= Ω

−1
k2

(dI)Ωk1
(dI)

(
a
(1)
n

c
(1)
n

)
,

(a
(1)
n+1

c
(1)
n+1

)
= Ω

−1
k1

(0)Ωk2
(d)

(
a
(2)
n

c
(2)
n

)
.
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According to definition (87) of the T matrix and the last two equalities6,

T = Ω
−1
k1

(0)Ωk2
(d)Ω−1

k2
(dI)Ωk1

(dI). (88)

The substitution of Eqs. (84) and (85) with the corresponding arguments into Eq. (88) yields
the expressions

T11 = αe
ik1dI

[
(λ− + λ̃+)(λ+ + λ̃−)e

−k2dI I−

−(λ− − λ̃−)(λ+ − λ̃+)e
k2dI I

]
,

T12 = 2αe
−ik1dI (λ− + λ̃+)(λ− − λ̃−)sh(k2dI I),

T21 = T
∗
12, T22 = T

∗
11,

(89)

where

α =
1

(λ+ + λ−)(λ̃+ + λ̃−)
.

The last two relations in Eqs. (89) are the general properties of the T matrix.

The derivation of the dispersion relation with the use of the T matrix is briefly as follows.

Let N = L/d be the number of supercells in the entire SL, where L is the length of SL along
the x axis, i.e., the direction of the application of the periodic potential. The Born-Karman
cyclic boundary conditions for SL have the form

ψ
(1,2)
N

(x) = ψ
(1,2)
1 (x).

At the same time,

ψ
(1,2)
N

(x) = T
Nψ

(1,2)
1 (x),

from which, TN = I , where I is the 2 × 2 unit matrix.

It is convenient to diagonalize the T matrix by means of the transition matrix S:

Td = STS
−1 =

(
λ1 0
0 λ2

)
,

where λ1,2 are the eigenvalues of the T matrix and have the property λ2 = λ∗
1 . According to

TN

d
= I

λ1 = e
2πin/N , −N/2 < n ≤ N/2.

6 Note that the cyclic permutations of the factors of Ω matrices are possible in the definition of the T matrix; these
permutation do not change dispersion relation (90). This can be verified by comparing Eq. (88) with Eq. (23) in [76].
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In view of the property TrT = TrTd and in terms of the notation kx = 2πn/L (−π/d < kx ≤

π/d), the dispersion relation is obtained in the form

TrT = 2 cos(kxd). (90)

Taking into account the last relation in Eqs. (89), Eq. (90) can also be written in the form

ReT11 = cos(kxd).

Dispersion relation (90) under condition (84) gives the equation [86]

v2
Fk2

2 − v2
Fk2

1 + V2
0 − ∆

2
0

2v2
Fk1k2

sinh(k2dI I) sin(k1dI) + cosh(k2dI I) cos(k1dI) = cos(kxd). (91)

According to this equation, the passage to the single-band limit is performed by two methods:
first, V0 = ∆0 (QW only for electrons) and, second, V0 = −∆0 (QW only for holes). The result
of the passage coincides with the known nonrelativistic dispersion relation (see, e.g., [87]),
although the expressions for k1, k2, and E are different.

If inequality (86) is satisfied, the change k2 → iκ2 should be made in Eq. (91)

−v2
Fκ

2
2 − v2

Fk2
1 + V2

0 − ∆
2
0

2v2
Fk1κ2

sin(κ2dI I) sin(k1dI) + cos(κ2dI I) cos(k1dI) = cos(kxd). (92)

For Tamm minibands, the change k1 → iκ1 should be made in Eq. (91):

v2
Fk2

2 + v2
Fκ

2
1 + V2

0 − ∆
2
0

2v2
Fκ1k2

sinh(k2dI I) sinh(κ1dI) + cosh(k2dI I) cosh(κ1dI) = cos(kxd). (93)

Equation (93) has the solution only under the condition

v2
Fk2

2 + v2
Fκ

2
1 + V2

0 − ∆
2
0 < 0.

This condition can be rewritten as

v2
Fk2

y − E2
< −EV0. (94)
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At the same time, for Tamm minibands E2 = v2
Fk2

y − v2
Fκ

2
1 , i.e. the left-side of (94) is positive.

The allowed values of the energy should be negative if V0 > 0 and vice versa. It is not
difficult to show that the inequality (94) has the solutions when [88]

v2
Fk2

y <
∆

2
0(∆

2
0 − V2

0 )

V2
0

. (95)

Formally, this condition coincides with the condition of the intersection of the dispersion
curves for graphene and its gap modification [44].

5.1.4. The results of the numerical calculation

The numerical calculations of the dependence of the energy on kx were performed for two
values ky = 0 and 0.1 nm−1 at V0 = 0 (see Fig. 19). The energy of carriers is assumed to be
low, |E| . 1 eV, because the Dirac dispersion relation for carriers and, correspondingly, Dirac
equation (81) are invalid for high energies.

The electron minibands are separated from hole minibands by a band gap, which increases
with |ky|. For dI = dI I at ky = 0, it is Eg ≃ 10–30 meV when d=10–100 nm. In this case, the
solution of Eq. (91) is transformed to the solution of Eq. (92). The band gap can increase
strongly when dI I increases with respect to dI : Eg & 100 meV, i.e., is several times larger than
2∆0.

The width of the minibands decreases with an increase in the period of the superlattice d.
The dependence of the width of the minibands on V0 was also examined. The widths of the
electron and hole minibands increase and decrease, respectively, at V0 > 0 and vice versa at
V0 < 0.

5.1.5. The possible applications of SL

The described superlattice can be used as FET where the substrate serves as a gate. The
ratio of the current through the superlattice to the current through the gate at a substrate
thickness of about 10 nm can reach ∼ 106 as for FET based on graphene nanoribbons [11].
The main advantage of the considered superlattice is the absence of the effect of the scattering
of carriers on the edges of a nanoribbon on their mobility. The mobility of the carriers in
gapless graphene reaches µ0 = 2 × 105 cm2/(V s) [4, 5]. However, the mobility of carriers
in FET based on the graphene nanoribbon with a width of w ∼ 3 nm is three orders of
magnitude smaller than µ0. The cause of such a strong decrease is possibly the scattering
of carriers at the edges of graphene nanoribbons. The mean free path between two acts of
the scattering of carriers at the edge of the graphene nanoribbon λedge ∝ w/P, where P is
the probability of backscattering [11]. For sufficiently good edges, P≪1. The problem of
scattering on edges is absent for the proposed superlattice; for this reason, the mobility of
the carriers in the superlattice is expected to be ∼ µ0 in the absence of the problems with the
periodicity of the potential. At the same time, a sufficiently large Eg value, which provides
the operation of FET at room temperature, can be reached.

If an Au film is deposited on the lower side of the substrate and graphene is optically
pumped, the superlattice can be used as a terahertz laser similar to a terahertz laser based
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Figure 19. Numerically calculated dependence of the energy on kx for two ky values and two superlattice periods d.
The dispersion curves for the superlattices with dI = (solid lines) dI I , (dashed lines) dI I /2, and (dotted lines) 2dI I .

on gapless graphene [89]. In this case, terahertz radiation will be emitted from the regions of
the SiO2 substrate.

5.2. Superlattice based on gapless graphene with the alternating Fermi velocity

5.2.1. Preliminary remarks

Now, we suggest to consider SL based on gapless graphene with alternating regions
characterized by different values of the Fermi velocity [90]. In our case, the Fermi velocity
engineering is based on the usage of the surrounding graphene materials, which have different
values of permittivity [91]. It should be pointed out that the idea to control the Coulomb
interaction between charge carriers in graphene by the choice of substrate materials with the
necessary values of dc permittivity was first put forward in [92].

In such heterostructures, it is possible to achieve the energy quantization for charge carriers
even in the absence of potential barriers (regions with wider band gaps) and QWs (regions
with narrower band gaps), and even without any variations in the work function [25]. Note
that the Tamm minibands are absent here since the straight dispersion lines do not intersect
anywhere except for the Dirac point.

Such structure can be produced by the deposition of graphene on striped substrates
where either the composition parameter x in an alloy of SiO2−x, or the density of some
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Figure 20. Three variants of SL under study: (a) graphene sheet placed on a striped substrate consisting of alternating
layers of materials with substantially different values of the permittivity, e.g., SiO2 with ε = 3.9 (I) and HfO2 with
ε = 25 (II); (b) graphene sheet placed on the HfO2 substrate with periodically arranged grooves; and (c) graphene sheet
deposited on a periodic array of parallel metallic strips. A plate of heavily doped silicon n-Si is used as a gate.

(nonmagnetic) impurities, or dc permittivity ε exhibit periodic variations. Here, we treat in
detail the latter possibility.

According to the results of the theoretical [93–97] and experimental [91, 98–102] studies,
the Fermi velocity becomes substantially renormalized. To estimate the renormalized Fermi
velocity, we can use the relation [95]

vF

vF0
= 1 − 3.28α

∗

[
1 +

1

4
ln

(
1 +

1

4α
∗
− 1.45

)]
,

where α
∗ = ẽ2/h̄vF0 is the analog of the fine structure constant, vF0 is the initial

unrenormalized Fermi velocity (vF0 = 0.85 × 108 cm/s) [91, 101], ẽ2 = e2/εe f f , and εe f f =
(ε1 + ε2)/2 is the effective dc permittivity for the charge carriers in graphene depending on
the values ε1 and ε2 of dc permittivity characterizing the materials surrounding graphene.
Note that here the band gap is not open; this is confirmed in experiment with an accuracy of
0.1 meV [101].

Within the graphene region located over the strip with the lower value of ε, we have larger
α
∗. Hence, the corresponding renormalized Fermi velocity should be higher than that over

the strip with the higher value of ε. This suggests the possibility of modulating vF by varying
the substrate permittivity. Note that such a system is a one-dimensional photonic crystal.

The first version of the suggested system is a graphene sheet placed on a striped substrate
consisting of alternating layers of materials with substantially different values of the
permittivity. A schematic image of such a system is shown in Fig. 20a.

It is also possible to use a substrate with periodically arranged grooves prepared by etching.
The graphene sheet placed on such substrate should have the periodically alternating regions
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Figure 21. Fermi velocity profile in SL under study (vF1 > vF2 case). The enumeration of supercells in SL and the sizes
of its regions are indicated in the lower part of the figure: dI is the width of the graphene strip with the Fermi velocity
vF1, dI I is the width of the graphene strip with the Fermi velocity vF2, and d = dI + dI I is the SL period.

suspended over the grooves and those being in contact with the substrate material (see Fig.
20b). The renormalization of the Fermi velocity should be the most clearly pronounced just in
the suspended graphene regions since here we have εe f f = 1. According to the experimental

data, the renormalized Fermi velocity in suspended graphene increases to 3× 108 cm/s [101].

In the regions with graphene in contact with the narrow gap semiconducting material, where
εe f f ≫ 1, the renormalized Fermi velocity differs only slightly from the unrenormalized one.
In addition, the substrate itself is a diffraction grating. Therefore, the system should exhibit
rather interesting optical characteristics, demanding a separate study.

There is another version of the system under study. It is possible to deposit graphene on a
periodic array of parallel metallic strips (Fig. 20c). This is the limiting case: in the suspended
graphene regions, we have εe f f = 1 (the strongest renormalization of the Fermi velocity),
whereas in the regions with graphene in contact with metallic strips, we have εe f f = ∞

(vanishing renormalization of the Fermi velocity [91]).

We see that a whole class of such type of systems, which were not studied earlier, is
possible. Without doubt, the studies of such systems should lead to important advances
in the implementation of the technologies based on the controlled Fermi velocity.

5.2.2. The model

The model for the description of the suggested SL is similar to that used earlier to study SL
on the striped substrate with the periodic variation in the band gap [86].

In our case, we assume that the band gap remains unchanged and is equal to zero (gapless
graphene) and the work function is the same over all regions of SL (its value is chosen
as the energy reference point). We have only a modulation of the Fermi velocity. In gapless
graphene, a change in the work function leads to the electrical breakdown and to the creation
of electron-hole pairs. We also assume that the near-border region corresponding to the
gradual change in the Fermi velocity is much narrower than the SL period. Therefore, the vF

profile can be considered to be sharp enough (see Fig. 21).

We consider the charge carriers located close to the K point of the Brillouin zone (the results
should be the same for the charge carriers located in the vicinity of the K′ point). Let the x
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axis be perpendicular to the strips as is shown in Fig. 21. The envelope of the wave-function
Ψ(x, y) for the charge carriers obeys the Dirac-Weyl equation with variable Fermi velocity7

vFσp̂Ψ(x, y) = EΨ(x, y), (96)

vF =

{
vF1, d(n − 1) < x < −dI I + dn

vF2, −dI I + dn < x < dn.
(97)

Here, p̂ = −i∇ is the momentum operator (here and further on, h̄ = 1). Integers n enumerate
supercells (see Fig. 21). The Pauli matrices σ = (σx, σy) act in the space of two sublattices.
The motion of charge carriers in SL along the y axis is free; hence, a solution to Eq. (96) has

the form Ψ(x, y) = ψ(x)eikyy.

Similarly to [86, 90], we find a solution of Eq. (96) with respect to ψ(x) for the nth supercell

(i) at 0 < x < dI

ψ
(1)
n (x) = Ωk1

(x)

(
a
(1)
n

c
(1)
n

)
,

Ωk1
(x) = Nk1

(
1 1

λ
(1)
+ −λ

(1)
−

)
eik1xσz ,

λ
(1)
± =

vF1(k1 ± iky)

E
, k1 =

√
E2 − v2

F1k2
y

vF1
,

(ii) at dI < x < d

ψ
(2)
n (x) = Ωk2

(x)

(
a
(2)
n

c
(2)
n

)
,

Ωk2
(x) = Nk2

(
1 1

λ
(2)
+ −λ

(2)
−

)
eik2xσz ,

7 In the general case, one should write the anticommutator of the Fermi velocity vF(x) with the term containing the
momentum operator p̂x

1

2
{vF(x), σp̂}Ψ(x, y) = EΨ(x, y).

Such symmetrization of the Hamiltonian is necessary for retaining its Hermitian form. Similar problems were
considered in [103, 104]. In the case of the stepwise profile (97) of the Fermi velocity, we obtain the equation
for Psi(x, y) in form (96). This limitation is not significant since allowance for a smooth dependence vF(x) will
complicate the calculations, but will insignificantly change the final results.
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Figure 22. Schematic image illustrating the behavior of the envelope of the wavefunction of charge carriers in SL under
study: (a) the oscillatory solution in all regions and (b) the solution being oscillatory in one region and exhibiting
exponential decay deep into another region (vF1 > vF2 case).

λ
(2)
±

=
vF2(k2 ± iky)

E
, k2 =

√

E2 − v2
F2k2

y

vF2
.

Here, Nk1
and Nk2

are the normalization factors.

For the case vF1 > vF2, the condition for the existence of the solution of Eq. (96), which
oscillates in all regions of the SL (it is schematically illustrated in Fig. 22a), is reduced to the
inequality

k2
2 >

(

v2
F1

v2
F2

− 1

)

k2
y. (98)

The existence of a solution of the mixed type is also possible (see Fig. 22b). In this case, we
have an oscillatory solution in some regions (effective QWs), whereas in the other regions, it
exhibits exponential decay (effective potential barriers) deep into these regions. The condition
for the existence of the mixed type solution is determined by the inequality inverse to (98)
and it is met only for finite ky values.

The effective quantum barrier of the new type is the region with the higher Fermi velocity
because the energy of the charge carriers with the same momentum k in it is higher than that
in the effective QW with the lower Fermi velocity [25]. In contrast to the usual QW, which
is formed owing to the change in the width of the band gap, the height of the barrier in SL
under study grows with ky. At ky=0, the barrier vanishes and our problem is reduced to the
empty lattice model [105]. In the latter model, the potential is absent, but the periodicity is
retained. As a result, energy bands corresponding to the symmetry of the problem arise, but
we have zero band gaps.

5.2.3. The dispersion relation

To derive the dispersion relation, we use the transfer matrix (T-matrix) method in the way
similar to that employed in [86, 90].

The transfer matrix determines the relation between the coefficients appearing in the
expressions for the envelopes of the wavefunctions for the neighboring supercells
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(a
(1)
n+1

c
(1)
n+1

)

= T

(

a
(1)
n

c
(1)
n

)

,

(a
(2)
n+1

c
(2)
n+1

)

= T

(

a
(2)
n

c
(2)
n

)

.

We use the following boundary conditions for matching of the envelopes of the
wavefunctions [27, 42]

√
vF1ψ

(1)
n =

√
vF2ψ

(2)
n

and also the Bloch conditions in the form

ψ
(1)
n (x + d) = ψ

(1)
n (x)eikxd

and

ψ
(2)
n (x + d) = ψ

(2)
n (x)eikxd.

Then, the expression for the T-matrix has the form [86, 90]

T = Ω
−1
k1

(0)Ωk2
(d)Ω−1

k2
(dI)Ωk1

(dI).

The dispersion relation is determined from Eq. (90), which for the oscillatory type solution,
can be written as

vF1vF2k2
y − E2

vF1vF2k1k2
sin(k1dI) sin(k2dI I) + cos(k1dI) cos(k2dI I) = cos(kxd). (99)

For the solution of the mixed type, the dispersion relation is found from (99) through the use

of the formal substitution k1 → iκ1, where κ1 = 1
vF1

√

v2
F1k2

y − E2.

At ky = 0, transcendental equation (99) has the form

cos (k1dI + k2dI I) = cos(kxd) (100)

for which the exact solution can be found

El(kx) = ±v∗F

(

kx +
2πl

d

)

, l = 0, 1, 2, . . .

Here, the effective Fermi velocity is introduced as

v∗F =
vF1vF2d

vF1dI I + vF2dI
. (101)
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For the lth miniband, the energy at the K point is equal to

E0
l = ±

2πlv∗F
d

, l = 0, 1, 2, . . .

We can see that the lower electron miniband (l = 0) touches the upper hole miniband at the
K point and graphene remains gapless.

From Eq. (100), we find that, at the edge of the lth miniband, the energy at kx = ±π/d is
equal to

El

(

±
π

d

)

= ±
π(2l + 1)v∗F

d
, l = 0, 1, 2, . . .

The minibands are separated by the direct band gaps

EG = El+1

(

±
π

d

)

− El

(

±
π

d

)

=
2πv∗F

d
.

In the case of ky = 0, indirect gaps are absent

El

(

π

d

)

= El+1

(

−
π

d

)

,

which corresponds to the empty lattice model [105].

5.2.4. The numerical calculation of the energy spectrum

Let us calculate the lower electron miniband for SL shown in Fig. 19c. According to [101],
for it we have vF1 = 3 × 106 cm/s (suspended graphene) and vF2 = 0.85 × 106 cm/s (in the
region with the contact of graphene with the metal, the Fermi velocity coincides with vF0).

In the weak coupling model, the problem concerning the edge type at the interface turns out
to be unimportant. Let us assume that we have a zigzag-type boundary at the interface (see
Fig. 20) and, in each of two regions of the supercell, integer numbers NI and NI I of graphene
unit cells are packed up. Then, we have dI = 3NI a and dI I = 3NI I a, where a = 1.42 Å
is the lattice constant of graphene. For calculations, we assume that NI = NI I = 50, i.e.,
dI = dI I = 21.3 nm.

In the framework of the suggested model, it is necessary to introduce the upper limit on
the wave vector component characterizing the free motion of charge carriers, |ky| ≪ kc.
Momentum kc corresponds to the energy of the ultraviolet cutoff, Λ ≈ 3 eV [101]. As a
result, we find kc ≈ 4.3 nm−1. This, in turn, imposes the limitation on the SL period, d ≫ a.

The results of numerical calculations are represented in the form of two E(kx, ky) plots for
the lower electron miniband: (i) E(kx) at fixed values of ky (Fig. 23a) and (ii) E(ky) at fixed
values of kx (Fig. 23b). In Fig. 23a, we can see, in particular, that ky = 0 corresponds to the
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Figure 23. Numerical calculation of the dispersion curves for the lower electron miniband (a) versus kx at fixed ky

values and (b) versus ky at fixed kx values.

linear dispersion law and the effective Fermi velocity is v∗F ≈ 1.325 × 108 cm/s. The lower
curve in Fig. 23b exhibits a nearly linear growth. This means that the E(kx, ky) surface has
the conical shape near the Dirac point.

Thus, we confirm by numerical calculations that at ky = 0, the Fermi velocity of electrons
(holes) has a constant value, does not vanish up to the boundaries of minibands, and is
determined by Eq. (101) (this is true for all minibands). In this sense, the particles do not feel
the boundaries of minibands. Note that, for ky 6= 0, the velocity of particles always vanishes
at the miniband boundaries.

5.2.5. The qualitative analysis of the current-voltage characteristics

Let us briefly discuss at the qualitative level the effect of the SL potential on the transport
phenomena.

Having in mind the aforementioned qualitative difference between the ky = 0 and ky 6= 0
cases, we should expect that the current-voltage characteristics (I–V curves) of SL under
study should be significantly different for these two cases.

At ky = 0, the transport characteristics of SL under study should be the same as for effective
gapless graphene with the average Fermi velocity v∗F given by Eq. (101). In particular, at any
arbitrarily low charge carrier density, we should observe nonzero minimum conductivity
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σmin. According to the experimental data, we have σmin = 4e2/h [2], which coincides with
the ballistic conductivity of graphene. The I–V curve should exhibit a linear growth similar
to that characteristic of graphene samples with high enough mobility of charge carriers,
µ & 104 cm2/(V s) [106].

In the case of ky 6= 0, the situation is more complicated. At a nonzero transverse field Vy

and at a sufficiently small longitudinal field Vx, the I–V curve should be a growing one
and the differential conductivity at small values of Vx is about or higher than the minimum
conductivity

σdi f (Vx ≈ 0) & σmin.

Now, we calculate the velocity of electrons for the case of fixed longitudinal (Ex) and nonzero
transverse (Ey) electric fields. For the corresponding implementation of such situation in
experiment, it is possible to use the standard Hall device.

For simplicity, we assume that transport is ballistic; i.e., the mean free path λ is so large that
an electron accelerated by the applied electric field can reach the miniband boundary without
any scattering. To distinguish the spectrum related to the potential of the superlattice, the
mean free path should be much larger than the period of SL [85]

λ f ≫ d. (102)

For the sufficiently pure graphene samples, we have λ f ≃ 1µm.

The direction of the electron motion is characterized by the polar angle φ = arctan(ky/kx).
Its value remains unchanged in the whole −π/d ≤ kx ≤ π/d range. The contribution to the
conductivity related to the intraminiband transitions is determined by the electron velocity,
which we seek:

vφ =
∂E

∂k

∣

∣

∣

∣

ky=kx tan φ

.

In Fig. 24, we illustrate the calculated dependence of the electron velocity on kx for the same
SL parameters as above for the polar angles φ = 5o, 10o, and 15o. We can see that the velocity
indeed vanishes at the miniband boundary and its abrupt decrease takes place within a quite
narrow range near the miniband boundary. For low momenta, we have vφ ≈ v∗F.

An application of the superlattice at nonzero temperatures requires the existence of a quite
clearly pronounced Fermi velocity profile; i.e., we should use rather large φ and δvF =
|vF1 − vF2| values:

π
δvF

d
sin φ ≫ T.

However, at large φ values close to π/2, the condition according to which charge carriers
pass a large number of supercells at the mean free path can be violated. Then, condition
(102) turns out to be unimportant: condition λ f cos φ ≫ d should be met.
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Figure 24. Numerical calculation of the electron velocity in the lower miniband along the direction specified by the
fixed polar angle φ.

Similarly to the situation occurring in semiconductor SLs, the motion of charge carriers at
sufficiently strong electric field Ex is finite. They oscillate with the Stark frequency [85]

Ω = eExd.

This stems from the nonlinearity of the I–V curve manifesting itself in the negative
differential conductivity at a certain section of it. Charge carriers in the nonlinear regime
undergo a large number of the Bloch oscillations during the mean free time τ:

Ωτ ≫ 1. (103)

We estimate the mean free time as τ ≈ λ f /v∗F (the velocity of charge carriers is vφ ≈ v∗F
everywhere except for a narrow range near the miniband boundaries). Then, condition (103)
can be rewritten as

Ex ≫
v∗F

edλ f
. (104)

Condition (104) automatically gives an estimate for the minimum longitudinal voltage above
which negative differential conductivity becomes possible

Vx min ≃
v∗F
ed

Lx

λ f
,

where Lx is the size of the system along the x axis. Assuming that Lx ≃ λ f , we arrive at the
estimate Vx min ≃ 0.02 V for SL with the same parameters as above.

In Fig. 25, we represent the qualitative behavior of the I–V curve for SL under study. At
ky = 0 (zero applied voltage in the transverse direction, Vy = 0), we observe its linear
growth. At ky 6= 0 (nonzero transverse voltage, Vy 6= 0), a section with negative differential
conductivity arises in the curve. In this case, for higher Vy values, this section is more
pronounced and more shifted toward lower Vx values. However, as is mentioned above, this
section can arise only at a sufficiently high longitudinal voltage
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Figure 25. Qualitative behavior of the I–V curve for SL under study. Three I(Vx) plots under the linear I–V curve
correspond to the growth of the transverse voltage Vy (from top to bottom).

Vx ≫ Vx min.

Note finally that the characteristics of the system under study can depend on the gate voltage
Vg (at different values of the charge carrier density n2D) owing to the dependence of the
renormalized Fermi velocity on n2D [101, 102]. In this case, a controlling factor is the filling
of minibands with electrons (holes). For the experimental observations, it is convenient
to have partially filled either the lower electronic miniband or the upper hole one (in this
case, the higher electronic or lower hole minibands are distinguishable). This takes place if
n2D ≪ n∗

2D = 4/d2. This condition can be rewritten in the form of a limitation imposed on
the gate voltage [90]

|Vg| ≪ 4πen∗
2D Lg/ε

∗
s ,

where Lg is the gate thickness and ε
∗
s is the effective dc permittivity of the substrate. For the

layered substrate structure (see Fig. 19a), we have

ε
∗
s =

εs1dI + εs2dI I

d
.

6. Conclusions

We presented the method for the theoretical research of the electron properties of the planar
heterostructures based on graphene, namely, the single heterojunctions, QWs, and SLs. The
usage of the gap modifications of graphene in the planar heterostructures is a novel idea
which can help to push the boundaries of science.
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The valley-polarized currents must exist at the single heterojunctions. The novel phenomena
of pseudospin splitting in the energy spectrum of the asymmetric QWs had been theoretically
predicted. Some optical properties of the graphene-based QWs was considered (observation
of the excitonic lines).

A model describing SL based on graphene on a strip substrate has been proposed. The
dispersion relation has been derived, which is transferred to the known nonrelativistic
dispersion relation in the passage to the single-band limit. The numerical calculations have
been performed for a pair of the nearest electron and hole minibands using the derived
dispersion relation. Possible applications of SL as a transistor or a terahertz laser have been
pointed out.

We suggested a novel class of graphene-based systems, which are at the same time
both photon crystals and graphene SLs with periodically varying Fermi velocity. Such a
modulation appears to be possible owing to the renormalization of the Fermi velocity in the
energy spectrum of graphene. New prospects become open for the implementation of the
technologies based on controlled Fermi velocity. We point out some specific features of the
transport phenomena in such systems, in particular, appearance of the sections with negative
differential conductivity in the I–V curves. It is clear that, similarly to photon crystals, these
systems should exhibit interesting optical characteristics.
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