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1. Introduction

The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway is a critical regulator of many essential physiological processes, but it also
plays a key role in the malignant transformation of human tumors and their subsequent
growth, metabolism, proliferation, and metastasis [1]. Previous studies have demonstrated
that the PI3K/AKT/mTOR pathway is frequently activated in human cancers due to the somatic
mutation and amplification of genes encoding key components [2,3]. In addition, aberrant
PI3K/AKT/mTOR signaling activation also confers resistance to conventional therapies and is
a poor prognostic factor for many types of cancers [4,5]. Several agents that target the
PI3K/AKT/mTOR cascade elements are undergoing evaluation in preclinical and clinical
studies. These include PI3K inhibitors, AKT inhibitors, mTOR catalytic site inhibitors, and dual
PI3K-mTOR inhibitors. This chapter focuses on recent preclinical and clinical data on the
efficacy of PI3K/AKT/mTOR pathway inhibitors either as monotherapy or in combination with
conventional chemotherapy or others target drugs. Herein, we review four different classes of
PI3K pathway inhibitors: PI3K inhibitors, AKT inhibitors, mTOR catalytic site inhibitors, and
dual PI3K-mTOR inhibitors.

2. The PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR constitutes an important pathway downstream of growth factor
tyrosine kinase receptors, thus regulating a plethora of biological processes as angiogenesis,
proliferation, metabolism, survival, and differentiation [3]. Accumulating evidences indicate,
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therefore, that alterations in the PI3K/AKT/mTOR axis play critical and multifaceted role in
cancer pathogenesis and progression. Indeed, systematic analysis performed in 3.281 tumors
from 12 cancer types of the Cancer Genome Atlas Pan-Cancer effort has revealed that elements
of the PI3K/AKT/mTOR signaling pathway are among the highest frequently mutated genes
in cancer, such as uterine corpus endometrioid, breast, colon, lung, head and neck, and ovarian
carcinomas [4,5].

Subunit Protein Gene name (human)

Class I
Class IA

Catalytic p110α PIK3CA

p110β PIK3CB

p110δ PIK3CD

Regulatory p50α, p55α, p85α PIK3R1

p85β PIK3R2

p55γ PIK3R3

Class IB

Catalytic p110γ PIK3CG

Regulatory p101 PIK3R5

p84, p87 PIK3R6

Class II

Catalytic PI3KC2α PIK3C2A

PI3KC2β PIK3C2B

PI3KC2γ PIK3C2G

Class III

Catalytic Vps34 PIK3C3

Regulatory Vps15 PIK3R4

Table 1. The PI3K proteins family

PI3K is a heterodimer of its catalytic and regulatory subunits and has been classified as class
I, II, and III. Class I PI3K is constituted by four 110-kDa catalytic subunits and two main
regulatory domains, which is subdivide in class IA and IB. Class IA PI3K (PI3K α, β, and δ) is
activated by receptors with tyrosine kinase activity, and class IB PI3K (PI3K γ) is activated by
G protein-coupled receptors. The class IA enzymes are dimers of p110α, p110β, or p110δ
catalytic subunits and the regulatory subunits p85α (or its splice variants p55a and p50a),
p85β, p55γ, p101, or p84 [6,7]. In turn, class IB enzymes are dimers of p110γ catalytic subunit
and either p101 or p84 (also known as p87PIKAP) regulatory subunits [8]. The four class I

Cancer Treatment2



catalytic isoforms share overlapping but distinct functions. Although the expression of p110c
and p110d isoforms seems to be confined to immune cells, p110a and p110b are ubiquitously
expressed but exhibit isoform-specific cell-type- and context-dependent requirements, thus
being involved in a wide range of cellular effects [9–13]. Class II PI3K (PI3KC2) subfamily has
additional domains in both N- and C-terminal extensions and exists as 3 isoforms, PI3K-C2α,
PI3K-C2β, and PI3K-Cγ [14]. On the other hand, class III PI3K occurs as a single isoform
constituted by the catalytic subunit Vps34p and regulatory subunit Vps15 [14] (Table 1).

The PI3K family recruits effector proteins, altering their localization, activity, and conforma‐
tion. There are some binding proteins domains that mediate such events [14]. The best-
characterized domains among them are FYVE (Fab 1, YOTB, Vac 1, EEA1) [15–17], PH
(pleckstrin homology) [18], and PX (Phox) [19-23]. Nonetheless, the peculiar composition of
the three PI3K subfamilies results in the activation of distinct cellular functions.

In brief, after activation by receptor tyrosine kinases, including members of platelet-derived
growth factor receptor, the insulin and insulin-like growth factor 1 (IGF-1) receptors and
human epidermal growth factor receptor family (EGFR and HER2), PI3K phosphorylates
phosphatidylinositol 4,5-trisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-trisphos‐
phate (PIP3) [24]. In physiological conditions, the level of PIP3 is strictly regulated by PTEN
(phosphatase and tensin homolog), a phosphatase that specifically catalyzes the dephosphor‐
ylation of PIP3, converting PIP3 back to PIP2, thus constituting an important endogenous-
negative feedback loop of the PI3K signaling pathway [25,26]. The lipid product of PI3K, PIP3,
recruits a subset of signaling proteins with PH domains to the membrane, including 3-
phosphoinositide-dependent protein kinase (PDK1) and AKT, resulting in its phosphorylation
at threonine-308 and activation [24].

In both physiological and pathological conditions, AKT exists in three isoforms in mammals:
AKT1, AKT 2, and AKT 3 [27,28]. AKT phosphorylates tuberous sclerosis complex 2 (TSC2),
thereby inhibiting the GTPase activity of the TSC1/TSC2 complex and enabling mTOR
activation by RAS homologue enriched in brain (RHEB), thus allowing signal propagation
[26,29]. mTOR exists in two different structural protein complex: mTORC1 and mTORC2, each
of which is expressed in different subcellular compartments, therefore affecting their activation
and function. mTORC1 complex is composed of a catalytic subunit mTOR, regulatory-
associated protein of mTOR (RAPTOR), mammalian lethal with SEC13 protein 8 (MLST8), and
the noncore components PRAS40 and DEP domain-containing mTOR-interacting protein
(DEPTOR). Once activated, mTORC1 leads to increased protein synthesis via its effectors,
named translation-regulating factors ribosomal S6 kinase-1 (S6K-1) and eukaryote translation
initiation factor 4E binding protein-1 (4EBP-1). S6K-1 and 4EBP1 are major regulators of protein
translation [30]. On the other hand, mTORC2 is composed by rapamycin-insensitive compan‐
ion of mTOR (RICTOR), MLST8, and mammalian stress-activated protein kinase interacting
protein 1 (SIN1). The function of mTORC2 remains not fully understood, but it is required to
phosphorylate AKT at serine-473, thus resulting in its maximal activation [31]. Of clinical
relevance, differently from mTORC1, mTORC2 is insensitive to rapamycin inhibition, opening
an avenue for drug discovery in face of the development of resistance by cancer cells against
first-generation mTOR inhibitors (rapalogs) that particularly target mTORC1 [32] (Figure 1).
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Figure 1. Overview of Pl3K/AKT/mTOR signaling pathway and some inhibitors of this pathway in clinical studies. The
activation of the PI3K by receptor tyrosine kinases promotes conversion of PIP2 to PIP3. PTEN dephosphorylates PIP3,
negatively regulating the PI3K signaling. The phosphorylation and activation of AKT impacts many downstream ef‐
fectors, such as mTORCI, and finally leads to multiple cellular processes.

3. The role of PI3K/AKT/mTOR in cancer

Somatic mutations and/or gains and losses of genes are possible genetic alterations affecting
the PI3K/AKT/mTOR pathway in different solid and hematological tumors [33,34]. Indeed,
PI3K pathway can be activated by direct upstream signs and can be intrinsically activated due
to gain of functional mutations or amplifications in PIK3CA (p110 subunit), mutations in
PIK3R (p85 subunit), and mutations or amplifications in one of the AKT isoforms or loss of
PTEN [35]. Loss of PTEN via inactivating mutations, due to either copy number loss or
homozygous deletions, is associated with both resistance to chemotherapy and reduced
survival of human patients [3].

PIK3CA mutations in primary breast tumors have been associated with lymph node metasta‐
ses and overexpression of ER, PR, and HER2 [36]. Furthermore, the presence of activating
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PI3KCA mutations and loss of PTEN in HER2-overexpressing cancers is correlated with a
lower response to trastuzumab and lapatinib [37]. In non-small cell lung cancer, the downre‐
gulation of PTEN is also related with poor prognosis [38,39]. In ovarian cancer, PI3K/AKT/
mTOR molecular alteration appears to be histological subtype specific. Studies have described
amplifications in PIK3CA, amplifications of one of the AKT isoforms, and PTEN deletions in
20%, 15%, and 5% of the high grade serous ovarian cancer (HGSOC) cases, respectively [40,41].
The individual mutations, rare events in HGSOC, are prevalent in low grade serous, mucinous,
endometrioid, and clear cell ovarian cancer; 20% of endometrioid and 35% of clear cell ovarian
tumors display these PIK3CA mutations [42,43]. Besides, copy number changes in the genes
encoding PIK3CA and PIK3CB subunits have been associated with a poor prognosis, and the
inhibition of PI3K/mTOR was found to delay tumor growth and prolong survival [44,45].

Moreover,  mutations  of  mTOR  itself  and/or  in  components  of  mTOR-related  signaling
pathways have frequently been described in human malignant diseases [46-48]. Different
genetic  lesions  that  mediate  mTORC1 activation  have  diverse  consequences:  PTEN loss
uncouples  mTORC1  activation  from  growth  factor  signaling;  liver  kinase  B1/serine/
threonine  kinase  11  (LKB1/STK11)  mutations  allow mTORC1 activation despite  nutrient
deprivation in poorly vascularized tumors; P53 mutations uncouple DNA damage from the
inhibition of bioenergetic processes and cell cycle arrest [49]; and hyperactivation of S6K-1,
4EBP1  and  eIF4E,  and  cancer  growth  by  activating  the  lipid  and  protein  biosynthesis.
Furthermore, the increased phosphorylation of mTOR is associated with acquired cispla‐
tin resistance, and AKT signaling has been implicated in primary platinum resistance [50].
In fact,  AKT or mTOR inhibitors likely restore chemosensitivity to platinum derivates in
vitro and in xenograft models [51,52].

These molecular alterations, in addition to the druggability of the components of the
PI3K/AKT/mTOR signaling cascade, suggest that targeting the pathway might represent a
useful treatment strategy in the fight against cancer.

4. PI3K inhibitors in cancer therapy

As aforementioned, PI3K/AKT/mTOR pathway has been implicated in tumorigenesis,
promotion of cell survival, angiogenesis, cellular invasion, tumor growth, and the acquisition
of chemoresistant phenotype by cancer cells [1]. Currently, more than fifty PI3K/AKT/mTOR
axis inhibitors are in different stages of development, with a great number of such inhibitors
reaching clinical trials [53]. Analogs of rapamycin (inhibitors of mTORC1), temsirolimus and
everolimus, are currently in the lead, having already been approved by the Food and Drug
Administration (FDA) as anticancer agents [54-56]. The PI3K/AKT/mTOR pathway inhibitors
are summarized in Table 2.

4.1. PI3K inhibitors

PI3K inhibitors can be divided in isoform-specific inhibitors or pan-PI3K inhibitors. pan-PI3K
inhibitors target all class IA PI3Ks in tumor cells, whereas isoform-specific inhibitors were
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developed to decrease toxicity and might be particularly effective in cancers with PIK3CA
mutations, for example.

The first-generation of PI3K inhibitors include wortmannin, a fungal metabolite isolated from
Penicillium wortimannin that irreversibly inhibits p110 by reacting covalently with the catalytic
site [57], and LY294002, a synthetic, competitive, and reversible inhibitor of the ATP binding
site of PI3K [58]. Both agents achieve significant antiproliferative and pro-apoptotic effects in
preclinical in vitro and in vivo studies. However, unfavorable pharmacokinetic properties,
insolubility in water, high levels of toxicity, and lack of selectivity for oncogenic isoforms of
Class I PI3K limit its use in clinical trials [59,60]. Although this limiting features for their clinical
use, wortmannin and LY294002 have served as important research tool for elucidating diverse
signal transduction processes involving PI3K pathway and has spawned a new generation of
PI3K inhibitors [61] (Table 2).

Currently, water-soluble wortmannin conjugates are being developed to overcome this issue.
PX-866 is a semisynthetic analog of wortmannin with potent, irreversible, pan-class I PI3K
inhibitory property against p110-α, p110-δ, and p110-γ enzymes in biochemical assays [62]. In
preclinical studies, the compound alone or in combination with chemotherapy (cisplatin),
radiotherapy, and targeted cancer drugs (gefitinib) exhibited in vivo antitumor activity against
numerous mouse xenograft models of human cancers [62,63]. In addition, a phase I study in
eighty-four patients with advanced solid tumors showed that PX-866 is well tolerated. The
most frequent study drug-related adverse events were gastrointestinal disorders, with
diarrhea being the most common [64]. PX-866 is being currently tested in a combination phase
I/II studies with cetuximab (NCT01252628) in squamous cell carcinoma of the head and neck
(SCCHN) and in metastatic colorectal carcinoma. Furthermore, more two phase I/II studies
with PX866 are ongoing: with docetaxel (NCT01204099) in non-small cell lung cancer and
SCCHN and in combination with vemurafenib in patients with advanced melanoma
(NCT01616199).

Buparlisib (NVP-BKM120) is an oral highly specific pan-class I PI3K inhibitor with inhibitory
property against p110-α, p110-β, p110-δ, and p110-γ enzymes [65]. The compound is also active
against activating p110α somatic mutations but does not significantly inhibit the related class
III and class IV PI3K kinases. In preclinical cancer studies, buparlisib has shown antiprolifer‐
ative and proapoptotic activity against a panel of 353 cell lines that display different genetic
abnormalities that promote PI3K pathway activation [66]. In vivo studies have also shown that
buparlisib potently inhibits the growth of human xenografts models and behaves synergisti‐
cally when combined with cytotoxic agents such as temozolomide, alkylating agent, and
docetaxel, antimitotic drug, or with targeted agents such as HER2 and mitogen-activated
protein kinase kinase (MEK) inhibitors [66].

A phase I dose-escalation study in thirty-five patients with advanced-stage solid tumors
showed that buparlisib is a safe and well-tolerated drug with favorable pharmacokinetic
properties. The major treatment-related adverse events included rash, hyperglycemia,
diarrhea, anorexia, mood alteration, nausea, fatigue, pruritus, and mucositis [67]. Importantly,
hyperglycemia was more common at higher doses and represents a class effect of the inhibition
of PI3K signaling, commonly observed with other PI3K/AKT/mTOR pathway inhibitors [67].
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Later, phase I dose-escalation and expansion study of buparlisib was performed in eighty-
three patients with advanced solid tumors demonstrating that buparlisib was well tolerated
up to 100 mg/day and showed preliminary activity in patients with advanced cancers [68].
This subsequently led to the initiation of several clinical trials in multiple cancer types, such
as non-small cell lung cancer, prostate cancer, breast cancer, colon cancer, and glioblastoma
multiform (GBM).

BASALT-1, an ongoing phase II trial (NCT01297491), is investigating the efficacy of single-
agent buparlisib in patients with metastatic non-small cell lung cancer with PI3K pathway
activation. Furthermore, phase Ib/II is under evaluation in patients with advanced non-small
cell lung cancer of different histotype, testing buparlisib in combination with other targeted
agents such as everolimus (NCT01470209), erlotinib (NCT01487265), MEK inhibitor
(NCT01363232), or in combination with standard chemotherapeutic drugs, such as docetaxel
(NCT01911325), gemcitabine, and cisplatin (NCT01971489) and carboplatin and paclitaxel
(NCT01820325).

At present, several active, not recruiting, and recruiting clinical trials are being conducted in
all the biological subsets of breast cancer, including combinations with endocrine therapy, anti-
HER2 agents, poly (ADP-ribose) polymerase (PARP) inhibitors, and chemotherapy with
buparlisib. Two large phase III studies (BELLE-2 and BELLE-3) (NCT01610284, NCT01633060)
are investigating the combination of buparlisib plus fulvestrant in postmenopausal women
with hormone receptor-positive/HER2-negative breast cancer after failure of aromatase
inhibitor alone or aromatase inhibitor plus mTOR inhibitor treatment, respectively. Another
ongoing clinical study is BELLE-4, a placebo-controlled phase II trial of buparlisib with
paclitaxel in the first-line treatment of HER2-negative metastatic breast cancer (NCT01572727).
Buparlisib has also been evaluated in a phase II study of paclitaxel plus trastuzumab in HER2-
overexpressing breast cancer (NCT01816594).

Pilaralisib (XL147) is an oral pan-class I PI3K inhibitor (α, β, γ, and δ) through reversible,
competitive inhibition with ATP for p110-α, -δ, -γ, and -β enzymes [69]. In vitro tests revealed
that pilaralisib inhibits the formation of PIP3 in the membrane and phosphorylation of AKT
and S6K-1 in multiple tumor cell lines with diverse genetic alterations in PI3K pathway [70].
Moreover, in mouse xenograft models, oral administration of pilaralisib results in significant
tumor growth inhibition and combination with chemotherapeutic agents improved the
growth-inhibitory effect observed with the single agents [71]. Based on this preclinical
rationale, pilaralisib has been evaluated in phase I/II clinical trials.

In a phase I dose-escalation trial of sixty-nine patients with advanced solid tumors, pilaralisib
was tolerable at doses associated with PI3K pathway inhibition, and the most frequent drug-
related adverse events included dermatologic toxicities, diarrhea, nausea, and decreased
appetite [72]. However, a phase I dose-escalation study of pilaralisib with erlotinib in patients
with solid tumors showed that combination had limited antitumor activity with moderate
inhibition of PI3K, MAPK and EGFR pathways [73]. Moreover, phase I/II study of pilaralisib
in combination with trastuzumab or trastuzumab plus paclitaxel in trastuzumab-refractory
HER2-positive metastatic breast cancer related that no responses were observed in patients
treated with pilaralisib plus trastuzumab while clinical activity was observed in paclitaxel arm
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[74]. Additional clinical evaluation of this PI3K inhibitor is ongoing in phase I/II studies
(NCT01587040).

Pictilisib (GDC-0941) is another potent, selective, and orally bioavailable inhibitor of pan-class
I PI3K. In biochemical assays, pictilisib demonstrates selectivity over a large panel of protein
kinases and PI3K family kinases, including mTOR and DNA-dependent protein kinase (DNA-
PK) [75]. Interestingly, pictilisib induces apoptosis in a subset of human tumor cell lines and
potently inhibited tumor growth in xenograft models, including those with mutations in PI3K,
PTEN, and K-Ras [76]. Significant in vivo antitumor activity has also been observed when
administered orally in combination with other anticancer drugs, for example, docetaxel and
MEK inhibitor U0126 [77-80].

In a first-in-human phase I study of pictilisib in sixty patients with advanced solid tumors, the
most frequently reported drug-related adverse events were nausea, fatigue, and rash [81].
Importantly, one patient with V600E BRAF-mutant melanoma and another with platinum-
refractory ovarian cancer exhibiting PTEN loss and PIK3CA amplification demonstrated
partial response [81]. Pictilisib is currently under evaluation in several phase I/II clinical trials,
mainly in non-small cell lung cancer and breast cancer (NCT01918306, NCT01740336,
NCT01493843, and NCT00974584).

One strategy to achieve significant pathway inhibition clinically with tolerable adverse effect
profile is the use of isoform-specific PI3K inhibitors. As aforementioned, each isoform has
distinct role in normal physiological processes and disease (Table 1). PI3K catalytic subunit
p110α is predominantly responsible for mediating growth factor signaling from receptor
tyrosine kinases and is a frequent genetic driver (PIK3CA mutations) in several cancers [82].
However, p110α is dispensable for PI3K pathway activation in tumors lacking PTEN. Thus,
these cells depend largely on p110β to activate the pathway [82,83]. Preclinical tests showed
that p110β-selective inhibitors had a significantly greater activity in cell lines with PTEN null
than in those with PTEN intact, although, some PTEN-intact cell lines were sensitive and a
number of cells lines lacking PTEN were resistant [84]. GSK-2636771 is a PI3K p110β-selective
inhibitor currently in phase I studies in subjects with advanced solid tumors with PTEN
deficiency (NCT01458067). Moreover, PI3Kδ is predominantly expressed in leukocytes and
control immune responses [85]. Idelalisib (CAL-101), a highly specific PI3Kδ inhibitor, was the
first isoform-specific PI3K inhibitors approved for cancer treatment [86].

Alpelisib (NVP-BYL719) is an oral inhibitor that selectively targets PI3K p110α equipotent
against the wild type and the most common somatic mutations of p110α [87]. NVP-BYL719
has been the first PI3Kα-selective inhibitor to enter in clinical trials after positive preclinical
investigations. In vivo studies have demonstrated dose-dependent antitumor activity of NVP-
BYL719 in PIK3CA-mutant or PIK3CA-amplified tumor xenograft models, such as ovarian,
breast, and head and neck cancers [88, 89]. Preliminary results of phase I study performed in
patients with advanced solid tumors carrying PIK3CA gene alterations demonstrated that
NVP-BYL719 has a favorable safety profile with manageable toxicities, as hyperglycemia,
nausea, diarrhea, decreased appetite, vomiting, and fatigue [90]. To date, more than fifteen
clinical trial is ongoing in order to evaluate the combination of NVP-BYL719 with several
agents, such conventional cytotoxic drugs (paclitaxel, cisplatin, and irinotecan) and target
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drugs (cetuximab, olaparib, and trastuzumab) in a subset of cancers (NCT02051751,
NCT01822613, NCT01602315, NCT01623349, and NCT02167854)

Taselisib (GDC-0032) is a PI3K inhibitor with higher affinity for mutated PI3Kα with reduced
inhibitory activity against PI3Kβ [91]. Preclinical studies show that taselisib has enhanced
activity against PI3Kα isoform mutant cancer cell lines [92]. In an ongoing phase I study,
taselisib has been well tolerated with hyperglycemia and fatigue being the dose-limiting
toxicities [93]. This selectivity profile and excellent pharmacokinetic properties allowed fewer
clinical studies with GDC-0032. Currently, several clinical studies are ongoing to evaluate the
combination of taselisib with endocrine therapy, trastuzumab, and conventional chemother‐
apy in breast cancer (NCT02285179, NCT02390427, and NCT01862081). In addition, a phase I
study is currently ongoing in taselisib with CDK4/6 inhibitor, palbociclib, in advanced solid
tumors and breast cancer (NCT02389842).

Idelalisib was approved in 2014 in the United States and European Union for the treatment of
three indolent B-cell neoplasms: relapsed chronic lymphocytic leukemia, in combination with
rituximab, relapsed follicular B-cell non-Hodgkin’s lymphoma, and relapsed small lympho‐
cytic lymphoma (as monotherapy) [94]. In lymphoid cell lines and primary patient samples,
idelalisib abrogates PI3K/AKT/mTOR signaling and promotes apoptosis [95,96]. The first
phase I trial in healthy volunteers established the bioavailability and safety of idelalisib [97].
Another phase I study in patients with relapsed/refractory mantle cell lymphoma reported the
most common adverse events, which includes diarrhea, nausea, pyrexia, fatigue, rash, upper
respiratory infection, pneumonia and alanine transaminase, or aspartate transaminase
elevations [98]. To date, about twenty-five clinical trials are ongoing with idelalisib. A phase
I/II trial studies aimed evaluated idelalisib in combination with lenalidomide and rituximab
in patients with relapsed or refractory mantle cell lymphoma (NCT01838434). In addition,
idelalisib is being evaluated in combination with rituximab in adults with previously treated
indolent non-Hodgkin lymphoma (NCT01732913).

5. AKT inhibitors in cancer therapy

AKT inhibitors constitute another class of drugs that has gained recent interest. As discussed
previously, AKT is involved in the regulation of various signaling downstream pathways
involved in cell survival, growth, proliferation, metabolism, and angiogenesis. AKT inhibition
promotes decreasing cancer cell survival by preventing signal transduction through its
downstream effectors. In addition, targeting AKT is an interesting pharmacological approach
due to the AKT activation in consequence of the feedback loop release when mTOR is inhibited.

AKT inhibitors can be grouped into three classes, including lipid-based phosphatidylinositol
(PI) analogs, ATP-competitive inhibitors (catalytic inhibitors), and allosteric inhibitors. To
date, the most developed inhibitor of AKT is perifosine (KRX-0401), a lipid-based inhibitor.
Perifosine is an allosteric inhibitor that targets the PH domain of AKT, thereby preventing its
translocation to the plasma membrane required for pathway activation [99]. Perifosine has
demonstrated great efficacy in vitro and in vivo against several human cancers such as breast,
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osteosarcoma, ovarian, multiple myeloma, leukemia, and glioma [100,101]. Additional in
vitro data demonstrate synergistic effects of perifosine and traditional chemotherapeutic
agents such as paclitaxel and cisplatin in ovarian cancer [102,103], etoposide in leukemia cells
[104], doxorubicin in multiple myeloma cells [105], and gemcitabine in pancreatic cells [106].

Despite these encouraging preclinical studies, results from phase I/II clinical trials of perifosine
as single agent in a various tumor types (metastatic breast cancer, metastatic head and neck
cancer, locally advanced soft tissue sarcoma, prostate cancer, and metastatic

In behalf of the poor efficacy of perifosine as a single agent observed in most tumor types
evaluated thus far, efforts have been made to combine this drug with target agents and
chemotherapy. Phase I studies have now confirmed the safety of these combinations with
different agents, including sorafenib in patients with Hodgkin lymphoma and taxanes in high-
grade epithelial ovarian cancer [112,113]. Currently, one clinical trial with perifosine is
recruiting patients, a phase II study with perifosine and temsirolimus in patients with
malignant gliomas (NCT02238496).

GSK-690693 is a potent ATP-competitive AKT inhibitor selective for all three AKT isoforms
versus the majority of kinases assessed by biochemical tests [114]. GSK690693 displayed
antiproliferative activity in vitro and in vivo models of ovarian, breast, and prostate cancer
[114]. The compound has entered phase I trials for refractory hematologic malignancies but
was withdrawn prior to enrolment (NCT00666081).

6. mTOR inhibitors in cancer therapy

6.1. Rapamycin and its derivatives

As discussed previously, mTOR is involved in many cell signaling pathways, and clinical trials
for cancer treatment showed that tumor cells with mutations in p53 or PTEN are susceptible
to mTOR inhibitors [115]. mTOR inhibitors are categorized in first- and second-generation
presenting a wide variety of target and mechanism. The first-generation mTOR inhibitors
include rapamycin and its analogs that employ allosteric mechanism to block, whereas the
second-generation mTOR inhibitors (AZD8055, Torin1, PP242, and PP30) have as target ATP
binding site to impede kinase activity of both mTORC1 and mTORC2 [116].

Rapamycin, discovered in 1975, is a macrocyclic lactone isolated from the soil bacterium
Streptomyces hygroscopicus, and it has clinical applications including antifungal, immunosup‐
pressant, and anticancer proprieties [117,118]. FDA approved this drug in 1997 for prevention
of host-rejection during kidney transplants [119]. Preclinical studies have shown that rapa‐
mycin presents strong antiangiogenic and antiproliferative properties against a variety of
human cancers such as the phase II study, which showed rapamycin potentiates the effect of
paclitaxel in endometrial cancer cell lines [120].

Three different mechanisms of action have been proposed: first, the binding of the FKBP-12–
rapamycin complex to mTOR that could lead dephosphorylation of downstream effector

Cancer Treatment10



molecules such as S6K-1 and 4EBP1 [121]; second, the FKBP-12–rapamycin complex competes
with phosphatidic acid to bind to the FRB domain of mTOR, blocking mTOR kinase function
[122]; and third, the FKBP-12–rapamycin complex bounds to mTOR and destabilizes the
mTOR–raptor–4EBP1/S6K-1 scaffold complex, leading to dephosphorylation of S6K-1 and
4EBP1 [123,124].

This inhibitor has limited bioavailability due to its poor aqueous solubility. In an effort to
improve its pharmacokinetics, several rapamycin analogs, named rapalogs, have been
developed, such as temsirolimus (CCI-779), everolimus (RAD001), and ridaforolimus
(MK-8669/AP23573) [125-127].

Some studies have shown that these compounds are able to disrupt the mTORC2 complex in
a dose-, time-, and cell type-dependent manner [24,128,129]. A possible mechanism by which
rapamycin and rapalogs could inhibit mTORC2 relies on the interaction of newly synthesized
mTOR molecules and rapamycin/rapalogs-FKBP12 complexes. In turn, this interaction would
prevent mTOR from the interaction with RICTOR, thus inhibiting mTORC2. Indeed, it has
been shown that prolonged exposure of cancer cells to rapamycin can promote its binding to
mTOR before the assembly of the mTORC2 complex, with subsequent inhibition of the AKT-
mediated signaling [24].

Rapamycin and its derivates exhibit a safe toxicity profile, being the side effects of skin rashes
and mucositis dose dependent [130]. Other symptoms commonly described are fatigue,
nausea, anemia, hypertriglyceridemia, hypercholesterolemia, and neutropenia [131]. Further‐
more, temsirolimus and sirolimus are associated with significant rate of pulmonary toxicity
[130,131]. Rare side effects of the aforesaid drugs include interstitial lung disease, risk of
secondary lymphoma, and reactivation of latent infections [35].

Everolimus (Afinitor®), the oral mTOR inhibitor, has been approved by the FDA in 2009 for
advanced renal cell cancer. Everolimus exhibit strong antiangiogenic and antiproliferative
activity against various human cancer such as metastatic or unresectable pancreatic neuroen‐
docrine tumors, subependymal giant cell astrocytoma [132], metastatic renal cell carcinoma,
and advanced estrogen receptor (ER)-positive [133] and human epidermal growth factor
receptor-2 (HER2)-negative breast cancer [134].

Several studies have been conducted to analyze the effectiveness of rapamycin and rapalogs
alone and in combination with standard chemotherapy, hormonal therapy such as anti-VEGF
inhibitors in the treatment of several types of cancers such breast, ovarian, cervical, and
endometrial. Phase II studies are ongoing in order to test everolimus in combination with
chemotherapy (cisplatin and gemcitabine) in patients with metastatic triple negative breast
cancer (NCT01939418 and NCT01931163). In addition, a recent study of breast cancer (BO‐
LERO-3) demonstrated that the combination of everolimus with trastuzumab and vinorelbine
significantly prolonged progression-free survival (PFS) in patients with trastuzumab-refrac‐
tory and taxane-pretreated, HER2-positive advanced breast cancer [135]. Moreover, another
breast cancer study, BOLERO-1, evaluated patients treated with paclitaxel and trastuzumab
with or without everolimus as first-line therapy [136]. Furthermore, clinical studies have
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evaluated the aromatase inhibitor letrozole in combination with everolimus in patients with
metastatic endometrial carcinoma (NCT01068249) and breast cancer (NCT00107016).

Temsirolimus (Torisel®), the first rapamycin analog to be FDA approved as an anticancer drug,
is an intravenous injection drug and gets converted into rapamycin in vivo [137]. This drug
was valued with bevacizumab or in combination with chemotherapeutic agents in endometrial
cancer cell lines, and results showed the increase progesterone mRNA expression and
inhibition of ER mRNA expression [138,139]. Also, preliminary phase II study using temsiro‐
limus in patients with metastatic cervical cancer showed positives results [140]. Another phase
II clinical study (NCT01196429) evaluates additional effects of the temsirolimus combined with
paclitaxel/carboplatin therapy have been conducted in patients with stages III/IV clear cell
adenocarcinoma [141]. However, some studies failed to show the efficiency of temsirolimus
in patients with persistent/recurrent epithelial ovarian cancer/primary peritoneal cancer
showing a modest activity of this mTOR inhibitor, and the results were insufficient to justify
further study in a phase III [142].

Ridaforolimus (MK-8669/AP23573), a non-rapamycin prodrug, is available in both oral and
intravenous formulations. This mTOR inhibitor is actively being evaluated as either mono‐
therapy or in combination with other therapies for treatment of various cancers, including
sarcomas, endometrial, prostate, breast, and non-small cell lung cancer [143]. Studies had been
conducted in patients with advanced endometrial cancer and clinical benefit response was
reported in 33% of the patients [144]. Another phase II study using oral ridaforolimus in
patients with advanced or recurrent endometrial cancer also showed partial response in 7.7%
patients [145].

Although clinically promising, the efficacy of rapalogs is partially limited by the negative
feedback loops in the mTOR pathway. With this regard, the exclusive inhibition of the
mTORC1 complex by the rapalogs compromises the S6K-1-mediated feedback loop towards
IRS-1, resulting in the activation of both the PI3K/AKT and the mitogen-activated protein
kinase/extracellular signal-regulated kinases (MAPK/ERK) pathways, hence promoting
compensatory cell survival, and the acquisition of chemoresistant phenotype [127,146,147].
Efforts have been made to overcome the previously mentioned clinical limitation by means of
developing new generation mTOR inhibitors, which inhibit the catalytic activity of both
mTORC1 and mTORC2 complexes.

7. ATP-competitive inhibitors

Although rapamycin is a potent allosteric mTORC1 inhibitor with clinical applications, a
second-generation ATP-competitive inhibitor have been developed, including Torin1, Torin2,
PP242, PP30, KU0063794, WAY-600, WYE-687, WYE-354, XL-388, INK-128, AZD-2014,
AZD8055, and OSI-027 [148-153]. The ATP-competitive inhibitors of mTOR directly inhibit the
mTOR kinase activity, affecting both mTORC1 and mTORC2 complexes simultaneously and
suppress AKT activity.
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resistance mTOR inhibitors cloud arise via feedback PI3K activation. This molecular knowl‐
edge have stimulated the development of new inhibitors termed dual PI3K-mTOR inhibitors
that include NVP-BEZ235, XL765, BGT226, PI-103, PF-04691502, PKI-587, and GDC-0980
[164-170]. Comparing with the other types of PI3K pathway inhibitors, dual PI3KmTOR
inhibitors have the possible advantage of inhibiting all PI3K catalytic isoforms, mTORC1 and
mTORC2 [171]. Therefore, these inhibitors may effectively turn off this pathway completely
and display best efficacy in feedback inhibition normally observed with mTORC1 inhibitors
[172]. However, it is not clear that dual PI3K-mTOR inhibitors will be tolerable at doses that
effectively inhibit all p110 isoforms and mTOR [171].

The potential clinical value of the dual PI3K/mTOR inhibitors have been demonstrated by their
significant inhibition of cell growth, the induction of apoptosis and/or autophagy [173] in a
variety of tumor cancer cells [174-176]. In addition, these inhibitors have shown powerful
effects in xenograft models of breast cancer [177], pancreatic cancer [178], melanoma [179],
multiple myeloma [180], and RCC [181].

In agreement, dual PI3K/mTOR inhibitors have entered clinical trials either monotherapy or
polytherapy. A single agent includes BEZ235/NVP-BEZ235 (NCT00620594) and BGT226
(NCT00600275 and NCT00742105) in advanced solid tumors and breast cancer, GDC-0980
(NCT00854126, NCT00854152, and NCT01455493) in non-Hodgkin lymphoma and endome‐
trial carcinoma, and PF-04691502 (NCT00927823) and GSK2126458 (NCT00972686 and
NCT01248858) in solid tumors. In combination with others agents, the treatment includes
XL765 (Exelixis) with erlotinib (NCT00777699), letrozole (NCT01082068), and temozolomide
(NCT00704080) in non–small cell lung cancer, breast cancer, and gliomas, respectively.

Both BEZ235 and XL765 have shown good tolerability, with adverse effects including diarrhea,
anorexia, and nausea [49]. Furthermore, the combined therapy using rapamycin and dual
PI3K/mTOR kinase inhibitor (PI-103) has been shown to be efficacious against human ovarian
cells in vivo [183].

Inhibitor
Trade name
(company)

Drug target
Development
stage

Tumor types Reference

LY294002 - Pan-PI3K inhibitorPreclinical - [57,58]

Wortmannin - Pan-PI3K inhibitorPreclinical - [57,59,60]

PX-866 (Oncothyreon) Pan-PI3K inhibitorPhase II

Solid cancers, prostate,
colorectal,
glioblastoma, SCCHN,
non-small cell lung
cancer

[62,64]

NVP-BKM120
Buparlisib
(Novartis)

Pan-PI3K inhibitorPhase III
Non-small cell lung
cancer, prostate,
breast, GBM, colon

[65,66]
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Inhibitor
Trade name
(company)

Drug target
Development
stage

Tumor types Reference

XL147
Pilaralisib (Sanofi-
Exelixis)

Pan-PI3K inhibitorPhase II

Solid cancers, breast,
breast, endometrial,
ovarian, non-small cell
lung cancer,
glioblastoma,
lymphoma

[69,72]

GDC-0941
Pictilisib
(Genentech-Roche)

Pan-PI3K inhibitorPhase II

Solid cancers, breast,
non-small cell lung
cancer, glioblastoma,
non-Hodgkin's
lymphoma

[75,81]

GSK-2636771 (GlaxoSmithKline) PI3Kβ inhibitor Phase I
Solid cancers (PTEN
deficient), prostate

[84]

NVP-BYL719 Alpelisib (Novartis) PI3Kα inhibitor Phase II
Advanced solid
tumors, SCCHN,
breast, ovarian

[87,90]

GDC-0032
Taselisib
(Genentech)

PI3Kα inhibitor Phase III
Solid cancers, breast,
non-small cell lung
cancer

[91,93]

CAL-101
Idelalisib (Gilead
Sciences)

PI3Kδ inhibitor Phase III

Lymphomas, multiple
myelomas, chronic
lymphocytic leukemia,
acute myeloid
leukemia

[94,97,98]

KRX-0401 Perifosine (Pfizer) AKT inhibitors Phase II

Solid tumors, non-
small cell lung cancer,
colon, kidney, breast,
gliomas, multiple
myeloma, leukemia,
lymphomas

[107,111,112,113]

GSK-690693 (GlaxoSmithKline)
ATP-competitive
AKT inhibitor

Phase I
Hematologic
malignancies

[114]

Rapamycin Sirolimus (Wyeth)
Inhibits mTOR
kinase by binding
to FKBP12

Phase I
Glioblastoma, non-
small cell lung cancer

[182]
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Inhibitor
Trade name
(company)

Drug target
Development
stage

Tumor types Reference

RAD001
Everolimus
(Novartis)

Inhibits mTOR
kinase by binding
to FKBP12

Phase I/II/III
(FDA has
approved for
RCC, 2009)

Metastatic renal cell
carcinoma, breast
cancer, melanoma,
ovarian cancer,
neuroendocrine
tumors of the
pancreatic origin
(PNET), endometrial
carcinoma

[56,133,134,135,13
6], NCT01939418,
NCT01931163

CCI-779
Temsirolimus
(Wyeth/Pfizer)

Inhibits mTOR
kinase by binding
to FKBP12

Phase I/II/III (FDA
and European
Medicine Agency
have approved for
RCC, 2007)

Non-small cell lung
cancer; advanced solid
tumors, metastatic
renal cell carcinoma,
hepatocellular
carcinoma, cervical
cancer, clear cell
adenocarcinoma

[138,139,141]

MK-8669/AP23573 Ridaforolimus
Inhibits mTOR
kinase by binding
to FKBP12

Phase I/II/III
Sarcoma, bone,
endometrial cancer

[144,145]

PP242
ATP competitive
inhibitor of mTOR

Studies in vitro
and in vivo

Colon cancer, acute
myeloid leukemia

[156]

Torin2
ATP competitive
inhibitor of mTOR

Studies in vitro
and in vivo

Lung cancer [159]

AZD8055
ATP competitive
inhibitor of mTOR

Phase I
Advanced solid
tumors, lymphoma

[183,184]

OSI-027
ATP competitive
inhibitor of mTOR

Phase I
Advanced solid
tumors, lymphoma

[185]

INK128
ATP competitive
inhibitor of mTOR Phase I

Glioblastoma,
advanced solid
tumors.

NCT02142803

GSK795
ATP competitive
inhibitor of mTOR

Phase I
Advanced solid
tumors

[134]

NVP-BEZ235 (Novartis) Dual mTOR/PI3K Phase I/II
Advanced solid
tumors, breast cancer,
prostate cancer

[94],
NCT00620594
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Inhibitor
Trade name
(company)

Drug target
Development
stage

Tumor types Reference

BGT226 (Novartis) Dual mTOR/PI3K Phase I
Advanced solid
tumors, breast cancer

[169],
NCT00600275,
NCT00742105

GDC-0980 (Genentech) Dual mTOR/PI3K Phase I/II
Non-Hodgkin
lymphoma,
endometriose

NCT00854126,
NCT00854152,
NCT01455493

PF-04691502 (Pfizer) Dual mTOR/PI3K Phase I
Advanced solid
tumors

NCT00927823

GSK2126458 GlaxoSmithKline Dual mTOR/PI3K Phase I
Advanced solid
tumors

NCT00972686,
NCT01248858

XL765 (Exelixis) Dual mTOR/PI3K Phase I/II
Non-small cell lung
cancer, breast cancer,
gliomas

NCT00777699,
NCT01082068,
NCT00704080

Table 2. Overview of PI3K/AKT/mTOR pathway inhibitors.

9. Conclusions/future perspectives

Advances in molecular research have resulted in an improved understanding of cancer
biology. There is strong preclinical rationale to support the continued development of
PI3K/AKT/mTOR inhibitors, especially in some genetically defined cancer subtypes that may
be the most sensitive to single-agent PI3K pathway inhibitors. These include cancers with
PIK3CA activating mutations, mutations in PIK3R (p85 subunit), mutations or amplifications
in one of the AKT isoforms or loss of PTEN. However, rational clinical trials design with a
focus in identifying a patient population most likely to benefit from this strategy is imperative
to the success of single-agent therapeutics.

The combination of PI3K/AKT/mTOR inhibitors with cytotoxic chemotherapy and other
biological agents such as anti-HER2 compounds, EGFR inhibitors, and antiangiogenic agents
may optimize the action of those agents in different pathways that control protein translation,
cell growth, migration, metastasis, and angiogenesis. The successful development of the
combinations will require determining the duration, doses, and schedules of targeted therapy
and how to best incorporate it into standard treatment protocols. Several clinical trials are
underway to prove the clinical use of the PI3K/AKT/mTOR inhibitors. The druggability of the
components of the PI3K/AKT/mTOR signaling cascade, in addition to the enlightenment of
the mutational landscape of human cancers, which points to the high frequency of genetic
alterations and anomalous activation of the pathway, strongly suggests that targeting its
elements might represent a useful treatment strategy in the fight against cancer.
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