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Abstract

Optical signal processing is a promising technique to enable fast data information proc-
essing in the optical domain. Traditional optical signal processing functions pay more at-
tention to binary modulation formats (i.e., binary numbers) with single-bit information
contained in one symbol. The ever-growing data traffic has propelled great success in
high-speed optical signal transmission by using advanced multilevel modulation formats
(i.e., high-base numbers), which encode multiple-bit information in one symbol with re-
sultant enhanced transmission capacity and efficient spectrum usage. A valuable chal-
lenge would be to perform various optical signal processing functions for multilevel
modulation formats, i.e., high-base optical signal processing. In this chapter, we review
recent research works on high-base optical signal processing for multilevel modulation
formats by exploiting degenerate and nondegenerate four-wave mixing in highly nonlin-
ear fibers or silicon photonic devices. Grooming high-base optical signal processing func-
tions including high-base wavelength conversion, high-base data exchange, high-base
optical computing, and high-base optical coding/decoding are demonstrated. High-base
optical signal processing may facilitate advanced data management and superior net-
work performance.

Keywords: High-base optical signal processing, multilevel modulation format, four-wave
mixing, wavelength conversion, data exchange, optical computing, coding/decoding

1. Introduction

The arrival of the era of big data has fuelled the increasing demand on both high-speed signal
transmission and fast signal processing, which are known as two themes of great importance
for optical communications. The advances in fiber-optic technologies have resulted in great
success in delivering high-speed data signals in optical fiber transmission links [1-5]. The rapid
development of photonics technologies has also promoted increasing interest for optical signal
processing, which is regarded as a promising solution to facilitate high-speed signal processing
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in the optical domain and to eliminate complicated, inefficient, low-latency, and power-
consuming optical-to-electrical-to-optical (O-E-O) conversions [6]. At network nodes of
advanced photonic networks, different optical signal processing functions might be required
to enable increased network flexibility and efficiency. Remarkably, nonlinear optics has offered
great potential to develop optical signal processing in high-speed photonic networks using
various optical nonlinearities [6-20]. Miscellaneous optical signal processing functions have
been demonstrated, such as wavelength conversion, wavelength (de)multiplexing, wave-
length multicasting, data exchange, add/drop, optical addressing, optical switching, optical
logic gate, optical computing, optical format conversion, optical correlation, optical equaliza-
tion, optical regeneration, tunable optical delay, optical coding/decoding, etc. [21-53]. These
optical signal processing operations are enabled by exploiting different nonlinear effects in
different nonlinear optical devices. The typical nonlinear effects include cross-gain modulation
(XGM), self-phase modulation (SPM), cross-phase modulation (XPM), two-photon absorption
(TPA), degenerate and nondegenerate four-wave mixing (FWM), second-harmonic generation
(SHG), sum-frequency generation (SFG), difference-frequency generation (DFG), cascaded
second-harmonic generation and difference-frequency generation (<SHG/DFG), and cascaded
sum- and difference-frequency generation (cSFG/DFG). Typical nonlinear optical devices
based on different platforms include semiconductor optical amplifiers (SOAs), highly nonlin-
ear fibers (HNLFs), periodically poled lithium niobate (PPLN) waveguides, chalcogenide
(As,S;) waveguides, silicon waveguides, and photonic crystal waveguides. It is noted that most
of previous research efforts are dedicated to optical signal processing for binary modulation
formats such as on-off keying (OOK), differential phase-shift keying (DPSK), and binary
phase-shift keying (BPSK). Despite favorable operation performance achieved for binary
optical signal processing, it suffers limited bitrate and low spectral efficiency since only single-
bit information is carried by each symbol for binary modulation formats.

With the rapid growth of global broadband and mobile data traffic, high transmission capacity
and high spectral efficiency are highly desirable. Fortunately, recent advances in multilevel
modulation formats, coherent detection, and digital signal processing have led to tremendous
increase in transmission capacity and spectral efficiency [54-63]. Beyond great progress in high-
speed signal transmission, processing multilevel modulation formats in the optical domain
could be another interesting topic compatible with superior network performance and
advanced data management. Typically, multilevel modulation formats contain multiple bits
in one symbol, e.g., 2, 3, and 4 bits in one symbol for quadrature phase-shift keying (QPSK),
8-ary phase-shift keying (8PSK), star 8-ary quadrature amplitude modulation (Star-8QAM),
16-ary phase-shift keying (16PSK), star 16-ary quadrature amplitude modulation
(Star-16QAM), and square 16-ary quadrature amplitude modulation (Square-16QAM) (Fig.
1). Moreover, multiple points in the constellation plane can be used to represent high-base
numbers, e.g., quaternary number for QPSK, octal numbers for 8PSK and Star-8QAM, and
hexadecimal numbers for 16PSK, Star-16QAM and Square-16QAM (Fig. 1). Despite great
success in transmission links using multilevel modulation formats [64-69], there have been
relatively limited research efforts dedicated to their manipulation in the optical domain (i.e.,
high-base optical signal processing). In this scenario, a laudable goal would be to develop
miscellaneous high-base optical signal processing functions for multilevel modulation formats
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modulation signa 5] ased on degenerate FWM in a silicon wavegul fe. Coherent multlcarrler,
multilevel modulations, i.e., orthogonal frequency-division multiplexing (OFDM) combined
with advanced multilevel quadrature amplitude modulation (mQAM), are employed in the
experiment.

Shown in Fig. 2(a) is the schematic cross section of a typical silicon waveguide. The calculated
mode distribution using finite element method (FEM) is depicted in Fig. 2(b), from which one
can see the tight light confinement in the top silicon region due to the high contrast index of
the silicon waveguide. The measured scanning electron microscope (SEM) images of the
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fabricated silicon waveguide and grating coupling region are shown in Fig. 2(c) and (d). We
fabricate the silicon waveguide on a silicon-on-insulator (SOI) wafer, on the top of which the
silicon thickness is 340 nm with a 2-pum-thick buried oxide (BOX) layer. Using electron-beam
lithography (EBL), followed by induced coupled plasma (ICP) etching, the desired silicon
waveguide is formed for on-chip, high-base wavelength conversion.

|}

Figure 2. (a) Cross section and (b) calculated mode distribution of a typical silicon waveguide. (c)(d) Measured scan-
ning electron microscope (SEM) images of the fabricated silicon waveguide and grating coupling region.

Figure 3 illustrates the wavelength conversion process based on degenerate FWM in a silicon
waveguide. One OFDM m-QAM carrying data signal and one continuous-wave (CW) pump
are launched into the silicon waveguide. When propagating along the silicon waveguide,
pump photons are annihilated to create signal photons and newly converted idler photons
through degenerate FWM process. At the output of the silicon waveguide, the converted idler
takes the OFDM m-QAM data information carried by the input signal and the wavelength
conversion from input signal to output idler is achieved. It is noted that the performance
degradation of high-base wavelength conversion by degenerate FWM process can be ascribed
to the accumulated phase noise transferred from the input pump and signal. Since the
constellations of higher-order modulations (e.g., 16/32/64/128-QAM) inherently have a smaller
phase noise tolerance due to the smaller spacing between adjacent constellation points, it is
challengeable to realize high-base wavelength conversion of OFDM m-QAM signals, espe-
cially for higher-order modulations such as OFDM 16/32/64/128-QAM.

Shown in Fig. 4 is the experimental setup for high-base wavelength conversion of OFDM
16/32/64/128-QAM signals using a silicon waveguide. At the transmitter, an external cavity
laser (ECL1) at 1563.849 nm is modulated by a single-polarization optical I/Q modulator. An
arbitrary waveform generator (AWG) running at 10 GS/s sampling rate is used to produce the
electrical OFDM m-QAM signal (m=16, 32, 64, 128). The transmitted OFDM signal is generated
off-line from a data sequence of 2*-1 pseudo random binary sequences (PRBS) and then
mapped onto m-QAM constellation. The OFDM m-QAM signal is constructed by 82 subcar-
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Figure 3. Illustration of high-base wavelength conversion of OFDM m-QAM signals based on degenerate FWM in a
silicon waveguide.

riers, in which 78 subcarriers are used to carry the payloads with m-QAM signal, while 4
subcarriers are selected as the pilots with 4-QAM loading to estimate the phase noise. Another
inverse fast Fourier transform (IFFT) with a size of 256 is used to convert the signal to time
domain. No cyclic prefix (CP) is used as the signal passes through a system without dispersion-
dominated devices. For the channel estimation, 10 training symbols are used for every 468
payload symbols in a manner of [A 0], where “A” denotes one OFDM m-QAM symbol.
Another ECL (ECL2) employed as the pump is set at 1560.61 nm with a 6-dBm output power.
Two polarization controllers (PC1, PC2) are used to adjust the polarization states of signal and
pump, respectively. After the signal amplification by an erbium-doped fiber amplifier
(EDFA1) with a maximum output power of 27 dBm and pump amplification by a second EDFA
(EDFA2) with a maximum output power of 30 dBm, the signal and pump are combined with
a wavelength selective switch (WSS) and then vertically coupled into the silicon waveguide,
in which degenerate FWM process takes place to enable the wavelength conversion from the
signal to the converted idler. In the experiment, the signal is amplified to 25.5 dBm by EDFA1
and the pump is amplified to 27 dBm by EDFA2. The WSS not only combines the amplified
signal and pump together but also suppresses the amplified spontaneous emission (ASE) noise
from two EDFAs. After the wavelength conversion, the signal, pump, and newly converted
idler are vertically coupled out from the silicon waveguide. After the amplification by a third
EDFA (EDFA3), the converted idler is filtered using a tunable optical filter (TOF) with a
bandwidth of 0.4 nm. A variable optical attenuator (VOA) and one more EDFA (EDFA4) are
employed to adjust the received optical signal-to-noise ratio (OSNR) for proper detection by
the coherent receiver. At the receiver, the optical signal is first mixed with a local oscillator
(LO) by an optical hybrid and detected by a typical balanced coherent receiver. The line width
of the employed laser sources including ECL1, ECL2, and LO in the experiment is around 100
kHz. The obtained two radio frequency (RF) signals for the IQ components are sent into a
Tektronix real-time digital oscilloscope acquired at 50 GS/s and processed off-line with a
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MATLAB program. The offline digital processing of the received signal includes: 1) carrier
frequency offset estimation and OFDM window synchronization; 2) fast Fourier transform
(FFT); 3) channel estimation; 4) phase noise estimation (crucial to m-QAM signal); 5) constel-
lation decision and bit-error rate (BER) calculation.
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Figure 4. Experimental setup for high-base wavelength conversion of OFDM m-QAM signals using a silicon wave-
guide. ECL: external cavity laser; AWG: arbitrary waveform generator; PC: polarization controller; TOF: tunable opti-
cal filter; VOA: variable optical attenuator; LO: local oscillator; EDFA: erbium-doped fiber amplifier.

In order to characterize the performance of high-base wavelength conversion of OFDM m-
QAM signals, we measure the BER curves as a function of received OSNR for back-to-back (B-
to-B) and converted idler. Shown in Fig. 5(a)-(d) are measured BER performance for high-base
wavelength conversions of OFDM 16-QAM, OFDM 32-QAM, OFDM 64-QAM, and OFDM
128-QAM, respectively. As shown in Fig. 5(a), for OFDM 16-QAM wavelength conversion the
required OSNR at the 7% forward error correction (FEC) threshold (BER=1x107)is 7.8 and 10.8
dB for the B-to-B signal and converted idler, respectively. The observed OSNR penalty is
around 3 dB for OFDM 16-QAM wavelength conversion. Similarly, the received OSNR
penalties of ~4 dB at 7% FEC threshold in Fig. 5(b), ~3.5 dB in Fig. 5(c) at 20% FEC threshold
and ~4.5 dB in Fig. 5(d) at 20% FEC threshold are observed for high-base wavelength conver-
sions of OFDM 32-QAM, OFDM 64-QAM, and OFDM 128-QAM,, respectively. The right insets
of Fig. 5(a)-(d) depict corresponding constellations of the B-to-B signals and converted idlers
at the given OSNR values. One can see clear constellations of converted idlers, indicating
favorable operation performance achieved for on-chip, high-base, all-optical wavelength
conversions of multicarrier, multilevel modulation (OFDM 16/32/64/128-QAM) signals using
a silicon waveguide.

3. High-base optical data exchange [71, 73, 74, 86]

We propose and demonstrate high-base all-optical data exchange of advanced multilevel
modulation signals based on degenerate/nondegenerate FWM in HNLFs or silicon—-organic
hybrid slot waveguides.
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Figure 5. Measured BER versus received OSNR for high-base wavelength conversions of multicarrier, multilevel mod-
ulation signals. (a) OFDM 16-QAM. (b) OFDM 32-QAM. (c) OFDM 64-QAM. (d) OFDM 128-QAM.

We first demonstrate high-base optical data exchange of 100-Gbit/s return-to-zero differential
QPSK (RZ-DQPSK) signals. The concept and principle for high-base optical data exchange of
DQPSK modulation signals between two different wavelengths (S1:Ag,, S2:A,,) are depicted

in Fig. 6. The four-level phase information carried by two DQPSK signals at different wave-
lengths is swapped after the data exchange, as shown in Fig. 6(a). To perform high-base optical
data exchange of DQPSK signals carrying phase information, the optical data exchange
operation is expected to be phase transparent. Using the parametric depletion effect in a single
HNLF, one may realize phase-transparent optical data exchange. Figure 6(b) depicts the
principle of operation of parametric depletion. Two CW pumps (P1:A,,, P2:A,,) and signal 1

(S1:Ag,) are fed into the HNLF. P1 and S1 are symmetrical about the zero-dispersion wave-

length (ZDM) of HNLF. When propagating along the HNLF, the photons of P1 and S1 are
annihilated to create the photons of P2 and S2 (1/Ag,+1/Ap,=1/Ag;+1/Ap;) by the nonde-

generate FWM process. Thus, the parametric depletion of S1 is expected with its data infor-
mation copied onto a newly generated S2. Similarly, the depletion of S2 accompanied by the
creation of S1 is realized during the nondegenerate FWM process when sending two pumps
and S2 into the HNLEF. Figure 6(c) shows the principle of operation of optical data exchange.
Two pumps and two signals are simultaneously launched into the HNLF. When P1(P2) and
51(S2) are almost symmetrical about the ZDW of HNLF, S1(52) can be consumed to produce
S2(S1) by appropriately adjusting the power of two pumps. As a consequence, one can
implement optical data exchange between two signals (51, S2).

Remarkably, under the nondepletion approximation and proper control of pump powers, one

can easily derive linear relationships (Ag; o< Ag,* Apy - Apy, Ay o< Agy* Apy - Ap,) of complex
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amplitudes between the output signals (Ag,, As,) and input signals and pumps (A, Asy Apy,

Ap,). The linear complex amplitude relationships imply that nondegenerate FWM-based high-

base data exchange has the characteristic of transparency to the modulation format including
the phase transparency. We can further obtain the phase relationships of ¢ ¢;'=@ ¢, + @ p,=¢ p;

and @ ¢,'=Q ¢, + @ p;—@ p,. It is worth noting that phase modulation is always applied to the

pumps (¢ py, ¢ p,) to effectively suppress the

stimulated Brillouin scattering (SBS) effect in

HNLF. As a result, the pump power is efficiently utilized in the nondegenerate FWM process,

which benefits the effective parametric depletion and data exchange. Remarkably, the pump

phase transfer to the exchanged signals might cause serious trouble for the DQPSK data

exchange. Fortunately, according to the deduced phase relationships, it is possible to cancel
the pump phase transfer by applying the precisely identical phase modulation to the two
pumps (i.e., ¢ p;=¢ p,), which makes it possible to implement the high-base data exchange of

DQPSK or other multilevel modul}?tlo
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wavelength conversion with only S1 or S2 and two pumps present, the power penalty is
assessed to be less than 1.2 dB at a BER of 10”. In contrast, for data exchange with both two
signals and two pumps present, the power penalty is measured to be less than 5 dB at a BER

36 oprligidtsistéxpettéah dac dherextra b westipenaltsowh the high-base data exchange compared
to the wavelength conversion could be due to the beating effect between the newly
converted signal and the original residual signal.
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the insets of Fig. 9. By comparing the balanced eyes shown in Fig. 8 with perfectly aligned two
pumps, one can observe the performance degradation with added noise under pump phase
misalignment of 3 ps and 4 ps. Especially, one can observe almost completely closed eyes of
demodulated signals after data exchange under an even larger time misalignment of 10 ps
between the two pumps. Consequently, precise time alignment between two pumps and
resultant perfect pump phase cancellation is important and highly desired to obtain favorable
operation performance for phase-transparent optical data exchange.

The measured received power versus the input signal power at a BER of 10 is shown in Fig.
10. Less than 3.5-dB fluctuation of the received power is observed at a BER of 10° when varying
the input signal power from -12.0 to 8.1 dBm. Thus, the dynamic range of the input signal
power is estimated to be around 20 dB for high-base optical data exchange of 100-Gbit/s RZ-
DQPSK signals based on nondegenerated FWM process.

We then propose and demonstrate a simple alternative method to perform high-base data
exchange between multichannel DQPSK signals using bidirectional degenerate FWM in a
single HNLF accompanied by optical filtering. The concept and operation principle of
multichannel, high-base optical data exchange is illustrated in Fig. 11. Four-channel DQPSK
signals (51-54) and a single CW pump are used. Degenerate FWM process is employed. Note
that four-channel DQPSK signals (51-54) are symmetrical about the CW pump. For multi-
channel data exchange, one would expect to see simultaneous data information swapping
between S1 and S4, S2 and S3. Generally speaking, for data exchange operation with two
signals present, it is impossible to separate the newly converted signals from the original
signals by unidirectional degenerate FWM process, so it is difficult to realize optical data
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original signals by unidirectional degenerate FWM process, so it is difficult to realize optical
data exchange function based on unidirectional degenerate FWM in a single HNLF. We
propose a possible solution by exploiting bidirectional degenerate FWM process in a single
HNLF together with optical filtering. As illustrated in Fig. 11, taking four-channel optical
data exchange as an example, there are four-channel DQPSK signals (51-54) at the input. 1)



Figure 6. (a) Concept of high-base optical data exchange of DQPSK modulation signals. (b)(c) Principle of
nondegenerate FWM-based parametric depletion and high-base optical data exchange.
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11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals.
Figure 11. Concept and principle of simultaneous multichannel, high-base data exchange of DQPSK signals.

In the experiment, the bidirectional degenerate FWM in a single HNLF is enabled by a fiber
loop mirror configuration, which consists of an HNLF with a length of 460 m, two optical band-
pass filters, and optical fiber couplers. The typical parameters of the HNLF are as follows:
ZDW: ~1556 nm; nonlinear coefficient: 20 W'-km™; dispersion slope (S): ~0.026 ps/nm*/km.
Compared to the nondegenerate FWM-based data exchange with two pumps, single pump
with its wavelength (1554.94 nm) close to the ZDW of HNLF is employed in the bidirectional
degenerate FWM-based multichannel, high-base data exchange. ITU-grid-compatible four-
channel 100-Gbit/s RZ-DQPSK signals (S1: 1546.12 nm, S2: 1547.72 nm, S3: 1562.23 nm, S4:
1563.86 nm) are employed for multichannel, high-base data exchange.

Shown in Fig. 12(a) is the measured spectrum of input four-channel, 100-Gbit/s RZ-DQPSK
signals. S1(S2) and S4(53) are symmetrical about the CW pump. The measured spectrum after
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four-channel optical data exchange with the CW pump ON is shown in Fig. 12(b) (solid blue
line). For reference, the measured spectrum of residual signals with the CW pump OFF is also
shown in Fig. 12(b) (dashed red line). It is expected that the residual signals are caused by the
Rayleigh scattering in the HNLF. From Fig. 12(b), one can measure the extinction ratio of the
newly exchanged signals to the residual signals to be 18.4 dB for S1, 19.5 dB for 52, 17 dB for
S3, and 17 dB for S4, respectively.
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7-channel WDM signals. A wavelength selective switch (WSS) using a two-dimensional (2D)
array of LCoS pixels is employed in the setup. The operation principle of the LCoS-based WSS
is as follows. By changing the voltages loaded to the LCoS, one can adjust the phase retardance
of each pixel of LCoS. The 2D LCoS array includes two axes with one horizontal wavelength
axis and the other vertical displacement axis. The input 7-channel 100-Gbit/s DQPSK signals
with unequalized power levels are sent to the port A of the input/output fiber array through
a circulator. A diffraction grating collecting the input signals from port A then disperses
different wavelength channels to different horizontal positions of the LCoS. Along the vertical
direction, many pixels (~400 pixels) are covered due to the divergence of the light. The
manipulation mechanism relies on the control of the LCoS. Since the phase shift of each pixel
of LCoS can be adjusted by varying its applied voltage, it is possible to flexibly manipulate the
phase front of the light through the control of the 2D array of LCoS pixels. By appropriately
adjusting the independent pixel voltage, the propagation direction of different wavelength
channels can be flexibly controlled, i.e., different wavelength channels can be delivered to
different spatial positions at the output ports (e.g., S1 sent to port B, S4 and S5 sent to port C,
S2 and S3 sent to port D, S6 and S7 sent to port E). Meanwhile, the power levels of different
wavelength channels delivered to the desired fiber array ports (port B, port C, port D, port E)
can be also adjusted. After separating and delivering different wavelength channels to
different output fiber array ports together with flexible power control, various grooming
optical signal processing functions can be carried out on these output fiber array ports: 1) high-
base optical data exchange between port D and port E; 2) high-base wavelength add and drop
at port B; 3) high-base power equalization of all wavelength channels. For the high-base optical
data exchange between port D and port E, simultaneous multichannel, high-base optical data
exchange between 52 and S7 and between S3 and S6 can be implemented by exploiting
bidirectional degenerate FWM through a single HNLF. When compared to the similar optical
data exchange scheme using degenerate FWM and employing optical band-pass filters to select
desired wavelength channels, here the channel separation and selection are accomplished by
LCoS. When compared to the optical data exchange approach using parametric depletion effect
of nondegenerate FWM process with two pumps, here only single pump is employed in the
setup. In particular, the simultaneous multichannel optical data exchange operation is
switchable when employing the programmable LCoS. For the high-base wavelength add and
drop, the S1 DQPSK signal is dropped at port B and a new S1 with updated data information
is also added to port B through a circulator. For the high-base power equalization, the flexible
attenuation control for all WDM channels is available by programming LCoS. Besides optical
data exchange (52 and S7, S3 and S6) and add/drop (S1) operations on the channels of interest,
other channels (54 and S5) without undergoing these operations should be kept and delivered
back. A fiber loop structure could be employed at the port C. Remarkably, after multiple
grooming optical signal processing operations, it is preferred that all the signals are sent back
to the same input/output fiber array port A, which not only imports unequalized multiple
WDM signals but also exports all the signals after the grooming switching. Such function can
be implemented simply by running the LCoS device in a double-pass configuration assisted
by use of some optical circulators. As shown in Fig. 15, if we consider the dashed boxes as a
grooming switch unit based on HNLF and LCoS, it is actually a multifunctional, high-base
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grooming optical signal processing element with great reconfigurability. Simultaneous
reconfigurable high-base add/drop, high-base optical data exchange, and high-base power
equalization are implemented by exploiting bidirectional degenerate FWM in a single HNLF
and double-pass programmable LCoS technology.
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Figure 15. Concept and principle of LCoS+HNLF-based multifunctional, high-base grooming switch (add/drop, data
exchange, power equalization).

Similar operation principle is adopted for reconfigurable 2.3-Tbit/s network grooming switch
with 23x100-Gbit/s RZ-DQPSK channels. In the experiment, ITU-grid-compatible 23 wave-
length channels (from S1: 1531.12 nm to S23: 1566.31 nm) each carrying 100-Gbit/s RZ-DQPSK
modulation signal with a channel spacing of 200 GHz are utilized. A 520-m piece of HNLF
with a ZDW of ~1555 nm and a nonlinear coefficient (y) of 20 W-:km is employed. The single
pump wavelength is set to be 1555.75 nm for bidirectional degenerate FWM.

Figure 16 shows the measured optical spectrum and balanced eyes for input unequalized 23
wavelength channels each carrying a 100-Gbit/s RZ-DQPSK signal. The observed power
fluctuation of all 23 wavelength channels is assessed to be around 9.1 dB. The insets of Fig.
16 depict measured typical balanced eyes for the demodulated in-phase (Ch. I) and quadrature
(Ch. Q) components of 100-Gbit/s RZ-DQPSK signals.

We first perform 2.3-Tbit/s grooming switch with single-channel, high-base add/drop and two-
channel high-base optical data exchange. The measured optical spectrum together with typical
balanced eyes for 100-Gbit/s RZ-DQPSK signals after the multifunctional, high-base grooming
switch is shown in Fig. 17. Three high-base grooming optical signal processing functions are
implemented as follows: 1) high-base optical data exchange between 512 and 521; 2) high-base
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In addition to high-base data exchange based on degenerate/nondegenerate FWM in HNLFs, 5
we also propose and simulate ultrahigh-speed high-base data exchange using nondegenerate
FWM in a silicon-organic hybrid slot waveguide. The working principle is also based on the
parametric depletion effect of nondegenerate FWM as in an HNLF. The designed silicon—
organic hybrid slot waveguide offers tight light confinement, enhanced nonlinearity, and
negligible TPA and free-carrier absorption (FCA). Using nonlinear coupled-mode equations
under the slowly varying envelope approximation and taking full consideration of group-
velocity mismatching (GVM), group-velocity dispersion (GVD), TPA, FCA, and free-carrier
dispersion (FCD), the proposed silicon—organic hybrid slot waveguide based high-base data
exchange is simulated. In the following simulations, two 640 Gbaud 27-1 pseudorandom
binary sequence (PRBS) 16-QAM/64-QAM signals (Ag,: 1542 nm, Agz: 1544 nm) and two pumps
(Apy: 1548 nm, Ap,: 1550 nm) are sent into a 17-mm-long silicon—organic hybrid slot waveguide,
in which 16-QAM/64-QAM data exchange is realized based on the nondegenerate FWM
process. Note that the high-speed 640 Gbaud 16-QAM/64-QAM signal could be optical time-
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designed silicon—organic hybrid slot waveguide offers tight light confinement, enhanced
nonlinearity, and negligible TPA and free-carrier absorption (FCA). Using nonlinear
coupled-mode equations under the slowly varying envelope approximation and taking full
consideration of group-velocity mismatching (GVM), group-velocity dispersion (GVD), TPA,
FCA, and free-carrier dispersion (FCD), the proposed silicon—organic hybrid slot waveguide
based high-base data exchange is simulated. In the following simulations, two 640 Gbaud
213-1 pseudorandom binary sequence (PRBS) 16-QAM/64-QAM signals (Asa: 1542 nm, Ass:
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realization of the proposed high-base optical data exchange of 16-QAM signals by comparing
the 10 symbol sequences for two signals (SA, SB) before optical data exchange (Bef. Ex.) and
after optical data exchange (Aft. Ex.). Figure 22 shows simulated constellations for high-base
optical data exchange of 16-QAM signals. For a signal-to-noise ratio (SNR) of 10 dB the error
vector magnitude (EVM) is also assessed in Fig. 22. The simulated EVM and BER performance
versus SNR for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals is
shown in Fig. 23(a) and (b). For reference we also plot in Fig. 23(b) the theoretical 16-QAM BER
curve. By comparing the simulated BER curves of two signals before and after optical data
exchange, one can see negligible SNR penalty induced by the high-base optical data exchange
operation at a BER of 2x10, which is the enhanced forward error correction (EFEC) threshold.
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Fig. 21. Simulated symbol sequences for high-base optical data exchange of 640 Gbaud (2.56
Mf@}ﬂ@i@vﬂe&édsgﬁﬂ&lﬁsequences for high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals.

i . 1_.

"EVM: 121

Fig. 22. Simulated constellations of (a)(b) input and (c)(d) output signals for high-base
optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM signals.
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S10 and S23, S11 and S22, S12 and 521; simultaneous two-channel, high-base add/drop for S6 and S7; high-base
power equalization for all 23 wavelength channels 51-523).
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Figure 25 shows simulated constellations for high-base optical data exchange of 64-
QAM signals. For an SNR of 14 dB the EVM is also evaluated in Figure 25. The simulated 6

EVM and BER performance versus SNR for high-base optical data exchange of 640 Gbaud
(2.56 Thit/s) 64-QAM signals is shown in Fig. 26(a) and (b). For reference we also plot in Fig.
26(b) the theoretical 64-QAM BER curve. By comparing the simulated BER curves of two
signals before and after optical data exchange, one can see that the SNR penalty induced by
the high-base optical data exchange operation is assessed to be less than 2 dB at a BER of
2x103 which is the EFEC threshold.
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Shown in Fig. 28 are measured spectra. One CW pump (1553.2 nm) and two 100-Gbit/s 27-1
RZ-DQPSK signals (A: 1546.6 nm, B: 1555.5 nm) are fed into a 460-m-long HNLEF. The ZDW,
dispersion slope (S) and nonlinear coefficient (y) of the HNLF are ~1556 nm, ~0.026 ps/nm?/km,
and 20 W' km™, respectively. The employed HNLF has low and flat dispersion, which benefits
simultaneous multiple FWM processes. As a consequence, it is possible to simultaneously
generate six idlers (idler 1: 1544.3 nm, idler 2: 1548.9 nm, idler 3: 1562.2 nm, idler 4: 1559.9 nm,
idler 5: 1550.9 nm, idler 6: 1557.7 nm) corresponding to simultaneous addition (A+B), subtrac-

. tion (A-B, B-A), complement (-A, -B), and doubling (2B) of quaternary numbers (A, B).
Figure 27. (a) Concept and (b) principle of two-input hlgh—base ptical computing (quaternary

addition/subtraction/complement/doubling) using a single nonlinear device and DQPSK signals.
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A+CB, Bty AR inghondggeastain s WMARA AR atigRaln /subtraction, complement, and
doubling are respectively induced by the accumulated distortions from signal A and signal B,
distortion from single signal B, and twice distortions from signal B. Additionally, the BER
curves of two-output signals from the HNLF are also plotted in Fig. 31(c) and (d) for reference.
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One can clearly see that the two signals suffer negligible performance degradations during

high-base arithmetical operations.
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Shown in Fig. 32 are measured constellations for input/output signals and output
computing results. An optical complex spectrum analyzer (APEX AP2440A) is employed in

52 theplRxperimentia(neacancecleariyoses pfsemm Kigroad that the quaternary addition (A+B),
quaternary subtraction (A-B, B-A), and quaternary complement (-A, -B) have four-phase

levels (0, t/2, i, 31/2) while the quaternary doublmg (ZB) has two- phase levels (0, ).
Shown in Fig. 32 are m 5 and output computing
results. An optical con P >mployed in the experi-
ment. One can clearly u m my (A+B), quaternary sub-
traction (A-B, B-A), an -phase levels (0, 7/2, m,
Pig/zgéfvlﬂleen%ggfl %ma?\]/e Og%éﬂ%&%ﬁgﬁégg) %%%S%(}E V%:Q'é%'aﬁ)d two-input quaternary
addition and dual-directional subtraction using 100-Gbit/s DQPSK signals.
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g. 30. Demodulated waveforms and balanced eGyes for 50-Gbaud quaterna C?I complement
O

Fi emodulated eform d eyes for 50-Gbaud quaternary complement and ubhng using 100-
%ﬁﬁﬁbﬁwggngf Yo A IPER b A

We then demonstrate high-speed three-input high-base optical computing (addition and
subtraction) of quaternary numbers using multiple nondegenerate FWM processes in a single
HNLF and DQPSK signals. Figure 33 illustrates the concept and operation principle.

Shown in Fig. 34 are measured spectra for 50-Gbaud three-input quaternary optical computing
(addition, subtraction). Figure 34(a) depicts the spectrum for degenerate FWM, which enables
the conversion from C to—C (i.e., quaternary complement). In the experiment, the wavelengths
of CW pump, input signal C (Sig. C) and converted signal (-Sig. C) are 1552.0, 1548.7, and
1555.5 nm, respectively. Figure 34(b) shows the typical spectrum for three-input quaternary
optical computing, i.e., quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A).
In the experiment, the wavelengths of three input 100-Gbit/s RZ-DQPSK signals (A, B, C) are
1546.6 (Sig. A), 1553.2 (Sig. B), and 1555.5 nm (Sig. C), respectively. It is clearly shown that
three converted idlers, i.e., idler 1 at 1544.3 nm, idler 2 at 1548.9 nm, and idler 3 at 1562.2 nm,
are generated by three nondegenerate FWM processes. Actually, idler 1, idler 2, and idler 3
correspond to A+B-C, A+C-B, and B+C-A, respectively. Figure 34(c) displays the spectrum for
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Fig. 31. Measured BER curves for input/output signals (A, B), quaternary addition (A+B),
Figure 31. Measured BER curves for input/output signals (A, B), quaternary addition (A+B), dual-directional subtrac-
tion (A-B, B-A), complement (-A, -B), and doubling (2B).
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Figure 33. Concept and principle of three-input (A, B, C) optical quaternary addition and subtractlon (A+B-C,

A+C- BFlE et é‘b&é@aﬂﬁ%ﬁ&ﬁﬂ@%&ﬁ@é%ﬁ&’%@@%ﬁ&éi&%ﬁl& addition and subtraction (A+B-C, A+C-B, B

+C-A, A+B+C) using nondegenerate FWM and DQPSK signals.

and quadrature (Ch. Q) components of three-input 100-Gbit/s RZ-DQPSK signals and three-
output converted idlers by nondegenerate FWM processes are recorded. Figure 35 depicts the
measured sequences of input signals and converted idlers. It is clearly shown that the degen-
erate FWM process enables 50-Gbaud conversion from C to —C (i.e., quaternary complement)
and three nondegenerate FWM processes perform three-input quaternary optical computing,
i.e., hybrid quaternary addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C).

We measure the BER curves as shown in Fig. 36 for 50-Gbaud three-input quaternary optical
computing (A+B-C, A+C-B, B+C-A). Itis shown from Figs. 36(a) and (b) that the power penalties
at a BER of 10” of three-input quaternary optical computing (A+B-C, A+C-B, B+C-A) are
measured to be less than 6 dB. Shown in Fig. 37 are the measured BER curves for 50-Gbaud
conversion from C to —C (i.e., quaternary complement) and 50-Gbaud three-input quaternary
addition (A+B+C). The observed power penalty is negligible for the conversion from C to —C.
For the quaternary addition of A+B+C, the power penalty at a BER of 10 is assessed to be less
than 6 dB. Similar to two-input quaternary optical computing, it is believed that the perform-
ance degradations of three-input quaternary optical computing (i.e,, quaternary hybrid
addition and subtraction of A+B-C, A+C-B, B+C-A, and A+B+C) are mainly caused by accu-
mulated distortions originated from three-input signals (A, B, C or -C). Such phenomenon can
be explained according to the electrical field and linear optical phase relationships of nonde-
generate FWM processes. Shown in Fig. 36(c)(d) and Fig. 37(a)(b) are measured BER curves
for three output signals (A, B, C or —C) from HNLF after three-input quaternary optical 7
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Figure 34. Measured spectra for 50-Gbaud three-input quaternary optical computing (addition, subtraction). (a)
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computing. For the three signals during the three-input quaternary optical computing
operations, no significant performance degradations are observed in the experiment.

We also measure the constellation diagrams for three-input/output 100-Gbit/s RZ-DQPSK
signals (A, B, C/-C) and six converted idlers corresponding to quaternary hybrid addition and
subtraction of A+B-C, A+C-B, B+C-A, and A+B+C. An optical complex spectrum analyzer
(APEX AP2440A) is employed in the experiment. From Fig. 38 one can clearly observe four-
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phase levels (i.e., 0, /2, m, 31t/2) of all input/output signal and output idlers. These four-phase
levels can represent quaternary base numbers.
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Figure 38. Measured constellation diagrams for 50-Gbaud three-input quaternary addition and subtraction.
Figure 38. Measured constellation diagrams for 50-Gbaud three-input quaternary addition and subtraction.

In addition to two-/three-input high-base optical computing based on degenerate/nondegen-
erate FWM in HNLFs, we also propose and simulate three-input high-base optical computing
(hexadecimal addition and subtraction) in a single silicon-organic hybrid slot waveguide
based on nondegenerate FWM processes.

Shown in Fig. 39(a) is the schematic 3D structure of the proposed silicon—-organic hybrid slot
waveguide. It has a sandwich structure formed by a low-refractive-index PTS [polymer poly
(bis para-toluene sulfonate) of 2, 4-hexadiyne-1,6 diol] layer inserted between two high-
refractive-index silicon layers. The cladding of the structure is air. The substrate is silicon
dioxide. In the designed silicon—organic hybrid slot waveguide, the waveguide width is W=250
nm, the upper silicon height is Hu=180 nm, the lower silicon height is HI=180 nm, and the slot
height is Hs=25 nm. We plot in Fig. 39(b)-(d) the quasi-TM mode distribution together with its
normalized power density along x and y directions. It is clearly shown that the mode is highly
confined in the nanoscale nonlinear organic slot region (i.e., tight light confinement). As a
consequence, high nonlinearity and instantaneous Kerr response are achievable without
impairments by TPA and FCA. Using finite-element method, we assess the effective mode area
and nonlinearity to be 7.7x10"* m? and 5500 w'm™, which can potentially facilitate efficient
high-base optical signal processing (e.g., hexadecimal addition/subtraction). Figure 40
illustrates the operation principle which is similar to that in HNLFs. Instead of using DQPSK
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for quaternary optical computing, here 16PSK signals are used to achieve hexadecimal optical
computing.

iW 180 bl %0 ]
¥ )

Figure 39. (a) 3D structure, (b) mode distribution, (c)(d) normalized power density along x and y directions of a sili-
con-organic hybrid slot waveguide.

In the following simulations, three 40-Gbaud 2'*-1 PRBS 16-PSK signals (A ,: 1546 nm, Ag: 1552
nm, Ac: 1550 nm) are adopted. A 1-mm-long silicon-organic hybrid slot waveguide is em-
ployed. Figure 41 shows simulation results for three-input 40-Gbaud (160-Gbit/s) hexadecimal
addition/subtraction. Twenty-symbol sequences are plotted in Fig. 41, which confirms the
successful implementation of three-input hexadecimal addition/subtraction (A+B-C, A+C-B, B
+C-A, A+B+C, A-B-C, B-A-C). The constellations are also shown in Fig. 42 with assessed EVM
under an OSNR of 28 dB for input signals. The observed degradation of EVM for hexadecimal
addition/subtraction can be ascribed to the accumulated noise from input 16-PSK signals and
impairments from nonlinear interactions inside the silicon—organic hybrid slot waveguide. We
further investigate the EVM of input signals and output idlers against the OSNR of input
signals as shown in Fig. 43(a) and (b). The EVM penalties are assessed to be less than 4.5 for
hexadecimal addition/subtraction under an OSNR of 28 dB.
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Figure 41. Simulated symbol sequence for three-input 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using

silicon—organic hybrid slot waveguide.
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Figure 43. Simulated EVM vs. OSNR for 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using silicon—organic
hybrid slot waveguide.

5. High-base coding/decoding [79]

We propose and demonstrate high-base optical coding/decoding of advanced multilevel
modulation signals based on degenerate FWM in HNLFs.

Figure 44 illustrates the concept and principle of the proposed symbol-wise hexadecimal
coding/decoding using degenerate FWM and 16-QAM signals. Symbol-wise hexadecimal
coding/decoding can be regarded as the constellation manipulation in the I/Q plane. The
pump, original signal, coded signal and decoded signal are denoted by Ki, Pi, Ci, and Dj,
respectively. In the symbol-wise hexadecimal coding/decoding the pump can be CW or phase
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modulated. Illustrated in Fig. 44(al) and (b1) are the symbol-wise hexadecimal coding, in
which a CW or phase-modulated pump (Ki) and a 16-QAM signal (Pi) are launched into a
nonlinear device such as HNLF to take part in the nonlinear interaction such as degenerate
FWM process. 16-QAM signal can represent a hexadecimal number. When propagating along
the HNLF, the degenerate FWM process generates a coded signal (Ci). Note that the electrical
field (E.,) of the coded signal (Ci) satisfies the relationship of E.;occEZ,-Ep ;. From the
electrical fields a linear phase relationship of @ ,=2®, ,-®,, ; is achieved, i.e., twice the pump
phase modulation (2@ ;) and the conjugated phase of the original signal (-®, ;) contribute

together to the phase of the coded signal. Consequently, the coding algorithm simultaneously
relies on the pump phase modulation and degenerate-FWM-induced phase conjugation. For
the CW pump-assisted symbol-wise hexadecimal coding as shown in Fig. 44(al), all constel-
lation points in the I/Q plane are moved to their symmetrical positions with respect to the I-
axis because of the phase conjugation property of degenerate FWM. Actually, hexadecimal
code conversion from one number to another is achieved simply by conjugated degenerate
FWM process. For the symbol-wise hexadecimal coding exploiting a phase-modulated pump,
i.e. (0, m/4) phase modulation, as illustrated in Fig. 44(b1), all constellation points are mapped
symmetrically with respect to the I-axis. Meanwhile, the pump phase modulation also
introduces additional symbol-varying coding. When the constellation point of 16-QAM in one
symbol meets the 1t/4 pump phase modulation, it will rotate in a counter-clockwise direction
by m/2. As a result, the coding algorithm becomes @ ;=2®, .-~®, ; which determines the rule

of hexadecimal coding.
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Figure 44. Concept and operation principle of variable symbol-wise hexadecimal coding/decoding by use of optical
nonlinearity and 16-QAM. (al)(a2) Symbol-wise hexadecimal coding/decoding assisted by CW pump; (b1)(b2) symbol-
wise hexadecimal coding/decoding assisted by (0, /4) phase-modulated pump; (al)(bl) Coding; (a2)(b2) Decoding.
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Figure 44(a2) and (b2) illustrate the symbol-wise hexadecimal decoding. The pump (Ki) and
the coded signal (Ci) are fed into another nonlinear device such as HNLF to participate in the
nonlinear interaction such as degenerate FWM process which generates the decoded signal
(Di). It is noted that the electrical field of the decoded signal (Di) satisfies the relationship of

Ep,<Ef.~Ec,cE2.~Eg%-Ep,=|Ey ;| *-Ep,o<Ep ;. Thus, the phase of the decoded signal
(Di) meets the relationship of @, ;=20 ,~ D ;=20 ,— (2D ,~ D, ;)=D, ;. Asa consequence, the

decoded signal (Di) recovers the original signal (Pi) after the decoding process. The decoding
algorithm is determined by ®,;=20, ,-®,;=20, ,-(2P, ;-P,;)=P,,;. Remarkably, the
decoding algorithm corresponds to the constellation manipulation in the complex plane. The
concept and principle shown in Fig. 44 indicate that the constellation of a 16-QAM signal can
be manipulated by employing optical nonlinearity, which enables the symbol-wise hexadec-
imal coding/decoding. Moreover, exploiting a CW or (0, t/4) phase-modulated pump can
facilitate optical variable symbol-wise hexadecimal coding/decoding assisted by optical
nonlinearity.

Shown in Fig. 45 is the experimental setup for the proposed optical symbol-wise hexadecimal
coding/decoding. A 10-Gbaud (40-Gbit/s) 16-QAM signal is prepared via the vector addition
of two copies of QPSK signal using an I/Q QPSK modulator, polarization controllers (PCs), a
tunable differential group delay (DGD) element, and a polarizer (Pol.). A 10-Gbit/s phase-
modulated pump with (0, 7/4) binary phase modulation, which is synchronized with the 10-
Gbaud 16-QAM signal, is provided by employing a phase modulator (PM) driven by PRBS
patterns. Note that the PM is not utilized for the CW pump-assisted hexadecimal coding/
decoding. For the hexadecimal coding process, the 16-QAM signal (Pi) and the CW/phase-
modulated pump (Ki) are launched into a 460-m piece of HNLF. The ZDW, dispersion slope
(S) and nonlinear coefficient (y) of the HNLF employed in the experiment are ~1556 nm, ~0.026
ps/nm?/km, and 20 W'km, respectively. When the 16-QAM signal (Pi) and the CW/phase-
modulated pump (Ki) propagate along the HNLF, a coded signal (Ci) is generated by degen-
erate FWM process. The coded signal (Ci) takes the result of hexadecimal coding. For the
hexadecimal decoding process, the coded signal (Ci) and the CW/phase-modulated pump (Ki)
are fed into another 520-m piece of HNLF which has a ZDW of ~1555 nm, S of ~0.026 ps/nm?/
km, and y of 20 W'km™. When the coded signal (Ci) and the CW/phase-modulated pump
transmit through the HNLF, a decoded signal (Di) is obtained by degenerate FWM process.
The decoded signal (Di) recovers the original signal corresponding to hexadecimal decoding.
In the experimental setup, BPFs at the output of HNLFs are employed to suppress unwanted
frequency components and pick up coded/decoded signals. For coherent detection of 16-QAM
signals, an optical modulation analyzer (Agilent N4391A) and a digital phosphor oscilloscope
(Tektronix DPO72004) with a 50-Gs/s sample rate and a 20-GHz electrical bandwidth are
employed in the experiment.

The measured spectra for optical variable symbol-wise hexadecimal coding/decoding are
shown in Fig. 46. Both, CW pump and (0, /4) phase-modulated pump are employed in the
experiment. The original signal (Pi), pump (Ki), coded signal (Ci), and decoded signal (Di)
have wavelengths of 1557.0, 1555.6, 1554.2, and 1557.0 nm, respectively. We set the power of
the original signal for coding and the coded signal for decoding to be around 10.8 dBm. For
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Figure 45. Experimental setup for high-base coding/decoding. Degenerate FWM in HNLF, 16-QAM signal and CW/
phase-modulated pumps are employed to enable symbol-wise hexadecimal coding/decoding. QPSK: quadrature
phase-shift keying; QAM: quadrature amplitude modulation; HNLF: highly nonlinear fiber; CW: continuous-wave;
PC: polarization controller; EDFA: erbium-doped fiber amplifier; DGD: differential group delay; Pol.: polarizer; BPF:
band-pass filter; ODL: tunable optical delay line; PM: phase modulator; OC: optical coupler.

the symbol-wise hexadecimal coding/decoding using a CW pump, the power of CW pump is
~12.8 dBm. The conversion efficiency is assessed to be about -15.4 dB for the symbol-wise
hexadecimal coding while -14.9 dB for the symbol-wise hexadecimal decoding. For the symbol-
wise hexadecimal coding/decoding using a (0, 7t/4) phase-modulated pump, the power of the
(0, m/4) phase-modulated pump is ~9.8 dBm. The symbol-wise hexadecimal coding has a
conversion efficiency of about -20.9 dB, while the symbol-wise hexadecimal decoding shows
a conversion efficiency of around -19.1 dB.

Figure 47 depicts observed constellation diagrams and in-phase (I) and quadrature (Q)
components for optical variable symbol-wise hexadecimal coding/decoding. Figure 47(a)
shows the 10-Gbaud 16-QAM signal corresponding to the back-to-back (B-B) case. The EVM
is measured to be 5.5%rms. The 16 constellation points can be clearly seen in the complex I/Q
plane. Note that hexadecimal numbers can be represented by these 16 constellation points. For
the symbol-wise hexadecimal coding/decoding using a CW pump, the phase-conjugated
degenerate FWM process determines the coding and decoding algorithms to be (O ;=-®; )
and (—(-®, ;)=®;;), respectively. The constellations in the complex I/Q plane are manipulated

following the coding and decoding algorithms. Figure 47(b) and (c) show the constellation
diagrams of coded signal with an EVM of 6.3%rms and decoded signal with an EVM of
6.4%rms, respectively. For the symbol-wise hexadecimal coding/decoding using a phase-
modulated pump, a (0, /4) pump phase modulation with an EVM of 5.0%rms is employed in
the experiment, as shown in Fig. 47(d). The constellation diagrams of the coded signal with an
EVM of 7.8%rms and decoded signal with an EVM of 6.4%rms are shown in Fig. 47(e) and (f).
The constellation manipulation in the complex I/Q plane follows the coding algorithm
(D ;=2D ;~Dp ;) for the symbol-wise hexadecimal coding process and decoding algorithm

Dy ;~Dp ;=20 .~ 2Dy ;~Dp ;)=Dp ;) for the symbol-wise hexadecimal decoding process.

Remarkably, for phase-modulated pump-assisted symbol-wise hexadecimal coding/decod-
ing, the pump phase modulation and phase conjugation of degenerate FWM contribute
together to the coding and decoding algorithms.
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Figure 46. Measured spectra for high-base coding/decoding. Degenerate FWM in HNLF, 16-QAM signal and CW/
phase-modulated pumps are employed to enable symbol-wise hexadecimal coding/decoding. (al)(a2) Symbol-wise
hexadecimal coding/decoding using a CW pump; (b1)(b2) symbol-wise hexadecimal coding/decoding using a (0, 7t/4)
phase-modulated pump; (al)(b1l) symbol-wise hexadecimal coding; (a2)(b2) symbol-wise hexadecimal decoding.

To confirm the implementation of optical variable symbol-wise hexadecimal coding/decoding,
the complex amplitudes (i.e., in-phase and quadrature components) of symbol sequence for
different signals are recorded in the experiment. As shown in Fig. 48, for symbol-wise
hexadecimal coding/decoding using a CW pump, by comparing the symbol sequence of coded
signal and original signal, one can clearly see that all the constellation points in the complex
I/Q plane are mapped to their symmetrical positions with respect to the I-axis. This constella-
tion manipulation is determined by the coding algorithm of CW pump-assisted hexadecimal
coding. Additionally, by comparing the symbol sequence of decoded signal and original signal
one can confirm that the decoded signal recovers the original signal.

As shown in Fig. 49, for symbol-wise hexadecimal coding/decoding using a (0, 7/4) phase-
modulated pump, the corresponding coding algorithm manipulates the constellation points
in the complex I/Q plane as follows. All the constellation points in the complex I/Q plane are
tirst flipped to their symmetrical points with respect to the I-axis. Then, a counter-clockwise
rotation of 7/2 is introduced to the constellation points, which meet the pump phase modu-
lation of 1t/4. One can expect enhanced security for the symbol-wise hexadecimal coding using
a phase-modulated pump owing to the added coding algorithm contribution from the pump.
When compared to the symbol-wise hexadecimal coding using a CW pump, the phase-
modulated pump-assisted symbol-wise hexadecimal coding is not so straightforward.
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Figure 47. Measured constellation diagrams and in-phase (I) and quadrature (Q) components for high-base coding/
decoding. Degenerate FWM in HNLF, 16-QAM signal, and CW/phase-modulated pumps are employed to enable sym-
bol-wise hexadecimal coding/decoding. (a) Back-to-back (B-B) 16-QAM signal; (b) coded signal using a CW pump; (c)
decoded signal using CW pump; (d) (0, t/4) phase-modulated pump; (e) coded signal using a (0, 7/4) phase-modulat-
ed pump; (f) decoded signal using a (0, /4) phase-modulated pump.

Nevertheless, the hexadecimal coding process is still verified from Fig. 49, i.e., the symbol
sequence relationship of coded signal and original signal follows the coding algorithm of (0,
1t/4) phase-modulated pump-assisted symbol-wise hexadecimal coding. In addition, for the
symbol-wise hexadecimal decoding process, the decoded signal recovers the information
carried by the original signal. From the obtained results as shown in Figs. 48 and 49, one can
clearly confirm the successful realization of 10-Gbaud optical variable symbol-wise hexadec-
imal coding/decoding by exploiting degenerate FWM in HNLF, 16-QAM signal, and CW/
phase-modulated pumps.
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Figure 48. Measured complex amplitudes (i.e., in-phase and quadrature components) of symbol sequence for optical
symbol-wise hexadecimal coding/decoding using a CW pump.

The BER performance is characterized for CW/phase-modulated pump-assisted optical
variable symbol-wise hexadecimal coding/decoding. Shown in Fig. 50(a) are measured BER
curves for the symbol-wise hexadecimal coding/decoding using a CW pump. OSNR penalty
is used for performance evaluation defined by the ratio of the received OSNR of the coded
signal to that of the back-to-back (B-B) signal. The measured OSNR penalty at a BER of 2e-3 is
~0.6 dB for CW pump-assisted symbol-wise hexadecimal coding. The measured OSNR penalty
at a BER of 2e-3 for CW pump-assisted symbol-wise hexadecimal decoding, i.e., the ratio of
the received OSNR of the decoded signal to that of the B-B signal, is around 1.1 dB. Shown in
Fig. 50(b) are measured BER curves for the symbol-wise hexadecimal coding/decoding using
a (0, m/4) phase-modulated pump. From Fig. 50(b) one can see that the OSNR penalty at a BER
of 2e-3 is measured to be ~1.2 dB for symbol-wise hexadecimal coding process and ~0.9 dB for
symbol-wise hexadecimal decoding process, respectively.

We study the BER performance of symbol-wise hexadecimal coding/decoding as a function of
the pump phase modulation depth. Figure 51(a) and (b) show measured results for symbol-
wise hexadecimal coding and decoding, respectively. The OSNR is fixed around 20 dB. For
the symbol-wise hexadecimal coding process as shown in Fig. 51(a), the coding operation
performance is sensitive to the pump phase modulation depth. In contrast, for the symbol-
wise hexadecimal decoding process as shown in Fig. 51(b), the decoding operation perform-
ance changes slightly. Such interesting phenomenon can be briefly explained as follows. For
the symbol-wise hexadecimal coding process with the coding algorithm of®.;=2®, .-®,,,
twice phase modulation of the pump is added to the coded signal. As a result, any change of
the pump phase modulation depth and resultant offset from 7/4 pump phase modulation can
cause the deviation of the constellation points of 16-QAM from their standard positions. Thus,
the coding performance is degraded for symbol-wise hexadecimal coding process. To maintain
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Figure 49. Measured complex amplitudes of symbol sequence for optical symbol-wise hexadecimal coding/decoding
using a phase-modulated pump. A binary phase modulation of (0, 7t/4) is applied to the pump.
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Figure 50. Measured BER curves for optical variable symbol-wise hexadecimal coding/decoding. (a) CW pump; (b) (0,
1t/4) phase-modulated pump.

the BER below 2e-3 (EFEC threshold), the tolerance of the pump phase modulation offset is
assessed to be about 0.023m, as shown in Fig. 51(a). For the symbol-wise hexadecimal decoding
process with the decoding algorithm of 20, ,~®. ;=20 .- (2D, ;~D, ;)=D, ; algorithms, it is
easy to understand that the BER performance of the decoded signal is independent on the

pump phase modulation, i.e., insensitive to the modulation depth of the pump as shown in
Fig. 51(b).
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2) High-Base Optical Data Exchange: Phase-transparent, high-base optical data exchange
between two 100-Gbit/s DQPSK signals has been demonstrated using the parametric
depletion effect of nondegenerate FWM in an HNLF. Simultaneous multichannel data
exchange has been proposed and demonstrated using bidirectional degenerate FWM in a
single HNLF. Moreover, a reconfigurable Tbit/s network switching element using double-
pass LCoS technology accompanied by bidirectional degenerate FWM in a single HNLF has
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hexadecimal decoding as a function of the offset in the time domain between the pump for
decoding and that for coding. The pump for coding is aligned to the signal. It can be clearly
seen that the performance of decoding process is dependent on the offset in the time domain
between the pump for decoding and that for coding. To maintain the BER below 2e-3 (EFEC
threshold), the tolerance of the relative pump offset to the symbol period is assessed to be about
20%.

6. Conclusion

In this chapter, we have reviewed recent research efforts toward high-base optical signal
processing by adopting multilevel modulation signals and exploiting optical nonlinearities.

1.

High-Base Wavelength Conversion: On-chip, high-base, all-optical wavelength conver-
sion of multicarrier, multilevel modulation signals has been demonstrated using degen-
erate FWM in a silicon waveguide and OFDM m-QAM signals. Impressive operation
performance of on-chip 3.2 Gbaud/s OFDM 16/32/64/128-QAM wavelength conversion
has been achieved in the experiment.

High-Base Optical Data Exchange: Phase-transparent, high-base optical data exchange
between two 100-Gbit/s DQPSK signals has been demonstrated using the parametric
depletion effect of nondegenerate FWM in an HNLF. Simultaneous multichannel data
exchange has been proposed and demonstrated using bidirectional degenerate FWM in
a single HNLF. Moreover, a reconfigurable Tbit/s network switching element using
double-pass LCoS technology accompanied by bidirectional degenerate FWM in a single
HNLF has been proposed. 2.3-Tbit/s multifunctional grooming switch has been demon-
strated in the experiment, performing simultaneous selective high-base add/drop, high-
base switchable data exchange, and high-base power equalization, for ITU-grid-
compatible 23-channel 100-Gbit/s RZ-DQPSK signals. Additionally, ultrahigh-speed
high-base optical data exchange of 640 Gbaud (2.56 Tbit/s) 16-QAM and 640 Gbaud (3.84
Tbit/s) 64-QAM signals has been proposed and simulated by exploiting non-degenerate
FWM in a silicon-organic hybrid slot waveguide.

High-Base Optical Computing: By adopting 100-Gbit/s two-input RZ-DQPSK signals (A,
B) and exploiting three degenerate FWM processes and three nondegenerate FWM
processes in an HNLF, simultaneous 50-Gbaud two-input quaternary addition (A+B),
dual-directional subtraction (A-B, B-A), complement (-A, -B), and doubling (2B) have been
demonstrated in the experiment. By employing 100-Gbit/s three-input RZ-DQPSK signals
(A, B, C/-C) and three nondegenerate FWM processes in an HNLF, 50-Gbaud three-input
quaternary hybrid addition and subtraction (A+B-C, A+C-B, B+C-A, A+B+C) have been
demonstrated in the experiment. Furthermore, three-input (A, B, C) 40-Gbaud (160-Gbit/
s) optical hexadecimal addition/subtraction (A+B-C, A+C-B, B+C-A, A+B+C, A-B-C, B-A-
C) has also been proposed and simulated based on nondegenerate FWM in a silicon-
organic hybrid slot waveguide.

High-Base Optical Coding/Decoding: By exploiting degenerate FWM in an HNLF and
adopting 16-QAM signal, 10-Gbaud optical variable symbol-wise hexadecimal coding/
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decoding assisted by a CW pump or a phase-modulated pump has been demonstrated in
the experiment. The former takes the coding through the phase conjugation of degenerate
FWM, and the latter offers enhanced coding via the combined contributions from the
phase modulation of the pump and the phase-conjugated FWM.

Beyond high-base wavelength conversion, data exchange, optical computing, and optical
coding/decoding based on degenerate/nondegenerate FWM in HNLFs or silicon waveguides,
with future improvements, other different optical nonlinearities on various nonlinear optical
device platforms would also be employed to flexibly manipulate the amplitude and phase
information of advanced multilevel modulation signals, which might open diverse interesting
applications in robust high-base optical signal processing.
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