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Abstract

Plants are continuously exposed to several stress factors in field, which affect their
production. These environmental adversities generally induce the accumulation of
reactive oxygen species (ROS), which can cause severe oxidative damage to plants.
ROS are toxic molecules found in various subcellular compartments. The equilibrium
between the production and detoxification of ROS is sustained by enzymatic and
nonenzymatic antioxidants. Due to advances in molecular approaches during the last
decades, nowadays it is possible to develop economically important transgenic crops
that have increased tolerance to stresses. This chapter discusses the oxidative stress
and damage to plants. In addition, it reports the involvement of antioxidant enzymes
in the tolerance of plants to various stresses.

Keywords: ROS, abiotic and biotic stress, oxidative stress, antioxidative mechanisms,
tolerant plants

1. Introduction

Crop yield depends on the plant’s ability to adapt to different types of environmental adver‐
sities, which generally induce oxidative stress. Environmental stress induces the accumulation
of reactive oxygen species (ROS) in the cells of plants, which can cause severe oxidative damage
to the plants, thus inhibiting growth and grain yield. ROS are involved in processes such as
growth, development, response to biotic and abiotic environmental stimuli, programmed cell
death, and may act as signal transducers. Stressors, hormones, development, and other several
metabolic routes can stimulate ROS production that in turn may induce other routes or act
directly as defense compounds [1].
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and reproduction in any medium, provided the original work is properly cited.



Knowledge about the oxidative mechanisms in plants may contribute to the development of
plants most well adapted to the environment and resistant to pathogens. Plants have defense
mechanisms against oxidative damage that are activated during stress to regulate toxic levels
of ROS. Antioxidant and nonantioxidant systems are involved in ROS detoxification.

During the last decades, antioxidant enzymes have been used to develop transgenic plants
that have increased tolerance to several stresses. Therefore, this chapter will address the
relation between abiotic and biotic stresses and ROS generation. The ROS production, major
antioxidant enzymes involved in detoxification, and defense under stresses will be described.
The involvement of the antioxidant enzymes in the tolerance of plants to various stresses will
be also discussed.

2. Crop production and stress

Global agricultural production has tripled in the last 50 years because of increased demand
due to population growth. Genetic breeding has improved crop yields per unit area. In 1960,
the food requirement per capita was approximately 2,200 kcal/day. In 2009, the global food
requirement per capita increased to more than 2,800 kcal/day. The global public spending on
agricultural research and development rose markedly from 26.1 billion dollars in 2000 to 31.7
billion dollars in 2008; however, many challenges still remain in the agricultural sector [2].

Despite the efforts and progress achieved in recent decades in agriculture, growth and crop
productivity are still negatively affected by several stress factors. Most crop plants grow in
suboptimal environmental conditions, which prevent the plants from expressing their full
genetic potential for development and reproduction, and consequently, these abnormal
conditions lead to decreased plant productivity [3]. These stresses cause considerable produc‐
tion and economic losses worldwide.

Biological stress is an adverse force or condition that inhibits normal functioning of a plant [4].
These stresses may be biotic or abiotic. Biotic stresses include pathogens (viruses, bacteria, and
fungi), insects, herbivores, and rodents. Abiotic stresses comprise cold (chilling and frost), heat
(high temperature), salinity (salt), drought (water deficit condition), water excess (flooding),
radiation (high-intensity ultra-violet and visible light), chemicals and pollutants (heavy metals,
pesticides, and aerosols), oxidative stress (reactive oxygen species, ozone), wind (sand and
dust particles in the wind) and soil nutrient deprivation [4, 5]. All of these factors may affect
plant development and reproduction at different levels of severity.

Tolerance can be achieved by plant breeding or cultural practices that reduce losses, which is
in turn accomplished by understanding the plant’s response to its stressors and how they affect
individual plants and plant processes [6]. Yield losses by oxidative damages occur because of
an imbalance in plant synthesis and quenching. However, attributing this loss to the oxidative
damage is difficult taking into account the several processes involved in ROS synthesis;
however, stresses and oxidative damage are interlinked and are responsible for the yield losses
[7] (Figure 1).
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Figure 1. Evolution of the number of publications (2000-2014) addressing oxidative damage and yield/production loss‐
es. Total number of publications in 2000-2014 is 1,418. Source: ISI Web of Knowledge.

3. ROS generation

Environmental stress is directly correlated with increased accumulation of ROS. The equili‐
brium between production and scavenging of ROS may be disturbed by a number of biotic
and abiotic factors, which may increase the intracellular levels of ROS [8]. When the level of
ROS is increased and exceeds the defense mechanisms, the cell is in a state of oxidative stress
[8, 9, 10, 11]. High concentrations of ROS are highly harmful to organisms, and when the
symptoms persist, irreversible damage to the cells occurs, resulting in loss of physiological
capacity and eventual cell death. Therefore, defense mechanisms against oxidative damage
are activated during stress to regulate toxic levels of ROS [12] (Figure 2).

ROS are a group of free radicals, reactive molecules, and ions derived from oxygen. The most
common ROS include singlet oxygen (1O2), superoxide radical (O2

⋅−), hydrogen peroxide
(H2O2), and hydroxyl radical (OH⋅). These substances are highly reactive and toxic and can
lead to oxidative destruction of the cell [8, 13]. ROS are found in various subcellular compart‐
ments such as chloroplasts, mitochondria, and peroxisomes due the high metabolic activity
that normally occurs in these compartments [13]. ROS are generated in chloroplasts via the
Mehler reaction, in mitochondria via electron transport, and in peroxisomes via photorespi‐
ration.

The glycolate oxidase reaction, fatty acid β-oxidation, enzymatic reactions of flavin oxidases
and disproportionation of O2

⋅− radicals are all metabolic processes responsible for the gener‐
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ation of H2O2 in different types of peroxisomes [14]. Cytoplasm, plasma membrane, apoplasts,
endoplasmic reticulum, and extracellular matrix are also sources of H2O2. In the cytoplasm,
the electron transport chain associated with the endoplasmic reticulum is the main source of
H2O2/ROS [11]. H2O2 generation can also be via enzymatic sources such as plasma-membrane-
localized NADPH oxidases, amine oxidases, and cell wall peroxidases [15, 16]. Different
organelles and cellular compartments possess potential targets for oxidative damage, as well
as mechanisms for eliminating excess ROS. However, the balance between production and
elimination of ROS can be severely disturbed by several biotic and abiotic stresses [9, 15]. These
disturbances in the ROS equilibrium can lead to a rapid increase in intracellular ROS levels,
which can cause significant damage to cell structures [17]. The redox homeostasis is the
equilibrium between the production and scavenging of ROS; however, when ROS production
overcomes the cellular scavenging capacity, there occurs an unbalancing of the cellular redox

Figure 2. Stress factors, ROS generation, oxidative damage, and antioxidant defense. Several stress factors increased
the ROS production, such as HO⋅, O-

2, 1O2, and H2O2. The increased ROS levels lead to oxidative stress. Consequently,
oxidative damage at the molecular and cellular levels occurs. Defense mechanisms against oxidative stress are activat‐
ed to neutralize toxic levels of ROS. Singlet oxygen (1O2), superoxide radical (O2

•-), hydrogen peroxide (H2O2), and hy‐
droxyl radical (OH⋅).
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homeostasis resulting in a rapid and transient excess of ROS, known as oxidative stress [11,
12]. Thus, the antioxidant defense imbalance disrupts metabolic activities [18], causing severe
oxidative damages to cellular constituents, which can lead to loss of function and even cell
death [12].

ROS may affect many cellular functions, for example, they can damage nucleic acids (oxidation
of deoxyribose, strand breaks, removal/deletion of nucleotides, modification of bases, and
cross-linked protein-DNA), lipids (breaking of the chain and increasing the fluidity and
permeability of the membrane), and proteins (site-specific amino acid modification, fragmen‐
tation of the peptide chain, aggregation of cross-linked reaction products, alteration of the
electric charge, inactivation of enzymes, and increasing the susceptibility of proteins to
proteolysis) and can activate programmed cell death [10, 11].

The balance between production and elimination of ROS at the intracellular level must be
tightly regulated and/or efficiently metabolized. This is necessary to avoid potential damage
caused by ROS to cellular components as well as to maintain growth, metabolism, develop‐
ment, and overall productivity of plants. This equilibrium between the production and
detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants [13, 15].

In plants, the major ROS-scavenging pathway is the ascorbate–glutathione cycle (AsA-GSH)
in chloroplasts, cytosol, mitochondria, apoplast, and peroxisomes. This cycle plays a crucial
role in controlling the level of ROS in these compartments [15]. The AsA-GSH cycle involves
successive oxidation and reduction of ascorbate, glutathione, and NADPH catalyzed by
ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate
reductase (DHAR), and glutathione reductase (GR) [15, 18]. Thereby, the AsA-GSH cycle plays
an important role in combating oxidative stress induced by environmental stress. Many
components of the antioxidant system of plants are already well characterized into plant
models, and disturbances or alterations in this system are an excellent strategy to investigate
the different signaling pathways involving ROS.

3.1. Nonenzymatic antioxidants

Nonenzymatic antioxidants are found in all cellular compartments. These compounds may
act directly in the detoxification of ROS and radicals, or they can reduce substrates for
antioxidant enzymes [15]. Nonenzymatic components of the antioxidative defense system
include the major cellular redox buffers ascorbate (AsA) and glutathione (GSH) as well as
tocopherol, carotenoids, and phenolic compounds [10, 13, 18].

Ascorbate is found in organelles of most plant cell types and in the apoplast. AsA is a crucial
component of the detoxification of ROS in the aqueous phase due to the ability to donate
electrons in enzymatic and nonenzymatic reactions. AsA can directly eliminate O2

⋅−, OH⋅, and
1O2, and thus reduce H2O2 to water via the ascorbate peroxidase reaction [19]. AsA is generally
maintained in its reduced state by a set of NAD(P)H-dependent enzymes, including mono‐
dehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase [13, 20,
21]. Moreover, AsA is involved in the regulation of cell division, the progression of G1 to S
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phase of the cell cycle and cell elongation, and it participates in multiple functions in photo‐
synthesis [22].

Glutathione is oxidized by ROS to form oxidized glutathione (GSSG), which is present in all
cellular compartments. Along with its oxidized form, GSSG, GSH maintains the redox balance
in cellular compartments. Several studies indicate that GSH is involved in regulating gene
expression and the cell cycle due to the properties of the GSH:GSSH pair [15]. The glutathione
and AsA antioxidants are abundant and stable and have appropriate redox potential to interact
with numerous components and pathways.

Tocopherols (α, β, γ, and δ) is a group of lipophilic antioxidants [11]. The α-tocopherol is the
largest scavenger of peroxyl radicals in lipid bilayers. The α-tocopherol present in the mem‐
brane of chloroplasts protects them against photooxidative damage [19].

Phenolic compounds are abundantly found in plant tissues, such as flavonoids, tannins,
hydroxycinnamate esters, and lignin, and possess antioxidant properties [23].

3.2. Enzymatic antioxidants

Enzymatic components of the antioxidative defense system comprise several antioxidant
enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6),
glutathione peroxidase (GPX, EC 1.11.1.9), guaiacol peroxidase (POX, EC 1.11.1.7), and
peroxiredoxins (Prxs, EC 1.11.1.15), which catalyze ROS degradation, and enzymes of the
ascorbate-glutathione (AsA-GSH) cycle, such as ascorbate peroxidase (APX, EC 1.1.11.1),
monodehydroascorbate reductase (MDAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR,
EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), that regenerate soluble antioxidants
[13, 15, 18, 24]. This antioxidant system plays an important role in the maintenance of cell
homeostasis and in the antioxidant response in plants.

Superoxide dismutases are enzymes that catalyze the dismutation of O2
⋅ to H2O2; therefore,

they constitute a frontline in the defense against ROS. These enzymes may be attached to a
metal ion (Cu/Zn, Mn, Fe, and Ni); thus, they are classified according to their subcellular
location and metal cofactor. SODs are present in many organisms, such as bacteria, yeast,
animals, and plants. Plants have multiple genes encoding SODs that can be regulated by
development, tissue-specific and environmental signals [10, 25].

Catalases  are responsible for the removal of H2O2  by reducing H2O2  to 2H2O. CATs are
largely, but not exclusively, localized to peroxisomes. Plants possess multiple CATs encoded
by  specific  genes,  which  respond  differentially  to  various  stresses  that  are  known  to
generate ROS [9, 10].

Ascorbate peroxidases are enzymes that play a key role in catalyzing the conversion of H2O2

into H2O and use ascorbate as a specific electron donor. Plants have different APX isoforms
that are distributed in distinct subcellular compartments, such as chloroplasts, mitochondria,
peroxisomes, and the cytosol. The APX genes are differentially modulated by several abiotic
stresses in plants [26, 27, 28]. The balance between SODs, CATs, and APXs is crucial for
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determining the effective intracellular level of O2
⋅ and H2O2, and changes in the balance of

these appear to induce compensatory mechanisms [8, 9, 10].

Glutathione peroxidases are nonheme thiol peroxidases that catalyze the reduction of H2O2

or organic hydroperoxides to water. The GPX proteins have been identified in many life species
[29]. In plants, the GPX proteins are localized to mitochondria, chloroplasts, and cytosol.

Peroxiredoxins are a family of thiol-specific antioxidant enzymes that are involved in cell
defense and protection from oxidative damage. These enzymes are widely distributed in plant
cells and are important proteins in chloroplast ROS detoxification [30]. The peroxiredoxins are
a group of peroxidases that have reducing activity in their active sites via cysteine residues.
These enzymes do not possess a prosthetic group and catalyze the reduction of H2O2, perox‐
ynitrite, and a wide variety of organic hydroperoxides to their corresponding alcohols [31].

Guaiacol peroxidases are involved in H2O2 detoxification. The POX proteins are heme-
containing enzymes that belong to class III or the “secreted plant peroxidases.” Theses enzymes
are able to undertake a second cyclic reaction, called the hydroxylic reaction, which is distinct
from the peroxidative reaction. Due to the use of both cycles, class III peroxidases are known
to participate in many different plant processes, from germination to senescence, auxin
metabolism, cell wall elongation, and protection against pathogens [32].

Monodehydroascorbate reductase is a flavin adenine dinucleotide enzyme that catalyzes the
regeneration of AsA from the monodehydroascorbate radical using NAD(P)H as an electron
donor. Thereby, MDAR plays an important role in the plant antioxidant system by maintaining
the AsA pool [24]. Isoforms of MDAR have been reported to be present in chloroplasts, the
cytosol, peroxisomes, and mitochondria [33, 34].

Dehydroascorbate reductase is a thiol enzyme that maintains AsA in its reduced form. DHAR
catalyzes the reduction of dehydroascorbate to AsA using GSH as a reducing substrate [18,
24]. It is present in various plant tissues, and its modulation activity has been reported in
various plant species [35].

Glutathione reductase is an NAD(P)H-dependent enzyme. GR catalyzes the reduction of
oxidized glutathione (GSSG) to reduced glutathione (GSH); it is a key enzyme of the AsA-GSH
cycle; it protects cells against oxidative damage; and it maintains adequate levels of reduced
GSH. A high GSH/GSSG ratio is essential for protection against oxidative stress [20].

The great increasing number of publications addressing APX, SOD, CAT, POX, GPX, Prxs,
MDAR, DHAR, and GR enzymes are examples of positive responses to biotic and abiotic
stresses by these enzymes. Over the past fourteen years, significant efforts have been made to
understand plant antioxidant system mechanisms related to stresses, so the number of
publications reporting antioxidant enzymes and biotic and abiotic stresses has increased
substantially (Figure 3A and 3B, ISI Web of Knowledge database). These data show the
relevance of studying these enzymes assisting in the understanding of its involvement with
scavenging of cell toxic products in diverse species and the relation between oxidative stress
and biological processes.
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Figure 3. Evolution of the number of publications addressing antioxidant plant enzymes and biotic and abiotic stresses
in the last fourteen years. (A) Data of the antioxidant enzymes and biotic stresses; (B) Data of the antioxidant enzymes
and abiotic stresses. SOD (superoxide dismutase), APX (ascorbate peroxidase), CAT (catalase), GPX (gluthatione per‐
oxidase), POX (guaiacol peroxidase), Prxs (peroxiredoxins), MDAR (monodehydroascorbate reductase), DHAR (dehy‐
droascorbate reductase), and GR (glutathione reductase) enzymes. Source: ISI Web of Knowledge.

4. Stress conditions and plants tolerant to stress

Stressful conditions are the main factor limiting agricultural productivity because plants do
not reach their full genetic potential [4, 17]. Environmental conditions affect growth and
development and trigger a series of morphological, physiological, biochemical, and molecular
changes in plants. The metabolic pathways of plant organelles are sensitive to changes in
environmental conditions [36]. Consequently, all environmental adversities have led to the
world’s agriculture facing serious challenges to meet demand. The increased consumption,
allocation of land for other uses, and use of chemical products with implications for health
safety are some examples these challenges [37].
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The estimated world population for the year 2050 is nine billion people [2], and, consequently,
the food demand will rise again. Therefore, it is necessary to increase the production and
quality of food. Currently, the goal of many studies is the understanding of defense/tolerance
mechanisms to different stresses in plants and to develop technologies and products that
enable the generation of resistant/tolerant and more productive plants. Due to advances in
molecular approaches, several crops of economic importance are being produced containing
genes that encode stress tolerance using transformational technologies. Thus, several stress
signaling and regulatory pathways have been elucidated and better understood.

Knowledge about the oxidative mechanisms in plants may contribute to the development of
plants most well adapted to the environment. The maintenance of high antioxidant capacity
to remove toxic levels of ROS has been related to increased stress tolerance of crop plants.
Several studies show that maintaining a high level of antioxidant enzymes will help a plant to
protect itself against oxidative damage by rapidly scavenging the toxic levels of ROS in its cells
and restoring redox homeostasis.

Considerable progresses have been achieved in the development of plants tolerant to oxidative
stress due to transgenic plants with altered levels of antioxidant genes to improve tolerance
and productivity. This fact can be observed in Figure 4, which shows the increasing number
of publications addressing antioxidant genes and its relation to tolerant plants in the last
fourteen years (Figure 4). It highlights that SOD, CAT, and APX genes are the main antioxidant
genes involved in the tolerance of plants to stresses, followed by GPX, GR, POX, DHAR,
MDAR, and Prxs, respectively. These studies reflect the importance and advances in compre‐
hension of the antioxidant mechanisms and tolerance to stresses.

Figure 4. Evolution of the number of publications addressing antioxidant enzymes and plants tolerant to stresses in the
last fourteen years. SOD (superoxide dismutase), APX (ascorbate peroxidase), CAT (catalase), GPX (gluthatione perox‐
idase), POX (guaiacol peroxidase), Prxs (peroxiredoxins), MDAR (monodehydroascorbate reductase), DHAR (dehy‐
droascorbate reductase), and GR (glutathione reductase) enzymes. Source: ISI Web of Knowledge.
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Furthermore, the increased antioxidant activity has been reported to lead to better performance
or tolerance response to several stresses. Using transgenic approaches, several species were
studied aiming at the improvement of tolerance to stress enhancing antioxidant capacity of
antioxidant genes. Table 1 shows some examples of the successful and positive responses
obtained with regard to increased tolerance to cold, drought, heat, salt, hydrogen peroxide,
methyl viologen, and metals stresses (Table 1). Improved tolerance using antioxidant genes
are attributed by high antioxidant activity and more efficient ROS elimination. Plants express‐
ing or overexpressing one or more antioxidant genes have more antioxidant capacity; conse‐
quently, plants can more efficiently eliminate excess ROS and protect their cellular components
against toxic effects of ROS produced during the exposure to stress. As a consequence, plants
suffer less oxidative injury and can tolerate a stress condition more effectively.

Gene Native specie Target specie Stress tolerance Reference

Ascorbate peroxidase Brassica campestris Arabidopsis thaliana heat [38]

Puccinellia tenuiflora Arabidopsis thaliana
salinity, hydrogen

peroxide
[39]

Jatropha curcas Nicotiana tabacum salinity [40]

Hordeum vulgare Arabidopsis thaliana zinc, cadmium [41]

Superoxide dismutase Arachis hypogaea Nicotiana tabacum salinity, drought [42]

Tamarix androssowii
Populus davidiana x P.

bolleana
salinity [43]

Pisum sativum Oryza sativa drought [44]

Oryza sativa Nicotiana tabacum
salinity, water, PEG-

treatment
[45]

Catalase Brassica oleracea Arabidopsis thaliana heat [46]

Brassica juncea Nicotiana tabacum cadmium [47]

Triticum aestivum Oryza sativa cold [48]

Glutathione peroxidase Triticum aestivum Arabidopsis thaliana
salinity, hydrogen

peroxide
[49]

Peroxiredoxins Solanum tuberosum Solanum tuberosum
heat, methyl

viologen
[50]

Festuca arundinacea Festuca arundinacea
heat, methyl

viologen
[51]

Suaeda salsa Arabidopsis thaliana salinity, cold [52]

Monodehydroascorbate
reductase

Malpighia glabra Nicotiana tabacum salinity [53]

Acanthus ebracteatus Oryza sativa salinity [54]

Avicennia marina Nicotiana tabacum salinity [55]
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Gene Native specie Target specie Stress tolerance Reference

Dehydroascorbate reductase Oryza sativa Oryza sativa salinity [56]

Gluthatione reductase Brassica campestris Nicotiana tabacum methyl viologen [57]

Ascorbate peroxidase/
Superoxide dismutase

Rheum austral/Potentilla
astrisanguinea

Arabidopsis thaliana cold [58]

Manihot esculenta Manihot esculenta
methyl viologen,

hydrogen peroxide,
cold

[59]

Solanum tuberosum Solanum tuberosum
heat, methyl

viologen
[60]

Catalase/Superoxide dismutase Gossypium hirsutum Gossypium hirsutum
salinity, methyl

viologen
[61]

Table 1. Some examples of the transgenic plants with potential stress tolerance expressing antioxidant genes

Some antioxidant enzymes such as SOD, CAT, APX, and GPX are better studied (Figure 3 and
4), but in general all enzymes have potential defense antioxidant activity helping in scaveng‐
ing ROS in different ways, either by dismutation of O2

• to H2O2, reduction of H2O2, mainte‐
nance of the AsA pool, or of the adequate levels of GSH and GSSG, that all together maintain
the antioxidant balance. In addition, antioxidant enzymes act in different subcellular compart‐
ments, thereby assisting in the ROS detoxification in organelles such as chloroplasts, mitochon‐
dria, peroxisomes, and in the cytosol. Besides, ROS-scavenging enzymes in various subcellular
compartments might have a synergistic effect to improve stress tolerance in plants [59].

Many attempts aiming to increase the tolerance of plants to environmental stresses using
antioxidant genes have been made by researchers. However, due to the great complexity of
the antioxidant system and plant stress tolerance, we cannot state that ROS scavenging is the
only factor that determines the level of tolerance, because other factors and several genes
pathways are involved in the stress tolerance in plants. Furthermore, it must be emphasized
that stresses often occur in combination; thus, the relation between ROS signaling mechanisms
in different stress responses is very complex [62]. When under the effect of a combination of
stresses, the plants respond differently than when experiencing just a unique type of stress [63].
Moreover, this can range depending on the plant species and cultivation area. Complexity of
the tolerance mechanisms in plants is also a key factor because sometimes the alteration of one
gene in the pathway can influence the expression of others, various genes and pathways being
involved [64].

5. Conclusions

Plants activate antioxidant defense mechanisms under stresses, which helps in the mainte‐
nance of the structural integrity of the cell components and presumably alleviates oxidative
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damage. Several antioxidant enzymes contribute to plant defense. The manipulation of ROS-
scavenging enzyme systems is a worthwhile approach to produce transgenic plants with
enhanced tolerance to a wide range of stress conditions; however, this needs to be further
explored as many enzymes and isoforms can be involved, and ROS is only one of the potential
parameters of plant tolerance against environmental variations and biotic stresses.
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