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Abstract—To increase capacity and offload traffic from the
current macro-cell cellular system operators are considering the
deployment of small-cells. It is expected that both the small
and macro-cells will coexist in the same spectrum resulting in
unsustainable levels of interference. Interference alignment is
considered as an effective method to deal with such interfer-
ence. By using interference alignment the small-cells align their
transmission along a common direction to allow the macro-cell
receiver to completely remove it. It is clear that if the two systems
have no limitations on the information that may be exchanged
between them to perform the signal design, then the performance
may be improved in comparison to the case of no or partial
cooperation. However, this full cooperation strategy requires a
high-rate connection between the macro and small-cells, which
may not be available. To overcome this problem we consider
that the alignment direction is selected from a finite set, known
to both macro and small-cell terminals. We provide sufficient
conditions for this set that guarantee full-diversity, at the macro-
cell, and propose an efficient method to optimize the set elements.
Results show that an alignment set with a description length of
1 bit is enough to achieve the same diversity as in the case
where an infinite amount of information is exchanged between
both systems. The proposed set optimization method achieves
better performance than random vector quantization and similar
performance to Grassmannian quantization.

Index Terms—Small-cells, Interference Alignment, Zero-
Forcing, MIMO Systems, Diversity Methods, Codebook Design,
Rayleigh Channels, Feedback, Random Vector Quantization

I. INTRODUCTION

Small-cells are being considered by the operators as a
solution to overcome the capacity limitations of the current
macro-cell cellular system [1], [2]. Beyond the capacity
improvements, small-cells offer other advantages for the
operators. Namely, they are easier to deploy, less expensive
and more energy efficient, just to mention a few benefits.
Nevertheless, due to the expected extensive deployment of
small-cells and costs involved in the acquisition of new spec-
trum licenses the two systems should reuse the same spectrum
as much as possible. The macro-cell system is the owner of
the spectrum license and in the literature of cognitive radio
(CR) the macro-cell terminals are denominated as primary
users. Similarly, the small-cell terminals use the spectrum
of the former in an opportunistic way and are denominated
secondary. If not carefully designed the secondary signal may
cause harmful interference on the primary [3]. To deal with
the interference problem the secondary terminals must sense
the environment looking for unused resources, in the primary
network, which can be used for its own transmission. These
opportunities can be in time, frequency or even in space.

The primary terminals may not use all the spatial
dimensions because of physical constraints that do not allow
a number of antennas as large as in the BS, or as pointed
out in [4] where optimal power allocation may lead to
some unused dimensions. In both cases this leads to free
spatial dimensions that can be exploited by the secondary
network. In fact recent research points out that active use
of the spatial domain through multiple antenna techniques
is of utmost importance to minimize the interference level
in a heterogeneous network environment. Multiple antenna
techniques in combination with CR have been considered in
several publications (see e.g. [5] [6]). A new research area
is to apply beamforming in a CR manner so that in addition
to spectrum sensing also direction of arrival information is
exploited [7] [8]. This adds a new dimension for CR systems
and enables reuse of the frequencies in spatial domain. In [7]
the authors proposed the use of the angle dimension as a new
spectrum opportunity, for secondary transmission. A signal
to interference plus noise (SINR) balancing technique for the
downlink of a cognitive radio network has been proposed
in [8]. The authors propose a beamforming technique to
maximize the worst secondary user SINR, while ensuring
that the interference leakage to the primary is below specific
thresholds. In [9] the authors proposed to maximize the
throughput of the secondary user under the constraint that the
interference to primary receivers is below a certain threshold.

Recently, in [10], [11] and [12] the authors have proposed
the use of interference alignment (IA) [13], [14] to mitigate
the interference of small-cell user terminals (UTs) towards the
macro-cell BS. In [10] the authors proposed a new interference
alignment scheme that successively creates transmit beam-
forming vectors for the small-cell terminals and for the macro
BS assuming that they have different number of transmit
antennas. A scheme that takes advantage of the OFDM cyclic
prefix for interference alignment is proposed in [11]. The work
in [12] studied several IA techniques with different levels
of inter-system information sharing: a coordinated IA with
large information sharing requirements, a static IA and also
an uncoordinated IA with no need for information sharing. IA
is a precoding technique that is able to achieve the maximum
degrees of freedom of the interference channel, in a variety of
settings [13]. For some cases (e.g. constant channels) this may
require long symbol extensions either across time or frequency
[15]. IA works by dividing the receiver space in two parts,
one for interference and the other for the intended signal. By
using IA all inter-user interference is aligned in the interfer-
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ence space, restricting in that way the interference subspace
dimensions. Closed form solutions for IA are only available for
some specific cases [16]. For the other cases iterative methods
may be used [16], [17], [18]. In [16] two iterative algorithms
that utilize the reciprocity of wireless networks to achieve
interference alignment with only local channel knowledge at
each node are proposed. A convergent alternating minimiza-
tion approach to IA has been proposed in [17]. In [18] the
authors presented two algorithms that optimize the precoding
subspaces by maximizing the data rate performance while
maintaining the achievable degrees of freedom.

A key point in cooperative based systems is the amount
of information that needs to be exchanged between the
cooperating nodes. Full cooperation between all entities
allows to achieve optimum performance. On the other hand,
if no cooperation is considered the system performance is
reduced to a minimum. The first case is optimum in terms of
performance, but requires a huge amount of inter-system infor-
mation sharing. The pursuit of schemes that achieve close to
optimum performance but have reduced information exchange
is thus of paramount importance for practical applications.

The topic of limited information IA has been addressed in
several publications. By considering that the channels may
be accurately estimated at the receiver end, the channel state
information (CSI) may be fed back from the receivers to the
transmitters. This information can then be used to design the
IA precoders. By quantizing the channel over the composite
Grassmann manifold the authors, in [19] [20], showed that
for a MIMO channel, IA achieves the full multiplexing gain
as long as the feedback bit rate scales sufficiently fast with
the SNR. In [21] the authors proposed the use of analog
feedback. Multiplexing gain is preserved if the feedback link
quality is comparable to the one of the forward channel. In [22]
an IA scheme based on Random Vector Quantization (RVQ)
for the constant MIMO interference channel is proposed.
The previous strategies neglect the temporal correlation in
the channel. In [23] the authors proposed a Grassmannian
differential feedback method to reduce feedback overhead
by exploiting both the channels temporal correlation and
Grassmannian structure.

Contrarily to the previously proposed schemes, in this
manuscript we consider that the terminals participating in
the alignment process have different priorities, i.e there are
primary and secondary terminals. In other words, we may say
that the primary defines a set of unused space dimensions,
i.e. a subspace that is unused by the primary network and
where transmission of secondary terminals will not cause
any interference. These unused space dimensions are what
we call the alignment directions. The small-cells align all
the inter-system interference along a common direction (the
alignment direction), so that no interference is generated on
the primary network. The selection of the optimum direction,
from the point of view of the primary network, requires full-
cooperation between the two systems and thus heavy exchange
of information. To limit the amount of information sharing we
consider that the alignment direction is selected from a finite
set (codebook), at the primary BS. The main contributions of
this work are the following

• Extension of the IA technique, proposed in [12], for a
generic macro-cell antenna configuration.

• Analysis of the extended scheme, when only limited in-
formation exchange between the two systems is allowed.

• As a result of the previous analysis sufficient conditions
on the alignment set are provided so that the diversity
order achieved at the macro-cell link, is the same as in
the case where the set dimensions tend to to infinity.

• Proposal of an efficient method to optimize the elements
of the alignment set for a given set cardinality.

This paper is organized as follows: Section II introduces
the system model. Section III presents the IA precoders and
filtering matrix. In section IV we provide sufficient conditions
for full diversity, at the primary link and then in section V
we propose an efficient method to design the alignment set.
Section VI gives a numerical evaluation of the performance
of the proposed methods. Finally, section VII provides some
conclusions.

Notations: Boldface capital letters denote matrices, bold-
face lowercase letters denote column vectors. The operations
(.)H and tr(.) represent the Hermitian transpose and the trace
of a matrix. NL[A] and NR[A] denote the left and right null-
space of matrix A, respectively. The notation A ∼ B denotes
that matrix A and B are identically distributed. Let A be a
matrix then A(i) denotes the column i of A and A(i, k) entry
(i, k). diag(A1, . . . ,AN ) is a block diagonal matrix with
entries An, n ∈ {1, . . . , N}. λm[A] denotes the mth largest
singular value of matrix A and |A| the matrix A determinant.
∥a∥ represents the norm of vector a. For two functions f(x)
and g(x), f(x)=̇g(x) means limx→∞ f(x) = limx→∞ g(x)

[24]. The symbols ′′≥̇′′
and ′′≤̇′′

are similarly defined.

II. SYSTEM MODEL

We consider a set of N small-cells within the coverage
area of a macro-cell, both sharing the same spectrum, as
shown in Fig. 1. The N small-cell access points (AP) are
connected through a high speed backhaul network (e.g. fiber)
to a central unit (CU). In this work, we consider the uplink,
i.e. the case where the UTs transmit information to the
corresponding BS and APs (UT n sends information to AP n)
and that both the macro and small-cells are operating in time
division duplex (TDD) mode. We assume that the transmit
power of the primary and secondary users is constrained to
P0 and Pn, respectively. In the following the macro-UT is
denominated by UT0 and the secondary UTs (APs) by UTn

(APn), n ∈ {1, . . . , N}. This convention is also considered for
all variables, i.e. the index zero refers to the primary terminals
(BS and macro-UT) and an index higher than zero denotes
secondary terminals.

A detailed block diagram of the system to be considered
is presented in Fig. 2. At the primary, we assume that the
BS and the UT have M and K antennas, respectively. Due
to physical constraints at the transceivers it is likely that the
number of antennas at the user terminal will be lower than
the number of antennas at the BS. As such, we consider in
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Fig. 1. Scenario: Set of N small-cells within the coverage area of a macro-
cell.

the following that K < M . At the secondary, all terminals
(both the UTs and APs) have M antennas [12]. The transmit
signal (xn), at UT n, is obtained by a linear map (Vn) of
the vector of data symbols dn

xn = P 1/2
n Vndn (1)

The data symbols dn are drawn from an uniform distribu-
tion over a Quadrature Amplitude Modulation (QAM) constel-
lation with size B. The received signal at terminal n (BS is
considered to be the receiver with index 0) can be expressed by

yn = Hn0x0 +

N∑
i=1

Hnixi + sn (2)

where x0, xi, sn, Hni, denote the primary, the secondary
UTi transmit signal, the zero mean white Gaussian noise
with variance σ2 and the channel between UTi and receiver
n, respectively. We assume that the channel Hni is complex
Gaussian distributed with unitary variance. Channel H0n is
known at UTn and channels Hni, i ∈ {0, . . . , N} are known
at APn. Furthermore, channel H00 is known at the BS and
macro-UT. These channels may be acquired by listening to
the pilot signals broadcasted by the macro BS (macro UT)
and small-cell UTs, since the macro cell and small cells mode
of operation is TDD.

In the following we assume that the macro-cell link
must remain free of inter-system interference. Furthermore,
we consider that the macro UT uses all available channel
dimensions (min(M,K)), since it is the licensee, i.e. it
transmits K data streams. On the other hand, each secondary
UT transmits only one data stream. To allow each secondary
UT to transmit one data stream we consider that IA is used to
align all transmissions in a common subspace. The required
information for IA is made available at the secondary
terminals either through the existence of a low-rate link
between the two systems, or over the air through a dedicated
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Fig. 2. Block diagram of the considered system.

cognitive pilot signal as proposed in [25] for the coexistence
of various access technologies. It is important to minimize the
resources required for this information, to avoid overloading
the backhaul or the broadcast channel as they will also be
used for other signaling information and not only this one.

A. Primary System

To decode the transmitted symbols the BS applies equalizer
W0 ∈ CK×M to the received signal (y0 ∈ CM×1) to obtain
r0 ∈ CK×1

r0 = W0y0 = W0H00x0 +

N∑
n=1

W0H0nxn +W0s0 (3)

The equalizer is designed in two steps, see Fig. 2: first
we apply the filtering matrix Q0 ∈ C(M−1)×M to remove
the interference coming from the secondary network and
then matrix U0 ∈ CK×(M−1) to remove the inter-stream
interference. In the following we assume that Q0Q

H
0 = I.

The full equalizer is given by W0 = U0Q0. More details on
the design of the filtering matrix Q0 are given in section III.

After secondary interference removal the received signal at
the BS, is given by

r̄0 = Q0y0 = Q0H00x0 +Q0s0 (4)

Following the SVD analysis the equivalent channel matrix
can be written as Heq

00 = Q0H00 = Ueq
00D

eq
00V

eq
00

H , where
Deq

00 = diag(λ1[Q0H00], . . . , λK [Q0H00]) ∈ CK×K is a
diagonal matrix containing the singular values of Heq

00 and
Ueq

00 ∈ CM×K (Veq
00 ∈ CK×K) denote the left (right)

singular vectors of Heq
00. Assuming that the primary channel

is perfectly known at both the BS and macro-UT we set
V0 = Veq

00 and U0 = Ueq
00

H . This diagonalizes the equivalent
channel and removes all inter-stream interference. According
to (3) and the previously defined precoder/equalizer we have

r0 = P
1/2
0 Deq

00d0 + n0 (5)

where n0 = W0n0 has the same statistical
properties of s0 but with a reduced dimension, since
W0W

H
0 = U0Q0Q

H
0 UH

0 = I. As a consequence the stream
k SNR (SNRk) is given by

ρk(H00,Q0, P0) =
P0

σ2
λk[H

H
00Q0

HQ0H00] (6)
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B. Secondary System

At the secondary APs the received signal is forwarded to
the CU for joint processing. As a consequence the CU has
access to the signal yH = [y1

H , . . . ,yN
H ]H(∈ CNM×1), to

which it applies the linear transform W(∈ C(N+K)×NM )

r = Wy = WHx+Ws (7)

where H = [HH
1 , . . . ,HH

n , . . . ,HH
N ]H(∈ CNM×(K+NM)),

Hn = [Hn0, . . . ,Hni, . . . ,HnN ](∈ CM×(K+NM)) de-
notes the concatenation of all APs channel matrices,
x = [xH

0 ,xH
1 , . . . ,xH

N ]H(∈ C(K+NM)×1) and s =
[sH1 , . . . , sHN ]H(∈ CNM×1).

The CU joint processor has enough degrees of freedom
(NM ) to zero force the primary and secondary channels
together, since only N + K data streams are received at the
CU. As a consequence we consider in the following that the
CU applies a zero-forcing equalizer to the received signal, i.e.
W = (AHA)−1AH , where A = HV(∈ CNM×(N+K)) and
V = diag(V0,V1, . . . ,VN )(∈ C(K+NM)×(N+K)).

III. EQUALIZER AND ALIGNMENT SUBSPACE DESIGN

As the primary link must be free of inter-system interference
the following condition must be respected

Q0H0nVn = 0, n ∈ {1, . . . , N} (8)

Let us denote v = α−1
n H0nVn the alignment direction, for

all n ∈ {1, . . . , N}, where αn denotes a positive constant.

Definition 1. An alignment direction is a column vector
(v ∈ CM×1) that specifies completely the generated small-
cell interference, from the point of view of the macro-receiver.

As a consequence, the secondary precoders are set to Vn = αnH
−1
0nv

αn =
(

Pn

vH(H0nHH
0n)

−1v

) 1
2

(9)

This value for constant αn ensures that the power constraint
Pn is respected at UTn.

It should be mentioned that this approach may be extended
for the case where the small cell UTs have a number of
antennas less than M . In such a case the precoder must be
replaced by Vn = NR[Q0H0n]. This leads to multiple values
for the vectors H0nVn, (n = 1, . . . , N), although they all lie
in the null space defined by (8). Simulation results indicated
the same type of behavior for both cases but the asymptotic
analysis, of section IV, addresses the specific case where the
UTs have the same number of antennas as the BS.

Equation (8) can be rewritten as follows

Q0v = 0 (10)

From (10) we verify that the alignment direction is equal to
the right-null space of Q0

v = NR[Q0] (11)

Definition 2. The SVD of matrix A ∈ CM×K is A =
UDVH , where D ∈ CM×K and U ∈ CM×M (V ∈ CK×K)
denote a rectangular diagonal matrix containing the ordered

singular values of A and a unitary matrix containing the left
(right) singular vectors of A, respectively.

For M > K the right null-space of A is empty and the
left null-space is made up of the last M −K columns of U
(NL[A] = [U(K + 1), . . . ,U(M)]).

For M < K the left null-space of A is empty and the
right null-space is made up of the last K −M columns of V
(NR[A] = [V(M + 1), . . . ,V(K)]).

From (9) and (11) we verify that the design of UTn

precoder Vn and alignment direction v are dependent on
the design of the macro-BS filtering matrix Q0. To limit the
amount of information exchange between the two systems we
assume that the primary filtering matrix is selected from a
finite set T = {Q1

0, . . . ,Q
t
0, . . . ,Q

T
0 }, with cardinality T , or

equivalently that the alignment direction v is selected from
set A = {v1, . . . ,vT }. These two sets are related by (11).
Furthermore, they are fixed and assumed to be known by the
primary and secondary terminals.

For a given Q0 ∈ T and channel realization H00 the system
bit-error-rate (BER), at the macro-BS, can be upper bounded,
when using Gray encoding procedures as [26], [27]

BER(H00,Q0, P0) ≤
1

K

K∑
k=1

Q
(√

ξρk(H00,Q0, P0)
)
(12)

where Q(x) = 1/
√
2π
∫ +∞
x

e−t2/2dt is the Q-function and
ξ depend on the constellation. For instance, when using a B-
QAM modulation ξ = 3/(B − 1) [26], [27].

At each channel realization the macro-BS selects one ele-
ment from set T as its filtering matrix. In the following, we
(12), as a metric to select the optimum Q0. Therefore, by
taking into account the filtering matrix selection process the
system BER is

BER(H00, P0, T ) = min
Q0∈T

BER(H00,Q0, P0) (13)

The average system BER is the expectation over the channel
realizations of BER(H00, P0, T )

BER(P0, T ) = EH00 [BER(H00, P0, T )] (14)

As mentioned before, the alignment direction v (filter
matrix Q0) is selected at the BS, using the primary BER (see
(12)), as a metric. After, selecting the alignment direction v
from set A, the BS must send this selection to the secondary
terminals so that they can use this information to form their
precoders (see (9)). To do this, we consider that the BS sends
the required information either through a low-rate cooperation
link or a broadcast channel as previously mentioned.

IV. SUFFICIENT CONDITIONS FOR FULL DIVERSITY

In this section we present sufficient conditions on the
alignment direction set to achieve full diversity order, at the
primary link. Namely, we study the impact of the cardinality
of set T on the BER performance of the primary link.

The use of multiple antennas at the transmitter and/or
receiver provides multiple paths to the information signal
to pass through. This provides multiple independently faded
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replicas of the data symbol, at the receiver end, hence more
reliable reception is achieved [24]. Intuitively the diversity
order is equal to the number of independent channel paths
the information signal passes through [24]. To formalize it we
have the following definition [24]

Definition 3. The primary system achieves a diversity c if its
BER follows

lim
P0→∞

−
log
(
BER(P0, T )

)
log(P0)

= c (15)

It is well known that for a M × K MIMO system, with
K data streams, the diversity order is equal to M − K + 1
[28]. In the following we say that the primary system achieves
full diversity when the attained diversity is the same as for
a system without interfering secondary network. Next we
provide conditions for set T so that full-diversity is achieved.

Before going into the details for the case where the filter
matrix is chosen from a finite set let us consider the case
where Q0 can take any value from the complex field, i.e.
when T → ∞, which represents an upper bound for the finite
set case. We call this scenario Full-Info in the following.

Definition 4. The SVD of channel H00 ∈ CM×K is H00 =
U00D00V

H
00, where U00 = [U1

00, U0
00] is a unitary matrix

containing the left singular vectors of the channel, D00 =

[D1
00

H
0]H is a rectangular diagonal matrix containing the

singular values of H00, U0
00 = NL[H00] ∈ CM×(M−K) is

the left null-space of H00 and U1
00 ∈ CM×K the left singular

vectors associated to the K nonzero singular values contained
in diagonal matrix D1

00 ∈ CK×K .

Theorem 1. The maximum diversity order is equal to M −
K+1 for a coexistence scenario, where a set of N small cells
(M × M), each transmitting a stream of information, share
the same spectrum with a macro-cell (M ×K) delivering K
streams of information. For the Full-Info scenario and N > 0
the SNR of stream k ∈ {1, . . . ,K} is the same as the SNR of
stream k for N = 0 (only primary transmits).

Proof. See Appendix A.

Theorem 1 defines an upper bound on the maximum diver-
sity that can be achieved with limited exchange of information.
Indeed, it shows that full-diversity can be achieved for the
coexistence scenario, when the primary and secondary are able
to exchange any amount of information they desire. Are we
still able to achieve full-diversity (M−K+1) when T is finite?
In the following we analyse the limited information exchange
case, but before providing the main result (Theorem 2), we
present three lemmas that will be used in its proof.

Definition 5. Let matrices H00 ∈ CM×K and G00 ∈ CM×K

define two channels. We write H00 ≽ G00 if both channels
have the same left and right singular vectors but λk[H00] ≥
λk[G00] for all k ∈ {1, 2, . . . ,K}.

Lemma 1. Let Q0 ∈ C(M−1)×M be an arbitrary ma-
trix. If H00 ≽ G00 and λk[G00] = λK [H00] for

all k ∈ {1, 2, . . . ,K}, then BER(H00,Q0, P0) ≤
BER(G00,Q0, P0).

Proof. See Appendix B

Lemma 2. Consider a filtering matrix Q0 ∈ C(M−1)×M ,
with the property Q0Q

H
0 = I two channels (H00 and

G00) with H00 ≽ G00 and λk[G00] = λK [H00], for all
k ∈ {1, 2, . . . ,K}, and an alignment direction v = NR[Q0].
Then, the application of filtering matrix Q0 to G00 only affects
the SNR of one of its K streams

ρk(G00,Q0, P0)

=

{
P0

σ2 λ
2
K [H00], ∀ k ∈ {1, 2, . . . ,K − 1}

P0

σ2 λ
2
K [H00](v

HNL[H00]NL[H00]
Hv), k = K

(16)

where NL[H00]
HvvHNL[H00] is positive and always lower

or equal than 1.

Proof. See Appendix C

Corollary 1. Consider a filtering matrix Q0 ∈ C(M−1)×M ,
with the property Q0Q

H
0 = I, two channels (H00 and

G00) with H00 ≽ G00 and λk[G00] = λK [H00], for all
k ∈ {1, 2, . . . ,K}, and an alignment direction v = NR[Q0].
Then, the best alignment direction within set A is

v = argmax
v∈A

vHNL[H00]NL[H00]
Hv (17)

Corollary 1 presents a suboptimal method to select the best
alignment direction of set A. This selection process only needs
as inputs the corresponding primary link channel null-space
(NL[H00]) and alignment set A. Equation (17) indicates that
the best alignment direction is the one which is closer to the
vector describing the null space of the considered channel.

Lemma 3. Let U00 ∈ CM×M be a uniformly distributed
unitary matrix (Haar-distributed) [29] and Di ∈ CM×M

(i ∈ {1, 2}) two diagonal matrices, with Di(m,m) =
{0, 1},m ∈ {1, . . . ,M}, tr(D1) = M −K and tr(D2) = 2.
Let h1 = Φ1/∥Φ1∥ and h2 = Φ2/∥Φ2∥, where Φ1 ∈ CM×1

and Φ2 ∈ C(M−1)×1 are i.i.d complex Gaussian with zero
mean and unitary variance, then

tr(D1U
H
00D2U00) ≥ 1− (1− x) (1− y) (18)

where x =
∑M−K

m=1 |h1(m)|2 and y =
∑M−K

m=1 |h2(m)|2 have
the following joint distribution

fX,Y (x, y)

≤ M − 1

K − 1

(
(M − 2)!

(M −K − 1)!(K − 2)!

)2

(1− y)(xy)M−K−1

(19)

Proof. See Appendix D

With the support of the previous three lemmas we now
present sufficient conditions on the set of alignment directions
(A) to achieve full-diversity order.

Theorem 2. Consider a coexistence scenario, where a set
of N small cells (M × M) share the same spectrum with a
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macro-cell (K × M). Denote by L the maximum number of
linearly independent vectors in the alignment set A.

If L = 1 then full diversity is not achievable. For this case
the diversity order is M −K and the BER behaves as

BER(P0, T )=̇

(
σ2

P0

)M−K

(20)

If L ≥ 2 then full diversity order is obtained, at the macro-
cell link. More specifically, for K < M −1 or L > 2 the BER
scales as

BER(P0, T )=̇

(
σ2

P0

)M−K+1

(21)

For the specific case of K = M − 1 and L = 2 the BER
behaves as

BER(P0, T )=̇log

(
P0

σ2

)(
σ2

P0

)M−K+1

(22)

Proof. See Appendix E.

According to theorem 2 we verify that for both cases, L =
2 and L > 2, the alignment set defined by A achieves full
diversity. Nevertheless, for L = 2 and K = M − 1 there is
a log(P0/σ

2) term that affects the actual slope of the BER
curve for moderate SNRs. Therefore, an alignment set with
description length of only 1 bit is enough to obtain the same
diversity as an alignment set with infinite cardinality.

V. EQUALIZER SET OPTIMIZATION

In this section we propose a method to design the alignment
set A, using as a performance metric the average system BER.

Definition 6. Consider the alignment set A = {v1, . . . ,vT }.
Let V = [v1, . . . ,vT ] be the concatenation of all alignment
directions, from set A. The SVD of V is UVΛVWH

V , where
UV ∈ CM×M , VV ∈ CT×T , ΛV = [Λ1

V 0] ∈ CM×T and
Λ1

V ∈ CM×M .

Lemma 4. For L ≥ M the primary link BER is upper
bounded by

BER(P0, T )≤̇|VVH |−
M−K+1

M

(
P0

σ2

)−(M−K+1)

(23)

Proof. See Appendix F

To optimize the alignment set we consider the average
BER upper bound given by lemma 4. As a consequence, the
alignment set optimization problem is

max
V

|VVH | s.t. V(t)HV(t) = 1, t ∈ {1, . . . , T} (24)

The constraint V(t)HV(t) follows from (11). In the following
we denominate by DET method the process used to obtain a
solution to optimization problem (24). Due to the multiple
quadratic constraints in optimization problem (24), it is quite
difficult to obtain a closed form solution. Nevertheless, the
following theorem simplifies significantly this problem and
allows to obtain such a solution.

Theorem 3. Consider the following optimization problem

max
V

|VVH | s.t.
T∑

t=1

V(t)HV(t) = T (25)

If T ≥ M then optimization problems (24) and (25) have
the same optimum value ((T/M)M ) which is achieved for
ΛV =

[√
T/MIM 0

]
. The left and right singular vectors

UV and WV have no impact on the optimum value of both
problems, but for problem (24) WV must be set according to
constraints V(t)HV(t) = 1, t ∈ {1, . . . , T}.

Proof. See Appendix G

The task of generating matrix WV may be carried out
with the help of algorithm 3.1 from [30]. To obtain a solution
for (24) we use the following procedure

1) Set ΛV =
[
(T/M)

1
2 IM , 0

]
and D = ΛH

V ΛV

2) Use algorithm 3.1 from [30] to generate VHV, with
spectrum given by D.

3) Compute the SVD of VHV = UVHVDUH
VHV

4) Set V = ΛV U
H
VHV

A. Alignment Set Examples

The procedure presented in the previous section generates an
alignment set which respects all optimal conditions of problem
(24). Nevertheless, there are other methods that allow us to
achieve the same results. Indeed, in the following we present
two different approaches to generate alignment set matrices
with the same properties as the previous procedure. These,
due to its simplicity may be of more interest for practical
applications.

1) Two-Bit channel quantization: Let us consider that
V ∈ C22M×M is given by V = α[(1 − 2Zr) + i(1 − 2Zi)

and Z = [Zr,Zi]. Row n of matrix Z ∈ {0, 1}22M×2M

contains the binary representation of integer n. We can think
of the described matrix V as the quantization of the real and
imaginary parts of the null-space of channel matrix H00, using
one bit for each component. Matrix V contains redundant
entries since row Vi results in the same SNR as row −Vi,
jVi and −jVi. Therefore only one fourth of matrix V is
needed, i.e. rows −Vi, jVi and −jVi may be removed. Let us
denote by C the matrix V after redundant row removal. As a
consequence CHC = α222M−1IM and C(i)C(i)H = 2α2M .
If we set α to (2M)−1/2 then matrix C respects all conditions
to achieve the maximum of problem (24).

2) DFT matrix: Matrix V can also be constructed by
extracting M columns from a DFT matrix of dimension T . For
this case we can also show that the resulting matrix respects
all the optimal conditions of optimization problem (24).

VI. PERFORMANCE RESULTS

In this section we first present Monte Carlo simulations
to verify the sufficient conditions for alignment set A, i.e.
theorem 2. For this numerical analysis we consider that the
alignment set is generated by selecting T columns from
the 4 × 4 identity matrix. Then, we assess the performance
of the proposed DET method and compare it with the
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Fig. 3. Average BER at the primary system, for QPSK. M = 4, K ∈ {2, 3},
N = 5, T ∈ {1, 2, 3, 4} and Full-Info Scenario.

RVQ approach [22], [31], where the alignment vectors are
generated independently from a uniform distribution on
the complex unit sphere and to the Grassmannian packings
method (denominated Grass method in the following) with
codebooks optimized using the chordal distance as a metric
[20], [32]. In the simulations we have considered normalized
channels, which means that the average long term gain is
equal to one. However the derivations were made for arbitrary
transmit powers at the primary and secondary (P0 and Pn)
and so the inclusion of the path loss aspect is equal to the
change of the values of P0 and Pn in the simulations. This
will only shift the BER curves, since all interference is
completely removed (the two systems may be considered
independent after interference removal). In the following we
consider identical noise power spectral density (No) values
for both the primary and secondary systems. This assumption
enables us to readily verify from the results the impact of the
power imbalance between the primary and secondary systems.

We consider a scenario with N = 5 APs, M = 4,
K ∈ {2, 3} and B ∈ {4, 16}, where B denotes the QAM
modulation size. The power of the primary UT is assumed to
be 10 dB higher than the one of secondary UTs. The results
presented are a function of the bit error rate over the energy per
bit to noise power spectral density ratio per antenna (Eb/N0).
At the BS the best filtering matrix (alignment direction) is
selected using the BER as a metric. We consider in the
following that the set of alignment directions is full rank.
Recalling that T denotes the cardinality of alignment set A,
then for T ≤ M and T > M the matrix V has rank L = M
and L = T , respectively. All Grassmannian codebooks used, in
this section, have a gap lower than 0.01 from the Rankin bound
[32]. Worst case results are presented for all three methods.
To obtain these results 10000 different alignment sets were
generated.

Let us start with the numerical verification of theorem 2. In
Fig. 3 and 4 we present the BER results, at the primary link, for
QPSK and 16-QAM modulations, respectively. Results show
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Fig. 4. Average BER at the primary system, for 16-QAM. M = 4, K ∈
{2, 3}, N = 5, T ∈ {1, 2, 3, 4} and Full-Info Scenario.

that for T = 1 the performance is degraded as the slope of the
BER curve is the lowest. On the other hand, for T ≥ 2 the
slope improves significantly. Fig. 3 and 4 show that the slope
of the BER curves for both T = 3 and T = 4 is the same,
as expected from the demonstration in the previous section.
Indeed, it is similar to the slope of the BER curve for the Full-
Info scenario. Nevertheless, for T = 2 and K = M − 1 = 3
we can verify that the slope, for the SNR values considered, is
lower than for T > 2 as demonstrated in section IV. The same
is not true for K = 2 < M−1, as shown in Theorem 2, where
the slope is still the same as in the Full-Info scenario, i.e., T =
∞. This degeneracy, present for the case T = 2 and K = M−
1, stems from the logarithm term in (22), which slows down
the convergence rate of the BER curve slope with the SNR.
Comparing the results for QPSK (Fig. 3) and 16-QAM (Fig. 4)
we verify that the behavior of the curves is similar (around a 4
dB shift between the two modulations, as expected). If we fix
the codebook size (T ), and increase the number of antennas at
the macro UT (K), the gap to the Full-Info scenario increases.
For T = 4 the gap is around 0.5 dB for K = 2 and increases to
1 dB for K = 3. This is due to the fact that at the BS, the inter-
ference is restricted to a subspace of an M -dimensional vector
space with dimensionality 1 while the desired signal occupies
a subspace of dimension K. As K increases the number of free
space dimensions decreases and therefore the degrees of free-
dom available for selecting the interference subspace decrease.

Let us now consider the optimization of the alignment set A
using the DET, RVQ and Grass methods. Fig. 5 and 6 present
results for codebooks with size T = 8 optimized using the pro-
posed scheme (DET method), the RVQ and the Grass methods.
These results are only for QPSK modulation as the results for
16-QAM will be similar, around 4 dB worse. We have consid-
ered a codebook with moderate size, T = 8, since as the set
cardinality increases more information is exchanged between
both systems making the set generation method less important.
Fig. 5 and 6 show the required Eb/N0 to achieve a target
BER of 10−3 versus M ∈ {4, 5, 6, 7, 8} for K = M − 2 and
K = M − 1, respectively. The selected values of K ensure a
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fair comparison between the considered M values as for K =
M−1 (K = M−2) the diversity order is kept fixed and equal
to 2 (3). The performance of the proposed DET method is
similar to the Grassmannian method, for both K = M−2 and
K = M − 1. In comparison to the RVQ method the proposed
DET method achieves a gain of around 0.1 and 0.3 dB, for
K = M −2 and K = M −1, respectively. On the other hand,
the gap to the Full-Info scenario is around 0.3 and 0.5 dB.

Now, focusing on the secondary link, we see that in the high
SNR the CU can remove completely the primary interference
using the ZF equalizer. The performance for K = 2 is better
than the one obtained for K = 3, since for the latter case more
degrees of freedom are lost to remove the primary interference.
As expected for 16-QAM the BER curve is shifted around 4
dB to the right.

VII. CONCLUSION

In this manuscript we have considered the coexistence of
a set of small-cells within a macro-cell. To limit the amount
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Fig. 7. Average BER at the secondary system, for QPSK and 16-QAM,
M = 4, K ∈ {2, 3}, N = 5.

of information exchange between the two systems it was
considered that the small-cells align their transmission along
a common direction and that this direction is selected from a
finite set. We have proposed an efficient method to construct
the alignment set, for a given set cardinality, which has
improved performance when compared to RVQ and similar
performance to the Grassmanian packing method. Sufficient
conditions for the alignment set where provided so that
full diversity order is achieved, at the primary link. It was
verified that an alignment set with just two alignment vectors
is enough to achieve the full system diversity. This allows
the primary and secondary systems to coexist with very
limited information exchange between both systems. Indeed,
with just 1 bit of information exchange the diversity of the
primary is the same as in the case were an unlimited amount
of information is exchanged. As a final conclusion we may
say that the diversity of the primary network must match
the diversity of the secondary network, i.e. the secondary
network must increase the set of allowed transmit directions
to improve the diversity of the primary system.

APPENDIX A
PROOF THEOREM 1

If N = 0 there are no small-cells only the macro-cell, then
the considered scenario is just a single-user M × K MIMO
communication system. For a single-user M × K MIMO
system, using the SVD to decompose the channel in a set
of K parallel channels the achieved diversity order is equal to
M −K + 1 [28]. The SNR for stream k for this scenario is

ρk(H00, I, P0) =
P0

σ2
λk[H00] (26)

Now let us consider a more general case, where N > 0.
Consider that the small-cell terminals are using interference
alignment to align all the generated interference along a com-
mon alignment direction v. Assume the SVD of the primary
channel as in definition 4 and set v equal to any column of
U0

00 and the macro-cell receiver interference filtering matrix
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Q0 = U1
00

H . From the properties of U00 we verify that
after the projection over Q0 the resulting equivalent primary
channel is given by D1

00V
H
00. Therefore, the singular values

of the original channel were not affected by the interference
filtering process and the stream k SNR is

ρk(H00,U
1
00

H
, P0) =

P0

σ2
λk[H00] (27)

the same as in the non-coexistence scenario. As a result, the
diversity order for N > 0 is the same as for N = 0, i.e
M −K + 1.

APPENDIX B
PROOF OF LEMMA 1

Let Q0 ∈ C(M−1)×M be an arbitrary matrix and H00 ≽
G00 with λk[G00] = λK [H00] for all k ∈ {1, 2, . . . ,K}
then as we have by construction G00G

H
00 ≼ H00H

H
00 it

follows from the properties of positive definite matrices [33]
that λm[Q0G00G

H
00Q0

H
] ≤ λm[Q0H00H

H
00Q0

H
], for all

m ∈ {1, . . . ,K}. Therefore the BER, see (12), for H00 is
upper bounded by the BER of the link with channel matrix
G00.

APPENDIX C
PROOF OF LEMMA 2

By assumption the SVD of channel G00 is

G00 = λK [H00][U
1
00 U0

00][I 0]
HVH

00

= λK [H00]U
1
00V

H
00

(28)

where U0
00 = NL[H00]. As a consequence we have the

following
GH

00G00 = λ2
K [H00]I (29)

G00G
H
00 = λ2

K [H00]U
1
00U

1
00

H
(30)

As the matrix of left singular vectors is unitary it follows
that U1

00U
1
00

H
+U0

00U
0
00

H
= I, then

G00G
H
00 = λ2

K [H00](I−U0
00U

0
00

H
) (31)

The SVD of filter matrix Q0 ∈ C(M−1)×M is

Q0 = UQ0 [DQ0 0][V1
Q0

v0
Q0

]H (32)

where v0
Q0

= NR[Q0] = v, see (11). As Q0Q
H
0 =

UQ0DQ0D
H
Q0

UH
Q0

, from (32) and Q0Q
H
0 = I, by assump-

tion, then DQ0D
H
Q0

= I. Therefore, as DQ0 is diagonal then
DH

Q0
DQ0 = I, from (32) we have the following

QH
0 Q0 = V1

Q0
V1

Q0

H
= I− vvH (33)

The second equality follows from the fact that the right
singular vectors of Q0 are unitary. From (29) and (33) it
follows that

GH
00Q

H
0 Q0G00 = GH

00(I− vvH)G00

= λ2
K [H00]I−GH

00vv
HG00

(34)

As GH
00vv

HG00 is a rank 1 matrix, it has just one non-zero
singular vector, i.e. its SVD is

GH
00vv

HG00 = LΩLH (35)

where L ∈ CK×K denote the corresponding singular vec-
tors matrix, Ω = diag(Ω1, 0, . . . , 0) ∈ CK×K and Ω1 =
tr(GH

00vv
HG00) = vHG00G

H
00v. Using (31) we obtain

Ω1 = vHG00G
H
00v = λ2

K [H00](1− vHU0
00U

0
00

H
v) (36)

From (34) and (35) we get that the SVD of GH
00Q

H
0 Q0G00 is

GH
00Q

H
0 Q0G00 = LΓLH (37)

where Γ = λ2
K [H00]diag(1, 1, . . . ,v

HNL[H00]NL[H00]
Hv).

As v is unitary and U0
00 is equal to the last M −K columns

of a unitary matrix, then vHNL[H00]NL[H00]
Hv ≤ 1 and

positive. As a consequence, from (6) we verify that the SNR
of stream k, after the application of filtering matrix Q0, is
given by (16).

APPENDIX D
PROOF LEMMA 3

Let U00 = [aH1 , . . . ,aHm, . . . ,aHM ] ∈ CM×M , be a unitary
matrix drawn uniformly from the ensemble of unitary matrices
[29]. To generate a uniform random matrix U00 over the set of
unitary matrices we may use the Gram-Schmidt process [29].
Using the Gram-Schmidt procedure vectors a1 and a2 are as
follows

a1 =
b1

∥b1∥
, b1 = g1 (38)

a2 =
b2

∥b2∥
, b2 = g2R, R = I− aH1 a1 (39)

where g1 ∈ C1×M and g2 ∈ C1×M are i.i.d complex Gaussian
random vectors with zero mean and unitary variance. Without
loss of generality, assume that D1 = diag(1, . . . , 1, 0, . . . , 0),
tr(D1) = M −K and D2 = diag(1, 1, 0, . . . , 0), then

tr(D1U
H
00D2U00) = tr(D1(a

H
1 a1 + aH2 a2))

= a1D1a
H
1 + a2D1a

H
2

(40)

Let DR = diag(0, 1, . . . , 1) and UR = [aH1 , NR[a1]]. R
may be decomposed as URDRUH

R . From the definition of
the null-space operator (NR[.]) we have that UR is unitary.
It follows then that b2 = g2R ∼ g2DRUH

R ∼ Φ2NR[a1]
H ,

where Φ2 ∈ C1×(M−1) is a i.i.d. random complex Gaussian
vector with zero mean and unitary variance. Again, from the
definition of the null-space operator (NR[.]) we have that
NR[a1]

HNR[a1] = I then

a2D1a
H
2 ∼ Φ2BΦH

2

Φ2ΦH
2

∼ Φ2DBΦ
H
2

Φ2ΦH
2

(41)

where B = NR[a1]
HD1NR[a1]. The second equality fol-

lows from the SVD of B = UBDBU
H
B . Let C =

DH
1 NR[a1]NR[a1]

HD1, them from the definition of UR

C = DH
1 (I− aH1 a1)D1 = DH

1 D1 −DH
1 aH1 a1D1

= diag(I− eH1 e1,0)
(42)

where e1 = [a1(1), . . . ,a1(M − K)]. As eH1 e1 is a rank
1 matrix, the nonzero singular values of C are equal to
{1, . . . , 1, 1 − e1e

H
1 }, where, by definition of e1, e1e

H
1 =

a1D1a
H
1 . The nonzero singular values of B are equal to
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the nonzero singular values of C. Let h1 ∼ a1 and h2 =
Φ2/∥Φ2∥, then from (38) and (41) we have

tr(D1U
H
00D2U00) ∼ x+ (y − |h2(M −K)|2)

+ (1− x)|h2(M −K)|2

≥ 1− (1− x) (1− y)

(43)

where x =
∑M−K

m=1 |h1(m)|2 and y =
∑M−K

m=1 |h2(m)|2. Ran-
dom variables x and y are independent. Using the definition
of h1 and h2 and random variable transformation rules, the
joint distribution of x and y (fX,Y (x, y)) is upper bounded as
in (19).

APPENDIX E
PROOF THEOREM 2

First we consider the case where T = 1. For this case
we can assume without loss of generality that the alignment
direction is equal to v = [1, 0, . . . , 0]H . Therefore, to remove
the secondary interference the BS must consider just the
received signal at antennas 2 to M as the received signal
at antenna 1 is not interference free. This implies that after
the application of the filtering matrix the resulting channel is
equivalent to that of a (M − 1)×K MIMO system. As such,
we are only able to achieve a diversity of M − K [28], not
M −K + 1 (full-diversity).

Now let us study the case where T > 1. Consider a channel
G00 with H00 ≽ G00 and λk[G00] = λK [H00] for all k ∈
{1, 2, . . . ,K}. From Lemma 1 and for any filtering matrix
Q0, BER(H00,Q0, P0) ≤ BER(G00,Q0, P0). Therefore,
from (13) we get BER(H00, P0, T ) ≤ BER(G00, P0, T ).
By Lemma 2 the filtering process only affects the SNR of one
of its K streams. From the same Lemma the minimum stream
SNR is equal to

ρK(G00,Q0, P0) =
P0

σ2
λ2
K [H00](v

HNL[H00]NL[H00]
Hv)

(44)
As all other K − 1 streams have a better SNR than stream K
the BER for channel G00 is upper bounded by, see (13)

BER(G00, P0, T ) ≤ min
v∈A

Q
(√

ξρK(G00,Q0, P0)
)

= Q

(√
ξµ

P0

σ2
λ2
K [H00]

) (45)

where µ = maxv∈A{vHNL[H00]NL[H00]
Hv} represents the

loss incurred by the fact that the alignment direction v is
selected from a finite set A with cardinality T . The equality
follows from the monotonic properties of the Q-function.

By Theorem II.2 from [34], H00 has its left and right
singular vectors statistically independent of its singular values.
Hence, the average BER of channel G00 is

BER(P0, T ) ≤ EλK [H00], µ

[
Q

(√
ξµ

P0

σ2
λ2
K [H00]

)]
(46)

As the maximum value of a given sequence is always higher
than its average value

µ = max
v∈A

{vHNL[H00]NL[H00]
Hv}

≥ 1

T
tr(NL[H00]

HVVHNL[H00])
(47)

where V = [v1, . . . ,vT ] is the concatenation of all alignment
directions from the alignment set A. Consider the SVD of
VVH = UVDVUH

V , where DV, UV ∈ CM×M . NL[H00]
is equal to the last M − K columns of the unitary matrix
U00. As U00 ∈ CM×M is uniformly distributed over the set
of unitary matrices [34] and UV is unitary then UH

VNL[H00]
has the same distribution as NL[H00]. Consequently, only the
eigenvalues of VVH matter in upper bound (47)

µ ≤ 1

T
tr(NL[H00]

HVVHNL[H00])

∼ 1

T
tr(NL[H00]

HDVNL[H00])
(48)

Let κ = 1
T tr(NL[H00]

HDVNL[H00]) then from (46) and
(48) the BER is upper bounded by

BER(P0, T ) ≤ EλK [H00], κ

[
Q

(√
ξκ

P0

σ2
λ2
K [H00]

)]
(49)

Using the exponential upper bound of the Q-function
(Q(x) ≤ 1/2e−x2/2) and evaluating the expectation operator
of (49) over λK [H00] we get (see [35] equations (127) and
(128))

BER(P0, T )≤̇Eκ

[(
κ
P0

σ2

)−(M−K+1)
]

= Eκ

[
κ−(M−K+1)

](P0

σ2

)−(M−K+1)
(50)

As a consequence if the expectation Eκ

[
κ−(M−K+1)

]
is

finite we achieve full diversity. In the following we will
analyse this term. Using variable κ definition we get

Eκ

[
κ−(M−K+1)

]
= ENL[H00]

[(
1

T
tr(NL[H00]

HDVNL[H00])

)−(M−K+1)
]

(51)

Assume, for now, that L = 2 entries of matrix DV are equal
to d and the others are zero, i.e. DV = diag(d, d, 0, . . . , 0).
d denotes the smallest singular value of the correlation
matrix (VVH). Let D1 = diag(0, . . . , 0, 1, . . . , 1), tr(D1) =
M −K, D2 = diag(1, 1, 0, . . . , 0) and tr(D2) = 2, then

Eκ

[
κ−(M−K+1)

]
= EU00

[(
d

T
tr(D1U

H
00D2U00)

)−(M−K+1)
]

≤ Ex,y

[(
d

T
(1− (1− x)(1− y))

)−(M−K+1)
] (52)
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The inequality follows from Lemma 3 equation (18). From
(19), i.e. the joint probability density function (pdf) of x and y

Eκ

[
κ−(M−K+1)

]
≤ M − 1

K − 1

(
(M − 2)!

(M −K − 1)!(K − 2)!

)2
(M −K)−2

(M −K − 1)
(53)

Therefore, for M − K > 1 (for M − K = 1 bound (53) is
infinite) full diversity is achievable

BER(P0, T )≤̇Eκ

[(
κ
P0

σ2

)−(M−K+1)
]
=̇

(
P0

σ2

)−(M−K+1)

(54)
For K = M − 1 the behavior of the BER curve is different

and the previous analysis is not able to capture it. Let us
consider then the case K = M − 1. For K = M − 1 the
pdf of the minimum eigenvalue of a M × (M − 1) MIMO
channel (λM−1[H00]) is [28], [36], [37]

fΛM−1(λM−1) = β2λM−1[H00]e
−βλM−1[H00] (55)

where β is positive and real. Using the exponential upper
bound of the Q-function the variable κ definition and evalu-
ating the expectation operator of equation (49) over λK [H00]
we get

BER(P0, T )

≤ Eκ

[
1

2

(
1 + ξκ

β−1

2

P0

σ2

)−2
]

= Eu0
00

[
1

2

(
1 +

ξβ−1

2T

P0

σ2
u0
00

H
DVu0

00

)−2
] (56)

where u0
00 = NL[H00] ∈ CM×1. As u0

00
H
u0
00 = 1 we have

BER(P0, T ) ≤ 1

2
Eu0

00

[(
u00

HDu00

)−2
]

(57)

where D = I+ ξβ−1

2T
P0

σ2DV. As before, assume that L entries
of matrix DV are equal to d and the others are zero, i.e.
D = diag(a, . . . , a, 0, . . . , 0), where a = 1 + dξβ−1

2T
P0

σ2 . As
previously stated, u0

00 is uniformly distributed over the set
of unitary vectors, with dimension M [37], [36]. Therefore
u0
00 ∼ h/

√
hHh, where h ∈ CM×1 is i.i.d. complex Gaussian

distributed with unitary variance. Set x =
∑L

m=1 |h(m)|2 and
y =

∑M
m=L+1 |h(m)|2, then bound (57) simplifies to

BER(P0, T ) ≤ 1

2
Ex,y

[(
x+ y

ax+ y

)2
]

(58)

The random variables x and y are the sum of L and M − L
exponentially distributed random variables, respectively, then
their distribution is as follows

fX(x) =
xL−1e−x

(L− 1)!
, fY (y) =

yM−L−1e−y

(M − L− 1)!
(59)

Consider the case where L = 2. As x is always equal to or
higher than zero then (x + y)M−3 ≥ yM−3. For this reason

the expectation operator can be upper bounded by

Ex,y

[(
x+ y

ax+ y

)2
]

≤
∫ +∞

0

∫ +∞

0

(x+ y)M−1

(ax+ y)2
xe−xe−y

(M − 3)!
dxdy

= (2 + (M − 3)M)
1− a+ alog(a)

a(a− 1)2

≤ (2 + (M − 3)M)
log(a)

(a− 1)2

(60)

The last inequality follows from the definition of a and d.
Hence, for the case L = 2 the BER can be upper bounded by

BER(P0, T )

≤ 2 + (M − 3)M

2
log

(
1 +

dξβ−1

2T

P0

σ2

)(
dξβ−1

2T

P0

σ2

)−2

=̇log

(
P0

σ2

)(
σ2

P0

)2

(61)

Now, let us consider the case where L > 2. From the definition
of y we have that y ≥ 0 then ax + y ≥ ax. As a result the
expectation operator for L > 2 is upper bounded by

Ex,y

[(
x+ y

ax+ y

)2
]
≤ Ex,y

[(
x+ y

ax

)2
]

=
2 + (M − 3)M

2 + (L− 3)L
a−2

(62)

Thus, for the case where L > 2 the BER is upper bounded as
follows

BER(P0, T ) ≤ 1

2

2 + (M − 3)M

2 + (L− 3)L

(
1 +

dξβ−1

2T

P0

σ2

)−2

=̇

(
σ2

P0

)2

(63)

APPENDIX F
PROOF LEMMA 4

Consider a Rayleigh distributed channel h ∈ CM×1 and a
diagonal matrix D ∈ CM×M . Define the following parameter

c = Eh[e
−P0

σ2 hHDh] = Eh

[
e−

P0
σ2

∑M
m=1 D(m,m)xm

]
(64)

where xm = |h(m)|2 is exponentially distributed. By evalu-
ating the expectation operator

c =
M∏

m=1

(
1 +

P0

σ2
D(m,m)

)−1

=

∣∣∣∣IM +
P0

σ2
D

∣∣∣∣−1

=̇

(
σ2

P0

)M

|D|−1

(65)

As in the proof of theorem 2 set u1 = h/
√
hHh. Set also

µ = hHh. As µ is the sum of M exponential distributed
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random variables, its pdf is fU (µ) =
µM−1

(M−1)!e
−µ. Therefore,

the previous expectation can also be evaluated as follows

c = Eh

[
e−

P0
σ2 hHDh

]
= Eµ,u1

[
e−µ

P0
σ2 u1

HDu1

]
= Eu1

[∫ +∞

0

e−µ
P0
σ2 u1

HDu1fU (µ)dµ

]
= Eu1

[(
1 +

P0

σ2
u1

HDu1

)−M
]

=̇

(
σ2

P0

)M

Eu1

[
(u1

HDu1)
−M
]

(66)

The third equality follows from the fact that µ and u1 are
independent random variables [36], [37]. From (65) and (66)
we verify that

Eu1

[(
u1

HDu1

)−M
]
=̇|D|−1 (67)

As f(x) = xα is concave for all α < 1 then by applying
Jensen inequality to the expectation operation of equation (50)
we get for α = (M −K + 1)/M

BER(P0, T )≤̇Eκ

[
κ−M

]M−K+1
M

(
P0

σ2

)−(M−K+1)

(68)

Let NL[H00] = [b1, . . . ,bm, . . . ,bM−K ], where bm ∈
CM×1 denotes column m of matrix NL[H00] and consider
that L ≥ M , then from the definition of variable κ we obtain

κ =
1

T
tr(NL[H00]

HDVNL[H00]) ≤
1

T
bH
1 DVb1 (69)

Therefore, from (67) the BER is upper bounded by

BER(P0, T )

≤̇Eκ

[
(bH

1 DVb1)
−M
]M−K+1

M

(
P0

σ2

)−(M−K+1)

= |VVH |−
M−K+1

M

(
P0

σ2

)−(M−K+1)

(70)

The equality follows from (67) and |DV| = |VVH |, since
u1 ∼ b1 by definition.

APPENDIX G
PROOF THEOREM 3

As the objective function of both problems ((24) and (25))
is the same and the constraint from problem (25) includes
all points in the feasibility region, defined by the constraint
set of problem (24), then the optimum value of optimization
problem (25) constitutes an upper bound to the optimum value
of problem (24).

Consider the relaxed optimization problem (25) and that
the SVD of V is as in definition 6. Thus the SVD of
VVH is given by UVDVUH

V , where DV = ΛH
VΛV =

Λ1
V

H
Λ1

V. Using the Sylvester’s determinant theorem and the
fact that the constraint

∑T
t=1 V

H(t)V(t) = T is equivalent to
tr(VHV) = T problem (25) can be rewritten as

max
V

M∏
m=1

DV(m,m), s.t.

M∑
m=1

DV(m,m) = T (71)

Therefore the left and right singular vectors of V have no
impact on the optimum value of the relaxed optimization prob-
lem. Applying the Lagrangian multiplier method the optimum
solution for (71) is DV(p, p) = T/M and the respective
optimum value is (T/M)M . Consequently, the optimum value
for ΛV is

[√
T/MIM 0

]
.

Now, consider the optimization problem (24). The con-
straints V(t)HV(t) = 1, t ∈ {1, . . . , T} are equivalent to the
constraint that VHV must be a unit diagonal matrix. Theorem
2.1 from [30] states a necessary and sufficient condition for
the existence of a unit diagonal matrix with a given set of
eigenvalues. This condition is respected for the singular values
DV(p, p) = T/M , p ∈ {1, . . . ,M}. As a consequence we
have proved the existence of a matrix V with eigenvalues
equal to the ones provided by the optimum of the relaxed
problem and that in addition respects the constraints of the
original problem (24). Since both optimization problems share
the same cost function and the optimum of the relaxed problem
is an upper bound to the original problem then the optimum
of the last may be obtained from the first.

To generate matrix VHV with unit diagonal and fixed
eigenvalues we can use the algorithm 3.1 described in [30].
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